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Abstract

Network graphs have become a popular tool to represent complex systems composed of

many interacting subunits; especially in neuroscience, network graphs are increasingly

used to represent and analyze functional interactions between multiple neural sources.

Interactions are often reconstructed using pairwise bivariate analyses, overlooking the mul-

tivariate nature of interactions: it is neglected that investigating the effect of one source on a

target necessitates to take all other sources as potential nuisance variables into account;

also combinations of sources may act jointly on a given target. Bivariate analyses produce

networks that may contain spurious interactions, which reduce the interpretability of the net-

work and its graph metrics. A truly multivariate reconstruction, however, is computationally

intractable because of the combinatorial explosion in the number of potential interactions.

Thus, we have to resort to approximative methods to handle the intractability of multivariate

interaction reconstruction, and thereby enable the use of networks in neuroscience. Here,

we suggest such an approximative approach in the form of an algorithm that extends fast

bivariate interaction reconstruction by identifying potentially spurious interactions post-hoc:

the algorithm uses interaction delays reconstructed for directed bivariate interactions to tag

potentially spurious edges on the basis of their timing signatures in the context of the sur-

rounding network. Such tagged interactions may then be pruned, which produces a statisti-

cally conservative network approximation that is guaranteed to contain non-spurious

interactions only. We describe the algorithm and present a reference implementation in

MATLAB to test the algorithm’s performance on simulated networks as well as networks

derived from magnetoencephalographic data. We discuss the algorithm in relation to other

approximative multivariate methods and highlight suitable application scenarios. Our

approach is a tractable and data-efficient way of reconstructing approximative networks of

multivariate interactions. It is preferable if available data are limited or if fully multivariate

approaches are computationally infeasible.
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Introduction

Complex systems are often composed of many interacting simpler subunits. To summarize our

knowledge about such a system in an accessible format we frequently draw on its representation

as a network graph, where the subunits become nodes and the identified interactions become

links. Indeed, this way of summarizing knowledge has become so successful that we witness a

rapidly increasing interest in the graph-properties of such network depictions [1–4]. The use of

networks as a tool to represent and analyze functional interactions has been gaining importance

also in neuroscience [1, 5–9]. In neuroscience, however, it is often overlooked that all derived

graph measures are only as good as the reconstruction of the underlying interactions. This

reconstruction may suffer, because the identification of all interactions in a multi-node network

is fundamentally intractable since it poses a problem in the complexity class of so called “NP-

hard” problems [10, 11]. Thus, true network graphs of interactions must be recovered using

approximations if we do not want to forgo the use of network representations altogether.

To see why the identification of all interactions in a multi-node network is fundamentally

intractable, we have to consider that next to the interactions from one node simply to one

other node (a bivariate or pairwise interaction), there may well be interactions from a set of

two (or more) source nodes to a target node. Moreover, this multivariate nature of the interac-

tions makes it necessary to control for a parallel influence from any other source in the network

when trying to determine whether a particular set of source nodes interacts with the target

node in question. It is the enormous number of combinations of potential sources and parallel

influences that makes it impossible to search all possibilities in reasonable time for any but the

smallest systems (e.g. n< 20, [10, 12]). In fact, it can be shown formally that the problem

belongs to the class of NP-hard problems, which are believed to lack algorithms that produce

solutions for arbitrary input sizes in polynomial time [13].

To nevertheless apply graph theory and network models in neuroscience we need to resort

to approximate representations of the true multivariate interactions. Here, the term approxi-

mation implies that we will have to commit errors. These errors can be of two types—falsely

identifying an interaction that is physically absent, or missing an interaction that is physically

present. While both types of errors may have detrimental effects on interpretability of popular

graph metrics, we may still ask which type of error to prefer, and how to build fast and efficient

approximations that predominantly show the preferred type of error.

Here, we suggest that missing out on interactions instead of including spurious ones may be

preferable because the nature of the obtained network becomes more ‘reliable’ in the sense that

all the depicted links do exist. This knowledge can then be built upon in future work. Therefore

we present an algorithm that can prune the most frequent spurious interactions from graphs

obtained by a simple and efficient bivariate analysis of interactions (this idea was first proposed

in [14] in abstract form).

Our focus here is specifically on corrections of graphs obtained from bivariate (i.e., pairwise)

analysis methods as these have most often been used to overcome the intractability of the full

network reconstruction described above. Despite their popularity, iterative bivariate analyses

introduce well known methodological artifacts in the reconstructed interactions [12, 15, 16]:

(1) Bivariate analysis may detect spurious interactions (false positives) whenever the depen-

dency between two time series is caused or mediated by one or more additional nodes in the

network; (2) bivariate analysis may miss synergistic effects [17, 18] that two or more time series

have on a third. These two problems diminish not only the reliability of individual links in a

network but also compromise graph metrics of the global network.

In this study we investigate a solution to the first problem above. Our solution builds on the

possibility of reconstructing the delays of interactions (e.g. [19] and similar approaches), and
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on specific interaction-delay based fingerprints that potentially spurious interactions must

leave even in a bivariate analysis. Our method allows to tag potentially spurious interactions

for further testing (e.g. by a targeted multivariate analysis) or to remove them entirely from the

graph to obtain its most reliable core. Our method thus keeps the advantages of bivariate meth-

ods in terms of data efficiency and computational tractability over approaches that are approxi-

mately or fully multivariate.

In the following we first provide the necessary background on delay reconstruction by infor-

mation theoretic methods, and on graphs. Then we present our algorithm and a reference

implementation as part of the open source toolbox TRENTOOL ([20], www.trentool.de). Sub-

sequently, we characterize its properties and limitations based on theoretical considerations,

simulations and application to magnetoencephalographic (MEG) data. We discuss the relative

merits of our approach and other possible approximations to a fully multivariate analysis of

networks, and close by outlining possible strategies to deal with the identified potentially spuri-

ous links in the network.

Background and Implementation

Before we outline the algorithm in more detail, we will provide some background information

by reviewing the recovery of interaction delays in an information theoretic framework. We will

also describe the coupling motifs leading to the detection of spurious interactions. Subse-

quently, we will formalize the network concept in mathematical terms and complement the

common undirected and unweighted network representation used for neural data [1, 21] by

introducing the weighting of network connections with their respective interaction delays

(using the estimator provided in [19]). We will then describe the rationale underlying the algo-

rithm and its implementation. We conclude this section with the validation of the algorithm

using simulated as well as experimental data.

Background

Interaction delay reconstruction. Our algorithm is based on the availability of the inter-

action delays for bivariately reconstructed interactions. We will systematically use the term

“bivariate interaction” to indicate that in the bivariate analysis setting there is no guarantee

that a reconstructed interaction is actually present in the underlying data; nevertheless, even

for a spurious interaction a meaningful delay can be assigned (see examples in [19]). One possi-

bility to obtain the delays for bivariate interactions is to use delay-sensitive measures of infor-

mation transfer, i.e. transfer entropy (TE) estimators. In [19] we presented a delay-sensitive TE

functional:

TESPO X ! Y ; t; uð Þ ¼
X

yt ;yt�1 ;xt�u

p yt;yt�1;xt�uð Þ log
pðytjyt�1;xt�uÞ

pðytjyt�1Þ
; ð1Þ

which quantifies the mutual information between the past state xt − u of a source X and the

present value yt of a target Y at a specific time delay u—conditional on the past state of the tar-

get, yt−1.

This functional can be used to recover the physical interaction delay δX,Y by scanning over

possible values for u, and by taking the value of u where TE reaches a maximum as the (bivari-

ate) interaction delay:

dX;Y ¼ arg max
u

ðTESPO ðX ! Y ; t; uÞÞ: ð2Þ
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A similar approach may be used for Granger causality as TE is equivalent to Granger causal-

ity for data with a jointly Gaussian distribution [22].

