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'is paper presents a gradient stable node-based smoothed finite element method (GS-FEM) which resolves the temporal
instability of the node-based smoothed finite element method (NS-FEM) while significantly improving its accuracy. In the GS-
FEM, the strain is expanded at the first order by Taylor expansion in a node-supported domain, and the strain gradient is then
smoothed within each smoothing domain. 'erefore, the stiffness matrix includes stable terms derived by the gradient of the
strain. 'e GS-FEMmodel is softer than the FEM but stiffer than the NS-FEM and yields far more accurate results than the FEM-
T3 or NS-FEM. It even has comparative accuracy compared with those of the FEM-Q4. 'e GS-FEM owns no spurious nonzero-
energy modes and is thus temporally stable and well-suited for dynamic analyses. Additionally, the GS-FEM is demonstrated on
static, free, and forced vibration example analyses of solids.

1. Introduction

'e finite element method (FEM) [1, 2] is proven to be
reliable and robust and hence has been applied successfully
to countless practical engineering and science problems
related to solid mechanics, fluid mechanics, and heat
transfer. However, inherent disadvantages such as the dis-
continuous stress field at the interelement boundaries, es-
pecially for lower-order elements, render it ineffective in
certain situations. 'e meshfree method has emerged in
recent years as a workable alternative to the traditional FEM.
It has been applied to large deformation, fracture propa-
gation simulation, and impact-induced failure problems.
Major advancements in meshfree methods include
smoothed particle hydrodynamics (SPH) [3], element-free
Galerkin method (EFG) [4], reproducing kernel particle
method (RKPM) [5], meshfree local Petrov–Galerkin
method (MLPG) [6], the radial point interpolation method
(RPIM) [7], Hp-clouds method [8], moving particle finite
element method (MPFEM) [9], and finite point method

(FPM) [10]. Although meshfree methods are free of several
of the FEM drawbacks, they are not totally ideal—for ex-
ample, they present difficulties in essential boundary con-
dition implementation, as well as high computational cost
and complex trial function construction processes.

Hybrid schemes composed of meshfree and FEM
methodologies may encompass the advantages of both while
mitigating their respective shortcomings [11–13], such as the
partition of the unity finite element method (PUFEM) [14],
generalized finite element method (GFEM) [15], FE-
meshfree [16, 17], meshfree-enriched FEM (ME-FEM)
[18], and RKPM [5, 19]. Zeng and Liu [20] combined the
strain-smoothing technique of meshfree methods [21] and
the existing FEM technology to establish smoothed finite
element methods (S-FEMs) including the CS-SFEM for both
2D and 3D problems [22, 23], node-based SFEM (NS-FEM)
for both 2D and 3D [24, 25], edge-based SFEM (ES-FEN) for
2D and 3D [26, 27], face-based SFEM (FS-FEM) for 3D [28],
and other hybrid schemes such as αFEM [29, 30], βFEM [31],
and smoothed FE-meshfree [32]. 'e NS-FEM can be
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considered a variant of the FEM. It has properties that are
complementary to the FEM and can be applied easily to
triangular or tetrahedral elements without modification of
the formulation or procedures [33]. NS-FEM has garnered a
great deal of research interest in recent years for properties
such as insensitivity to element distortion and robustness
against volumetric locking [33].'e computational time and
computational efficiency of NS-FEM have also been in-
vestigated in previous studies for linear elastostatics [34, 35].
Node-based solutions, however, tend to suffer spatial and
temporal stability problems [35]. Spatial stability issues can
be resolved through smoothing operations such as stabilized
conforming nodal integration (SCNI) [21], natural stable
nodal integration (NSNI) [36], and quadratically consistent
one point (QC1) [37], while temporal stability remains
problematic. 'e NS-FEM has been proven spatially stable
but temporally instable. Even when an unconditionally
stable time-integration scheme is applied to solve a transient
dynamic problem, unphysical numerical responses still
appear [26]. 'e hallmark of temporal instability is spurious
nonzero-energy modes which often appears in free vibration
analyses. Such modes are spatially stable and will not ac-
company zero-energy modes; however, when they are ex-
cited at higher energy levels, they behave unphysically [35].

Beissel and Belytschko [38] first proposed a stabilized
nodal integration procedure to eliminate spurious nonzero-
energy modes by adding the square of the residual of the
equilibrium equation to the potential energy function. 'is
solution has been further extended to 2D and 3D problems
to form a stabilization procedure for NS-FEM [35, 39] with a
recommended range for the stabilization parameter. Taylor
series expansions of the displacement fields [40, 41] can also
be used to reduce the instability in direct node integration
(DNI), but high-order derivatives appear in underling
formulations resulting in an increase in its computational
cost. Other forms of stabilization consisting of the Taylor
expansion and displacement smoothing have been proposed
[42, 43], wherein the nodal integration technique is directly
applied to obtain stable solutions. Liu et al. [29] proposed an
α-FEM combining NS-FEM and standard FEMwhich can be
used to stabilize the NS-FEM by introducing stiffening ef-
fects from the standard FEM stiffness matrix with a small α.
'e calculation complexity and uncertain values hinder the
practical application of α-FEM. Nguyen-Xuan et al. [44]
combined the discrete shear gap (DSG) method with a
stabilization technique into the NS-FEM to eliminate
transverse shear locking and maintain the stability of the
formulation but could not resolve the uncertain value
problem. Puso et al. [45] developed an effective nodal in-
tegration technique by adding integration points, and their
method is proved effective on both small and large de-
formation problems. Feng et al. [46] proposed a stable nodal
integration method with strain gradient for dynamics
analysis of solid structures based on NS-FEM. It can achieve
appropriate system stiffness in strain energy between FEM
and NS-FEM solutions and indeed provide temporally stable
results. 'ere exists a variety of additions of terms on
gradient term constructions, which have been adopted by

researchers to stabilize the performance and proved to be
highly effective [47–51].

