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SUMMARY

The earlier work in the development of direct strong form collocation methods, such as the reproducing
kernel collocation method (RKCM), addressed the domain integration issue in the Galerkin type
meshfree method, such as the reproducing kernel particle method, but with increased computational
complexity because of taking higher order derivatives of the approximation functions and the need for
using a large number of collocation points for optimal convergence. In this work, we intend to address
the computational complexity in RKCM while achieving optimal convergence by introducing a gradient
reproduction kernel approximation. The proposed gradient RKCM reduces the order of differentiation to
the first order for solving second-order PDEs with strong form collocation. We also show that, different
from the typical strong form collocation method where a significantly large number of collocation
points than the number of source points is needed for optimal convergence, the same number of
collocation points and source points can be used in gradient RKCM. We also show that the same order
of convergence rates in the primary unknown and its first-order derivative is achieved, owing to the
imposition of gradient reproducing conditions. The numerical examples are given to verify the analytical
prediction. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the past two decades, significant advancement has been achieved in the development of meshfree
methods for solving PDEs based on the Galerkin weak formulation. The approximation functions
with compact support such as moving least-squares (MLS) [1–3] and reproducing kernel (RK)
[4–6] functions are commonly adopted in Galerkin meshfree methods. With monomial reproducing
properties in compactly supported MLS and RK, algebraic convergence rates are obtained [7,8] and
the discrete systems are well-conditioned. Nonetheless, domain integration of the weak equation
adds substantial difficulties and complexities to the Galerkin meshfree methods [9–13].

On the other hand, meshfree methods formulated based on the strong form with direct collocation
have also been proposed [14–20]. This approach reduces the complexities associated with domain
integration and the imposition of boundary conditions. The radial basis functions (RBFs) [21–24]
are commonly used in the strong form collocation method [15–17], generally called the radial basis
collocation method (RBCM). While the nonlocal RBFs with certain regularity offer exponential
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convergence in RBCM [25–27], the linear system of RBCM is typically ill-conditioned [28,29]. An
alternative approach is the employment of smooth approximation with compact support such as the
MLS or RK approximation in the strong form collocation method [14, 18, 19, 30, 31]. The
reproducing kernel collocation method (RKCM) offers a much better conditioned discrete system
than that of RBCM; nevertheless, it converges algebraically [30, 31]. The work in [32] shows that
one can construct a localized RBF using a partition of unity function, such as the reproducing kernel
enhanced radial basis function, to yield a local approximation while maintaining the exponential
convergence in RBCM. This localized RBF, combined with the subdomain collocation method, has
been applied to problems with local features, such as problems with heterogeneity [33] or cracks
[34] that are difficult to be solved by RBCM.

It is noteworthy that higher order derivatives of the approximation functions are needed in
the strong form collocation method compared with the Galerkin method. While approximation
functions such as RK and MLS can be arbitrarily smooth, taking derivatives of these functions
is computationally costly, making RKCM less efficient. In particular, the high complexity in RKCM
is caused by taking derivatives of the moment matrix inversion in the multidimensional RK shape
functions (see the detailed complexity and error analysis of RKCM in [31] and [30], respectively).
Furthermore, for optimal convergence in RBCM and RKCM, using the number of collocation
points much larger than the number of source points is needed, and this adds additional compu-
tational effort [15, 30]. Motivated by the above mentioned disadvantages in RKCM, a gradient RK
approximation is introduced in solving second-order PDEs with strong form collocation, termed
the gradient reproducing kernel collocation method (G-RKCM). The idea of gradient RK was first
introduced in the Galerkin weak form to achieve a synchronized convergence [35,36]. The gradient
RK approximation in [35, 36] is formulated based on partition of nullity and derivative reproducing
conditions, where similar construction has also been introduced in the implicit gradient approxima-
tion for localization problems [37]. Different from [35–38] where the gradient RK approximation
is used as the enrichment of the standard RK approximation under Galerkin weak formulation, the
present approach introduces gradient RK as the ‘assumed strain’ field directly in the strong form.
The convergence properties of this G-RKCM approach will be derived, and the complexity of this
method in comparison with RKCM will also be analyzed in this paper.

The paper is organized as follows. Section 2 reviews the basic equations and the fundamental
properties of RK approximation and RKCM. In Section 3, the gradient RK approximation is intro-
duced, and its application to the strong form to construct G-RKCM discrete equations is presented in
Section 4. The error analysis of G-RKCM and the choice of collocation points are given in Section 5.
The complexities of G-RKCM and RKCM are compared in Section 6. The numerical examples are
given in Section 7 to demonstrate the effectiveness of the proposed method. The concluding remarks
of the proposed G-RKCM are presented in Section 8.

2. REVIEW OF REPRODUCING KERNEL COLLOCATION METHOD

Consider the following boundary value problem:

LuD f in �
BhuD h on @�h
BguD g on @�g ,

(1)

where � is the problem domain, @�h is the Neumann boundary, @�g is the Dirichlet boundary,
@� D @�h [ @�g , L is the differential operator in �, and Bh and Bg are the boundary operators
on @�h and @�g , respectively. To solve (1) by strong form collocation, the reproducing kernel
approximation of u, denoted by v, is expressed as

u.x/� v.x/D
NsX
ID1

‰I .x/aI , (2)
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where Ns is the number of source points, and ‰I .x/ is the reproducing kernel (RK) shape function
expressed as

‰I .x/D C.xI x� xI /'a .x� xI / , (3)

where 'a.x� xI / is the kernel function, and C .xI x� xI / is the correction function

C .xI x� xI /D
pX
j˛jD0

b˛.x/.x� xI /˛ , p > 0

DWHT.x� xI /b.x/.

