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Abstract

We derive gradient-flow formulations for systems describing drift-diffusion pro-
cesses of a finite number of species which undergo mass-action type reversible re-
actions. Our investigations cover heterostructures, where material parameter may
depend in a nonsmooth way on the space variable. The main results concern a gra-
dient flow formulation for electro-reaction-diffusion systems with active interfaces
permitting drift-diffusion processes and reactions of species living on the interface
and transfer mechanisms allowing bulk species to jump into an interface or to pass
through interfaces.

The gradient flows are formulated in terms of two functionals: the free energy
and the dissipation potential. Both functionals consist of a bulk and an interface
integral. The interface integrals determine the interface dynamics as well as the
self-consistent coupling to the model in the bulk. The advantage of the gradient
structure is that it automatically generates thermodynamically consistent models.
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1 Introduction and gradient formulations

In several papers by Otto (see [JKO98, Ott98, Ott01]) it was demonstrated that certain
diffusion problems can be interpreted as gradient flows with respect to the free energy or
the entropy as a driving functional. In [Mie11] this concept is generalized firstly to pro-
cesses where reactions between different species take place and secondly to processes with
a temperature coupling and thirdly to processes where an electrostatic interaction has to
be taken into account. In the present paper we first recall the gradient-flow formulations
for electro-reaction-diffusion problems without active interfaces (see Section 2). In dif-
ference to [Mie11], our considerations take into account heterostructures, where material
parameters depend nonsmoothly on the space variable. In the next step we generalize
this concept to the situation that at interfaces in the heterostructure there exist extra ki-
netic processes, namely drift-diffusion, reactions and transfer mechanisms for bulk species
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(see Section 3). The closing section is devoted to examples of electro-reaction-diffusion
problems with such active interfaces, having in mind future applications in photovoltaics,
especially in thin-film solar cells (see e.g. [SLH10]).

The setting of gradient flows can be described as follows (see e.g. [Mie11]): For a linear
state space Z we consider a dissipation functional Ψ(z, ż) : TZ → [0,∞]. For each z the
functional Ψ(z, .) : TzZ → [0,∞] is assumed to be convex, lower semicontinuous, and has
to fulfill Ψ(z, 0) = 0. For gradient flows (in the classical or narrow sense) the dissipation
potential Ψ(z, ·) is assumed to be a quadratic form, e.g. Ψ(z, ż) = 1

2
〈G(z)ż, ż〉, where

G = G∗ ≥ 0 plays the role of a Riemannian metric tensor.
For a given energy functional F : Z → R ∪ {+∞} the generalized gradient flow is

given by
0 ∈ ∂żΨ(z, ż) +DF(z) in T ∗zZ ∼ Z∗. (1.1)

An equivalent formulation can be obtained using the Legendre transform and the dual
dissipation functional Ψ∗ : T ∗Z → [0,∞],

Ψ∗(z; ·) = L[Ψ(z, ·)], Ψ∗(z; η) = sup
v∈Z

{
〈η,v〉 −Ψ(z,v)

}
.

Then (1.1) can be written equivalently as rate equation

ż = ∂ηΨ∗(z;−DF(z)). (1.2)

Using (1.1), (1.2) and the classical Legendre equivalence (where J is a general lower
semicontinuous, convex functional)

η ∈ ∂J (v) ⇐⇒ v ∈ ∂J ∗(η) ⇐⇒ J (v) + J ∗(η) = 〈η,v〉

the energy balance can be given in different formulations

F(z(0))−F(z(t)) =

∫ t

0

〈−DF(z), ż〉 ds =

∫ t

0

〈∂żΨ(z, ż), ż〉 ds

=

∫ t

0

(
Ψ(z, ż) + Ψ∗(z;−DF(z)

)
ds =

∫ t

0

〈−DF(z), ∂ηΨ∗(z;−DF(z))〉 ds.

Since the right hand sides express the dissipated energy, Ψ is called the dissipation poten-
tial and Ψ∗ the dual dissipation potential. In the applications of our paper we consider
isothermal systems such that the free energy will play the role of the driving functional.

In the rest of this work we will restrict ourselves to the case of true gradient flows,
where Ψ(z, ·) and hence also Ψ∗(z, ·) are quadratic forms. Usually, we write the gradient
system in the dual form and use the representation

Ψ∗(z,η) =
1

2
〈η,K(z)η〉,

where the operator K = K∗ ≥ 0 maps from Z∗ to Z (or some subspaces). The dual
form is easier, since we are interested in the case that K is not invertible, which allows
for conserved quantities. Our gradient system takes the form

ṅ = DηΨ∗(n;−DF(n)) = −K(n)DF(n),
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where n denotes the vector of densities of the species and η = DF(n) represents the
corresponding thermodynamic force being conjugate to n, which is called the vector of
the chemical potentials. The operator K can be seen as a generalization of the symmetric
Onsager matrix. In this setting the functional F becomes decreasing and the expression
Ψ(n, ṅ) + Ψ∗(n;−DF(n)) describes the energy dissipation. The aim in the paper is to
find suitable functionals F and potentials Ψ such that electro-reaction-diffusion systems
without and with active interfaces fit into this formalism and can be written as gradient
flows.

We recall that in [Mie11] it was shown that K for electro-reaction diffusion systems
can be written in the form

K(n)η = −div
(
M(n)∇η

)
+ H(n)η,

where the tensor M contains the mobilities for the bulk diffusion, while the matrix H(n)
contains the rate coefficients for the reactions.

In this paper we model the interaction between a bulk system and an interface system
by extending the above ideas to functionals given as a sum of a bulk and an interface
term. We consider an interface Γ which lies between the material Ω. By Γ+ and Γ− we
denote the two surfaces that are obtained by approaching Γ from above and below, see
Section 3 for more details. We denote by n ∈ ]0,∞[I and by nΓ ∈ ]0,∞[IΓ the vectors of
the densities on the bulk and the interface, respectively. The bulk-interface energy FBI is
typically given in the form

FBI(n,nΓ) =

∫
Ω\Γ

I∑
i=1

ni

(
log( ni

n∗i
)−1) dx+

∫
Γ

IΓ∑
i=1

nΓi

(
log( nΓi

nΓ∗i
)−1) da. (1.3a)

One typical form of the dual dissipation potential is given by

Ψ∗
BI(n,nΓ; η,ηΓ) =∫

Ω\Γ

1
2
∇η:Mbulk(n):∇η + 1

2
η ·Hbulk(n)η dx+

∫
Γ

1
2
∇ΓηΓ:MΓ(nΓ):∇ΓηΓ da

+

∫
Γ

1
2
(B+η++B−η−+CηΓ) · H̃Γ(n+,n−,nΓ)(B+η++B−η−+CηΓ) da.

(1.3b)

Here n± and η± are the traces of n and η on Γ±, respectively, and ∇Γ denotes the
tangential gradient on Γ. The matrix H̃Γ models the transfer between the Γ+, Γ, and Γ−

as well as reactions in Γ, while the coefficient matrices B± and C contain stochiometric
coefficients.

Applying the abstract gradient form (1.2), Mbulk and Hbulk give rise to the reaction-
diffusion system in the bulk

ṅ = div
(
Mbulk(n)∇η

)
−Hbulk(n)η, where η = (log ni − log n∗ i)i=1,...,I . (1.4a)

In the interface Γ we have diffusion and reactions via MΓ and H̃Γ, namely

ṅΓ = divΓ

(
MΓ(nΓ)∇ΓηΓ

)
− CTH̃Γ(...)(B+η++B−η−+CηΓ). (1.4b)
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In addition, we obtain interface conditions on Γ± as follows:

ν± ·Mbulk(n±)η± = (B±)TH̃Γ(...)(B+η++B−η−+CηΓ) on Γ±. (1.4c)

We refer to Theorem 3.1 for the proof in an even more general setting.
Thus, the gradient system generated by F and Ψ∗ defined in (1.3) defines in a natural

way the coupled system (1.4) of partial differential equations. Our paper will follow these
lines for the more general case of electro-reaction-diffusion systems where the particles
may be charged. The gradient of associated electrostatic potential φ induced by the bulk
densities n and the interface densities nΓ will generate an additional drift term, which
still can be formulated as gradient systems, see [Mie11].