Note, that reconstructed interaction delays incorporate not only the mere transfer time

between two neural processes, but also the time needed for local computation, if we only obtain

one channel per subunit (see Fig 1 for further explanation). Thus, interaction delay reconstruc-

tion as proposed in [19], captures the total delay between two measurement points, which in a

neural system may consist of transfer time along an axonal connection but also of time needed

for information transfer within the local neural microcircuit.

Spurious interactions in bivariate analysis of multivariate data sets. Spurious interac-

tions may arise in bivariate analysis from one of two distinct coupling motifs: In the first cou-

pling motif (Fig 2A) the dynamics of two or more nodes, representing neural sources, are

simultaneously driven by processes in a third node. A bivariate analysis may detect an inter-

action between the two driven nodes. We term this a common drive (CD, also “common

cause” [12]). In the second coupling motif (Fig 2B) an interaction between two nodes is

Fig 1. Reconstructing delay times from electrophysiological recordings. The physiological delay
between two measurement points vs, vt consists of the time needed for information transfer via axonal

connections (δs,t0) and internal computation within populations of neurons (din

t0 ;t
), such that in a network

representation of reconstructed interactions we findwðvs ;vt Þ
¼ ds;t0 þ d

in

t0 ;t
. Black arrows represent information

transfer within the neural microcircuits.

doi:10.1371/journal.pone.0140530.g001

Fig 2. Spurious Interactions. (A) Common drive effect: A spurious interaction due to common drive may be potentially present if the processes at vertices vs
and vt are driven by v0 with differential delays, such that the bivariate information transfer between vs and vt is a result of the common input from v0; (B)
Cascade effect: Spurious interaction due to cascade effects may be potentially present for all cascades of information transfer in a “chain” of sources. In the
example here, the bivariate information transfer between vs and vt (edge (s, t)) can be explained by an alternative routing of information via vertices v1 and v2.
The summed weight of the alternative routing is equal tow(s,t); (C) “Triangle”motif: This is the most simple motif potentially giving rise to either of the above
spurious interactions: (vs, vt) could be a result of a cascade effect with respect to the path hvs, v1, vti, and (v1, vt) could be the result of a common drive of v1
and vt by vs. At most one of these interactions can be spurious.

doi:10.1371/journal.pone.0140530.g002
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mediated by one or more intermediate nodes in the network and information transfer from

source node to target node is routed via these intermediate nodes. A bivariate analysis may

detect an interaction between the source and target node. We term this a cascade effect (CE,

also “pathway effect” [12] or “indirect causal pathways” [15]). The detection of spurious

interactions by bivariate analysis have been demonstrated for simulated data as well as in neu-

ral recordings [15, 16, 23–25].

Coupling motifs leading to spurious interactions due to CD and CE exhibit a specific timing

signature in the network of bivariately reconstructed interactions. We found an example for

such a timing signature in experimental data recorded from the turtle (Fig 3C) [19]). Here, a

spurious interaction was detected between the light source and the optic tectum. This spurious

interactions resulted from a CE, i.e., an actual routing of information from light source to tec-

tum via an intermediate node, namely the retina. Information transfer delays reconstructed

with the TE estimator proposed in [19], revealed this CE: The summed interaction delays in

the actual routing of information equaled the delay of the spurious information transfer.

Graph representation of neural data and notation. As a last preliminary, we will present

the mathematical formalization of a network to give a precise account of the algorithm and its

functionality in the subsequent section. Table 1 lists the most important variables. In mathe-

matical terms, a network is described by a (directed) graph G = {V, E}, where V denotes a set of

vertices or nodes and E� V × V represents a set of connections between nodes, called edges

[26]. In a neuroscience application, Vmay represent a set of individual functional units vi, e.g.

neurons, sources in MEG analysis, or voxels in functional magnetic resonance imaging data; E

may represent some sort of connection between two units, for example significant functional

interactions. An edge is written as a tuple (vi, vj), representing an edge between any two sources

vi and vj. Note, that such a tuple (vi, vj) defines an edge as an ordered pair of two vertices and as

such indicates a directed connection between these two sources (the two elements of the tuple

are not interchangeable, such that (vi, vj) 6¼ (vj, vi)). We further assume that edges are weighted

Fig 3. Directed interactions in the turtle brain during visual stimulation with random light pulses
(modified from [19], creative common attribution license CC BY). (A) Raw traces recorded in the tectum
(blue) and from the retina (green) overlaid on the light pulses (yellow). (B) Turtle brain explant with eyes
attached. Transfer entropy was found from the retina of the right eye to the left tectum, as well as from the
light source (yellow) to the retina and to the tectum (***** denotes p < 10(−5)). P-values for the opposite
directions were not significant (n.s.). Note, that the interaction between light source and optic tectum shows a
interaction delay roughly equal to the summed interaction delay between light source and retina and retina
and optic tectum (deviation� 5%).

doi:10.1371/journal.pone.0140530.g003
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by a weighting function w : E 7!N that maps the set of edges to the natural numbers. Here,

these natural numbers are chosen proportionally to the timing information as precisely and as

parsimoniously as possible. We call w(vi, vj)
the weight of edge (vi, vj).

For any edge (vi, vj), vi is considered the predecessor of vj. vj is called the child of vi. A path v0
⇝ vl is defined as a sequence of vertices hv0, v1, . . ., vi, . . ., vl−1, vli, where every two consecutive

vertices vi vi+1 are connected by an edge (vi, vi+1). We call l the length (number of edges) of the

path and we will refer to this length l as a path’s graphical length, describing the number of

edges used to graphically represent the path in the graph. The total weight of a path is the sum

of the weights of all individual edges comprising the path, ∑i w(vi, vi+1)
.

Fig 4 gives a schematic overview of the construction of a graph from time series data

recorded from a set of neural sources. Edges in the graph represent significant interactions

between sources (vertices); edge weights represent reconstructed interaction delays. We here

use TE to analyze directed interactions, using the estimator proposed in [19] to recover signifi-

cant TE and corresponding interaction delays, but other approaches are possible.

Rationale and implementation of the algorithmic solution

Rationale of the algorithm. Based on the graph representation of reconstructed directed

interactions, their delays, and the theoretical preliminaries presented in the last subsection, we

will now propose an algorithm that detects potentially spurious interactions by exploiting the

timing signature of CE and simple CD.

As input the algorithm expects a directed, delay-weighted graphG≔ {V, E}, represented by its

connectivity matrix. Connections are weighted with the estimated interaction delays

wðva ;vbÞ
¼ d̂ðva ;vbÞ

, i.e., the estimated physical delays between the processes represented by va and vb.

Note that such a graph needs to be constructed from a connectivity measure, which is (a) directed

and (b) allows for the reconstruction of interaction delays. Additionally, the user has to provide a

threshold θ to account for noise in empirical measurements as well as imprecision in analysis

methods (described in detail below). We furthermore assume that weights have been linearly

scaled, such that they do not have any decimal places and can be represented by integer values.

Table 1. Notation.

Graph representation

G graph, consisting of the sets V and E

V set of vertices

E set of edges

vi vertex with index i

(vi, vj) edge from vi to vj

w(vi, vj) weight of edge (vi, vj)

vi ⇝ vj path from vi to vj

vi ⇝
k
vj path from vi to vj with summed weight k

l path length, i.e. no. edges in a path

Algorithm

(va, vb) edge under investigation in current algorithmic iteration

w(va, vb) weight of the edge under investigation

θ threshold to account for imprecisions in interaction delay reconstruction

wcrit critical path weight, wcrit = w(va, vb) + θ (target weight of the algorithm)

vs, vt start and target node (vs = va, vt = vb)

L
n

vs
ðwi;⇝vjÞ set of solutions in algorithmic step n, that solve the subproblem vs ⇝

wi
vj

doi:10.1371/journal.pone.0140530.t001
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As a first step, we identify potential CEs by assuming that if a CE is present in the data, the

bivariate interaction represented by any edge (va, vb) 2 E with weight w(va, vb)
can be explained

by an alternative routing of information via intermediate vertices (see an example in Fig 2B).