(4)

Here we introduce the multi-index notation in d -dimension ˛ D .˛1,˛2, : : : ,˛d /, with the length

of ˛ defined as j˛j D
Pd
iD1 ˛i , x˛ � x

˛1
1 � x

˛2
2 � � � x

˛d
d

, x˛I � x
˛1
1I � x

˛2
2I � � � x

˛d
dI

, .x� xI /˛ �
.x1 � x1I /

˛1 .x2 � x2I /
˛2 � � � .xd � xdI /

˛d , and b˛ � b˛1,˛2,:::,˛d . The vectors HT.x � xI / and
bT.x/ are the corresponding row vectors of ¹.x� xI /˛ºj˛j6p and ¹b˛.x/ºj˛j6p , respectively. The
shape functions are required to satisfy p-th order reproducing conditions given as follows:X

I

�I .x/ x˛I D x˛ , j˛j6 p. (5)

The coefficients b.x/ are obtained by satisfying (5), and it yields the following RK shape function:

‰I .x/DHT.0/M�1.x/H .x� xI / 'a .x� xI / (6)

and

M.x/D
NsX
ID1

H.x� xI /HT.x� xI /'a .x� xI / . (7)

Introducing RK approximation of u in (2) to the strong form in (1), and evaluating the differential
equation and boundary conditions at the collocation points p` 2 �, q` 2 @�h, and r` 2 @�g , we
have the following collocation equations:

Lv.p`/D f .p`/ 8 p` 2 �, `D 1, � � � ,Np
Bhv .q`/D h .q`/8 q` 2 @�h, `D 1, � � � ,Nq
Bgv .r`/D g .r`/ 8 r` 2 @�g , `D 1, � � � ,Nr .

(8)

Collection of the collocation equations yields the following linear system:

AaD b, (9)

where AD A
�
.L‰/p` , .Bh‰/q` , .Bg‰/r`

�
and bD b

�
.f/p` , .h/q` , .g/r`

�
8 p` 2�, q` 2 @�h, and

r` 2 @�g . Note that the total number of collocation points Np CNq CNr is typically much larger
than the number of source points Ns for optimal convergence, and hence yields an over-determined
system in (9).

Remark 2.1
The collocation equations in (8) can be shown to be equivalent to the minimization of the
following least-squares functional with quadrature [15], that is, to seek solution ur 2 V D span

¹‰1, � � � ,‰Ns º, such that

E .ur/D inf
v2V

E .v/ , (10)

where

E.v/D
1

2

Z
�

.Lv� f/T .Lv� f/ d�C
1

2

Z
@�h

.Bhv� h/T .Bhv� h/d�

C
1

2

Z
@�g

�
Bgv� g

�T �
Bgv� g

�
d�

(11)
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By choosing the quadrature points in (11) the same as the collocation points in (8) in solving (9) by
a weighted least-squares method, the equivalence between the solution by minimization of (11) and
the solution of (9) can be established; see [15] for details.

Remark 2.2
To keep the balance of errors in the domain and boundary terms in the least-squares functional, a
weighted least-squares functional has been proposed [15, 30]

E.v/D
1

2

Z
�

.Lv� f/T .Lv� f/d�C
˛h

2

Z
@�h

.Bhv� h/T .Bhv� h/d�

C
˛g

2

Z
@�g

�
Bgv� g

�T �
Bgv� g

�
d� ,

(12)

where the weights
p
˛h D 1,

p
˛g D �Ns, with � D 1 for Poisson problem and � D max¹�,�º

for elasticity for optimal convergence have been proposed. A set of equivalent collocation equations
can be obtained

Lv .p`/D f .p`/ 8 p` 2 �, `D 1, � � � ,Np
p
˛h Bhv .q`/D

p
˛hh .q`/ 8 q` 2 @�h, `D 1, � � � ,Nq

p
˛g Bgv .r`/D

p
˛gg .r`/ 8 r` 2 @�g , `D 1, � � � ,Nr .

(13)

This RKCM converges in the following norm [30]:

jku� urkj6 C
°
ku� vk2,�Ck.u� v/nk0,@�h

Cku� vk0,@�g

±
6 Ckap�1 jujpC1,� ,

(14)

where C is a genetic constant and k is the overlapping number.

This result indicates that for RKCM to converge, the RK approximation of degree p > 2 needs to
be used.

3. GRADIENT REPRODUCING KERNEL APPROXIMATION

Strong form collocation for second-order differential equations requires taking second-order differ-
entiation on the RK shape functions of (6), which is time consuming, especially in calculating higher
order derivatives of M�1.x/ at every evaluation point x. Motivated by the reproducing kernel approx-
imation to achieve synchronized convergence in RKPM [35, 36], we consider the approximation of
u,ˇ for the strong form of second-order PDEs as follows:

u,ˇ � wˇ D
NsX
ID1

‰
ˇ
I .x/aI , (15)

where

‰
ˇ
I .x/D C

ˇ .xI x� xI / 'a .x� xI / (16)

and ˇ D .ˇ1,ˇ2, : : : ,ˇd /, jˇj D
Pd
iD1 ˇi 6 j˛j.

Here the correction functions in (16) are constructed with monomial bases of degree q

C ˇ .xI x� xI /D
qX
j˛jD0

bˇ˛ .x/ .x� xI /
˛ , q > 0

DWHT .x� xI /bˇ .x/.

(17)
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The coefficients bˇ˛ are obtained from the following gradient reproducing conditions:

NsX
ID1

‰
ˇ
I x˛I DD

ˇx˛ , 06 j˛j6 q, (18)

where Dˇ � @ˇ1=@ˇ1x1 @
ˇ2=@ˇ2x2 : : : @

ˇd =@ˇdxd . As shown in [6], Equation (18) is equivalent to

NsX
ID1

‰
ˇ
I .x � xI /

˛ D .�1/jˇ jDˇH .0/ , (19)

where

DˇH.x/D
˛Š

.˛ � ˇ/Š
x˛�ˇ (20)

and

DˇH .0/D ˛Šıˇ˛ . (21)

Substituting (16) and (17) into (19) gives rise to

M.x/bˇ .x/D .�1/jˇ jDˇH .0/ , (22)

where M.x/ is the moment matrix given in (7). Consequently, the gradient RK shape functions are
obtained as