The plan of the paper is as follows. In Section 2 we recall the bulk theory for electro-
reaction-diffusion system as established in [Mie11], but generalize it to the case of het-
erostructures, where the equilibrium densities n∗ may depend nonsmoothly on the mate-
rial point x ∈ Ω. In Section 3 we then discuss the generalization to systems, where new
species with density vector nΓ are confined to an active interface. We discuss the interac-
tion mechanisms as well as the detailed balance conditions needed to obtain the desired
gradient structure. In Section 4 we discuss several examples that highlight different as-
pects of the general theory. We first treat a scalar diffusion equation with bulk-interface
interaction. Second we study reaction-diffusion systems, where on the interface reactions
happen which need species from the bulk. Finally, we provide a semiconductor model
for a solar cell, where charged and neutral traps in an interface influence the motion of
electrons and holes.

We emphasize that the modeling of electro-reaction-diffusion systems via gradient
structures is an alternative to the modeling via the mass-action formalism involving the
detailed-balance or Wegscheider conditions. While our theory of gradient structures is re-
stricted to closed systems, it has the advantage that the derived systems are automatically
thermodynamically correct giving the Onsager form ṅ = −K(n)DFBI(n), which is de-
rived from the free energy FBI and the dual dissipation potential Ψ∗

BI : η 7→ 1
2
〈η,K(n)η〉.

For modeling the two functionals FBI and Ψ∗
BI determine how many coefficients can be

chosen independently, as the resulting systems will always be thermodynamically cor-
rect. This is helpful for complicated electro-reaction-diffusion systems with bulk-interface
interactions such as the solar-cell model in Subsection 4.3.

In contrast, the direct modeling of electro-reaction-diffusion systems [DeM84, ÉrT89,
GGH96] via reactions of mass-action type satisfying the detailed-balance conditions is
more flexible for open systems, where the gradient structure is lost but thermodynamic
correctness can still be present.

2 Electro-reaction-diffusion systems

The abstract framework of gradient structures for electro-reaction-diffusion systems will
be derived combining results concerning generalized gradient flows obtained for reaction-
diffusion systems in [Mie11, Subsec. 3.3] and some generalization of such results for the van



2 Electro-reaction-diffusion systems 5

Roosbroeck system (see [Mie11, Subsec. 4.1]). The point is to show that for closed systems
the modeling via gradient structures is equivalent to to the modeling via reactions of
mass-action type satisfying the detailed balance conditions (or equivalently Wegscheider’s
cyclicity condtions).

Here we additionally generalize the setting to heterostructures, where material prop-
erties may depend nonsmoothly on x ∈ Ω. But we don’t indicate the space dependency in
each formula explicitely. At the end of this section we summarize which of the occuring
quantities can depend nonsmoothly on x. We start with some notation.

In a domain Ω ⊂ RN we consider I different species Xi with densities ni, n =
(n1, . . . , nI). These species are reacting according to the mass action law, i.e. we take
into account the reactions

αr
1X1 + · · ·+ αr

IXI

kr
f




kr
r

βr
1X1 + · · ·+ βr

IXI ,

where r = 1, . . . , R is the number of possible reactions, αr = (αr
1, . . . , α

r
I), βr ∈ NI

0 are
the vectors of stoichiometric coefficients, and kr

f and kr
r the positive forward and reverse

rate coefficients, which may depend on n and x as well.

To write the reaction terms we use the abbreviation nαr
= n

αr
1

1 . . . n
αr

I
I . According to

[FeH77, Grö83, ÉrT89, VlR09] the source term due to the considered reactions in the rate
equation reads

ṅ = R(n) = −
R∑

i=1

(
kr

f (n)nαr − kr
r (n)nβr)

(αr − βr).

We introduce the stoichiometric subspace S and its orthogonal complement S⊥,

S := span{αr − βr| r = 1, . . . , R} ⊂ RI , S⊥ := {κ ∈ RI | κ · ρ = 0 for all ρ ∈ S}.

We associate to each species Xi a charge number qi ∈ Z and write q = (q1, . . . , qI). It
is reasonable to assume that all considered reactions are charge conserving, which means
that q ∈ S⊥. Furthermore, concerning the reaction system we assume that the rate
coefficients for the forward and backward reaction (almost everywhere) in Ω have the
form

kr
r (n) = kr

0k
r
f (n)

with kr
0 not depending on the state n, but possibly depending on x ∈ Ω. The formulation

using the possibly space depending n∗ enables us to treat spatial inhomogeneities, espe-
cially it is possible to incorporate heterostructures that are of fundamental importance in
semiconductor design, see [BHK03, BGH05].

The crucial assumption is the detailed balance condition to be fulfilled. This means
that there exists a positive equilibrium density vector n∗ ∈ ]0,∞[I such that

nαr

∗ = kr
0n

βr

∗ for r = 1, . . . , R ⇐⇒ A log n∗ = (log kr
0)r=1,...,R, (2.1)
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where the matrix A ∈ ZR×I has the row vectors αr−βr ∈ ZI . These conditions are
also called Wegscheider’s cyclicity conditions (see e.g. [VlR09, Weg02]). If the vector
(log kr

0)r=1,...,R on the right-hand side of the system of linear equations for log n∗ in (2.1)
is orthogonal to all solutions of the homogeneous adjoint system (a.e. on Ω), then the
existence of a positive solution n∗ is guaranteed.

In electro-chemical systems the considered species may carry charges, that generate
an electrostatic potential φn, which is the unique solution to the Poisson equation

− div (ε∇φ) = d+ q · n in Ω,

φ = φDir on ΓD and ε∇φ · ν = 0 on ΓN.
(2.2)

Here ε is the dielectric permittivity (tensor) and d represents some fixed charge density,
the doping profile. Both quantities may depend nonsmoothly on the space variable. Due
to this electrostatic potential the flux density ji for the charged species contains in addition
to the diffusive part (Fick’s law) a drift part,

ji = −Mi(n)∇
(
log

ni

n∗i
+ qiφn

)
, i = 1, . . . , I.

Here Mi(n) are symmetric positive semidefinite N ×N matrices being allowed to depend
in a nonsmooth way on x. The simplest realization of Mi(n) is Mi(n) = mini where mi

is a scalar diffusion coefficient. The electro-reaction-diffusion system now reads as the
coupled system of the Poisson equation (2.2) and continuity equations for all species

∂ni

∂t
+ divji = Ri(n) in Ω,

ji · ν = 0 on ∂Ω, i = 1, . . . , I.
(2.3)

Testing system (2.3) by a constant vector p ∈ S⊥ we find for the functional

Pp(n) :=

∫
Ω

p · n dx

that all solutions (n, φn) to (2.2), (2.3) satisfy the identity

Pp(n(t)) = Pp(n(0)) for all t ≥ 0.

In other words, each vector p ∈ S⊥ defines a conserved quantity Pp(n).
For a multi-species Boltzmann-distributed system of charged species the free energy

consists of an electrostatic part and a chemical part:

F(n) :=

∫
Ω

{1

2
∇φn · (ε∇φn) +

I∑
i=1

ni(log
ni

n∗i
− 1)

}
dx, (2.4)

where the electrostatic potential φn is the solution to the Poisson equation (2.2). By
differentiation we obtain

DF(n) =
(

log
ni

n∗i
+ qiφn

)
1=1,...,I

=: η,
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For this relation one additionally has to use that φn solves the Poisson equation (2.2) and
depends affinely on n, see [GGH96, GlH97, AGH02] or the proof of Theorem 3.1.

Let n0 be any given vector of initial densities. Minimizing F as given in (2.4) under the
constraint Q

∫
Ω
(n−n0) dx = 0 (where Q : RI → RI is any projection onto S⊥), we obtain,

under suitable technical assumptions (cf. [GlH97, GGH96], arguing with the conjugate
functional of the free energy functional, see [GGH96, Section 3]), the existence of a unique
minimizer nn0

eq of F subject to the above constraint. We call nn0
eq the thermodynamic

equilibrium. According to the Lagrange formalism for constrained minimization it fulfills

DF(nn0
eq ) =

(
log

nn0
eq i

n∗i
+ qiφn

n0
eq

)
1=1,...,I

≡ ηeq ∈ S⊥, Q
∫

Ω

(nn0
eq − n0) dx = 0, (2.5)

where φn
n0
eq

is the unique solution to (2.2) with nn0
eq in the right-hand side.