Thus, iteratively for every edge (va, vb) in E the algorithm sets va = vs as the starting and vb = vt
as the target node of the current iteration. Then the algorithm searches for an alternative path

for (vs, vt), where a path is assumed to be an alternative path if the summed delay interaction

Fig 4. Graph representation of neural data. (A) Recorded signals from various sources in the brain; (B)
Pairwise estimation of transfer entropy (TE) and reconstruction of interaction delays u between any two
sources; (C) Adjacency matrix: representation of estimated delay times between all source combinations,
every entry represents an information transfer from the ith row to the jth column; (D) Adjacency matrix after
test for statistical significance; (E) Visualization of the graph represented by the connectivity matrix: every
source is represented by a vertex, every significant information transfer is represented by an edge. (The blue
circle indicates the respective representation of an exemplary interaction between source 1 and source 3
throughout all steps of graph reconstruction.)

doi:10.1371/journal.pone.0140530.g004
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times ∑i w(vi, vi+1)
of all edges in the path are (approximatively) equal to w(vs, vt)

, i.e., w(vs, vt)
− θ

< ∑i w(vi, vi+1)
< w(vs, vt)

+ θ. For an example see Fig 2B, where edge (vs, vt) (dashed arrow) has a

graphically longer, alternative path hvs, v1, v2, vti with equal summed weight (solid arrows). If

the algorithm finds such an alternative path, the edge currently under investigation is tagged as

potentially spurious.

In a second step, the algorithm additionally identifies potential simple CD effects based on

the results from the first analysis step. Simple CD effects occur in graph motifs that form acy-

clic “triangles” (Fig 2C). We define an acyclic triangle as any three nodes that are acyclic, pair-

wise connected. We suspect a spurious link due to simple CD if a triangle motif exhibits a

suspicious timing signature; these suspicious triangles are identified from the results of the first

analysis step by listing all edges with alternative paths of graphical length two. We propose to

tag two edges in each of these identified triangles: (1) the direct edge due to a CE (edge (vs, vt)

in Fig 2C) and (2) the second edge due to a simple CD (edge (v1, vt) in Fig 2C). Note however,

that of both tagged edges one has to be a non-spurious interaction for this rationale to hold: if

the CE link (vs, vt) is rejected, a possible driver-target relationship between nodes vs and vt is

destroyed, thus nullifying the argument for the simultaneous rejection of edge (v1, vt). The

same argument holds vice versa: a rejection of the tagged edge (v1, vt) due to CD destroys the

information cascade from vs to vt and thus cancels the CE causing the detection of (vs, vt).

Thus, tagging both edges in a triangle motif yields a slightly too conservative approach to net-

work representation. For the treatment of tagged links in neuroscience we refer to the Discus-

sion section.

A further important consideration is that once the algorithm has detected an alternative

path va ⇝ vb for an edge (va, vb), this alternative path stays intact, even if, at a later step, some

edge in va ⇝ vb is tagged (and probably removed). Assume, that we have an edge (va, vb) with

an alternative path va ⇝ vb and that at a later step, one or more edges in this path get tagged.

Then, for each of these tagged edges, leaving a ‘gap’ in va ⇝ vb, an alternative path of equal

summed weight exists by definition of the algorithm. This alternative path closes the “gap” in

va ⇝ vb, such that nodes va and vb are still connected by a new path va0 ⇝ vb0. This new path has

the same summed delay as va⇝ vb, but is graphically longer. Therefore, alternative paths iden-

tified at some step in the algorithm remain intact even if links within the paths are tagged at a

later point in the algorithm’s execution.

Implementation overview. We now present the implementation of the strategy described

above; more precisely, we present an algorithm that finds all alternative paths for any given

edge (va, vb) 2 E, given a directed, weighted graph G = {V, E}. See Fig 5 for an overview of the

algorithm.

As a preprocessing step, we construct a graph G0 by removing the edge (va, vb) from G and

relabeling nodes va, vb as starting and target nodes vs, vt of the current iteration of the algo-

rithm. The target weight of the alternative path is set to wcrit = w(va, vb)
+ θ. Furthermore, G0 is

represented as an inverted adjacency list, i.e., a list of all nodes in V, where for every node all of

its predecessors are listed. vs is set as the first node in this list (note that we assume that vs has

index 1), vt is set as the last node (has index jVj). Therefore, for all other nodes vj in the adja-

cency list it now holds that 2� j� jVj.

After preprocessing the input, alternative paths vs ⇝ vt with weight w(vs, vt)
± θ are detected

in two steps: (1) a memoized dynamic programming approach [27] is used to determine,

whether any path vs⇝ vt of a total weight w(vs, vt)
± θ exists; (2) a modified depth first search

(DFS, see [27] for a description) is used to reconstruct all paths with weights in the interval

w(vs, vt)
± θ from the solution obtained in step (1). The second step is necessary to reject paths

that contain loops and to allow for further analysis (for example the identification of triangle

motifs).

A Graph Algorithm to Identify Indirect Neural Interactions
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The algorithm was implemented as part of the open source toolbox TRENTOOL [20].

Dynamic programming. We use a dynamic programming approach in step (1) to handle

the inherent complexity of the problem at hand (see Discussion). Dynamic programming

allows for the solution of a complex problem by decomposing it into easily solvable subprob-

lems. By starting with trivial base cases, subproblems of increasing complexity are solved itera-

tively by taking recourse to tabulated solutions of previous (more simple) subproblems. This

reduces computational demand and is repeated until the algorithm reaches the most complex

subproblem, which represents the input problem. In the following, we will first define the

Fig 5. Overview of the proposed algorithm. The algorithm expects a weighted and directed graphG = {V,E} and a threshold θ as input. In a preprocessing
step, the algorithm creates graphG0 from inputG, as an input for the dynamic programming algorithm, by removing edge (va, vb) and by relabeling and
reordering nodes. Then, in the next step, alternative paths for (va, vb), are searched through dynamic programming (see also main text). If at least one
alternative path is found, paths are reconstructed using a depth first search (DFS, [27]) to ensure that alternative paths do not contain loops. If an alternative
path contains no loops, the currently investigated edge (va, vb) is tagged as potentially spurious. If no alternative edge is found, (va, vb) is considered non-
spurious. The algorithm then enters the next iteration, in which the next edge (va, vb) 2 E is investigated for alternative paths.

doi:10.1371/journal.pone.0140530.g005
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subproblems to the present problem, and then describe the algorithmic solution to an individ-

ual subproblem. A detailed, graphical account of both steps is presented in Fig 6.

Formulation and ordering of subproblems. The overall problem of finding a path from

vs to vt with weight w(vs, vt)
± θ is divided into subproblems by asking, whether a “simpler” path

vs ⇝
wi vj exists; vj is any node in V and wi is any path weight wi� wcrit = w(vs, vt)

+ θ. For exam-

ple, finding a path v1 ⇝
5 v3 is a subproblem to finding path v1 ⇝

9 v10 where v1 = vs and v10 = vt.