‰
ˇ
I .x/D .�1/

jˇ jDˇHT .0/M�1 .x/H .x� xI / 'a .x� xI / . (23)

Uniqueness in Equation (22) requires that the kernel support to be large enough to ensure the nonsin-
gularity of the moment matrix M.x/. This condition is identical to the requirement of kernel support
in the reproducing kernel approximation [4, 5]. For this reason, truncation of kernel support is nec-
essary in the discretization of nonconvex domain. It is noted that M.x/ is the Gram matrix of basis
functions H .x� xI / with respect to 'a .x� xI /. The positivity of the kernel function 'a .x� xI /
ensures the positive definiteness of M.x/. In this work, 'a .x� xI / is chosen to be the quintic
B-spline kernel function:

'a.s/D

8̂̂̂
<̂
ˆ̂̂̂:

11
20
� 9s2

2
C 81s4

4
� 81s5

4
, 06 s < 1

3
,

17
40
C 15s

8
� 63s2

4
C 135s3

4
� 243s4

8
C 81s5

8
, 1

3
6 s < 2

3
,

81
40
� 81s

8
C 81s2

4
� 81s3

4
C 81s4

8
� 81s5

40
, 2

3
6 s < 1,

0, s > 1,

s D
kx� xIk

a
, (24)

where s is the normalized nodal distance.
If equal order bases are used in the approximation of u and u,ˇ , the term M�1.x/ is identical in

all shape functions ‰I and ‰ˇI . Furthermore, by comparing the shape function for u in (6) with the
shape functions for u,ˇ in (23), it appears that HT.0/ in (6) is replaced by .�1/jˇ jDˇHT.0/ in (23),

leading to a significant time saving in computing ‰ˇI compared with a direct differentiation of ‰I .
For the sake of simplicity but without loss of generality, we consider two-dimensional problems

in this study. The approximation of u,x and u,y denoted as follows will be used in the next sections,
and the simplified derivation of ‰xI and ‰yI is given in Appendix A.

u,x � wx D
NsX
ID1

‰xI .x/aI

u,y � wy D
NsX
ID1

‰
y
I .x/aI .

(25)
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Hence, the second-order derivatives of u is obtained by taking direct derivatives of wx and wy ,
that is,

u,xx � wx,x D

NsX
ID1

‰xI ,x.x/aI

u,yy � wy,y D

NsX
ID1

‰
y
I ,y.x/aI .

(26)

4. GRADIENT REPRODUCING KERNEL COLLOCATION METHOD

To introduce gradient RK approximation in the discretization of strong form, consider the following
boundary value problem:

L1u,xCL2u,y D f in �

B1
h
u,xCB2

h
u,y D h on @�h

BguD g on @�g ,

(27)

where L1 and L2 are the differential operators in�, B1
h

and B2
h

are the boundary operators on @�h,
and Bg is the boundary operator on @�g . The explicit forms of the operators and vectors for Poisson
and elasticity problems in two dimensions are given in Table I.

The approximations of u, u,x and u,y are given as

u� vD‰Ta
u,x � wx D‰x

T
a

u,y � wy D‰y
T

a,

(28)

where ‰ , ‰x , ‰y , and a are the vector forms of ¹‰I º
Ns

ID1,
®
‰xI
¯Ns

ID1
,
®
‰
y
I

¯Ns

ID1
and aI , respec-

tively. We define a least-squares functional associated with the boundary value problem in (27) with
approximations u� v, u,x � wx , u,y � wy as

E
�
v, wx , wy

�
D
1

2

Z
�

�
L1wx CL2wy � f

�T �
L1wx CL2wy � f

�
d�

C
˛h

2

Z
@�h

�
B1hwx CB2hwy � h

�T �
B1hwx CB2hwy � h

�
d�

C
˛g

2

Z
@�g

�
Bgu� g

�T �
Bgu� g

�
d� .

(29)

Table I. Explicit forms of operators for the Poisson and elasticity problems in two dimensions.

Operator Poisson’s problem Elasticity problem

L1 @
@x

"
.�C 2�/ @

@x
� @
@y

� @
@y

� @
@x

#

L2 @
@y

"
� @
@y

� @
@x

� @
@x

.�C 2�/ @
@y

#

B1
h

nx

�
.�C 2�/ nx �ny

�ny �nx

�

B2
h

ny

�
�ny �nx

�nx .�C 2�/ ny

�

Bg 1

�
1 0
0 1

�
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Here the first term accounts for the least-squares residual of the differential equation in the domain,
and the second and third terms account for the least-squares residuals of the Neumann and Dirichlet
boundary conditions, respectively. Weights ˛h and ˛g are considered in the least-squares residuals
for the boundary constraints. Substituting (28) into (29) and considering the stationary condition
lead to the variational discrete equation

ıE D ıaT
Z
�

L1‰x
�

L1‰x
T

aCL2‰y
T

a� f
�
d�

C ıaT
Z
�

L2‰y
�

L1‰x
T

aCL2‰y
T

a� f
�
d�

C ˛hıa
T

Z
@�h

B1h‰
x
�

B1h‰
xTaCB2h‰

yTa� h
�
d�

C ˛hıa
T

Z
@�h

B2h‰
y
�

B1h‰
xTaCB2h‰

yTa� h
�
d�

C ˛gıaT
Z
@�g

Bg‰
�

Bg‰T a� g
�
d� .

(30)

Performing quadrature rules at the collocation points yields

ıE D ıaT
NpX
`D1

�
L1
�
‰x

T
.p`/

�T �
L1‰x

T
.p`/ aCL2‰y

T
.p`/ a� f .p`/

�

CL2
�
‰y

T
.p`/

�T �
L1‰x

T
.p`/ aCL2‰y

T
.p`/ a� f .p`/

��
w1`

C ıaT˛h

NqX
`D1

�
B1h
�
‰x

T
.q`/

�T �
B1h‰

xT .q`/ aCB2h‰
yT .q`/ a� h .q`/

�

CB2h
�
‰y

T
.q`/

�T �
B1h‰

xT .q`/ aCB2h‰
yT .q`/ a� h .q`/

��
w2`

C ıaT˛g
NrX
`D1

�
Bg
�
‰T .q`/

�T �
Bg‰T .q`/ a� g .q`/

��
w3` D 0,

(31)

where
®
p`,w1`

¯Np
`D1

,
®
q`,w2`

¯Nq
`D1

, and
®
r`,w3`

¯Nr
`D1

are the pairs of quadrature points and weights in
� and on @�h and @�g , respectively.