'is paper proposes a novel gradient stable node-based
smoothed finite element method (GS-FEM) for static and
dynamic analyses for solid mechanics problems.'e strain is
expanded at the first order by Taylor expansion in a node-
supported domain, and then gradient smoothing is imple-
mented for the strain within each smoothing domain. 'e
resulting stiffness matrix includes stable terms derived by the
strain gradient. As a result, a temporally stable result is
obtained—there are no spurious nonzero-energy modes in
the free vibration analysis. 'e accuracy of the GS-FEM for
numerical solutions is investigated by comparing against
FEM-T3, FEM-Q4, and NS-FEM with the same mesh. Re-
sults show that the GS-FEM provides accurate solutions
using triangular elements. It has comparative accuracy with
the standard FEM using quadrilateral elements for static,
free, and forced vibration analyses of solid mechanics
problems.

'e rest of this paper is organized as follows: the gradient
smoothing method is first reviewed in Section 2. Section 3
discusses the node-based smoothed FEM and the corre-
sponding Galerkin weak form of elastostatic problems. 'e
gradient stabilization of NS-FEM is presented in Section 4,
and free and forced vibration analyses are described in
Section 5.'e standard patch test we conducted are reported
in Section 6. Section 7 demonstrates the effectiveness of the
proposed stabilizations by comparing against FEM-T3,
FEM-Q4, and NS-FEM. Section 8 provides a brief sum-
mary and conclusion.

2. Gradient Smoothing Method

'e smoothing operation on the gradient of displacement
field u for node xL in a nonoverlapping smoothing domain
ΩsL (Figure 1) can be expressed as follows:

ui,j xL( ) � ∫
ΩsL
ui,j(x)W x, x − xL( )dΩ, (1)

where ui,j � zui/zxj is the gradient of the field u and ui,j is
the smoothed gradient. W(x, x− xL) is a smoothing func-
tion satisfying the following partition of unity:

∫
ΩsL
W x, x − xL( )dΩ � 1. (2)

'e Heaviside-type piecewise constant function can be
employed as follows:

W x, x − xL( ) �
1

AL
, x ∈ ΩsL,

0, x ∉ ΩsL,

 (3)

where AL is the area of smoothing domain ΩsL.
Introducing the divergence theorem to equation (1)

yields the following:

ui,j xL( ) � 1

AL
∫
ΓsL
ui(x)njdΓ, (4)
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where nj is the component of the surface outward normal n
of boundary ΓsL.

Substituting the smoothed gradient ui,j in equation (4)
into the following smoothing operation of strain tensor εij
yields a smoothed strain:

εij xL( ) � ∫
ΩsL
εijW x, x − xL( )dΩ � 1

2
ui,j + uj,i( ). (5)

�e gradient smoothing operation on the second-order
derivatives z

2uk/zxizxj of the displacement field u is per-
formed as follows:

uk,ij � ∫ΩsLuk,ijW x, x − xL( )dΩ � 1

AL
∫
ΓsL
uk,injdΓ. (6)

�e derivative of the strain εkl can be expressed as
follows:

εkl,m �
1

2

z

zxm

zuk
zxl
( ) + z

zxm

zul
zxk
( )[ ]. (7)

Substituting equation (6) into equation (7), the corre-
sponding smoothed derivative of strain tensor εkl can then
be given as follows:

εkl,m �
1

2
uk,lm + ul,km( ). (8)

3. Node-Based Smoothed FEM

�e strong form of the governing equation of linear elas-
tostatics problems can be expressed as follows:

divσ + b � 0 inΩ,
u � uΓ on Γu,

σ · n � τ on Γτ ,
(9)

where b denotes the body force vector, σ is the Cauchy stress
tensor, uΓ represents the prescribed displacement on the

essential boundary Γu, τ is the prescribed traction on the
natural boundary Γτ , and n indicates the outward surface
normal of Γτ .

Under the smoothed or weakened form with a dis-
placement field satisfying the essential boundary conditions
[34], we can obtain the following equation:

∫
Ω
δ ε(u)σ(u)−uTb( )dΩ−∫

Γt
δuTt dΓ � 0. (10)

Assuming that the problem domain Ω is discretized by
Ne elements with Nd nodes in total and Ns smoothing
domains ΩsL, (L � 1, 2, . . . , Nd) are constructed. In the
smoothing domain ΩsL, the displacement field ui(x) and its
gradient ui,j(x) can be interpolated using the following
equations:

ui(x) � ∑
I∈GL
ΦI(x)uIi, (11)

ui,j(x) � ∑
I∈GL

zΦI(x)
zxj

uIi � ∑
I∈GL
ΦI,j(x)uIi, (12)

where ΦI(x) is the shape function of the node I that
is continuous, uIi represents the displacement component
of node I, and GL is a group of nodes associated with
the smoothing domain ΩsL or so-called supporting nodes
of xL.

Substituting equation (11) into equation (4) leads to

ui,j(x) �
1

AL
∫
ΓsL

∑
I∈GL
ΦI(x)uIi njdΓ

� ∑
I∈GL
ΦI,j xL( )uIi,

(13)

where the so-called smoothed first-order derivatives of shape
function ΦI,j(xL) can be denoted as

Centroid of triangle

Midedge point

Field node

Node L

Cell

Ωs
L

ΓsL

Figure 1: Triangular elements and smoothing cells associated with nodes.
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ΦI,j xL( ) � 1

AL
∫
ΓsL
ΦI(x)njdΓ. (14)

'e matrix form of the smoothed strain tensor εij is

ε xL( ) � ∑
I∈GL

BI xL( )uI, (15)

where

uI �
uI1

uI2
{ },

ε �

ε11

ε22

ε12


,

BI xL( ) �
ΦI,1 0

0 ΦI,2
ΦI,2 ΦI,1

 .

(16)

'e Cauchy stress tensor can then be immediately cal-
culated as follows:

σ xL( ) � Dε xL( ) � ∑
I∈GL

DBI xL( )uI, (17)

where D is the elastic matrix of the isotropic linear elastic
material and σ � σ11 σ22 σ12{ }T.