The presented algorithm solves subproblems iteratively for increasing complexity using a

dynamic programming approach. It is thus necessary to order the subproblems by their com-

plexity and to make their solutions immediately accessible for reuse in subsequent algorithmic

steps. This is realized by organizing solutions in a two-dimensional solution array, in which

solutions are ordered by path weights and node indices, the two parameters determining com-

plexity. Starting with the most simple base case where wi = 0 and vs = v1 = vj (this subproblem

describes a path vs ⇝
0 vs), subsequent subproblems are formulated by increasing path weights

and node indices in integer steps. Thus subproblems are formulated for all combinations wi =

1, 2, . . ., wcrit and vj 2 V (see for example Fig 6C for the first iteration of path weights and a

complete iteration over all vertices). Individual solutions to subproblems are tabulated in the

solution array of size [0; wcrit] by [1;j Vj] and are indexed by the current values for wi and vj.

This organization of subproblems allows for the easy retrieval of solutions from earlier itera-

tions to solve the subproblem currently at hand (see below and Fig 6).

Finding solutions to subproblems. For any given subproblem vs ⇝
wi vj the algorithm

determines whether a path of weight wi leads into node vj. The algorithm does this by testing

whether any single edge leading into vj together with the solution to a simpler subproblem

forms the path vs ⇝
wi vj. In particular, for every edge (vp, vj) leading into vj (where vp is a prede-

cessor of vj), the algorithm checks if this edges extends a path leading into vp such that the

resulting path solves the current subproblem vs ⇝
wi vj (see Fig 7A). We call the treatment of one

edge (vp, vj) an algorithmic step. In one algorithmic step, the algorithm checks (1) if there exists

a path to vp and if so, (2) whether the path has length wp = wi − w(vp, vj)
. If both conditions are

met, the currently considered edge (vp, vj) together with the path to predecessor vp solves the

current subproblem vs ⇝
wi vj (because a path vs ⇝

wp vp exists, that together with (vp, vj) forms a

path of summed weight wi = wp + w(vp, vj)
). The algorithm terminates once the most complex

subproblem has been investigated, i.e., it has been tested if a path of length wcrit, connecting

node vs to vt can be found.

Note that “checking” if a path of weight wp to node vp exists corresponds to looking up

whether a solution to the subproblem vs ⇝
wp vp exists in the solution array, i.e., the algorithm

has to look up the entry in the solution array at row p (for node vp) and column wi − w(vp, vj)

(for weight wp). In doing so, the algorithm solves the subproblem by reusing earlier solutions.

Note also, that relevant subproblems are guaranteed to have been solved at an earlier point in

the execution of the algorithm as the algorithm treats subproblems in the order of increasing

complexity: subproblems are solved by first iterating over all path weights wi = 1, 2, . . ., wcrit in

an outer loop, and second iterating over all nodes from vs: = v1 to vt: = vjVj in an inner loop; a

relevant subproblem vs ⇝
wp vp is guaranteed to have been solved because it always holds that wp

< wi per definition of wp.

To tabulate solutions to subproblems, for every edge solving the subproblem and its weight,

we add a tuple (w(vp, vj)
, vp) to a set of solutions. More specifically, when iterating over all N

potential incoming edges (vp, vj), we enter valid solutions in a sequence of sets indexed by the

current algorithmic step n: L0

wi ;vj
� . . . � Ln

wi ;vj
� Lnþ1

wi;vj
� . . . � LN

wi ;vj
. Each tuple in LN

wi ;vj
then
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Fig 6. Visualization of the proposed algorithm. Search for alternative paths to edge (1, 6) (dotted arrow), i.e., vs = 1 and vt = 6. Solutions Ln

vs
ðwi;⇝vjÞ to

subproblems are managed in a two dimensional solution array indexed by path weightwi and vertex number vj. Solutions are calculated iteratively overwi

(rows) and vj (columns). (A) Solution matrix after first iterative step (subproblem L
1

vs
ð1;⇝v2Þ): There are two edges leading to vertex 2 of which only edge (1, 2)

yields a valid solution by pointing to an earlier solved subproblem (green box), whereas edge (5, 2) has a weight of 7 leading to a negative difference in

A Graph Algorithm to Identify Indirect Neural Interactions
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indicates the existence of one alternative path for the subproblem. The collection later allows

the reconstruction of all alternative paths for the overall problem.

Formally, after initially setting L0

wi ;vj
¼ ;, we can define each algorithmic step n as

For every edge ðvp; vjÞ leading into vj :

Lnþ1

wi ;vj
:¼

Ln
wi ;vj

[ ðwðvp ;vjÞ
; vpÞ ifvj 6¼ vs ^ LM

wp ;vp
6¼ ;

L
n
wi ;vj

if LM
wp ;vp

¼ ;

ð0; vsÞ ifvj ¼ vs:

8

>

>

>

>

<

>

>

>

>

:

ð3Þ

Here, Ln
wi;vj

denotes the current set of tuples contributing to the solution of the subproblem

vs ⇝
wi vj, i.e., a path leading from vs to vj, that has a summed weight of wi in algorithmic step n.

LM
wi;vj

is a set of solutions to the subproblem vs ⇝
wp vp investigated earlier (where solutions were

collected overM algorithmic steps). Formula 3 expressed that for every edge (vp, vj), it is tested

if two conditions are met (see also Fig 7B):

1. there exists a solution to the previous subproblem LM
wp;vp

, i.e., a path to the predecessor vp

with weight wp = wi − w(vp, vj)
;

2. the edge (vp, vj) from predecessor to current node has a weight such that wp + w(vp, vj)
= wi.

If both conditions are met, then the tuple (w(vp, vj)
, vp) is added to L

n
wi;vj

. When all edges (vp,

vj) have been tested, the next subproblem vs ⇝
wi vjþ1 (inner loop) or vs ⇝

wiþ1
vj (outer loop) is con-

sidered. The algorithm terminates once all subproblems have been investigated.

weights i −w(5,2) (red box) for which no earlier solution exists; (B) Solution matrix after third iterative step L3

vs
ð1;⇝v3Þ: Here, no valid solution exists (none of

the arrows leading to vertex 2 are part of a path with summed weight 1); (C) Solution array after iteration over all vertices vj forwi = 1 (all vertices have been
checked for a path of weight 1, originating from the start vertex 1); (D) Solution to subproblem L

n

vs
ð6;⇝v6Þ: edge (4, 6) together with the solution Lvs

ð5;⇝v4Þ

form a valid path, whereas edge (5, 6) is not part of a valid solution as Lvs
ð3;⇝v5Þ is empty; (E) The algorithm terminates after iteration over all vertices vj and

path weights up tow(vs, vt) + θ, where θ is a user defined threshold of 1. Backtracking is conducted for all entries in the reconstruction intervalw(vs, vt) ± θ

(entries marked blue); (F) Reconstructed alternative path by backtracking of subproblems.

doi:10.1371/journal.pone.0140530.g006

Fig 7. Schematic example of a subproblem of the proposed algorithm. (A) Example subproblem L
n

wi ;vj
: At

the nth algorithmic step, we search for all paths of weightwi leading to node vj; (B) Finding a solution for the
current subproblem by investigating solutions to prior subproblems: We investigate all predecessors vp of the

current node vj; if there exists a solution to LM

wp ;vp
, i.e., there is a solution to the prior subproblem vs ⇝

wp
vp of

finding a path of weightwp leading from vs to vp, andwp +w(vp, vj) =wi, we find a solution to the current
subproblem L

n

wi ;vj
.

doi:10.1371/journal.pone.0140530.g007
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Backtracking. In a second step, the algorithm uses backtracking to reconstruct relevant

paths from the solution array returned by the dynamic programming step described in the last

subsection (see Fig 6F). Paths are considered relevant, if they lead to the current target node vt
and have a summed weight of w(vs, vt)

± θ. Thus, paths are reconstructed from all entries that

correspond to the solutions to subproblems vs ⇝ vt with weight w(vs, vt)
± θ (we call these rele-

vant entries in the solution array reconstruction interval).