We can rewrite (31) as

ıE D ıaT
h
A1

T
W1

�
A2aCA1a� b1

�
CA2

T
W1

�
A1aCA2a� b1

�
C˛hA3

T
W2

�
A3aCA4a� b2

�
C ˛hA4

T
W2

�
A3aCA4a� b2

�
C˛gA5

T
W3

�
A5a� b3

�i
D ıaT

�
ATW .Aa� b/

	
D 0,

(32)

where

AD

0
@ A1CA2
p
˛h
�
A3CA4

�
p
˛gA5

1
A, bD

0
@ b1
p
˛hb2
p
˛gb3

1
A, WD

0
@ W1

W2

W3

1
A (33)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 93:1381–1402
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A1 D

0
BBBB@

L1‰x
T
.p1/

L1‰x
T
.p2/

...
L1‰x

T �
pNp

�

1
CCCCA, A2 D

0
BBBB@

L2‰y
T
.p1/

L2‰y
T
.p2/

...
L2‰y

T �
pNp

�

1
CCCCA (34)

A3 D

0
BBBB@

B1
h
‰x

T
.q1/

B1
h
‰x

T
.q2/

...
B1
h
‰x

T �
qNq

�

1
CCCCA, A4 D

0
BBBB@

B2
h
‰y

T
.q1/

B2
h
‰y

T
.q2/

...
B2
h
‰y

T �
qNq

�

1
CCCCA, A5 D

0
BBB@

Bg‰T .r1/
Bg‰T .r2/

...
Bg‰T .rNr /

1
CCCA (35)

b1 D

0
BBB@

f .p1/
f .p2/

...
f
�
pNp

�

1
CCCA , b2 D

0
BBB@

h .q1/
h .q2/

...
h
�
qNq

�

1
CCCA , b3 D

0
BBB@

g .r1/
g .r2/

...
g .rNr /

1
CCCA ,

W1 D

0
B@
w11

. . .
w1Np

1
CA , W2 D

0
B@
w21

. . .
w2Nq

1
CA , W3 D

0
B@
w31

. . .
w3Nr

1
CA
(36)

From (32), the discrete weighted least-squares equation has the following form:

ATW AaD ATWb. (37)

Equation (37) is the weighted least-squares approximation of the linear system AaD b, that is0
@ A1CA2
p
˛h
�
A3CA4

�
p
˛gA5

1
A

„ ƒ‚ …
A

aD

0
@ b1
p
˛hb2
p
˛gb3

1
A

„ ƒ‚ …
b

. (38)

The submatrices in matrix A, and the vectors a and b for Poisson and elasticity problems are
summarized in Table II.

Table II. Submatrices in discrete equations for Poisson and elasticity problems.

Submatrix Poisson’s problem Elasticity problem

A1
IJ

h
‰x
J ,x .pI /

i "
.�C 2�/‰x

J ,x .pI / �‰x
J ,y .pI /

�‰x
J ,y .pI / �‰x

J ,x .pI /

#

A2
IJ

h
‰
y
J ,y .pI /

i "
�‰

y
J ,y .pI / �‰

y
J ,x .pI /

�‰
y
J ,x .pI / .�C 2�/‰

y
J ,y .pI /

#

A3
IJ

�
‰x
J
.qI / nx

	 �
.�C 2�/‰x

J
.qI / nx �‰x

J
.qI / ny

�‰x
J
.qI / ny �‰x

J
.qI / nx

�

A4
IJ

�
‰
y
J
.qI / ny

	 "
�‰

y
J
.qI / ny �‰

y
J
.qI / nx

�‰
y
J
.qI / nx .�C 2�/‰

y
J
.qI / ny

#

A5
IJ

Œ‰J .rI /�
�
‰J .rI / 0

0 ‰J .rI /

�
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5. CONVERGENCE STUDY

We first consider a two-dimensional Poisson boundary value problem (BVP) as a model problem

u,xx C u,yy Df in �

uD g on @�g
ru � n� un D h on @�h.

(39)

As discussed in Section 4, the strong form collocation can be related to the least-squares functional
with quadrature. On the basis of the least-squares functional in (29) and considering the BVP in
(39), E-norm is defined as follows:



v,wx ,wy



E
D
°

wx,x Cwy,y



2
0,�C ˛h kwnk

2
0,@�h

C ˛gkvk
2
0,@�g

±1=2
(40)

where wn D wxnx Cwyny , and

v D

NsX
ID1

‰IaI , v 2 V D span ¹‰1,‰2, � � �‰NSº

wx D

NsX
ID1

‰xI aI , wx 2Wx D span
®
‰x1 ,‰x2 , � � �‰xNS

¯

wy D

NsX
ID1

‰
y
I aI wy 2Wy D span

°
‰
y
1 ,‰y2 , � � �‰yNS

±
(41)

Thus, we have

u� v,u,x �wx ,u,y �wy



E
D
°

wx,x Cwy,y � f



2
0,�C ˛h kwn � hk

2
0,@�h

C˛g kv � gk
2
0,@�g

±1=2
6


wx,x Cwy,y � f




0,�C

p
˛h kwn � hk0,@�h

C
p
˛g kv � gk0,@�g

�E1CE2CE3.