To model the dynamics of the system we use the primary variables n and the dual
variables η and define the dual dissipation potential Ψ∗ consisting of a mobility part
giving rise to the diffusion and drift and a reactive part. The latter is associated to the
reaction processes and takes the form

ψ∗(n; η) :=
1

2
η ·H(n)η with

H(n) :=
R∑

r=1

kr
f (n) nαr

∗ Λ(
nαr

nαr

∗
,
nβr

nβr

∗
) (αr−βr)⊗ (αr−βr),

(2.6)

where the function Λ is given by

Λ(x, y) =

{
x−y

log x−log y
for x 6= y,

y for x = y.
(2.7)

Because of Λ(x, y) > 0 for x, y > 0 the matrix H ∈ RI×I is symmetric and positive
semi-definite. For positive kr

f (n), r = 1, . . . , R, we have (H(n)η) · η = 0 if and only if
η ∈ S⊥. For p ∈ S⊥ we have H(n)p = 0, which implies

ψ∗(n; η + p) = ψ∗(n; η) for all p ∈ S⊥. (2.8)

Moreover, using q ∈ S⊥ again η = DF(n) satisfies

(αr − βr) · η = log
(nαr

nαr

∗

)
− log

(nβr

nβr

∗

)
+ (αr − βr) · q φn = log

(nαr

nαr

∗

)
− log

(nβr

nβr

∗

)
,

and we obtain

Dηψ
∗(n;−DF(n)) = H(n)(−η)

=
R∑

r=1

kr
f (n)nαr

∗ Λ
(nαr

nαr

∗
,
nβr

nβr

∗

)(
log
(nαr

nαr

∗

)
− log

(nβr

nβr

∗

))
(βr −αr) = R(n).
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Thus, the reaction terms are modeled correctly.
The overall dual dissipation functional Ψ∗ containing drift, diffusion and reaction

effects is postulated to have the form

Ψ∗(n; η) =

∫
Ω

{ I∑
i=1

1

2
∇ηi(x) · (Mi(n)∇ηi(x)) + ψ∗(n(x); η(x))

}
dx, (2.9)

where ψ∗ is given in (2.6) and Mi(n) are symmetric positive semidefinite N×N matrices.
In the simplest case we have Mi(n) = mini with a scalar diffusion coefficient mi, i =
1, . . . , I. However, we may also generalize to cases allowing for cross-diffusion by choosing
a fourth-order tensor M(n) acting on the gradient ∇η ∈ RI×N .

Since DPp(n) = p ∈ S⊥ are constants and since (2.8) is fulfilled we establish the
identity

Ψ∗(n;−DF(n) + DPp(n)
)

= Ψ∗(n;−DF(n)) for all p ∈ S⊥.

Moreover, under the simplifying assumption that kr
f (n) > 0 and Mi(n) are positive

definite for all n ∈ (0,∞)I we have Ψ∗(n;−DF(n)) = 0 if and only if DF(n) is a
constant vector lying in S⊥.

Since the derivative of Ψ∗ with respect to the second argument is

DηΨ∗(n; DF(n)) = −
(
div (Mi(n)∇ηi) +Ri(n)

)
i=1,...,I

,

our choice of the energy functional F and the dual dissipation potential Ψ∗ gives the
gradient system for n in the dual formulation

∂n

∂t
= −DηΨ∗(n; DF(n)),

which exactly corresponds to the continuity equations (2.3). And the validity of the
Poisson equation (2.2) during the time being is incorporated in the definition of the
free energy. Thus, we have found a formulation of the electro-reaction-diffusion system
(2.2), (2.3) as a gradient flow.

Remark 2.1 (Heterostructures) We recall that our considerations cover the situation
of heterostructures, where the physical parameters are allowed to depend in a nonsmooth
way on the space variable. Now, at the end of our argumentation in this section we once
more collect all the relevant space dependent quantities. So the reaction rate coefficients
kr

f (n), kr
r (n), kr

0, the quantities in the Poisson equation ε and d as well as the matrices
Mi(n) are allowed to have a nonsmooth space dependency with L∞ property. The essential
parameters like diffusion coefficients and the dielectric permittivity are assumed to be
positively bounded away from zero. Consequently the reference densities n∗ depend
nonsmoothly on x, too.

There are several papers (see e.g. [GGH96, DeF06, GlG09] and papers cited there)
on energy estimates for reaction-diffusion systems with reversible reactions (meaning that
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forward and reverse reaction are present). Here the free energy turns out to be a Lyapunov
function and solutions converge to the unique steady state. Especially, the free energy
decays monotonously and exponentially to its equilibrium value along solutions to the
system. To prove this convergence, an estimate of the free energy by the dissipation rate
is used. The investigations of Section 2 show that there is even an exact gradient structure
under the stronger assumption of detailed balance (which happens to hold in most of the
considered cases anyway). This gradient structure is based on the free energy F acting as
the driving functional and the dual dissipation potential Ψ∗, which contains the diffusion
part in terms of the Wasserstein-type term (see [Ott98, Ott01]) and the reaction term H
introduced in [Mie11].

Similar results on convergence to equilibria as in [GGH96, GlG09] can be derived
also for discretized electro-reaction-diffusion problems based on Voronoi finite-volume
discretization in space and an implicit Euler scheme in time, see [Gli08b, Gli09b]. And the
same properties remain true if (for the non-discretized situation) some model reduction
under the assumption of partly fast kinetics are done, see [Gli09a]. A special case of
uncharged species is investigated in [DeF06], where an explicite rate of convergence is
obtained.

Remark 2.2 (Open systems) There are different problems from device simulation (see
e.g. [GaG90] for the van Roosbroeck equations, [Gli08a] for a spin-polarized drift-diffusion
model, and [Gli10] for an electronic model for solar cells with energy resolved defect densi-
ties), where the underlying electro-reaction-diffusion system is not closed by homogeneous
Neumann boundary conditions. There nontrivial Dirichlet boundary conditions on a part
of the boundary of the device are prescribed and external sources may exist. In these
situations at least the following assertions are obtained: If the boundary conditions and
external source terms are compatible with thermodynamic equilibrium (cf. (2.5)), then
the free energy along solutions decays monotonously to its equilibrium value. In the other
case it may be increasing, but its growth can be estimated.

3 Electro-reaction-diffusion systems with active in-

terfaces

In this section we show that the abstract framework of gradient flows can be extended
to include interfacial dynamics and still keeps thermodynamical correctness. Again het-
erostructures are taken into account. We study the following geometric setup, which
easily can be generalized to several bulk parts and several interfaces with different mate-
rial properties and different species and interactions inside these substructures.

We restrict ourselves to one bulk domain Ω ⊂ RN containing one active interface
Γ ⊂ Ω. We assume that Γ is orientable, such that we can consider limits from above
and below. To make this rigorous we introduce two boundaries Γ+ and Γ− such that for
any quantity u defined on Ω we denote by u+ and u− the limits from above and below,
respectively. We then write shortly u± = u|Γ± .
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On the interface Γ we have IΓ species denoted by XΓ1, . . . , XΓIΓ , we assign to them
the density vector nΓ ∈ RIΓ for the carrier densities on Γ, which have a corresponding
vector of charge numbers qΓ. The number and types of species may be different in the
bulk and on the interface. Thus there is no direct way to compare the limits n± and nΓ

on the interface. Similarly, we allow the thermodynamic driving forces η to have different
limits η+, η−, and ηΓ.

Again, we consider a closed system, meaning that for the species, living in the bulk, on
∂Ω no-flux boundary conditions are assumed. We take into account the following effects:

(a) volume reactions, where all involved species live in the bulk, namely

I∑
i=1

αr
iXi

kr
f



kr

r

I∑
i=1

βr
iXi, r = 1, . . . , R,

as contained in the electro-reaction-diffusion systems studied in Section 2;

(b) transfer mechanisms and reactions between species on Γ+, Γ−, and Γ, namely

I∑
i=1

αr
i+Xi+ +

I∑
i=1

αr
i−Xi− +

IΓ∑
i=1

αr
ΓiXΓi

kr
Γf



kr

Γr

I∑
i=1

βr
i+Xi+ +

I∑
i=1

βr
i−Xi− +

IΓ∑
i=1

βr
ΓiXΓi,

r = R + 1, . . . , R +RΓ, where RΓ is the number of different interfacial mechanisms
and αr

i±, β
r
i±, α

r
Γ i, and βr

Γ i are suitable stoichiometric coefficients.