The backtracking algorithm uses depth first search (DFS, for a more detailed description see

for example [27]) to reconstruct all paths starting from one entry in the reconstruction interval

at a time; it is therefore called for each entry in the reconstruction interval individually (for

example, in Fig 6F, this corresponds to three calls of the backtracking algorithm for fields [5,

6], [6, 6] and [7, 6]). The backtracking is done by recursively expanding each entry in the cur-

rently considered field (i.e., visiting the next field, indicated by the currently considered solu-

tion to a subproblem). For example, in Fig 6F, the field [6, 6] points to the field [5, 4], which

points to [3, 3] and so on. While expanding one path, the algorithm checks, whether a node in

the currently reconstructed path has already been visited during the recursion. If this is the

case, the path contains a loop, i.e., a node is visited twice in one path, and the respective path is

discarded as it is not a valid solution to the overall problem.

All remaining reconstructed paths are considered alternative paths to the edge (vs, vt). If at

least one such alternative path exists, (vs, vt) is considered potentially spurious due to a CE.

Additional analysis of triangle motifs. As laid out in the subsection Rationale of the algo-

rithm, the algorithm identifies simple CD in an additional step. Simple CD occurs in triangle

motifs, which can be identified by listing all edges with valid alternative paths of length two. In

each triangle, the second edge of the alternative path is considered as potentially spurious due

to a simple CD effect additionally to the edge considered spurious due to CE (see coupling

motifs shown in Fig 2C).

Output. The algorithm returns a list of potentially spurious edges in E, and tags these spu-

rious edges as a CE (identified by an alternative path) or a simple common drive effect (identi-

fied in a triangle motif).

Evaluation

To test the proposed algorithm for correctness and performance in terms of execution times,

we simulated networks of different sizes and densities to serve as input graphs. To further dem-

onstrate the algorithm’s applicability to neuroscience data, we applied it to networks derived

from electrophysiological recordings during a face recognition task.

Performance of the algorithm in simulated networks

We simulated networks of different types: small-world networks [28], scale-free networks [29]

and random networks of different densities [30, 31]. We chose these topologies because small-

worldness and scale-freeness have frequently been reported to occur in functional and anatomical

networks derived from neuroscience experiments [21, 32, 33] (for a review see also [7] and [34]).

The performance of the proposed algorithm on the simulated networks was tested by (1)

varying the size jVj of simulated networks and (2) varying the critical path weight for alterna-

tive paths wcrit. Higher values for both parameters increased computational demand by either

increasing input size directly (higher values for jVj) or by increasing the likelihood for the

detection of an alternative path (higher values for wcrit).

The dependency of the likelihood of detecting an alternative path on wcrit is especially rele-

vant in random network topologies: here, the number of possible alternative paths increases

exponentially in wcrit, as higher values for wcrit (relative to individual path weights) increase the
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number of possible combinations of edges that form a path of weight wcrit. More precisely,

given a random graph G = {V, E} and wcrit > jVj, the probability for the existence of an edge is

pðeÞ ¼ r ¼ jEj

jVjðjVj�1Þ
(where ρ is the density of G); furthermore, the probability of the edge hav-

ing weight w is uniformly distributed with pðwÞ ¼ 1

wmax
. The number of possible alternative

paths can then be calculated as

X

wcrit

w0¼1

X

w0

j¼1

w0 � 1

j� 1

� �

� pðwÞ
j
pðeÞ

j

� �

" #

; ð4Þ

where
Pw0

j¼1
w0�1

j�1

� �

is the number of compositions, i.e., the number of ordered sequences of inte-

gers that sum to w0, the currently considered summed edge weight. The inner sum is domi-

nated by the growth of the number of compositions given by
Pi

j¼1
i�1

j�1

� �

¼ 2
i�1. Thus, the

number of alternative paths grows in O(2wcrit), i.e., it grows exponentially in the critical path

weight given a sufficiently dense, random network topology.

Small-world networks. For the simulation of small-world networks we modified the rule

for network generation proposed by Watts and Strogatz in [28]. The network generation was

done in two steps with parameters jVj (number of nodes), n (neighborhood coefficient) and p

(rewiring probability):

1. Construct a regular ring lattice with V nodes, where every node vi 2 V is connected to its n

nearest neighbors vj (such that (vi, vj) 2 E). Given that V = v1, . . ., vjVj, each node vi is con-

nected to its neighbors vi+1, . . ., vi+n/2 and vi−1, . . ., vi−n/2.

2. For every node vi all edges (vi, vj) are rewired with probability p by replacing (vi, vj) with (vi,

vk) where n is chosen randomly with uniform probability from Vnvi while avoiding loops

and multiple edges.

3. Every edge is weighted by a random weight w(vi, vj)
drawn from an interval [1;wmax] with

uniform probability

Note, that we made two extensions to the original generation rule proposed in [28]: we sim-

ulated network edges as directed and weighted, while the original work by Watts and Strogatz

assumes undirected and unweighted edges. We defined connections from every node vi to its n

nearest neighbors as directed and weighted them with values randomly drawn from an interval

[1; wmax]. We set wmax to the maximum interaction delay found in an MEG data set also used

as a second test case described below. Thus, strictly speaking, only the undirected and

unweighted network underlying our test cases had small-world properties (i.e., a high cluster-

ing coefficient and a short characteristic path length). We used this approximation of small-

world properties in a weighted and directed network, as there is no agreement over how direct-

edness and edge weights are to be incorporated into the original notion of small-worldness (as

both parameters may alter the global behavior commonly observed in undirected and

unweighted small-world networks) [35].

Scale-free networks. Scale-free networks were simulated using an algorithm proposed in

[36], following an implementation of the rationale by Barabási and Albert [29] in [37] (see

also [38]).

Scale-free networks resemble small-world networks in their topology, i.e., they exhibit high

local clustering and low characteristic path lengths. Both network types differ however in their

degree distributions p(n), the probability that a node interacts with n other nodes in the net-

work: in small-world networks the degrees are normally distributed, while in scale-free
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networks the degrees follow a power law p(n)* n−γ (where γmay vary for different networks)

[29].

Random networks. We created random networks of size jVj by independently including

weighted edges with probability ρ[31], where ρ denotes the density or edge probability of a

graph:

r ¼
jEj

jVjðjVj � 1Þ
; ð5Þ

i.e., the the ratio of edges actually present in a graph to the number of possible edges [39]. Com-

pared to small-world networks, a random graph typically exhibits a small average minimum

path length and small average clustering coefficient [35], depending on the graph’s density. In

the present study, we created two test cases with ρ = 0.25 and ρ = 0.50 respectively.

Performance results for simulated networks. Running times of the algorithm increased

as a function of graph size jVj and critical path weight wcrit (Fig 8). For the dynamic program-

ming part of the algorithm, running times increased in a linear fashion in both network size

jVj (Fig 8A) and critical path weight (Fig 8B). Running times thus correspond to theoretically

expected running times. The time needed for backtracking the obtained solutions grew expo-

nentially in jVj (Fig 8C) and critical path weight (Fig 8D) for random networks and scale-free

networks, where running times were least favorable for random networks. For small-world

networks on the other hand, running times did not increase dramatically for higher values

jVj and wcrit.

Running times for backtracking depend on the number of alternative paths to be recon-

structed from the solution array. Since the number of paths increases exponentially in wcrit

(given a sufficient graph size jVj), exponential running times were expected for higher values

for both parameters. We therefore defined an a priori limit of 20,000 for the number of alterna-

tive paths to be reconstructed. If this limit was reached, the algorithm’s execution was aborted.