(42)

Here E1 is the error from domain, E2 is the error from the Neumann boundary, and E3 is the error
from Dirichlet boundary. The individual error norms are estimated as follows:

E1 D


wx,x Cwy,y � f




0,�

D


wx,x Cwy,y � u,xx � u,yy




0,�

6 kwx,x � u,xxk0,�C


wy,y � u,yy




0,�

6 kwx � u,xk1,�C


wy � u,y




1,�

6 C1a�1 kwx � u,xk0,�CC2a
�1


wy � u,y




0,�

(43)

E2 D
p
˛h kwn � hk0,@�h

D
p
˛h kwn � unk0,@�h

6 NC3
p
˛h kwx � u,xk1,�C

NC4
p
˛h


wy � u,y




1,�

6 C3a�1
p
˛h kwx � u,xk0,�CC4a

�1p˛h


wy � u,y




0,�

(44)
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E3 D
p
˛g kv � gk0,@�g

D
p
˛g kv � uk0,@�g

6 NC5
p
˛g kv � uk1,�

6 C5a�1
p
˛g kv � uk0,� .

(45)

We further introduce the following properties of the reproducing kernel approximation of degree p
in (5) and the gradient reproducing kernel approximation of degree q in (18):

ku� vk0,� 6 CapC1 jujpC1,�

ku,x �wxk0,� 6 Caq jujqC1,�

u,y �wy



0,� 6 Ca

q jujqC1,� .

(46)

As can be seen, E1 and E2 are associated with the gradient reproducing kernel approximation
(wx and wy) of the differential equation and the Neumann boundary condition, respectively. It
appears that the errors E1 and E2 are in balance without the weight in E2, thus the weight ˛h is
unnecessary. The error term E3 is associated with the reproducing kernel approximation (v), and its
balance with the errorsE1 andE2 requires the properties in (46). As such, the weights for imposition
of boundary conditions in G-RKCM are selected as shown below

p
˛h �O.1/,

p
˛g �O

�
aq�p�1

�
. (47)

Combining the properties in (46) and the weights in (47), we have

u� v,u,x �wx ,u,y �wy



E
6 aq�1

�
C9jujqC1,�CC10jujpC1,�

�
. (48)

Assuming the discrete bilinear form associated with the minimization of E-norm in (42) is bounded
and coercive, by Lax-Milgram and Cea’s lemmas, there exists an optimal estimate


u� uh,u,x � u

h
,x ,u,y � u

h
,y





E
6 NC infv2V

wx2Wx
wy2Wy



u� v,u,x �wx ,u,y �wy



E

6 aq�1
�
C11jujqC1,�CC12jujpC1,�

�
.

(49)

Furthermore, considering the balance of errors in the E-norm, and the error properties in (43)–(45),
we have 


u� uh




1,�
�O

�
aq�1

�
,




u,x � u
h
,x





1,�
C



u,y � u

h
,y





1,�
�O

�
aq�1

�
(50)




u� uh



0,�
�O .aq/ ,




u,x � u
h
,x





0,�
C



u,y � u

h
,y





0,�
�O .aq/. (51)

For elasticity, similar procedures are followed to obtain

E1 6 C1�a�1 kwx � u,xk0,�CC2�a
�1


wy � u,y




0,�

E2 6 C3�a�1
p
˛h kwx � u,xk0,�CC4�a

�1p˛h


wy � u,y




0,�

E3 6 C5a�1
p
˛g kv � uk0,� ,

(52)

where � D max ¹�,�º. For balance of errors between E1, E2, and E3, the following weights are
selected:

p
˛h �O.1/,

p
˛g �O

�
�aq�p�1

�
. (53)

Similar convergence properties to the Poisson problem as given in (48)–(51) can be obtained for
elasticity problems.
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Remark 5.1
The results in (49) indicate that the convergence of this method is only dependent on the polynomial
degree q in the approximation of u,x and u,y , and is independent of the polynomial degree p in the
approximation of u. Furthermore, q > 2 is needed for convergence.

Remark 5.2
The collocation points in the strong form collocation method play a similar role as the quadrature
points in the least-squares method as discussed in Section 3. For strong form collocation method
based on approximation for u, such as the RKCM [30–32], it requires second-order differentiation
of the approximation functions.

Typically, higher order differentiation in the approximation function requires higher order
quadrature rule for sufficient accuracy in the solution process. Taking RKCM for a Poisson problem
for example, we have ˇ̌̌

ˇ̌̌Z
�

	vd��

^Z
�

	vd�

ˇ̌̌
ˇ̌̌6 ChrC1c N rC3

s kvk21,�. (54)

In the above,
R̂

denotes numerical integration, hc D 1=Nc,Nc andNs are the numbers of collocation
points and source points in one dimension, respectively, and r is the parameter related to the accu-
racy of numerical integration method, for example, r D 1 for Trapezoidal rule. Here, 	v D r � rv
involves second-order differentiation of the approximation in v. For the proposed G-RKCM, 	v is
replaced by r � Œwx ,wy �, which requires only first-order differentiation of wx and wy , and we haveˇ̌̌

ˇ̌̌Z
�

r � Œwx ,wy �d��

^Z
�

r � Œwx ,wy �d�

ˇ̌̌
ˇ̌̌6 ChrC1c N rC1

s kwnk
2
1,� , (55)

where wn D wxnx Cwyny .
For RKCM, it requires hrC1c N rC3

s D N�.rC1/c N rC3
s � o.1/ for integration error to be under

control, and thus necessitates the use of more collocation points Nc than source points Ns in the
collocation method, and that leads to an over-determined system in its collocation equations. For
the proposed G-RKCM, we need hrC1c N rC1

s D N�.rC1/c N rC1
s � o.1/, and thus allows the use of

Nc DNs for sufficient accuracy as will be shown in the numerical examples.