Substituting equations (15) and (17) into equation (10)
yields the following:

δuT∫
Ω
B
T
DBudΩ− δuT∫

Ω
Φ

T
b dΩ− δuT∫

Γt
Φ

T
t dΓ � 0.

(18)
Eliminating the arbitrary δu yields the following discrete

equilibrium equation:

Ku � f
ext, (19)

where

KIJ � ∫ΩBT

IDBJdΩ �∑
L

B xL( )TIDB xL( )JAL, (20)

f
ext
I � ∫

Ω
Φ

T
I bIdΩ + ∫ΓtΦT

I t
Γ
IdΓ �∑

L

Φ
T
I bIAL + ∫ΓtΦT

I tIdΓ.

(21)

4. Gradient Stabilization of NS-FEM

4.1. Gradient Stabilized Nodal Integration. 'e direct nodal
integration leads to unstable solutions due to the rank
deficiency of approximated matrices. Taylor expansion
can be applied to resolve this problem. 'e shape func-
tion ΦI(x) and corresponding derivatives ΦI,x(x) and
ΦI,y(x) can be, respectively, approximately expanded as
follows:

ΦI(x) ≈ ΦI xL( ) + x−xL( )ΦI,x xL( ) + y−yL( )ΦI,y xL( ),
ΦI,x(x) ≈ ΦI,x xL( ) + x−xL( )ΦI,xx xL( ) + y−yL( )ΦI,xy xL( ),
ΦI,y(x) ≈ ΦI,y xL( ) + x−xL( )ΦI,xy xL( ) + y−yL( )ΦI,yy xL( ),

(22)
where xL � xL yL{ } is the center node of the cell.

'e displacements field in ΩL can also be evaluated via
Taylor expansion:

uhi (x) ≈ u
h
i xL( ) + uhi,j xL( ) xj −xLj( )

� ∑
I∈GL
ΦI xL( )uIi + ∑

I∈GL
ΦI,j xL( ) xj −xLj( )uIi. (23)

Considering a gradient expansion of the form in
equation (24) for the strain ε(x) in ΩL with xL gives

ε(x) � Lu(x) ≈ Lu xL( ) + L ∇u xL( ) x − xL( )[ ]
� Lu xL( )︸��︷︷��︸

(a)

+ L ∇xu xL( )[ ] x− xL( )︸��������︷︷��������︸
(b)

+ L ∇yu xL( )[ ] y−yL( )︸��������︷︷��������︸
(c)

,

(24)

where L is the differential operator matrix given by

L �

z

zx
0

0
z

zy

z

zy

z

zx




,

∇xu xL( ) � ∑
I∈GL
ΦI,1 xL( )uI,

∇yu xL( ) � ∑
I∈GL
ΦI,2 xL( )uI.

(25)

Assume

εL � Lu xL( ),
εLx � L ∇xu xL( )[ ],
εLy � L ∇yu xL( )[ ].

(26)

Equation (24) can be rewritten in the following compact
form:

ε(x) ≈ εL + εLx x−xL( ) + εLy y−yL( ). (27)

Equations (26) and (27) show that the second-order
derivatives of the shape functions are unknown. Note that
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the assumed displacement field used in this work does not
have second-order derivatives over the whole problem
domain as the FEM shape function is applied, i.e.,
ΦI,ij(x) ≡ 0; hence, terms (b) and (c) of equation (24)
do not contribute to the stabilization if ΦI,ij(x) is cal-
culated directly. Here, we replace equation (27) with the
gradient smoothing technique presented in Section 2, that
is,

ε(x) ≈ εL + εLx x−xL( ) + εLy y−yL( ). (28)

'e smoothed divergence of strain tensors in equation
(26) can be truncated in the following vector form:

εL � ∑
I∈GL

BIuI,

εLx � ∑
I∈GL

BIxuI,

εLy � ∑
I∈GL

BIyuI,

(29)

in which

BI �

ΦI,1 0

0 ΦI,2

ΦI,2 ΦI,1


,

BIx �

ΦI,11 0

0 ΦI,12

ΦI,12 ΦI,11


,

BIy �

ΦI,12 0

0 ΦI,22

ΦI,22 ΦI,12


.

(30)

Eventually, the stiffness matrix in equation (20) can be
calculated as follows:

KIJ �∑
L

KIJ xL( ), (31)

where

KIJ xL( ) � BI( )TDBJAL + BIx( )TDBJ + BI( )TDBJx[ ]SLx
+ BIy( )TDBJ + BI( )TDBJy[ ]SLy
+ BIx( )TDBJy + BIy( )TDBJx[ ]JLxy
+ BIx( )TDBJxJLx + BIy( )TDBJyJLy,

(32)
in which AL, SIx, SIy, JLx, JLy, and JLxy in equation (32) are
the area, first, and second moments of inertia of each nodal
domain, respectively.

AL � ∫ΩLdΩ,
SIx � ∫ΩL x− xL( )dΩ,
SIy � ∫

ΩL
y−yL( )dΩ,

JLx � ∫ΩL x− xL( )2dΩ,
JLy � ∫ΩL y−yL( )2dΩ,
JLxy � ∫

ΩL
x− xL( ) y−yL( )dΩ,

(33)

under the following assumption:

∫
ΩI
x− xL( )dΩ � ∫

ΩI
y−yL( )dΩ

� ∫
ΩI
x− xL( ) y−yL( )dΩ � 0.

(34)

'e effect of the assumption in equation (34) is expected
to be negligible since nodes are located at or near the
centroid of the domain ΩL generally. Moreover, for nodes
located on the edges of the domain, equation (34) will be
fulfilled [36] in general.

'e stiffness matrix in equation (32) can be calculated as
follows:

KIJ xL( ) � BI( )TDBJAL + BIx( )TDBJxJLx + BIy( )TDBJyJLy.