Case (b) contains several different mechanisms, which are combined into one case for
future notational convenience. To describe these mechanisms we introduce the integer-
valued transfer matrices B± ∈ RRΓ×I and C ∈ RRΓ×IΓ resulting from the definition that
the block matrix (B+, B−, C) ∈ RRΓ×(2I+IΓ) contains the rows(

(αr
i+ − βr

i+)i=1,...,I , (α
r
i− − βr

i−)i=1,...,I , (α
r
Γi − βr

Γi)i=I+1,...,I+IΓ

)
,

for r = R + 1, . . . , R + RΓ. Our assumption that all transfer processes of Case (b) are
charge conserving is expressed by the condition

(B+ +B−)q + CqΓ = 0.

To indicate the nature of the processes contained in Case (b) we now list a few possible
simpler processes that are special subcases.

(b1) Pure interfacial reaction occurs for r ∈ {R+1, . . . , R+RΓ} if B+ = 0 and B− = 0.
In this case, the reactions in Γ are not coupled to the two boundaries Γ+ and Γ− of
the bulk.
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(b2) Pure transmission occurs if C = 0. In this case the species move from one side of
the interface to the other without interacting with the species in the interface.

(b3) Capture and escape from one side, e.g. from Γ+, occurs if B− = 0. Then, the species
can interact and move from Γ+ to Γ or vice versa. Moreover, the species of Γ or Γ+

can act as a catalyst for reaction in the other side.

Of course, in the general Case (b) the species on all three adjacent interfaces Γ, Γ+, and
Γ− can interact.

In our further investigations we work with the vectors n = (n,nΓ) ∈ RI+IΓ and
q = (q, qΓ) ∈ ZI+IΓ . Moreover, we introduce the stoichiometric matrix A ∈ ZR×I having
the rows

(αr − βr) ∈ ZI , r = 1, . . . , R.

We now define the block matrix A via

A =

 A 0

B++B− C

 ∈ Z(R+RΓ)×(I+IΓ)

and the enlarged stoichiometric subspace

S := range
(
A

T) ⊂ RI+IΓ giving S⊥ = kernel
(
A
)
⊂ RI+IΓ .

We can formulate the assumption of charge conservation of the interactions listed in

Cases (a) and (b) by the property that q ∈ S⊥. Moreover, all p = (p,pΓ) ∈ S⊥ generate
invariant functionals

Pp(n) =

∫
Ω\Γ

n · p dx+

∫
Γ

nΓ · pΓ da. (3.1)

Due to the definition of the matrices A, B+, B− and C we find

Ap = 0 and (B+ +B−)p + CpΓ = 0 for all p = (p,pΓ) ∈ S⊥. (3.2)

We again want to work under the conditions of detailed balance, but now for the
enlarged system including the interface interactions as well. Thus we impose the existence
of positive reference densities n∗ = (n∗,nΓ∗) with n∗ : Ω\Γ → RI and nΓ∗ : Γ → RIΓ

that are in detailed balance. This means that for all n = (n,nΓ) we have

kr
f (n)nαr

∗ = kr
r (n)nβr

∗ , r = 1, . . . , R, (3.3a)

kr
Γf(n

+,n−,nΓ)
(
n+
∗
)αr

+
(
n−∗
)αr

−
(
nΓ∗
)αr

Γ

= kr
Γr(n

+,n−,nΓ)
(
n+
∗
)βr

+
(
n−∗
)βr

−
(
nΓ∗
)βr

Γ , r = R + 1, . . . , R +RΓ, (3.3b)

where n±∗ are the corresponding one-sided limits of n∗.
To see under what conditions this holds we first realize that the quotients

kr
0 := kr

r/k
r
f and kr

Γ0 := kr
Γr/k

r
Γf
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must be independent of n (but may depend on x ∈ Ω \ Γ and x ∈ Γ, respectively, like
n∗). Moreover, taking the logarithm of the relations (3.3) leads to the linear system

A log n∗ = log k0 := (log kr
0)r=1,...,R, x ∈ Ω\Γ, (3.4a)

B+log n+
∗ +B−log n−∗ + C log nΓ∗ = log kΓ0, x ∈ Γ, (3.4b)

where log n∗ and log kΓ0 are the vectors (log n∗i)i=1,...,I and (log kr
Γ0)r=R+1,...,R+RΓ

, respec-
tively. The condition in (3.4a) is exactly the condition (2.1) for the bulk, and we obviously
have to assume that this system has at least one solution (however, there might be a whole
family). The existence of the density n∗ now follows from generalized Wegscheider con-
ditions by arguing as follows. For each point x ∈ Γ we want to find densities ñ± and nΓ∗
that have to satisfy the system

W


log ñ+

log ñ−

log nΓ∗

 =


log k+

0

log k−0

log kΓ0

 , where W =


A 0 0

0 A 0

B+ B− C

 ∈ R(2R+RΓ)×(2I+IΓ) (3.5)

and kr±
0 denotes the limit of kr

0 on Γ±. We call W the Wegscheider matrix of the system.
We have 2R + RΓ conditions to determine the 2I + IΓ quantities (ñ+, ñ−,nΓ∗). The
Wegscheider conditions for the solvability of (3.5) now read (log k+

0 , log k−0 , log kΓ0) ∈
range(W), which by Fredholm’s alternative is equivalent to

y · (log k+
0 , log k−0 , log kΓ0)

T = 0 for all y ∈ kernel(WT).

Finally, we can extend the solutions ñ± to n∗ : Ω\Γ → RI such that the one-sided limits
satisfy n±∗ = ñ±.

The free energy for charged multi-species systems with active species on the interface
Γ is given by the functional

FBI(n) = FΩ(n) + FΓ(nΓ)

=

∫
Ω\Γ

{1

2
∇φn · ε∇φn +

I∑
i=1

ni(log
ni

n∗i
− 1)

}
dx+

∫
Γ

IΓ∑
i=1

nΓi(log
nΓi

nΓ∗i
− 1) da.

The part FΩ(n) is similar to the energy functional (2.4) for the electro-reaction-diffusion
system without active interfaces studied in Section 2. But now the electrostatic potential
φn is associated with the charge distributions in Ω and on Γ, namely

−∇ · (ε∇φ) = d+ q · n + (dΓ + qΓ · nΓ)δΓ in Ω,

and the same boundary conditions as in (2.2). Here δΓ denotes the surface measure
on Γ such that in the sense of distributions

∫
Ω
v γδΓ dx =

∫
Γ
γv da for smooth v. For
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the invariant functionals Pp defined (3.1), p ∈ S⊥, and the free energy functional we
immediately obtain the derivatives

DPp(n) =

(
p

pΓ

)
and DFBI(n) =

(
η

ηΓ

)
=: η, where (3.6a)

η = DnFBI(n) = (log
ni

n∗i
+ qiφn)i=1,...,I : Ω\Γ → RI , and (3.6b)

ηΓ = DnΓ
FBI(n) = (log

nΓi

nΓ∗i
+ qΓiφn)i=1,...,IΓ : Γ → RIΓ . (3.6c)

We give a proof of the formulas (3.6b) and (3.6c) within the proof of Theorem 3.1.
As before, DFBI(n) defines the thermodynamic conjugate variables, which will act as

driving forces. For the dual dissipation potential Ψ∗
BI we proceed analogously by intro-

ducing suitable integrals over the interface, namely

Ψ∗
BI(n; η) = Ψ∗

Ω\Γ(n; η) + Ψ∗
Γ(n; η),

where Ψ∗
Ω\Γ is as in (2.9), but integration has to be done over Ω\Γ, i.e. we do not assume

continuity over the interface.
The dual interfacial dissipation potential Ψ∗

Γ will also consist of two parts, namely
the interface diffusion part depending on the tangential gradients ∇ΓηΓ and the transfer-
reaction terms depending on (η+,η−,ηΓ). The latter case is associated with the transfers
and reactions of Case (b) discussed above. The corresponding part in Ψ∗

Γ(n; η) only
depends on the interfacial variables and the limits of the bulk variables from above and
below at the interface, namely

Ψ∗
Γ (b)(n; η) =

∫
Γ

ψ∗Γ(x,n+,n−,nΓ; η+,η−,ηΓ) dx,

where all functions are evaluated at x ∈ Γ. To give the general form for ψ∗Γ and to relate
it to the interface interactions defined in Case (b), we introduce the triples n̂, η̂ ∈ R2I+IΓ

and α̂r, β̂
r
∈ N2I+IΓ

0 via

n̂ = (n+,n−,nΓ), η̂ = (η+,η−,ηΓ), α̂r = (αr
+,α

r
−,α

r
Γ), β̂

r
= (βr

+,β
r
−,β

r
Γ). (3.7)

The general form of the transfer and reaction density ψ∗Γ is simply the quadratic form

ψ∗Γ(x, n̂; η̂) =
1

2
η̂ ·
(
HΓ(x, n̂)η̂

)
,

where HΓ(n̂) ∈ R(2I+IΓ)×(2I+IΓ) is symmetric and positive semi-definite. We continue to
suppress the possible dependence on x ∈ Γ.