6. COMPLEXITY ANALYSIS

In this section, we analyze the complexity of RKCM and the proposed G-RKCM. For complexity
comparison of RKCM and G-RKCM, consider the solution of the following Poisson problem:

�	uD f in�
uD g on @�g
un D h on @�h,

(56)

where	D r �r and un D ru�n. We consider the following two formulations in the approximations:

RKCM W u� v D

NsX
ID1

‰I .x/aI , u,˛ � v,˛ D

NsX
ID1

‰I ,˛.x/aI , u,˛˛ � v,˛˛ D

NsX
ID1

‰I ,˛˛.x/aI

(57)

G�RKCM W u� v D

NsX
ID1

‰I .x/aI , u,˛ � w˛ D

NsX
ID1

‰˛I .x/aI , u,˛˛ � w˛,˛ D

NsX
ID1

‰˛I ,˛.x/aI ,

(58)
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where ˛ D 1, 2, ‰I .x/ is the RK shape function of degree p, and ‰˛I is the gradient RK shape
function with degree q. Consider a set of collocation points

C D
°
¹p`º

Np
`D1

, ¹q`º
Nq
`D1

, ¹r`º
Nr
`D1

±
, p` 2�, q` 2 @�g , r` 2 @�h. (59)

Introducing RK approximation in (57) into the strong form (56), and enforcing the residual to be
zero at the collocation points to yield

�

NsX
ID1

	‰I .p`/ aI D f .p`/ , p` 2�, `D 1, � � � ,Np (60a)

p
˛g

NsX
ID1

	‰I .q`/ aI D
p
˛gg .q`/ , q` 2 @�g , `D 1, � � � ,Nq (60b)

p
˛h

NsX
ID1

.r‰I .r`/ � n .r`// aI D
p
˛hh .r`/ , r` 2 @�h, `D 1, � � � ,Nr (60c)

Note that for RKCM, the second-order derivative on the shape function 	‰I D ‰I ,xx C ‰I ,yy

is needed in (60a), while for G-RKCM, this term is replaced by 	‰I D ‰xI ,x C ‰
y
I ,y . Similarly

in (60c), r‰I D Œ‰I ,x ,‰I ,y � for RKCM, while r‰I D
�
‰xI ,‰yI

	
for G-RKCM. It is therefore

imperative to analyze the operating counts of ‰I , ‰I ,˛ , and ‰˛I , ˛ D 1, 2 in the following. We
denote multiplication and division operations by M/D, and the addition and subtraction operations
by A/S. For RKCM, operation counts following [30] are:

‰I

²
M/D: S3C .2kC 1/ S2C S C 1

A/S W S3C .k � 2/ S2C S � 1
(61)

‰I ,˛

²
M/D: 3S3C .8kC 4/ S2C 3S C 2

A/S: 3S3C .4k � 5/ S2C S C 1
(62)

‰I ,˛˛

²
M/D W 6S3C .20kC 12/ S2C 6S C 4

A/S W 6S3C .10k � 11/ S2C S C 12
, (63)

where S D .p C d/Š=.pŠd Š/, p is the reproducing degree of RK approximation, d is the space
dimension, and k is the kernel support overlapping number. For G-RKCM, the operating count for
‰I is the same as (61), and the operating counts for ‰˛I and ‰˛I ,˛ are

‰˛I

²
M/D: NS3C .2kC 1/ NS2C NS C 1

A/S: NS3C .k � 2/ NS2C NS � 1
(64)

‰˛I ,˛

²
M/D W 3 NS3C .8kC 4/ NS2C 3 NS C 2

A/S: 3 NS3C .4k � 5/ NS2C NS C 1
, (65)

where NS D .q C d/Š=.qŠd Š/, and q is the reproducing degree of gradient RK approximation. Note
that the complexity of ‰˛I is the same as that for ‰I , and the complexity of ‰˛I ,˛ is the same as that

for ‰I ,˛ , with p in S replaced by q in NS . The computational complexities of these shape functions
in two dimensions for p D q D 2 are shown in Tables III and IV, respectively. The kernel support
overlapping number is based on normalized kernel support of k D 4S in two dimensions.

The collocation equations in (60) lead to a linear system

AaD b. (66)
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Table III. Complexity comparison of shape function calculation in RKCM and G-RKCM in
two dimensions.

RKCM p D 2 G-RKCM p D q D 2

‰I
M/D 1987

‰I
M/D 1987

A/S 1013 A/S 1013

‰I ,˛
M/D 7724

‰˛
I

M/D 1987
A/S 3931 A/S 1013

‰I ,˛˛
M/D 19,048

‰˛
I ,˛

M/D 7724
A/S 9558 A/S 3991

Table IV. Complexity comparison of shape function calculation in RKCM and G-RKCM in
three dimensions.

RKCM p D 2 G-RKCM p D q D 2

‰I
M/D 17,111

‰I
M/D 17,111

A/S 8809 A/S 8809

‰I ,˛
M/D 67,642

‰˛
I

M/D 17,111
A/S 34,511 A/S 8809

‰I ,˛˛
M/D 167,684

‰˛
I ,˛

M/D 67,642
A/S 84,922 A/S 34,511

In (66), the matrix A is with dimension Nc �Ns, where Nc D Np CNq CNr is the total number
of collocation points, Ns is the number of source points, Nc > Ns for RKCM, while Nc D Ns

for G-RKCM. Thus, the solution time for solving the linear system (66) also favors G-RKCM in
addition to its simplicity in shape function calculations as discussed above. Furthermore, the com-
putation time in constructing the linear system in G-RKCM is also considerably less than that in
RKCM. For example, let NNp , NNq , and NNr be the counter parts of Np , Nq , and Nr in G-RKCM,
and NNc D NNp C NNq C NNr D Ns. It can be shown that the construction times for the linear system
of (66) are

RKCM W Ns

�
38, 096Np C 1987Nq C 7724Nr

�
(67)

G-RKCM W Ns

�
15, 548 NNp C 1987 NNq C 1987 NNr

�
. (68)

By considering the fact that Np C Nq C Nr > NNp C NNq C NNr as discussed above, the CPU
advantage in G-RKCM is trivial.

7. NUMERICAL EXAMPLES

In the following numerical examples, both RK shape functions and gradient RK shape functions are
constructed with the quintic B-spline kernel function. For comparison, the solutions of the proposed
G-RKCM method are compared with analytical solutions and RKCM solutions. In the solution of
BVP, the boundary weights of

p
˛h D 1,

p
˛g D �Ns are used for RKCM following [15], while

p
˛h D 1,

p
˛g D �aq�p�1 are used for G-RKCM, with � D 1 for the Poisson problem and

� D max ¹�,�º for elasticity as discussed in Section 5. In the convergence plots of the numerical
examples, the numbers shown in the legends represent the rate of convergence of a given norm.