(35)
Equation (35) contains stable terms introduced by the

smoothed gradient expansion of the strain at the node. 'e
additional terms in the stabilization are necessarily positive
for nonzero strain and thus provide additional correctness
insurance. Moreover, in contrast to other stabilized
methods, the constants associated with the additional terms
do not include the tuning parameter. Stabilization with
equation (35) is referred to here as “gradient-stabilized nodal
integration.”

4.2. Nongradient Term Boundary Integration. Equation (33)
shows that AL, JLx, and JLy cannot be directly transformed
into a boundary integral as there is no gradient integration.
For boundary integral treatment of AL, JLx, and JLy, a
technique taken from the literature [52] is used.

Define a vector F̂(x1, x2) for two-dimensional problems
which satisfy the following condition:

f � div F̂ x1, x2( ), (36)

where F̂ can be expressed as follows:

F̂ � F̂1i1 + F̂2i2, (37)

in which i1 and i2 are the unit vectors of axis of coordination
x1 and x2 and F̂1 and F̂2 satisfy the integration condition.
Substituting equation (37) into equation (36) and then
applying the divergence theorem can lead to

Shock and Vibration 5



∫
ΩL
f(x)dΩ � ∫

ΓL
F̂ · n dΓ, (38)

where n denotes the outward normal vector of the smoothed
subdomain ΓL and can be obtained by the addition of n1i1
and n2i2, in which n1 and n2 are the cosine of the angles
between x1, x2, and n, respectively.

To satisfy the condition in equation (36), we assume F̂2 �

0 while F̂ is the indefinite integral of function f expressed as
follows:

F̂1 x1, x2( ) � ∫f x1, x2( )dx1 + c x2( ),
∫
ΓL
c x2( )n1dΓ � 0.

 (39)

Similarly, assuming F̂1 � 0, F̂ is the indefinite integral of
function f expressed as follows:

F̂2 x1, x2( ) � ∫f x1, x2( )dx2 + c x1( ),
∫
ΓL
c x1( )n2dΓ � 0.

 (40)

'e formulation and mathematical proof of equations
(39) and (40) can be found in [53]. 'e effects of terms c(x1)
and c(x2) can be neglected.

If function f is set to be 1, (x−xL)2, and (y−yL)2,
respectively, WL, MLx, and MLy can be expressed as

AL � ∫
ΓL
F̂A · n dΓ,

JLx � ∫ΓLF̂Jx · n dΓ,
JLy � ∫ΓLF̂Jy · n dΓ,

(41)

where

F̂A � F̂A, 0{ }T,
F̂Jx

� F̂Jx, 0{ }T,
F̂Jy

� 0, F̂Jy{ }T,
(42)

in which

F̂A � ∫ 1dx � x,

F̂Jx � ∫ x−xL( )2dx � 1

3
x− xL( )3,

F̂Jy � ∫ y−yL( )2dy � 1

3
y−yL( )3.

(43)

Finally, AL, JLx, and JLy can be calculated as follows:

AL � ∫ΓLF̂An1dΓ,
JLx � ∫ΓLF̂Jxn1dΓ,
JLy � ∫

ΓL
F̂Jyn2dΓ.

(44)

5. Free and Forced Vibration Analyses

5.1. Governing Equations. Here, we consider a deformable
bodyΩ subjected to body force b, traction t on boundary Γt,
and displacement boundary conditions u � u on Γu, where
Γ � Γt ∪ Γu and Γt ∩Γu � ∅. 'e discretized equation of
dynamic analysis can be denoted as follows:

M€u + C _u + Ku � f
ext, (45)

where u and f
ext represent the displacement vector and load

vector, respectively.M, C, and K are the global mass matrix,
dampmatrix, and stiffness matrix, respectively, which can be
defined as

MIJ �∑
L

M
L
IJ,

KIJ �∑
L

K
L

IJ,

CIJ �∑
L

C
L
IJ,

(46)

where K
L
IJ can be obtained from equation (35).

5.2. Mass Matrix. Here, the lump mass matrix for the
linear triangular element is used in the process of dynamic
analysis:

M
e
� diag m1 m2 m3{ }, (47)

where mi � ρhAL/3 is the mass of the ith cell corresponding
to local node L and ρ and h denote the mass density and the
thickness of the cell, respectively.

5.3. Free Vibration Analysis. Damping and external forces
are not considered during free vibration analysis. Accord-
ingly, equation (45) can be reduced to a system of homo-
geneous equations [1]:

M€u + Ku � 0. (48)

A general solution to this system can be expressed as

u � uexp(iωt), (49)

where i denotes the imaginary unit, t is the time, u indicates
the eigenvector, and ω is the natural frequency. Substituting
equation (49) into equation (48) leads to the following ei-
genvalue equation for natural frequency ω:

−ω2
M + K( )u � 0. (50)

'e natural frequencies and corresponding mode shapes
of a given structure are often referred to as the “dynamic
characteristics” of the structure.

5.4. Forced Vibration Analysis. Equation (45) denotes a
function of both space and time for a forced vibration
analysis. For simplicity, a constant damping matrix C which
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is assumed to be a linear combination of M and K can be
utilized:

C � αM + βK, (51)

where α and β are the Rayleigh damping coefficients.
'ere are many numerical integration methods available

(e.g., Newmark method, Wilson method, and generalized-α
method [54]). Here, the Newmark method is used. 'e
control equation of equation (45) at time t + h can be
expressed as

a0M + a1C + K( )ut+h � f
ext
t+h +M a0ut + a2 _ut + a3 €ut( )
+ C a1ut + a4 _ut + a5 €ut( ),

€ut+h � a0 ut+h − ut( )− a2 _ut − a3 €ut,
_ut+h � _ut + a6 €ut + a7 €ut+h,

(52)
where

a0 �
1

δΔt2,

a1 �
c

δΔt,

a2 �
1

δΔt,

a3 �
1

2δ
− 1,

a3 �
1

2δ
− 1,

a4 �
c

δ
− 1,

a5 �
Δt
2

c

δ
− 2( ),

a6 � Δt(1− c),

a7 � cΔt,

(53)

in which δ and c are the parameters which can control the
precision and stability of the algorithm. Generally, δ � 0.25
and c � 0.5 are used.