Moreover, HΓ has to satisfy HΓ(x, n̂)(p,p,pΓ) = 0 for all p = (p,pΓ) ∈ S⊥ to keep
the invariance of the functionals Pp. In particular, the choice p = (q, qΓ) gives global
charge conservation.
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The reactions introduced in Case (b) can be realized by defining HΓ in analogy to the
bulk matrix H (cf. (2.6)), namely

HΓ(n̂) :=

R+RΓ∑
r=R+1

kr
Γf(n̂) n̂bαr

∗ Λ
(n̂bαr

n̂bαr

∗
,

n̂
bβr

n̂
bβr

∗

)
(α̂r−β̂

r
)⊗ (α̂r−β̂

r
), (3.8)

where n̂∗ is the corresponding triple. In terms of the matrices B+, B−, and C introduced
after Case (b) the matrix ψ∗Γ can be written as

ψ∗Γ(n̂; η̂) =
1

2

(
(B+, B−, C)η̂

)
·D(n̂)

(
(B+, B−, C)η̂

)
,

where D ∈ RRΓ×RΓ is the diagonal matrix with the entries kr
Γf(n̂) n̂bαr

∗ Λ
( bnbαr

bnbαr
∗
, bnbβr

bnbβr

∗

)
.

Using the detailed balance condition as well as the special form of the η we find the
desired relation

R̂(n̂) = −HΓ(n̂)DFBI(n) = −
R+RΓ∑
r=R+1

(
kr

Γf(n)n̂bαr

− kr
Γr(n)n̂

bβr)(
α̂r−β̂

r)
,

corresponding to the reactions assumed in Case (b). Interpreting this vector as the triple

R̂ = (J+,J−,RΓ), the component RΓ contains the rates of the densities in the interface,
while J± corerspond to the fluxes leaving or entering the bulk via the boundary Γ±.

As the total dual interfacial dissipation functional Ψ∗
Γ also contains mobility terms

generating drift-diffusion processes of the interface species on the interface Γ, it has the
form

Ψ∗
Γ(n; η) =

∫
Γ

{ IΓ∑
i=1

1

2
∇ΓηΓi · (MΓi(nΓ)∇ΓηΓi) + ψ∗Γ(n̂; η̂)

}
da, (3.9)

where ψ∗Γ(n̂; η̂) is as above. In the simplest case we have MΓi(nΓ) = mΓinΓi with a scalar
diffusion coefficient mΓi, i = 1, . . . , IΓ. However, we may also generalize to cases allowing
for cross-diffusion by choosing a fourth-order tensor MΓ(nΓ) acting on the interfacial
gradient ∇ΓηΓ.

We now come to the main result of this paper that establishes the form of the coupled
bulk-interface model for n = (n,nΓ) generated by the gradient system for the bulk-
interface potentials FBI and Ψ∗

BI.

Theorem 3.1 Assume that FBI and Ψ∗
BI are given as above, then the gradient system

ṅ = −DηΨ∗
BI

(
n;DFBI(n)

)
takes the form of the following system of coupled partial differential equations:

−div
(
ε∇φ

)
= d+ q · n + (dΓ + qΓ · nΓ)δΓ in Ω, (3.10a)

ṅ = div
(
M bulk(n)∇η)−Hbulk(n)η in Ω\Γ, (3.10b)

ṅΓ = divΓ

(
MΓ(nΓ)∇ΓηΓ

)
− PΓHΓ(n̂)η̂ on Γ, (3.10c)(

M bulk(n)∇η
)
· ν+ = P+HΓ(n̂)η̂ on Γ+, (3.10d)(

M bulk(n)∇η
)
· ν− = P−HΓ(n̂)η̂ on Γ−, (3.10e)
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where all usages of ‘div’ are to be understood in the weak form. Here η = log n− log n∗+
φq, ηΓ = log nΓ−log nΓ∗−φqΓ, n̂ and η̂ are defined in (3.7), ν± are the outward normals
pointing from Γ± towards Γ∓, and the projections P± ∈ RI×(2I+IΓ) and PΓ ∈ RIΓ×(2I+IΓ)

are given by
P+ := (IRI , 0, 0), P− := (0, IRI , 0), PΓ := (0, 0, IRIΓ ).

In particular, sufficiently smooth solutions n of (3.10) satisfy the energy-dissipation rela-
tion

d

dt
FBI(n(t)) = −2Ψ∗

BI

(
n(t);DFBI

(
n(t)

))
≤ 0.

Remark 3.1 The coupled electro-reaction-diffusion system with active interfaces stated
in (3.10) consists of the following subsystems: The Poisson equation (3.10a) for the self-
consistent calculation of the electrostatic potential φ, which contains at the right-hand
side besides charge densities in the bulk also charges concentrated on the interface Γ. It is
coupled with continuity equations on Ω\Γ for the densities of the bulk species (3.10b) and
continuity equations on the interface Γ for the species living on the interface only (3.10c).
Both types of continuity equations involve drift-diffusion fluxes and reaction terms defined
in the bulk and on the interface, respectively. Finally, the equations (3.10d) and (3.10e)
describe the normal fluxes of bulk species at the interface pointing from Γ± to Γ∓ in terms
of rates of transfer mechanisms and reactions between species on Γ+, Γ− and Γ.

Proof: We first establish the formulas for (3.6b) and (3.6c) for η = DFBI(n). For this
we calculate

〈DFBI(n),m)〉 = lim
h→0

1

h

(
FBI(n+hm)−FBI(n)

)
For this we use that φn depends affinely on n, such that

φ̃m = lim
h→0

1

h

(
φn+hm−φn

)
is the unique solution of the linear elliptic system

−div
(
ε∇φ

)
= q ·m + qΓ ·mΓ δΓ, in Ω, (3.11)

with the homogeneous version of the boundary conditions in (2.2).
Using the definition of FBI we now find

〈DFBI(n),m)〉 =

∫
Ω\Γ

(ε∇φn) · ∇φ̃m + (log n−log n∗) ·m dx

+

∫
Γ

(log nΓ−log nΓ∗) ·mΓ da.

Using (3.11) the first term on the right-hand side can be integrated by parts giving∫
Ω\Γ

(ε∇φn) · ∇φ̃m dx = −
∫

Ω\Γ
φnq ·m dx−

∫
Γ

φnqΓ ·mΓ da.
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Thus, (3.6b) and (3.6c) are established.
To derive system (3.10) we use a test function ξ such that ξ : Ω\Γ → RI and ξΓ :

Γ → RIΓ are smooth and vanish on ∂Ω and ∂Γ, respectively. We note that this allows for
ξ+ 6≡ ξ−. Using the quadratic structure of Ψ∗

BI the gradient flow ṅ = −DΨ∗
BI(n;DFBI(n))

implies

〈ṅ, ξ〉 = −〈DΨ∗
BI(n; η), ξ〉

= −
∫

Ω\Γ
(Mbulk∇η):∇ξ + (Hbulkη) · ξ dx−

∫
Γ

(MΓ∇ΓηΓ):∇Γξ + (HΓη̂) · ξ̂ da

=

∫
Ω\Γ

(
div
(
Mbulk∇η

)
−Hbulkη

)
·ξ dx+

∫
Γ

(
divΓ

(
MΓ∇ΓηΓ

)
−PΓHΓη̂

)
·ξΓ da

+

∫
Γ+

((
Mbulk∇η

)
ν+−P+HΓη̂

)
·ξ+da+

∫
Γ−

((
Mbulk∇η

)
ν−−P+HΓη̂

)
·ξ−da.