7.1. Approximation of a sine function

The RK shape functions and gradient RK shape functions are employed to approximate
sin.
x/ sin.
y/ and the associated derivative in the domain Œ0, 1� � Œ0, 1�, respectively. The L2
error norms of the function approximation by RK shape function with p D 1 and p D 2 are shown
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Figure 1. Convergence of L2 norms in approximating a sine function and its derivative.

in Figure 1(a) while the L2 error norms of the approximation of sine function derivative with q D 1
and q D 2 are shown in Figure 1(b). The same number of collocation points as that of source points
is used in this study. The convergence rates are in agreement with the theoretical values.

7.2. Two-dimensional Poisson problem

Consider a two-dimensional Poisson problem as follows:

	u .x,y/D
�
x2C y2

�
exy in �D .0, 1/� .0, 1/

u .x,y/D exy on @�.
(69)

The numbers of source points and collocation points employed for RKCM in the convergence study
are ¹10� 10, 15� 15, 20� 20, 25� 25, 30� 30º and ¹19� 19, 29� 29, 39� 39, 49� 49, 59� 59º,
respectively, and the number of collocation points are the same as the number of source points
¹10� 10, 15� 15, 20� 20, 25� 25, 30� 30º for G-RKCM. Figure 2 compares L2 norms of u and
u,˛ obtained by the proposed G-RKCM with various degrees of bases, and RKCM with p D 2. As
predicted by the theory in Section 4, G-RKCM requires at least second-order bases in the gradient
RK approximation for convergence, similar to the convergence requirement for RKCM [30]. The
results also show that the rate of convergence in G-RKCM is determined by the degree of bases
in the gradient RK approximation (q), although higher degree of bases in the RK approximation
(p) improves the solution accuracy in u. It is also shown that the L2 error norms of u and u,˛

have essentially the same convergence rates and are consistent with the error analysis results given
in Section 4. The CPU comparison for RKCM and G-RKCM shown in Figure 3 demonstrates the
effectiveness of the proposed G-RKCM.

Figure 2. Convergence of L2 norms of u and u,˛ in two-dimensional Poisson problem.
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Figure 3. CPU comparison of RKCM and G-RKCM.

7.3. Infinite long cylinder under internal pressure

An infinite long elastic cylinder subjected to an internal pressure is depicted in Figure 4 , where a
plane strain condition in the out of plane direction is assumed. Because of symmetry, only a quarter
of the domain is modeled by G-RKCM as shown in Figure 5(a). The corresponding boundary value
problem is

�ij ,j D 0 in � (70)

hi D�Pni on �1
u2 D 0, h1 D 0 on �2
hi D 0 on �3
u1 D 0, h2 D 0 on �4 ,

(71)

Figure 4. An infinite long cylinder subjected to an internal pressure.

Figure 5. (a) Quarter model and (b) distribution of source points and collocation points for RKCM.
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where �ij D Cijklu.k,l/ and hi D �ijnj . The analytical solutions to this problem are given by

ur.r/D
Pa2r

E .b2 � a2/

�
.1C �/ .1� 2�/C

b2

r2
.1C �/

�

�rr.r/D
Pa2

b2 � a2

�
1�

b2

r2

�

��� .r/D
Pa2

b2 � a2

�
1C

b2

r2

�
,

(72)

where P is the internal pressure, b and a are the outer and inner radii of the cylinder, respectively.
The distribution of source points and collocation points for RKCM is shown in Figure 5(b). Five
levels of discretization with source points ¹66, 222, 469, 808, 1238º are employed in the convergence
study. The number of collocation points is approximately four times the source points for the RKCM
whereas the collocation points are the same as the source points for G-RKCM. As shown in Figure 6,
disregarding the degree of basis p, the G-RKCM with quadratic basis q D 2 achieves the similar
rate of convergence as the RKCM with quadratic basis while it yields better accuracy than RKCM
in this problem. The errors in the G-RKCM with q D 2 along the radial direction are also com-
pared with those in the RKCM in Figure 7. In general, the stress results obtained by G-RKCM are
less oscillatory in comparison with those by RKCM. The results also show that for G-RKCM, the
solution is predominated by the order of basis functions (q) in the gradient RK shape functions, and
is nearly independent of the order of basis functions (p) in the RK shape functions. The condition
number of matrix A in G-RKCM (Equation (38)) is compared with those of corresponding matrices
in RKCM and RBCM in Figure 8, where in RBCM, the commonly used RBF of the following form
is adopted with a shape parameter c D 3 in this problem:

gI .x/D
�
.x� xI /

2C c2
�� 12

. (73)

As can be seen in Figure 8, the condition number of the linear system in G-RKCM is the smallest
among others and it grows with the lowest rate when the number of points increases.

7.4. Beam under shear load

Consider a plane-strain elastic cantilever beam subjected to a tip shear traction P shown in Figure 9.
The corresponding boundary value problem and boundary conditions are given as

�ij ,j D 0, 0 < x < L, �D=2 < y <D=2 (74)

Figure 6. Convergence of L2 norms of u and u,˛ in the cylinder problem.
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Figure 7. Displacement and stresses along radial direction of the cylinder.

Figure 8. Condition numbers of discrete equations in G-RKCM, RKCM, and RBCM.

Figure 9. Cantilever problem statement.
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.1/ at x D 0, y D 0, u1 D u2 D 0

.2/ at x D 0, y D˙D=2, u1 D 0, h2 D 0

.3/ on x D L, �D=26 y 6D=2, h1 D 0, h2 D 6P
D3

�
D2

4
� y2

�
.4/ on x D 0, �Dt=2 < y < 0, 0 < y <D=2, h1 D 12PL

D3
y, h2 D� 6PD3

�
D2

4
� y2

�
.5/ on 0 < x < L, y D˙D=2, h1 D h2 D 0.