6. Numerical Implementation

6.1. Standard Patch Test. A patch test serves as a means of
assessing the convergence of a numerical method based on
the Galerkin weak form. We performed linear patch tests of
the proposed solution using 5× 5 regular nodes and 25 ir-
regular nodes, as shown in Figure 2. For irregular interior
nodes, the corresponding coordinates are

x′ � x + Δx · rc · αr,
y′ � y + Δy · rc · αr,

(54)

where Δx and Δy are the initial regular meshes sizes along x
and y axes, respectively. rc denotes a random number be-
tween −1.0 and 1.0, and αr is a prescribed irregularity factor
between 0.0 and 0.5. A larger αr value means a more ir-
regular shape of generated meshes in the patch.

Displacement is prescribed at the boundaries as follows:

u(x, y) �
0.1 + 0.1x + 0.2y

0.05 + 0.15x + 0.1y
{ }. (55)

'e exact displacement solution at any point in the
problem domain can be also calculated by equation (55).'e
following displacement error norm is defined as follows:

ed �

����������������
∑Nd

i�1 u
exact
i − unumi( )2

∑Nd

i�1 u
exact
i( )2

√√
, (56)

where superscript “exact” denotes the exact value of the
problem, “num” denotes result solved by numerical solutions,
and Nd is the number of total field nodes. 'e numerical
errors in displacement calculated by FEM, NS-FEM, and GS-
FEM solutions with regular and increasingly irregularly
distributed nodes are listed in Table 1. It is shown that the GS-
FEM accurately produces the liner displacement field.

7. Numerical Examples

'is section provides examples of the GS-FEM in com-
parison with FEM-T3, FEM-Q4, NS-FEM, and analytical
solutions for a series of numerical problems. All the nu-
merical processes are conducted in MATLAB. 'e con-
vergence rate of the proposed method is measured by two
standards: the displacement error norm and the strain en-
ergy norm. 'e displacement error norm is defined in
equation (56), and the strain energy norm is as follows:

ee �
ψnum −ψexact

∣∣∣∣ ∣∣∣∣
ψexact

. (57)

'e strain energy of the numerical solution ψnum and the
total strain energy of the exact solution ψexact is defined as
follows:

ψnum �
1

2
u
T
Ku, (58)

ψexact �
1

2
∑Ne

i�1

∫
Ωi
ε
T
i DεidΩ, (59)

where εi is the strain of the exact solution. In the actual
computation on equation (59), we used a very fine mesh
(Ne⟶∞) to calculate the “exact” strain energy ψexact.

7.1. Cantilever Beam Subjected to Tip-Shear Force. A canti-
lever beam with length l and height d is conducted as a
benchmark problem. In this test, the system is subjected to a
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parabolic traction at the free end, as shown in Figure 3. �e
beam is assumed to have a unit thickness satisfying the plane
stress condition. �e analytical displacement solution is
described in detail by Timoshenko and Goodier [55]:

ux �
Py

6EI
(6l− 3x)x + (2 + v) y2 −d

2

4
( )[ ], (60)

uy � −
P

6EI
3vy2(l− x) + 1

4
(4 + 5v)d2x + x2(3l−x)[ ],

(61)
where the moment of inertia I of the beam is given by
I � d3/12.

�e corresponding stresses are

σx �
P(l−x)y

I
, (62)

σy � 0, (63)

τxy � −
P

2I

d2

4
−y2( ). (64)

�e parameters are E � 3.0 × 107 N/m2, v � 0.3,
d � 12m, l � 48m, and P � −1000N.

During the computational process, the nodes on the left
boundary are constrained using the exact displacements ob-
tained from equations (60) and (61). �e distributed parabolic
shear stresses, expressed as equations (62)–(64), act on the
right boundary. Figure 4 gives an example of the discretization
with 288 triangular and 144 quadrilateral elements.

�e distribution vertical displacement along x (y� 0) and
the corresponding errors are plotted in Figures 5 and 6,
where the results are also compared with the FEM-T3, FEM-
Q4, and NS-FEM.�e GS-FEM is more accurate than FEM-
T3 or NS-FEM, which is overstiff and oversoft compared to
the exact solution. It yields results as accurate as those of the
FEM-Q4.

�e results obtained by FEM-Q8 with 10000 elements
are used as the reference solution. According to equations
(56)–(59), the displacement error norm and strain energy
norm can be obtained for comparison. �e convergence of
the strain energy is shown in Figure 7. �e convergence
rates of displacement and energy error norms are shown
in Figures 8 and 9. As expected, the FEM modes are overly
stiff and hence produce lower bounds. �e NS-FEM is
overly soft and provides an upper bound. �e GS-FEM
shows a very close-to-exact stiffness and hence very ac-
curate results. �e strain energy, displacement, and energy
error norms of the GS-FEM are all better than those of the

(a) (b) (c) (d)

Figure 2: Regular and irregular meshes for the patch test: (a) regular; (b) irregularity coefficient αr � 0.2; (c) irregularity coefficient αr � 0.3;
(d) irregularity coefficient αr � 0.4.

Table 1: Displacement error norm of numerical results for the standard patch test on different meshes.

Solution FEM NS-FEM GS-FEM

Regular 7.5426E− 15 4.7573E− 15 1.2906E− 14
Irregular, αr � 0.2 9.0044E− 15 4.7056E− 15 8.9583E− 15
Irregular, αr � 0.3 2.3392E− 14 4.6646E− 15 9.1383E− 15
Irregular, αr � 0.4 1.5240E− 14 5.5588E− 15 1.7212E− 14

y

x

Pd

l

A

Figure 3: Cantilever beam problem.
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FEM-T3 or NS-FEM, and even the FEM-Q4 apart from
the large h. In effect, GS-FEM provides more accurate
results in the case of small DOFs (large elements) in the
system. Results reported in Section 7.2 further confirm
this point.