Here we have used that integration by parts on Ω\Γ gives different boundary terms on

Γ+ and Γ− that have been sorted according to the three different test functions ξΓ = PΓξ̂

and ξ± = P±ξ̂. Thus, (3.10) is established as well.
Moreover, choosing the test function ξ = DFBI(n), i.e. ξ = DnFBI(n) and ξΓ =

DnΓ
FBI(n) and using the first two lines of the last identity, the quadratic structure of

Ψ∗
BI in (3.9) yields

d

dt
FBI(n(t)) = 〈ṅ, DFBI(n)〉 = −〈DηΨ∗

BI(n,η), DFBI(n)〉 = −2Ψ∗
BI(n,η) ≤ 0,

which proves the decay of the free energy FBI along solutions n of (3.10). �

Remark 3.2 Since we again worked in heterostructures, let us summarize the space
dependency of the physical parameters in this section. The bulk reaction constants
kr

f , k
r
r , k

r
0, r = 1, . . . , R, the matrices Mi, i = 1, . . . , I, and ε, and the bulk charge density

d are allowed to depend nonsmoothly on x ∈ Ω with L∞(Ω) property. Moreover, the
interface reaction constants kr

Γf, k
r
Γr, k

r
Γ0, r = R+ 1, . . . , R+RΓ, the left and right limits

of the bulk reaction constants kr±
f , kr±

r , kr±
0 , r = 1, . . . , R, and the quantities MΓi and dΓ

are assumed to be L∞(Γ) functions. Note that then the reference densities n∗, nΓ∗ and
n±∗ are space dependent, too.

4 Examples

In this section we study explicit applications of the above theory. In Subsection 4.1 a scalar
diffusion equation coupled to an active interface is studied. In Subsection 4.2 we inves-
tigate reaction-diffusion systems of two bulk and two interfacial species, all uncharged.
Finally, Subsection 4.3 discusses models for electrically charged species like electrons and
holes. These models are relevant for modern solar cells, where the electronic properties
of the interfaces contribute significantly to the efficiency of the cell, see [Gli10, Gli11] for
more details on modeling of solar cells.
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4.1 A single species diffusion model with active interface

We consider one uncharged species which lives in the bulk as X and at the interface Γ as
XΓ. Hence, the electrostatic potential φ can be neglected. We take into account diffusion
in the bulk as well as on the interface. There is no bulk reaction but we consider the three
transfer mechanisms of the species on Γ+, Γ−, and Γ

X+

k1
Γf



k1

Γr

XΓ, X−

k2
Γf



k2

Γr

XΓ, X+

k3
Γf



k3

Γr

X−. (4.1)

Thus in our one species example we have I = IΓ = 1, R = 0, and RΓ = 3. Hence, A does
not contain any row, and we obtain the matrices

W = (B+, B−, C) =

 1 0 −1

0 1 −1

1 −1 0

 and A =

 1 −1

1 −1

0 0

 .

The enlarged stoichiometric subspace S and its orthogonal complement have dimension

one, especially (1, 1) ∈ S⊥, and thus the total mass of the species,

P(n) =

∫
Ω\Γ

n dx+

∫
Γ

nΓ da, (4.2)

is a conserved quantity. Using kernel(WT) = span(1,−1,−1)T the Wegscheider conditions
on kr

Γ0 = kr
Γr/k

r
Γf reduce to the single relation

k1
Γ0 = k2

Γ0k
3
Γ0.

Under this assumption, we can find positive reference densities n∗ = (n∗, nΓ∗) such that
(3.3) is fulfilled meaning that

k1
Γfn

+
∗ = k1

ΓrnΓ∗, k2
Γfn

−
∗ = k2

ΓrnΓ∗, k3
Γfn

+
∗ = k3

Γrn
−
∗ . (4.3)

From the free energy functional

FBI(n) =

∫
Ω\Γ

n
(
log

n

n∗
−1
)
dx+

∫
Γ

nΓ

(
log

nΓ

nΓ∗
−1
)
da, DFBI(n) =

 log n
n∗

log nΓ

nΓ∗

 =

 η

ηΓ


we obtain the driving forces for the evolution of the system, which represent the chemical
potential in Ω and at Γ of the species. By means of the dual dissipation functional

Ψ∗
BI(n; η) =

∫
Ω\Γ

m

2
n|∇η|2 dx+

∫
Γ

{mΓ

2
nΓ|∇ηΓ|2 +

k1
Γf

2
n+
∗ Λ
(n+

n+
∗
,
nΓ

nΓ∗

)
(η+−ηΓ)2

}
da

+

∫
Γ

{k2
Γf

2
n−∗ Λ

(n−
n−∗

,
nΓ

nΓ∗

)
(η−−ηΓ)2 +

k3
Γf

2
n+
∗ Λ
(n+

n+
∗
,
n−

n−∗

)
(η+−η−)2

}
da
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we reconstruct the continuity equations in the bulk and at the interface

ṅ− div (mn∇η) = 0 in Ω \ Γ,

ṅΓ − divΓ (mΓ nΓ∇ΓηΓ) = k1
Γfn

+ − k1
ΓrnΓ + k2

Γfn
− − k2

ΓrnΓ on Γ,
(4.4a)

and the conditions

−mn∇η · ν+ = k1
Γfn

+ − k1
ΓrnΓ + k3

Γfn
+ − k3

Γrn
− on Γ+,

−mn∇η · ν− = k2
Γfn

− − k2
ΓrnΓ − k3

Γfn
+ + k3

Γrn
− on Γ−.

(4.4b)

Note that the right-hand sides in (4.4) are linear in n = (n, nΓ), which follows from the
definition of Λ in (2.7). Have in mind that kj

Γr are obtained from the relations (4.3).
Moreover, using the form of η and ηΓ we find n∇η = ∇n − n∇ log n∗ and nΓ∇ΓηΓ =
∇ΓnΓ − nΓ∇ log nΓ∗. Hence, we conclude that the whole system (4.4) is a linear system.

Finally, we remark that neglecting any of the above three transfer mechanisms leads
to a similar linear system. The difference is that the corresponding Wegscheider matrix
W then has full range and the Wegscheider conditions do not produce any restriction on
the remaining quantities kj

Γ0. Hence, positive reference densities n∗ always exist. The
total mass (4.2) remains a conserved quantity in that situation, too. The functionals FBI

and Ψ∗
BI and the corresponding diffusion system is obtained from the above by simply

dropping the corresponding terms.

4.2 Two reaction-diffusion systems

We consider a four-species model where all species are uncharged, so that the electrostatic
potential φ can be neglected. We take into account two volume speciesX1 andX2 diffusing
in the domain Ω\Γ and undergoing the reaction X1 
 X2 and two additional species XΓ1

and XΓ2 on Γ which diffuse there and undergo an interface reaction XΓ1 
 XΓ2, namely

X1

k1
f



k1

r

X2, XΓ1

k2
Γf



k2

Γr

XΓ2. (4.5)

In the first case we only consider one transfer mechanism between Γ+, Γ−, and Γ.
One particle of species X1 from the upper boundary Γ+ and one particle X2 from Γ−

can combine to two particles XΓ2, which is called the ‘capture into the interface’. The
reverse mechanism is called the ‘escape from the interface’. Symbolically this interaction
is written as

X1+ +X2−

k3
Γf



k3

Γr

2XΓ2.
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In this example we have I = IΓ = 2, R = 1, RΓ = 2 and the matrices A, B±, C and A
from Section 3 have the form A = (1 − 1) ∈ R1×2,

B+ =

(
0 0

1 0

)
, B− =

(
0 0

0 1

)
, C =

(
1 −1

0 −2

)
, A =

 1 −1 0 0

0 0 1 −1

1 1 0 −2

 .

The stoichiometric subspace is

S = span
{
(1,−1, 0, 0), (0, 0, 1,−1), (1, 1, 0,−2)

}
, S⊥ = span

{
(1, 1, 1, 1)

}
.

Therefore

P(n) =

∫
Ω\Γ

(n1 + n2) dx+

∫
Γ

(nΓ1 + nΓ2) da

generates the space of conserved quantities.
For simplicity, we assume the reaction rate constants not depending on the state.

We discuss the generalized Wegscheider conditions guaranteeing the existence of positive
reference densities n∗ = (n∗,nΓ∗) with (3.4). The condition for the bulk (3.4a) does not
produce any restriction. Now we have to calculate (ñ+, ñ−,nΓ∗) : Γ → R6 fulfilling (3.5)
(and finally we extend ñ± to n∗ : Ω \Γ → R2 with n±∗ = ñ±). For the solvability of (3.5)
for our model with respect to (log ñ+

1 , log ñ+
2 , log ñ−1 , log ñ−2 , log nΓ∗1, log nΓ∗2) we have to

ensure that the right-hand side (log k1+
0 , log k1−

0 , log k2
Γ0, log k3

Γ0) lies in the range of the
Wegscheider matrix

W =


A 0 0

0 A 0

B+ B− C

 =


1 −1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 1 −1
1 0 0 1 0 −2

 ∈ R4×6.