(75)

The analytical solutions to the problem are

u1 .x,y/D� Py

6 NEI

h
.6L� 3x/ xC .2C N�/

�
y2 � D2

4

�i
u2 .x,y/D P

6 NEI

h
.3L� x/ x2C 3 N�y2 .L� x/C .4C 5 N�/ D

2x
4

i , (76)

where I DD3t=12 , NE DE=
�
1� �2

�
, and N� D �= .1� �/.

Six levels of discretization are performed in the convergence study with source points ¹17�5, 25�
7, 33 � 9, 41 � 11, 49 � 13, 57 � 15º, and collocation points in both G-RKCM and RKCM are the
same as the source points in this problem. The L2 norms of u and u,˛ obtained by the proposed
G-RKCM with various degrees of bases are compared with those obtained by RKCM (p D 2) in
Figure 10. Again, almost independent of the degree of basis p, the G-RKCM with quadratic basis
q D 2 achieves the similar rate of convergence as the RKCM with quadratic basis. The comparison
of shear stress solutions along x D L=2 obtained by G-RKCM with q D 2 and RKCM with p D 2
is shown in Figure 11, where Ns D 25� 7 is used. The results of shear stress obtained by G-RKCM
are less oscillatory compared with that obtained by RKCM.

Figure 10. Convergence of L2 norms of u and u,˛ in cantilever problem.

Figure 11. Comparison of shear stress along x D L=2 in cantilever problem.
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8. CONCLUSION

Although RKCM using direct RK approximation of strong form has shown an enhanced condition-
ing and sparsity in its discrete system compared with RBCM using radial basis approximation of
strong form, and it also resolved the domain integration issues in the weak form based Galerkin
meshfree method, the method suffers from the high level of complexity involved in computing the
second-order derivatives of RK shape functions and the need of using the number of collocation
points much larger than the number of source points for optimal convergence. To resolve these
issues, in this work we propose a G-RKCM by formulating the derivatives of RK shape functions
directly based on the partition of nullity and discrete derivative reproducing conditions to elim-
inate the need of taking second derivatives of the Gram matrix involved in RKCM for solving
second-order PDEs.

We also showed that in the proposed G-RKCM the number of collocation points needs not be
greater than that of source points required in RKCM. The error analysis showed that the rate of con-
vergence in G-RKCM is determined by the polynomial degree in the gradient RK approximation,
and is independent of the polynomial degree in the RK approximation. Furthermore, G-RKCM
yields the same convergence rates in L2 norms of u and u,˛ . The complexity analysis provided
precious operating counts of both RKCM and G-RKCM and clearly demonstrated the significant
computational efficiency of G-RKCM over RKCM. The numerical results confirmed the analyti-
cal predictions, and showed that the proposed G-RKCM yields similar convergence property as the
RKCM in both L2 norms of u and u,˛ , yet it is roughly 10 times computationally more efficient
than RKCM.

APPENDIX A

Consider the approximation of u,x and u,y in two dimensions as follows:

u,x � wx D
NsX
ID1

‰xI .x/aI

u,y � wy D
NsX
ID1

‰
y
I .x/aI ,

(A.1)

where

‰x
I .x/D C

1 .xI x� xI / 'a .x� xI /

‰
y
I .x/D C

2 .xI x� xI / 'a .x� xI /
. (A.2)

For demonstration purpose, consider a case with linear bases q D 1 in two dimensions:

C i .xI x� xI /D bi00.x/C b
i
10.x/ .x � xI /C b

i
01.x/ .y � yI /DWH

T .x� xI / bi .x/, i D 1, 2,
(A.3)

where the coefficients bi˛1˛2.x/ are determined by satisfying the partition of nullity and first-order
derivative reproducing conditions shown below:

NsX
ID1

‰xI .x/D 0,
NsX
ID1

‰xI .x/xI D 1,
NsX
ID1

‰xI .x/yI D 0 (A.4)

NsX
ID1

‰
y
I .x/D 0,

NsX
ID1

‰
y
I .x/xI D 0,

NsX
ID1

‰
y
I .x/yI D 1. (A.5)
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From (A.4), multiplying (A.4a) by x and subtracting (A.4b) leads to

NsX
ID1

‰xI .x/ .x � xI /D�1. (A.6)

Similarly, multiplying (A.4a) by y and subtracting (A.4c) yields

NsX
ID1

‰xI .x/ .y � yI /D 0. (A.7)

Applying the same procedures to (A.5), we have

NsX
ID1

‰
y
I .x/ .x � xI /D 0 (A.8)

NsX
ID1

‰
y
I .x/ .y � yI /D�1. (A.9)

The first-order derivative reproducing conditions in (A.6) � (A.9) can be equivalently written as

NsX
ID1

‰xI .x/D 0,
NsX
ID1

‰xI .x/ .x � xI /D�1,
NsX
ID1

‰xI .x/ .y � yI /D 0 (A.10)

NsX
ID1

‰
y
I .x/D 0,

NsX
ID1

‰
y
I .x/ .x � xI /D 0,

NsX
ID1

‰
y
I .x/ .y � yI /D�1. (A.11)

From which we can express the first-order derivative reproducing conditions (A.10) and (A.11) as

NsX
ID1

‰xI .x/H .x� xI /D�H,x.0/ (A.12)

NsX
ID1

‰
y
I .x/H .x� xI /D�H,y.0/. (A.13)

Substituting (A.2) and (A.3) into (A.12) and (A.13) gives rise to

M.x/b1.x/D�H,x.0/ (A.14)

M.x/b2.x/D�H,y.0/, (A.15)

where M.x/ is the moment matrix given in (7). Consequently, the gradient RK shape functions are
obtained as

‰xI .x/D�HT
,x.0/M

�1.x/H .x� xI / 'a .x� xI /

‰
y
I .x/D�HT

,y.0/M
�1.x/H .x� xI / 'a .x� xI /

(A.16)
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