Figure 10 shows the computation time of differentmethods
using the same direct solver with the same sets of nodes. GS-
FEM takes longer to converge than that of FEM-T3, FEM-Q4,
or NS-FEM. However, Figures 11 and 12 show that the effi-
ciency of computation (i.e., computation time necessary for the
same accuracy) in terms of both energy and displacement error
norms is superior for GS-FEM compared to FEM-T3 or NS-
FEM, and even the FEM-Q4 apart from the large h.

7.2. Infinite Plate with a Circular Hole. Figure 13 shows a
plate with a central circular hole of 1m radius subjected to a
unidirectional tensile load of 1.0N/m2 to infinity in the x-
direction. Due to its symmetry, only the upper right
quadrant of the plate is modeled here. 'e plane strain
condition is considered with E of 1.0×103N/m2 and v of 0.3.
Symmetric conditions are imposed on the left and bottom
edges, and the inner boundary of the hole is traction free as
reference [26].'e exact solution of the stress can be given as
follows [55]:

σ11 � 1− a
2

r2
3

2
cos 2θ + cos 4θ[ ] + 3a4

2r4
cos 4θ, (65)

(a)

(b)

Figure 4: Beam domain discretization using triangular and quadrilateral elements.

Ref
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Figure 5: Displacement v along y� 0.

Ref
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Figure 6: Displacement relative error v− v0 along y� 0.
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σ22 � −
a2

r2
1

2
cos 2θ− cos 4θ[ ]− 3a4

2r4
cos 4θ, (66)

σ12 � −
a2

r2
1

2
sin 2θ + sin 4θ[ ] + 3a4

2r4
sin 4θ, (67)

where (r, θ) represent the polar coordinates and θ is mea-
sured counterclockwise from the positive x-axis. Traction
boundary conditions are imposed on the right (x� 5.0) and
top (y� 5.0) edges based on the exact solution (equations
(65)–(67)). �e displacement components corresponding to
the stresses listed above are

u1 �
a

8G
[r
a
(K + 1)cos θ + 2

a

r
((K + 1)cos θ

+ cos 3θ)− 2 a
3

r3
cos 3θ],

u2 �
a

8G
[r
a
(K− 1)sin θ + 2

a

r
((1−K)sin θ

+ sin 3θ)− 2 a
3

r3
sin 3θ],

(68)

where G � E/(2(1 + v)) and K are defined in terms of
Poisson’s ratio by K � 3− 4v for plane strain cases. �e
domain is discretized using 288 triangular and 144 quad-
rilateral elements, as shown in Figure 14.

Figures 15 and 16 show the distribution displacement
of the GS-FEM compared with the FEM-T3, FEM-Q4, and
NS-FEM. �e FEM-T3 is overstiff, while the NS-FEM is
oversoft compared to the exact solution. �e GS-FEM
provides the most accurate results—even better than those
of the FEM-Q4. Figures 17 and 18 show that all the
computed stresses using the GS-FEM are in good
agreement with the analytical solutions. �e present
stresses are also very smooth though they have not been
postprocessed.

�e results obtained by FEM-Q8 with 6400 elements
are used as the reference solution. According to equation
(56)–(59), the displacement error norm and strain en-
ergy norm can be obtained for comparison. �e con-
vergence of the strain energy is shown in Figure 19.
�e GS-FEM provides better results than FEM-T3, FEM-
Q4, or NS-FEM. �e convergence rates of the error
norms in displacement and energy are plotted in Fig-
ures 20 and 21. As expected, the displacement and en-
ergy norms of the GS-FEM are superior to those of FEM-

Ref
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Figure 7: Strain energy convergence.
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Figure 8: Convergence rate of displacement error norms.
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Figure 9: Energy error norm convergence.
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T3 and NS-FEM. �ey are even similar to those of the
FEM-Q4.

7.3. Cantilever Beam Free Vibration Analysis. As shown in
Figure 3, a cantilever beam fixed on the left end with length
L� 100mm and height D� 10mm is used here as a
benchmark problem. �e plane stress condition is again
imposed in this test. �e geometrical and material pa-
rameters include thickness t� 1.0mm, Young’s modulus
E � 2.1 × 1010 N/m2, Poisson’s ratio v � 0.3, and mass
density ρ � 8.0 × 10−4 kg/m3. Based on the Euler–Bernoulli
beam theory, the fundamental frequency f1 � 0.08276 ×
104 Hz is set as a reference.

Table 2 lists the first 12 natural frequencies of the beam in
bold for spurious nonzero-energy modes. �e first 12 modes
using the NS-FEM and GS-FEM are given in Figures 22 and
23. �e natural frequencies corresponding to spurious
nonzero-energy modes for the NS-FEM method are marked
in bold. We find that spurious nonzero-energy modes which

FEM-T3

FEM-Q4

NS-FEM

GS-FEM

0.10 0.25 0.40 0.55–0.05

Log10(h)

–2.0

–1.4
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Figure 10: Computation time.

FEM-T3

FEM-Q4

NS-FEM

GS-FEM

–1.3

–1.1

–0.9

–0.7

–0.5

–0.3

L
o

g 1
0
(e
e)

–1.3 –0.7 –0.1 0.5–1.9

Log10(t)

Figure 11: Energy error norm with respect to computation time.
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Figure 12: Displacement error norm with respect to computation
time.
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Figure 13: Infinite plate with circular hole and its quarter model.
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appear in the NS-FEM are resolved by the GS-FEM. And the
natural frequencies obtained using the GS-FEM are much
accurate than those of the FEM-T3 andNS-FEM and close to
the reference solution. �e GS-FEM provides similar ac-
curacy and converge rate to those of the FEM-Q4.