These problem instances were considered intractable (red markers in Fig 8). Intractable test

cases were found for random graphs only and occurred earlier for graphs with higher densities

of ρ = 0.50 (for comparison: the scale-free graphs had a density of approx. 0.15, small-world

graphs of approx 0.5). Cases of intractability were found for random graphs of sizes jVj � 65

with a density ρ = 0.50 and jVj � 130 for graphs with density ρ = 0.25 respectively. Further-

more, intractable cases occurred for path weights wcrit� 21 for random graphs with density ρ

= 0.50 and for path weights wcrit� 25 for random graphs with density ρ = 0.25.

Thus, network size as well as network structure influenced the computational demand of a

given input to the presented algorithm. Note that intractable cases may well occur in a neuro-

science application, where inputs can not be assumed to be bounded in any respect (e.g. in

terms of graph density or graph size). Here, the network size may be used to determine whether

an input may prove intractable. In the present simulation, network sizes smaller than 25 nodes

posed no problem for the algorithm; of course, these limits are subject to moderate changes

with increasing computational power.

Detection of spurious interactions in networks derived from
electrophysiological time series

Ethics statement. To test the algorithms applicability to biological time series, we used

MEG data recorded from 15 healthy human subjects during a face recognition task as described

in [40]. All subjects gave written informed consent before the experiment. The study was

approved by the local ethics committee (Johann Wolfgang Goethe University, Frankfurt,

Germany).

A Graph Algorithm to Identify Indirect Neural Interactions

PLOS ONE | DOI:10.1371/journal.pone.0140530 October 19, 2015 15 / 26



Preparation and MEG data acquisition. MEG data was obtained from 30 healthy sub-

jects, recruited from the local community. All participants had normal or corrected-to-normal

vision and were right-handed (assessed by the Edinburgh Handedness Inventory [41]).

MEG data were recorded using a 275-channel whole-head system (Omega 2005, VSMMed-

Tech Ltd., BC, Canada) at a rate of 600 Hz in a synthetic third order axial gradiometer configu-

ration (Data Acquisition Software Version 5.4.0, VSMMedTech Ltd., BC, Canada). Data were

filtered with 4th order butterworth filters with 0.5 Hz high-pass and 150 Hz low-pass. Behav-

ioral responses were recorded using a fiber-optic response pad (Lumitouch, Photon Control

Inc., Burnaby, BC, Canada). Trials with excessive head movement (more than 5 mm) were

excluded from further analysis.

Structural magnetic resonance images were obtained with a 3 T Siemens Allegra, using 3D

magnetization-prepared rapid-acquisition gradient echo sequence. Anatomical images were

used to create individual head models for MEG source reconstruction.

Task. The participants were presented with a randomized sequence of degraded two tone

images of human faces (Mooney Faces, [42], see Fig 9C for an example stimulus) and scram-

bled stimuli, where black and white patches were randomly rearranged to minimize the likeli-

hood of detecting a face. The participants had to indicate the detection of a face by button

press. Only trials in which faces were correctly identified entered further analysis.

Data analysis. MEG data were analyzed using MathWorks MATLAB (2008b, The Math-

Works, Natick, MA) and the open source MATLAB toolboxes FieldTrip (version 2008-12-08;

[43]), SPM2 (http://www.fil.ion.ucl.ac.uk/spm), and TRENTOOL [20]. We will briefly describe

the applied analysis here, for a more in depth treatment refer to [40].

For data preprocessing, we defined experimental trials from the continuously recorded

MEG data. A trial was defined as the epoch from -1000 ms prior to stimulus presentation until

1000 ms after stimulus presentation. Trials contaminated by artifacts (eye blinks, muscle

Fig 8. Results running time. Running times [log(s)] for dynamic programming (A, B) and backtracking (C, D)
by number of vertices jVj and maximum path weightwcrit. Running times are shown for different graph types
(SW: small-world, SF: scale-free, RN: random networks with density ρ). Red markers indicate cases of
intractability (execution was aborted after a pre-defined limit of reconstructed alternative paths was reached).

doi:10.1371/journal.pone.0140530.g008
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Fig 9. Results empirical data sets. (A) Running time of the complete algorithm by number of nodes plus number of edges jVj + jEj; (B) Mean percentage of
tagged, potentially spurious edges by chosen threshold θ after application of the algorithm, error bars indicate 1 standard deviation (SD); the value for θ
obtained from bootstrapping in two example data sets is marked in red; (C) Mooney Stimulus [42]; (D) Cortical sources after beamforming of MEG data (l.,left;
r., right: l. orbitofrontal cortex (OFC); r. middle frontal gyrus (MiFG); l. inferior frontal gyrus (IFG left); r. inferior frontal gyrus (IFG right); l. anterior
inferotemporal cortex (aTL left); l. cingulate gyrus (cing); r. premotor cortex (premotor); r. superior temporal gyrus (STG); r. anterior inferotemporal cortex (aTL
right); l. fusiform gyrus (FFA); l. angular/supramarginal gyrus (SMG); r. superior parietal lobule/precuneus (SPL); l. caudal ITG/LOC (cITG); r. primary visual
cortex (V1)), see also [40]; (E) Example of removal of tagged edges: MEG data of a face detection task in two subjects. First column shows transfer entropy
values prior to detection of potentially spurious edges (Pre). The second column shows color-coded tagged edges (red: Potential cascade effects, blue:
potential common drive effects; θ = 3ms). The third column shows the network of directed interactions after removal of all tagged edges (Post).

doi:10.1371/journal.pone.0140530.g009
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activity, or jump artifacts in the sensors) as well as trials with wrong responses were discarded.

Trials were baseline corrected by subtracting the mean amplitude between -500 to -100 ms

before stimulus onset.

To investigate differences in source activation in the face and non-face condition, we used a

frequency domain beamformer [44] at frequencies of interest identified at the sensor level (80

Hz with a spectral smoothing of 20 Hz). We computed the frequency domain beamformer fil-

ters for combined trials (“common filters”) consisting of activation (multiple windows, dura-

tion, 200 ms; onsets at every 50 ms from 0 to 450 ms) and baseline data (-350 to -150 ms). To

compensate for the short duration of the data windows, we used a regularization of λ = 5% [45].

To find significant source activation in the face versus non-face condition, we first con-

ducted a within-subject t-test for activation versus baseline effects. Next, the t-values of this test

statistic were subjected to a second-level randomization test at the group level to obtain effects

of differences between face and no-face conditions; a p-value< 0.01 was considered significant.

We identified 14 sources with differential spectral power between both conditions in the fre-

quency band of interest in occipital, parietal, temporal, and frontal cortices (see Fig 9D and

[40] for exact anatomical locations). Namely, our network representing information flow

between sources has 14 nodes. We then reconstructed source time courses for TE analysis, this

time using a broadband beamformer with a bandwidth of 10 to 150 Hz.

We estimated TE between beamformer source time courses [20, 46] within an analysis win-

dow of 500 ms (-50–450 ms) and tested resulting TE values for their statistical significance

[20]. We furthermore reconstructed information transfer delays for significant information

transfer by scanning over a range of assumed interaction delays from 5 to 17 ms (resolution 2

ms), following the approach in [19] and parameters used in a similar analysis in [46]. We thus

obtained a delay weighted, directed network of information transfer during a face recognition

task, consisting of 14 nodes and edges with weights in the range from 5 to 17. We then applied

the proposed algorithm to the resulting delay-weighted networks of directed interactions. For

two example data sets, we used bootstrapping (1000 resampled cases) to obtain an estimate of

the standard error of the delay estimation [47] and used this estimated standard error as input

parameter θ for a more detailed example application of the algorithm.