Since W has full range, the Wegscheider condition is always satisfied, and we find positive
n∗,nΓ∗ such that

k1
f n∗1 = k1

rn∗2, k2
ΓfnΓ∗1 = k2

ΓrnΓ∗2, k3
Γfn

+
∗1n

−
∗2 = k3

ΓrnΓ∗2
2.

From the free energy functional

FBI(n) =

∫
Ω\Γ

2∑
i=1

ni(log
ni

n∗i
− 1) dx+

∫
Γ

2∑
i=1

nΓi(log
nΓi

nΓ∗i
− 1) da (4.6)

we obtain the driving forces for the evolution, namely the chemical potentials of the
species

DFBI(n) =

 (log ni

n∗i
)i=1,2

(log nΓi

nΓ∗i
)i=1,2

 =

 η

ηΓ

 .
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By means of the dual dissipation potential

Ψ∗
BI(n; η) =

∫
Ω

{ 2∑
i=1

mi

2
ni|∇ηi|2 +

k1
f

2
n∗1Λ

( n1

n∗1
,
n2

n∗2

)
(η1 − η2)

2
}

dx

+

∫
Γ

{ 2∑
i=1

mΓi

2
nΓi|∇ηΓi|2 +

k2
Γf

2
nΓ∗1Λ

( nΓ1

nΓ∗1
,
nΓ2

nΓ∗2

)
(ηΓ1 − ηΓ2)

2

+
k3

Γr

2
n2

Γ∗2Λ
( n+

1 n
−
2

n+
∗1n

−
∗2
,
nΓ2

2

nΓ∗22

)
(η+

1 + η−2 − 2ηΓ2)
2
}

da

(4.7)

we reconstruct the corresponding reaction diffusion system. It consists of the continuity
equations in Ω \ Γ and Γ, respectively,

ṅ1 − div (m1n1∇η1) = −k1
f n1 + k1

rn2

ṅ2 − div (m2n2∇η2) = k1
f n1 − k1

rn2

}
in Ω \ Γ,

ṅΓ1 − divΓ (mΓ1nΓ1∇ΓηΓ1) = −k2
ΓfnΓ1 + k2

ΓrnΓ2

ṅΓ2 − divΓ (mΓ2nΓ2∇ΓηΓ2) = k2
ΓfnΓ1− k2

ΓrnΓ2 + 2(k3
Γfn

+
1 n

−
2 − k3

ΓrnΓ2
2)

}
on Γ,

(4.8a)

and the interface conditions

−m1n1∇η1 · ν+ = k3
Γfn

+
1 n

−
2 − k3

ΓrnΓ2
2

−m2n2∇η2 · ν+ = 0

}
on Γ+,

−m1n1∇η1 · ν− = 0

−m2n2∇η2 · ν− = k3
Γfn

+
1 n

−
2 − k3

ΓrnΓ2
2

}
on Γ−.

(4.8b)

Here we again wrote the reaction and transfer terms explicitly after exploiting the defini-
tion of Λ in (2.7) and the detailed balance conditions associated with kr

f,r, k
r
Γ f,r, n∗, and

nΓ∗. Note that the right-hand sides now contain quadratic terms. As in the previous
example we may insert the definition of the driving forces η and ηΓ to see that the fluxes
ni∇ηi = ∇ni − ni∇ log ni∗ and nΓi∇ΓηΓi = ∇ΓnΓi − nΓi∇Γ log nΓi∗ are linear.

We now extend the above system by adding a second transfer mechanism at the
interface Γ. More preciesely, we keep the two bulk reactions (4.5) and consider the two
transfer mechanisms

X1+ +X2−

k3
Γf



k3

Γr

2XΓ2, X1− +X2+

k4
Γf



k4

Γr

2XΓ2.
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We have I = IΓ = 2, R = 1, RΓ = 3, and the matrices

W =


A 0 0

0 A 0

B+ B− C

 =



1 −1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 1 −1
1 0 0 1 0 −2
0 1 1 0 0 −2


, A =


1 −1 0 0

0 0 1 −1

1 1 0 −2

1 1 0 −2

 .

The stoichiometric subspace S = range(AT) and S⊥ = kernelA = span
{
(1, 1, 1, 1)T

}
remain as before, giving the conserved quantity

P(n) =

∫
Ω\Γ

(n1 + n2) dx+

∫
Γ

(nΓ1 + nΓ2) da.

The Wegscheider condition is obtained from kernel(WT) = span(1,−1, 0,−1, 1)T and
reduces to

log k1+
0 − log k1−

0 − log k3
Γ0 + log k4

Γ0 = 0.

Thus, if the condition

k1+
0 k4

Γ0 = k1−
0 k3

Γ0

is fulfilled, system (3.5) can be solved, and we find positive n∗,nΓ∗ such that

k1
f n∗1 = k1

rn∗2, k2
ΓfnΓ∗1 = k2

ΓrnΓ∗2,

k3
Γfn

+
∗1n

−
∗2 = k3

ΓrnΓ∗2
2, k4

Γfn
−
∗1n

+
∗2 = k4

ΓrnΓ∗2
2.

The free energy FBI remains as in (4.6), whereas the dual dissipation potential Ψ∗
BI is

obtained from (4.7) by adding the new interaction term

+

∫
Γ

{k4
Γr

2
nΓ∗2

2Λ
( n−1
n−∗1

n+
2

n+
∗2
,
nΓ2

2

nΓ∗22

)
(η−1 + η+

2 − 2ηΓ2)
2
}

da.

The reaction-diffusion system arising from the gradient system n = −DηΨ∗
BI(n;DFBI(n))

has exactly the form of (4.8) except for the following three equations containing the
additional terms involving the constant k4

Γ:

ṅΓ2 − divΓ (mΓ2nΓ2∇ΓηΓ2) = k2
ΓfnΓ1− k2

ΓrnΓ2 + 2(k3
Γfn

+
1 n

−
2 −k3

ΓrnΓ2
2)

+ 2(k4
Γfn

−
1 n

+
2 −k4

ΓrnΓ2
2) on Γ ,

−m2n2∇η2 · ν+ = k4
Γfn

−
1 n

+
2 − k4

ΓrnΓ2
2 on Γ+,

−m1n1∇η1 · ν− = k4
Γfn

−
1 n

+
2 − k4

ΓrnΓ2
2 on Γ−.
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4.3 A model for electronic properties of solar cells

As in all semiconductor models, in solar cells the charge of the species is of great impor-
tance. Since the problem has to be considered in heterostructures, the reference quantities
n∗ and nΓ∗ in general depend in a nonsmooth way on the space variable. We consider
here a reduced model where only one type of traps (defects), namely acceptor-like traps
living on the interface Γ are taken into account. More general electronic models for solar
cells contain different kinds of traps, also being distributed in the bulk and they involve
energy-resolved defect densities. (See e.g. [SLH10, Sect. 4] for the model equations, [Gli10]
for the analysis of corresponding bulk models with traps also only in the bulk, and [Gli11]
for the analysis of a model with bulk-interface coupling).

In the bulk we have as mobile species electrons X1 = e− and holes X2 = h+ with
charge numbers q1 = −q2 = −1. There occurs the recombination and generation reaction
e− + p+ 
 ∅, viz.

X1 +X2

k1
f



k1

r

∅.

The desired reaction in solar cells is the generation ∅ ⇁ e− + p+, which is initiated by
photons, whereas the recombination e− + p+ ⇀ ∅ leads to losses.

At the interface Γ we consider immobile acceptor-like traps XΓ1 (with negative charge
qΓ1 = −1) and XΓ2 (neutral, qΓ2 = 0). Moreover, there take place ionization reactions for
the traps using bulk electrons and bulk holes from the left and right side, viz.

X1++XΓ2

k2
Γf



k2

Γr

XΓ1, X1−+XΓ2

k3
Γf



k3

Γr

XΓ1, X2++XΓ1

k4
Γf



k4

Γr

XΓ2, X2−+XΓ1

k5
Γf



k6

Γr

XΓ2.

We also allow for the process of thermionic emission of electrons and holes through the
interface, viz.

X1+

k6
Γf



k6

Γr

X1− and X2+

k7
Γf



k7

Γr

X2− .