7.4. ShearWall Free Vibration Analysis. We next investigate
a shear wall with four openings, as shown in Figure 24.
�e parameters in the computation included Young’s
modulus E � 10000N/m2, Poisson’s ratio v � 0.2, thickness
t � 1.0m, and mass density ρ � 1.0 kg/m3. �e bottom edge
is fully clamped, and a plane stress case is assumed. Two
types of meshes using triangular and quadrilateral elements
are used, as shown in Figure 25. Numerical results using the
FEM-Q8 with 6104 nodes and 1922 elements for the same
problem are computed and used as a reference solution.�is

problem is also analyzed previously using a boundary ele-
ment method by Brebbia et al. [56].

Table 3 lists the first 12 natural frequencies with bold
form for spurious nonzero-energy modes.�e first 12modes
using the NS-FEM and GS-FEM are shown in Figures 26 and
27. Again, it shows that the GS-FEM does not have any of the
spurious nonzero-energy modes which appear in the NS-
FEM; the natural frequencies obtained using the GS-FEM
are much closer to the reference solution obtained by FEM-
Q8 with 6104 nodes and 1922 elements.

7.5. Cantilever Beam Forced Vibration Analysis. �e
benchmark cantilever beam and mesh shown in Figures 28
and 29 via the Newmark method are investigated here for
forced vibration analysis. �e plane strain problem is

(a) (b)

Figure 14: Domain discretization of the infinite plate with a circular hole using triangular and quadrilateral elements.
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Figure 15: Displacement u along the bottom boundary.
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considered with numerical parameters L � 4.0m,H � 1.0m,
t � 1.0m, E � 1.0N/m2, v � 0.3, ρ � 1.0 kg/m3, α � 0.005,
and β � 0.272.�e domain is represented by 10× 2 elements,
and the first loading is in the harmonic form with
f(t) � cos(ωft). �e corresponding dynamic responses are
shown in Figures 30 and 31 with ωf � 0.01 and 0.05, re-
spectively. �e time step Δt � 2.0 is used for time in-
tegration. Both damping and no damping effects are
investigated. �e reference solution is obtained by using
ABAQUS with 2,600 8-node biquadratic quadrilateral
elements.

As per the dynamic responses in Figures 30–32, again,
the amplitude of the GS-FEM is much more accurate than
that of FEM-T3 and comparable to that of the FEM-Q4. �e

amplitude and corresponding period obtained by NS-FEM
are both largest among the methods we test due to the
model’s overly soft properties (i.e., its so-called temporal
instabilization). A constant step load f(t) � 1 at the apex
from t � 0 is also added. Without damping, Figure 32 shows
where the deflection at the apex tends toward the constant
value over time. With damping, the response is damped out
more quickly.

7.6. Nonlinear Structure Analysis. �is example is given for
demonstrating the effectiveness of the presented method for
complex nonlinear problems with clearance supported
caused by system uncertainties (e.g., manufacturing
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Figure 17: Stress along the left boundary (x� 0).
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Figure 19: Convergence of strain energy.
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tolerance and wear). �e nonlinearity comes from impact
caused by the clearance and the deformation of the structure.
�e nonlinear clamped beam structure is shown in Figure 33
which consists of multisegment variable cross-sectional
structures. �e plane stress problem is considered with
numerical parameters t � 1.0, E � 45GPa, v � 0.3, and
ρ � 1800 kg/m3. A harmonic excitation is acted at end of the
beam F � A sin(ωft) with A � 5000 and ωf � 1000. �e
clearance δ � 5 × 10−5 m is considered, and the Hertz
contact force model Fc � Kδ

n with n � 1.2 and K � 1 × 106

is applied. �e time step Δt � 5 × 10−5 is used for time
integration. �e discretized domain is shown as Figure 34.
�e reference solution is obtained by using ABAQUS with
2,800 8-node biquadratic quadrilateral elements.

As per the dynamic responses displayed in Figures 35–
37, the amplitude of the GS-FEM is much more accurate
than that of FEM-T3 and NS-FEM. It is comparable to that
of the FEM-Q4 and close to the reference solution dem-
onstrating the effectiveness of the presented method for
complexity nonlinear problems.

8. Conclusions

In this paper, a gradient stable node-based smoothed finite
element method (GS-FEM) is proposed for stable and ac-
curate solutions to static, free, and forced vibration analyses
of 2D linear and nonlinear solid mechanics problems. Some
conclusions can be summarized as follows:
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Figure 21: Convergence rate of energy error norm.
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Table 2: First 12 natural frequencies (104Hz) of a cantilever beam.

No. of elements No. of nodes FEM-T3 FEM-Q4 NS-FEM GS-FEM
Reference FEM-Q4

(100×10)

(10×1) 10 4-node elements for FEM-Q4 and 20
triangular elements for other methods

22

0.1692 0.0992 0.0576 0.1302 0.0824
0.9163 0.5791 0.3243 0.7161 0.4944
1.2869 1.2834 0.7441 1.2846 1.2824
2.1843 1.4830 0.9875 1.7230 1.3022
3.5942 2.6183 1.0112 2.8548 2.3663
3.8338 3.8140 1.1346 3.7728 3.6085
5.0335 3.8824 1.2783 3.9961 3.8442
6.2421 5.1924 1.5712 5.0417 4.9674
6.4154 6.2345 2.3697 5.9011 6.3960
7.5940 6.4846 3.2685 6.0277 6.4023
8.4790 7.7039 3.7064 6.4965 7.8853
8.7033 8.4632 3.8642 6.8162 8.9290

(20× 2) 40 4-node elements for FEM-Q4 and 80
triangular elements for other methods