Performance results for “empirical” networks. For empirical data running times

increased almost linearly in jVj + jEj (Fig 9A). We chose to present running times as function

of the sum of the number of nodes and number of edges because a systematic variation of net-

work size was not possible here (rather, network size was determined by previous source recon-

struction). Cases of intractability did not occur even though some data sets exhibited high

network densities (ranging from 0.07 to 0.43 with a mean of 0.24 and a SD of 0.09).

The percentage of potentially spurious edges increased with higher thresholds θ up to 32%

of potentially spurious edges for θ = 7ms (Fig 9B). Edges were considered potentially spurious

if at least one alternative path existed or a simple CD was present. Note, that the threshold

serves to adjust the algorithm’s sensitivity and may lead to the erroneous exclusion of edges if

chosen too high. Thus, the value for θ should be chosen such that imprecisions in interaction

reconstruction are accounted for, while the false discovery rate is not increased. As a rule of

thumb, a user may use prior knowledge about the minimum interaction delay to be expected in

the data as an upper bound for θ or use bootstrapping to obtain an error estimate for recon-

structed delays.

In Fig 9E, we show results for two example MEG data sets from the validation test-set before

and after analysis with the proposed algorithm. We used bootstrapping to estimate the stan-

dard error in the reconstruction of the interaction delays. We found an average error over

channels of 2.6 ms for subject one and 2.9 ms for subject two. Accordingly, we set θ = 3ms as

this corresponded to the next integer value in ms. The average reconstructed interaction delay
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was found to be 7.06 ms (SD: 3.57 ms) for subject one and 6.94 ms (SD: 3.32 ms) for subject

two. We also calculated the average path length as the average weight of the shortest path for

each node to every other node in the network; the average path length was 6.84 ms for subject

one and 6.81 ms for subject two. Note that the graphs are highly connected prior to the applica-

tion of the algorithm, such that the shortest path between any two nodes consists of just one

edge; thus the average path length is close to the average edge weight.

After application of the algorithm, the recovered networks of information transfer consisted

of 20 links for subject one and 34 links for subject two; networks showed an overlap of nine

edges, which corresponds to an 45% overlap and is 20 times higher than an overlap of 2%

expected purely by chance. Thus, the network can be considered highly consistent.

Discussion

Algorithmic detection of potentially spurious edges in delay weighted
networks

We have presented an algorithm that finds potentially spurious links arising from bivariate anal-

ysis of multi-node networks based on interaction timing. The algorithm identifies the most

common motifs causing the reconstruction of spurious links, such that identified links can be

subjected to further testing, or removed. By removing all potentially spurious edges, the user

obtains a sub-network that is guaranteed to contain only non-spurious edges; this improves the

validity of the network representation itself as well as the validity of potential subsequent net-

work analysis. The algorithm thus allows the user to find an approximate representation of mul-

tivariate interactions in the data, using only bivariate interaction reconstruction and avoiding

the computationally heavy problem of an approximately or even fully multivariate approach.

The presented algorithm may be used in neuroscience to post-process any network of

reconstructed bivariate interactions, where interactions are directed and weighted by their esti-

mated delays. We demonstrated the application of the algorithm using a reference implemen-

tation in MATLAB as part of the open source toolbox TRENTOOL [20].

Application in neuroscience

Based on findings in [19], we propose to identify spurious links by their characteristic timing

signatures in networks of reconstructed bivariate interactions [14]. In particular, we propose

that a link is likely to be spurious if an alternative path with identical timing exists (Fig 2).

We assume that a bivariate information transfer between two nodes and a corresponding

alternative path constitute a redundant routing of information. Such a redundant routing con-

flicts with the hypothesis that the brain evolves under the objective of maximizing economy

and efficacy [6, 48] while minimizing biological costs [49, 50] (see for example the “save-wire

hypothesis” in [51]). We thus argue that any redundant routing of information between two

sources of neural activity –with identical timing– would be implausible, given the brain’s orga-

nizational principles. Therefore, whenever a redundant routing for a bivariate information

transfer is found, our rationale implies spuriousness of either the bivariate information transfer

or the alternative path. Of the two, we consider the bivariate interaction spurious, because (1)

spurious bivariate interactions are a likely artifact in bivariate analysis of multi-node networks;

and (2) if a bivariate and thereby directmeans of information transfer between a source and a

target existed, the maintenance of a physiologically more costly alternative path of identical

information transfer would be unlikely.

Note, that this rationale exclusively applies to neural systems. Also remember, that the algo-

rithm does not tag all alternative routings of information, but only those with a certain timing
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signature; alternative routings with different delays than the bivariate interaction are not con-

sidered redundant and are not tagged.

Treatment of tagged links in neuroscience applications

Our algorithm tags potentially spurious edges to let the user decide if a tagged edge should be

ultimately excluded from the network representation. To minimize erroneous exclusions, the

user may inform the decision by additional evidence, e.g. previous anatomical or functional

findings. If such previous findings do not exist, we recommend the exclusion of tagged edges.

We consider the erroneous rejection of links favorable over erroneous inclusion, i.e., we sug-

gest to rather commit a false negative error if in doubt. We favor false negative errors because

in statistical terms, false negatives are considered less severe than false positives (erroneously

including a spurious link), as they yield more conservative results. If the user removes all tagged

links, the resulting network is guaranteed to contain non-spurious links only, but some links

may be missing from the network.

In triangle motifs, the exclusion of all tagged links will definitely lead to false negatives:

Here, two links are tagged but the exclusion of both edges is mutually exclusive; more precisely,

the exclusion of one of the two tagged edges destroys the motif giving rise to the second, poten-

tially spurious link. This is illustrated in Fig 2C, where the exclusion of link (v1, vt) destroys the

CE leading to the tagging of edge (vs, vt), and on the other hand, the exclusion of (vs, vt)

destroys the CD leading to the tagging of (v1, vt). In triangle motifs, the rejection of both edges

thus produces a false negative error; here, prior anatomical or functional evidence are required

to decide which of the two tagged edges is non-spurious.

It is further possible to use modeling approaches to test if tagged links are actually present

in the network of bivariate interactions. For example dynamic causal modeling (DCM, [52–

54]) may be used to test whether a model containing a certain link is favorable given the

observed data over a second model missing this link.

Types of multivariate effects not identified by the algorithm

The correction performed by the presented algorithm is not exhaustive with respect to all types

of multivariate interactions potentially occurring in neuroscience data. The interactions not

targeted by the algorithm are of two types: (1) more general cases of CD; (2) synergistic effects

[17], i.e., combined effects of two or more sources on a third source. In the following we will

discuss the conceptual and practical limitations that prevent an exhaustive algorithmic correc-

tion for these two types of multivariate interactions.

Detection of general common drive effects. The presented algorithm detects simple CD

in triangle motifs by listing all links with alternative paths of length two. Our algorithm can

theoretically be extended to explicitly search for general cases of CD, where two nodes are com-

monly driven via arbitrarily long cascades of information transfer (Fig 2A).

General CD may be identified by searching for paths of equal summed interaction delays

that have a common source and target node. We again assume that equal summed delays hint

at redundant and therefore spurious information transfer. It can then be tested if the source

node is a common driver for the last and second to last node in one of the two paths by looking

at the information transfer delay between these last two nodes. For an example, see Fig 2A,

where the bivariate information transfer in the network forms two paths of equal delays con-

necting nodes v0 and vt: The link (vs, vt) is tagged as spurious because its weight corresponds to

the difference in the summed path weights v0⇝
c0vs and v0⇝

c vt : w(vs, vt)
= c − c0. In this scenario, v0

is a common driver of nodes vs and vt. This approach also allows to test for higher order CD,

i.e., one source driving three or more nodes simultaneously. A similar algorithm was proposed
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by Marinazzo and colleagues [55] to identify spurious bivariate links using a network of multi-

variately reconstructed interactions (see next section).