Thus, for this model we have I = IΓ = 2, R = 1, RΓ = 6, and the matrices A, B±, C,
W, and A from Section 3 read

W =

 A 0 0

0 A 0

B+ B− C

 =



1 1 0 0 0 0

0 0 1 1 0 0

1 0 0 0 −1 1
0 0 1 0 −1 1
0 1 0 0 1 −1
0 0 0 1 1 −1
1 0 −1 0 0 0
0 1 0 −1 0 0


, A =


1 1 0 0
1 0 −1 1
1 0 −1 1
0 1 1 −1
0 1 1 −1
0 0 0 0
0 0 0 0

 .
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Simple calculations show that dim S = dim S⊥ = 2 and that the total charge and
the total amount of traps

Q(n) =

∫
Ω\Γ

n · q dx+

∫
Γ

nΓ · qΓ da, P(n) =

∫
Γ

(nΓ1 + nΓ2) da

span the whole space of conserved quantities. Since the traps are assumed to be immobile,
the density nΓ1 + nΓ2 is conserved locally, too.

To use the gradient structure ṅ = −DηΨ∗
BI(n, DFBI(n)) we need to be able to choose

suitable positive bulk and interface reference densities n∗ and nΓ∗ fulfilling (3.4). This is
guaranteed by the following arguments. Equation (3.4a) can be solved without additional
assumptions. Next, we have to solve (3.5) for the present model. The linear equation for

(log ñ+
1 , log ñ+

2 , log ñ−1 , log ñ−2 , log nΓ∗1, log nΓ∗2)

can be solved with the right-hand side

(log k1+
0 , log k1−

0 , log k2
Γ0, log k3

Γ0, log k4
Γ0, log k5

Γ0, log k6
Γ0, log k7

Γ0),

if it lies in range(W). From kernel(WT) =

= span
{
(−1, 0, 0, 1, 1, 0, 1, 0)T, (1, 0,−1, 0,−1, 0, 0, 0)T, (0, 1, 0,−1, 0,−1, 0, 0)T

}
and Fredholm’s alternative we find three Wegscheider conditions. Hence, (3.5) can be
solved if and only if the reactions constants satisfy

k3
Γ0k

4
Γ0k

6
Γ0 = k1+

0 , k2
Γ0k

4
Γ0 = k1+

0 , k3
Γ0k

5
Γ0 = k1−

0 on Γ.

Now the electro-reaction-diffusion system for the solar cell with bulk-interface coupling
is obtained as gradient flow in the setting of Section 3 with the free energy functional

FBI(n) =

∫
Ω\Γ

{1

2
∇φn · (ε∇φn) +

2∑
i=1

ni(log
ni

n∗i
− 1)

}
dx+

∫
Γ

2∑
i=1

nΓi(log
nΓi

nΓ∗i
− 1) da,

where n∗ and nΓ∗ are some positive bulk and interface reference densities, respectively,
fulfilling (3.4) and φn is the unique solution to the Poisson equation

−∇ · (ε∇φ) = d− n1 + n2 + (dΓ − nΓ1)δΓ in Ω (4.9a)

with the boundary conditions in (2.2). Here d and dΓ denote fixed given charge densities
(dopings) in the bulk and on the interface, respectively. Let n±∗ be the (possibly different)
limits of the bulk quantity n∗ on both sides of the interface. Then, the dual dissipation
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functional takes the form

Ψ∗
BI(n; η) =∫
Ω\Γ

{ 2∑
i=1

mi

2
ni|∇ηi|2 +

k1
f

2
n∗1n∗2Λ

(
n1n2

n∗1n∗2
, 1
)
(η1+η2)

2
}

dx +∫
Γ

{k2
Γf

2
n+
∗1nΓ∗2Λ

( n+
1 nΓ2

n+
∗1nΓ∗2

, nΓ1

nΓ∗1

)
(η+

1 +ηΓ2−ηΓ1)
2 +

k3
Γf

2
n−∗1nΓ∗2Λ

( n−1 nΓ2

n−∗1nΓ∗2
, nΓ1

nΓ∗1

)
(η−1 +ηΓ2−ηΓ1)

2

+
k4

Γf

2
n+
∗2nΓ∗1Λ

( n+
2 nΓ1

n+
∗2nΓ∗1

, nΓ2

nΓ∗2

)
(η+

2 +ηΓ1−ηΓ2)
2 +

k5
Γf

2
n−∗2nΓ∗1Λ

( n−2 nΓ1

n−∗2nΓ∗1
, nΓ2

nΓ∗2

)
(η−2 +ηΓ1−ηΓ2)

2

+
k6

Γf

2
n+
∗1Λ
( n+

1

n+
∗1
,

n−1
n−∗1

)
(η+

1 −η−1 )2 +
k7

Γf

2
n+
∗2Λ
( n+

2

n+
∗2
,

n−2
n−∗2

)
(η+

2 −η−2 )2
}

da.

Recall that the traps XΓ1 and XΓ2 in the interface are assumed to be immobile, hence the
terms ∇ΓηΓi do not occur. Together with the thermodynamic conjugate variables(

η

ηΓ

)
= DFBI(n) =

(
(log ni

n∗i
+ qiφn)i=1,2

(log nΓi

nΓ∗i
+ qΓiφn)i=1,2

)
, (4.9b)

where φn solves the Poisson equation (4.9a) from the generalized gradient flow formulation
(1.1) we obtain the following coupled system

ṅ1 + div jn1 = −k1
f n1n2 + k1

r

ṅ2 + div jn2 = −k1
f n1n2 + k1

r

 in Ω \ Γ,

ṅΓ1 = k2
Γfn

+
1 nΓ2 − k2

ΓrnΓ1 + k3
Γfn

−
1 nΓ2 − k3

ΓrnΓ1

− k4
Γfn

+
2 nΓ1 + k4

ΓrnΓ2 − k5
Γfn

−
2 nΓ1 + k5

ΓrnΓ2,

ṅΓ2 = − k2
Γfn

+
1 nΓ2 + k2

ΓrnΓ1 − k3
Γfn

−
1 nΓ2 + k3

ΓrnΓ1

+ k4
Γfn

+
2 nΓ1 − k4

ΓrnΓ2 + k5
Γfn

−
2 nΓ1 − k5

ΓrnΓ2,


on Γ,

(4.9c)

and the extra conditions at the interface

jn1 · ν+ = k2
Γfn

+
1 nΓ2 − k2

ΓrnΓ1 + k6
Γfn

+
1 − k6

Γrn
−
1

jn2 · ν+ = k4
Γfn

+
2 nΓ1 − k4

ΓrnΓ2 + k7
Γfn

+
2 − k7

Γrn
−
2

}
on Γ+,

jn1 · ν− = k3
Γfn

−
1 nΓ2 − k3

ΓrnΓ1 − k6
Γfn

+
1 + k6

Γrn
−
1

jn2 · ν− = k5
Γfn

−
2 nΓ1 − k5

ΓrnΓ2 − k7
Γfn

+
2 + k7

Γrn
−
2

}
on Γ−,

(4.9d)

where the flux terms (currents) are given by jni
= −mini∇ηi, i = 1, 2, with η from

(4.9b). The system is then closed by recalling that φn is determined by the Poisson
equation (4.9a).
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Remark 4.1 (Modeling freedom) In the present case, the advantage of the gradient
structure is obvious, as it is otherwise not easy to determine the thermodynamic correct-
ness of such complicated coupled systems. In a näıve modeling of the reactions in (4.9c)
and (4.9d), one would have to choose 36 coefficients for the right hand sides. In contrast,
it is clear from the form of FBI and Ψ∗

BI that we can choose only the seven forward re-
action rates k1

f , k
2
Γf, ..., k

7
Γf and the four reference densities n∗1, n∗2, nΓ∗1, nΓ∗3. Of course,

this is equivalent to the approach using reactions of mass-action type and invoking the
Wegscheider conditions: the seven reverse reaction rates k1

r , k
2
Γr, ..., k

7
Γr are determined by

three Wegscheider conditions and the choices of the four reference densities.

In similarity to the results for the corresponding bulk model in [Gli10], the analytical
properties of the model proposed in [SLH10, Sect. 4] and given in its simplest form by
(4.9) is studied in [Gli11].
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[ÉrT89] P. Érdi and J. Tóth. Mathematical Models of Chemical Reactions. Theory and
Applications of Deterministic and Stochastic Models. Princeton University Press, 1989.

[FeH77] M. Feinberg and F. J. M. Horn. Chemical mechanism structure and the coincidence
of the stoichiometric and kinetic subspaces. Arch. Rational. Mech. Anal., 66(1), 83–97,
1977.
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