63

0.1117 0.0870 0.0675 0.0847 0.0824
0.6539 0.5199 0.4032 0.5026 0.4944
1.2843 1.2830 1.0518 1.2822 1.2824
1.6748 1.3640 1.2810 1.3055 1.3022
2.9554 2.4685 1.6467 2.3274 2.3663
3.8424 3.7477 1.8786 3.4747 3.6085
4.3866 3.8378 2.7823 3.8241 3.8442
5.8836 5.1322 3.0926 4.6703 4.9674
6.3751 6.3585 3.6783 5.8601 6.3960
7.4046 6.5731 3.8089 6.2917 6.4023
8.8210 8.0342 4.0543 7.0120 7.8853
8.9411 8.8187 4.1605 8.0983 8.9290

(40× 4) 160 4-node elements for FEM-Q4 and 320
triangular elements for other methods

205

0.0906 0.0835 0.0778 0.0814 0.0824
0.5409 0.5004 0.4654 0.4876 0.4944
1.2831 1.2827 1.2199 1.2801 1.2824
1.4161 1.3174 1.2818 1.2831 1.3022
2.5570 2.3926 1.6689 2.3175 2.3663
3.8433 3.6462 2.2012 3.5159 3.6085
3.8786 3.8431 3.2517 3.8391 3.8442
5.3087 5.0150 3.3270 4.8097 4.9674
6.3935 6.3883 3.8344 6.1531 6.3960
6.8093 6.4561 4.5248 6.3692 6.4023
8.3473 7.9398 4.6406 7.5141 7.8853
8.9183 8.9057 5.3275 8.8515 8.9290

Spurious nonzero-energy modes

Spurious nonzero-energy modes

Spurious nonzero-energy modes Spurious nonzero-energy modes

Figure 22: First 12 modes of the cantilever beam by NS-FEM.
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Figure 23: First 12 modes of the cantilever beam by GS-FEM.
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Figure 24: Shear wall with four openings.
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(a) (b)

Figure 25: Domain discretization using triangular and quadrilateral elements.

Table 3: First 12 natural frequencies (×104Hz) of shear wall.

No. of elements No. of nodes
FEM-
T3

FEM-
Q4

NS-
FEM

GS-
FEM

Reference FEM-
Q8

Reference
[31]

476 4-node elements for FEM-Q4 and 952
triangular elements for other methods

559

0.3417 0.3300 0.2907 0.3197 0.3200 0.3309
1.1625 1.1293 1.0365 1.1024 1.1064 1.1429
1.2191 1.2136 1.1973 1.2088 1.2096 1.2166
1.9957 1.9000 1.6163 1.8139 1.8256 1.8833
2.5406 2.4416 2.1838 2.3626 2.3828 2.5381
2.9819 2.9196 2.3398 2.8481 2.8753 2.9673
3.2451 3.1634 2.6970 3.0793 3.1164 3.2258
3.6095 3.5348 2.7149 3.4367 3.4810 3.6232
3.7654 3.6608 2.8882 3.5615 3.6026 —
3.8378 3.7483 2.9267 3.6656 3.7072 —
4.0628 4.0067 2.9663 3.9518 3.9817 —
4.2578 4.1494 3.0992 4.0544 4.1184 —

1904 4-node elements for FEM-Q4 and 80
triangular elements for other methods

2072

0.3285 0.3234 0.3073 0.3189 0.3200 0.3309
1.1270 1.1139 1.0779 1.1030 1.1064 1.1429
1.2129 1.2110 1.2042 1.2092 1.2096 1.2166
1.8887 1.8502 1.7298 1.8152 1.8256 1.8833
2.4385 2.4020 2.3024 2.3711 2.3828 2.5381
2.9146 2.8899 2.3583 2.8646 2.8753 2.9673
3.1606 3.1317 2.7046 3.1032 3.1164 3.2258
3.5337 3.4993 2.8148 3.4639 3.4810 3.6232
3.6593 3.6222 3.0478 3.5874 3.6026 —
3.7499 3.7210 3.2445 3.6918 3.7072 —
4.0109 3.9905 3.3095 3.9711 3.9817 —
4.1703 4.1311 3.3965 4.0947 4.1184 —

Shock and Vibration 17



(1) 'e GS-FEM using triangular elements is tem-
porally stable and accurate without requiring
any tuning parameters for stabilization. It

consistently passes the standard patch test. 'e
formulation is straightforward, and the imple-
mentation is as easy as the FEM without any

Spurious nonzero-energy mode

Spurious nonzero-energy mode

Spurious nonzero-energy mode

Spurious nonzero-energy mode

Spurious nonzero-energy mode

Spurious nonzero-energy mode

Spurious nonzero-energy mode

Figure 26: First 12 modes of shear wall by NS-FEM.
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Figure 27: First 12 modes of shear wall by GS-FEM.
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Figure 28: Cantilever beam.
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(a) (b)

Figure 29: Domain discretization using triangular and quadrilateral elements.
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Figure 30: Transient response of the cantilever beam subjected to harmonic loading withωf � 0.01: (a) without damping; (b) with damping.
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Figure 31: Transient response of the cantilever beam subjected to harmonic loading withωf � 0.05: (a) without damping; (b) with damping.
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increases in DOFs. �e numerical results of the
GS-FEM using triangular elements are more ac-
curate than those of FEM-Q4 apart from a small
number of elements.

(2) Although the computation time of the GS-FEM is
longer than that of the FEM-T4, FEM-Q4, or NS-
FEM, it is more computationally efficient in terms of
both energy and displacement error norms.

(3) �e GS-FEM with triangular elements gives highly
accurate results on free vibration analysis problems.
No spurious nonzero-energy modes appear in such
vibration analyses, and hence, the GS-FEM is tem-
porally stable.

(4) �e vibration amplitude and period obtained by the
GS-FEM using triangular elements is as accurate as
that of FEM-Q4 on forced vibration analysis for both
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Figure 32: Transient response of the cantilever beam subjected to constant step loading: (a) without damping; (b) with damping.
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Figure 33: Nonlinear clamped beam structure.

(a) (b)

Figure 34: Domain discretization using triangular and quadrilateral elements.
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linear and complex nonlinear problems. And its
vibration amplitude is closer to that of the higher-
order FEM-Q8 than FEM-T3 or NS-FEM.
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