Even though an extension to general CD is hypothetically possible, its realization is not fea-

sible in practice: The extension requires that for each network node all originating paths of

arbitrary length need to be listed. An algorithm fulfilling this task would have an asymptotic

running time many times higher than the algorithm presented in this work: For each node in

V, O(jV − 1j!) paths of arbitrary length and weight exist (in the first step O(jVj − 1) nodes can

be reached from the current starting node, in the second step O(jVj − 2) nodes can be reached,

and so forth). The asymptotic running time of such an algorithm thus amounts to O(jVj � jV

− 1j!). Such a factorial running time is commonly not considered feasible in practice and would

limit the application to networks of very small size.

Detection of synergistic effects. Synergistic effects describe information that is transferred

from a set of sources to a common target, whereby information is combined in a non-trivial fash-

ion [17, 18, 56, 57]. In this case, looking at the set of sources simultaneously provides information

about the target that is not obtainable from looking at each source separately. As a toy example,

one can think of three nodes implementing a logical XOR operator, where two nodes serve as

binary input and the third node serves as output node. Each state of the output node is the exclu-

sive OR of the two previous input states. A bivariate analysis of every pairwise interaction

between the three nodes will not detect any significant interaction, because the pairwise mutual

information between any two nodes is 0. Analyzing the triplet of nodes simultaneously will how-

ever detect an interaction; e.g. the conditional mutual information (TE) will be greater than zero,

because it “decodes” the information in one source by conditioning on the second source.

Consequently, synergistic effects between a set of sources and a target node can only be

revealed if the whole set is considered simultaneously in some multivariate reconstruction of

interactions or by explicitly reconstructing synergistic interactions [18, 58]. Such synergistic

effects are not targeted by design of our algorithm as it simply post-processes results from

bivariate network analyses. To include synergistic effects, a multivariate interaction analysis

would have to replace the estimation of bivariate interactions. Note however, that any fully

multivariate method for interaction reconstruction would need to identify the optimal subset

of sources that exert some meaningful influence on a given target node. The identification of

such an optimal set of sources would require the exhaustive testing of the power set PðVÞ of

all network sources, due to the non-additivity of information contributions from individual

sources (because of redundant and synergistic effects). The power set has size jPðVÞj ¼ 2
jVj,

i.e., testing all sources brute force has a theoretical running time of O(2jVj). In fact, it has been

shown that optimal subset selection in regression is an NP-hard problem [10]. This proof

extends to source selection for TE due to the equality of TE with Granger causality for jointly

Gaussian variables [22]. Thus, the reconstruction of truly multivariate interactions in arbi-

trarily large networks poses a computationally intractable problem (if P 6¼ NP). In the next sub-

section we will present approaches that try to approximate fully multivariate methods to

circumvent the inherent computational complexity of the problem at hand.

Comparison to other approximative methods for multivariate network
reconstruction

The proposed algorithm provides an approximative method for the inference of networks of

multivariate interactions to handle the computational intractability of exact network recon-

struction. Methods with a similar purpose have been proposed by various authors. In the fol-

lowing we will review some of these methods and list scenarios that may benefit from the

application of our algorithm.
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Multivariate reconstruction of effective networks by Lizier and Rubinov. Lizier and

Rubinov [12] proposed a greedy algorithm which for each network node Y (the target) infers a

set of influential source variables VY. A source is considered influential if it adds significantly

to the information transfer from VY to Y. The set VY is thus built by iteratively adding sources,

which have significant information transfer into Y, conditional on the previously included

sources. Finally, information transfer is re-evaluated conditional on the complete set of

included sources:

TEðX ! Y jVYÞ ¼ IðX;Y jVYnXÞ;

i.e., the mutual information between each source X 2 VY and target Y while conditioning on all

remaining relevant sources in VY, except X. If a source fails to provide statistically significant

information about the present of Y, it is removed from VY. After this “pruning step”, the set VY

consists of all relevant sources that contribute information about the target. The approach is

robust against the detection of spurious interactions due to CD and CE, because for each inter-

action reconstruction it conditions on all relevant sources in the network.

Note that the greedy strategy used by Lizier and Rubinov is approximative insofar as it does

not guarantee a maximal informative set VY over all sets PðVÞ. For example, purely synergistic

effects between two or more sources may be missed. The authors propose to extend their

greedy method by also testing tuples and higher order combinations of sources, but they note

that this requires considerable computational resources, which may not be worth the gain in

information. The testing of tuples may however be feasible for small networks.

Partial conditioning of information transfer by Marinazzo and colleagues. Marinazzo

and colleagues [55] proposed a greedy algorithm resembling the approach by Lizier and Rubi-

nov. Again, the algorithm tries to account for other relevant network sources when evaluating

the information transfer from a source X to a target Y in a multivariate system. To identify rele-

vant sources, Marinazzo et al. propose to iteratively construct a “partial conditioning set” Z

from all sources Vn{X, Y}. In each iterative step k the algorithm includes the source Zk that

maximizes the mutual information between Zk and the source X, i.e., Zk = maxZ (I(X; Zk)),

where Zk = Zk−1 [ Z.

The partial conditioning approach may miss interactions if sources share a lot of redundant

information about a target: If an existing source-target relationship is evaluated while condi-

tioning on sources providing redundant information about the target, the source-target rela-

tionship under investigation is not detected. Therefore, Stramaglia and colleagues [59]

extended partial conditioning with a graph algorithm that identifies these missed interactions.

The authors proposed to reconstruct interactions multivariately (e.g. with partial conditioning)

and bivariately. The multivariate network is then used to algorithmically separate bivariate

links in two sets: (1) links explained by an indirect path of information transfer in the multivar-

iate network (CE), and (2) links not explained by an indirect path. Bivariate links in the second

group, which are missing from the multivariate network, are assumed to reflect non-spurious

information transfer that was missed by the multivariate approach. These bivariate links are

then merged with the multivariate network.

Note that the rationale underlying the algorithm proposed in [59] resembles the rationale

presented in this paper because spurious bivariate interactions are identified by alternative

paths; however, the aim of both approaches differs: The algorithm presented by Stramaglia and

colleagues improves multivariate interaction reconstruction, while the algorithm presented in

this paper tries to approximate a multivariate approach from bivariate interaction reconstruc-

tion alone. The approach proposed by Stramaglia thus still requires the potentially intractable

reconstruction of multivariate interactions from data.
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Non-uniform multivariate embedding by Faes and colleagues. Faes and colleagues [60]

proposed a non-uniform embedding technique to estimate the information transfer from one

source variable to a target in the presence of further potentially relevant sources of information

transfer. The authors propose to iteratively build a non-uniform embedding vector from a set

of candidate time points from the past of all sources in a network up to a certain predefined

limit. Points are included in the vector if they add significant information about the next state

of the target. Information transfer between a source and a target may then be estimated while

conditioning on this non-uniform embedding vector.

The iterative construction of the embedding vector follows a greedy strategy that is similar

to the strategies discussed above [12, 55]. Accordingly, the returned embedding vector is not

guaranteed to yield the set of maximally informative source time points with respect to the tar-

get, as it will miss purely synergistic contributions of two or more points to the target. As said

above, an exhaustive testing of all possible subsets of source time points poses an intractable

computational problem. This is explained next.

Exhaustive brute force analysis. A brute force analysis of interactions between all possible

subsets (m-tuples) in a set of nodes would yield an exact solution to the problem of inferring

the network of multivariate interactions from data. For the example ofm = 3, one would enu-

merate all 3-tuples or triplets in the set of nodes and for each triplet evaluate the six possible

interaction motifs—three potential targets and for each target two possible combinations of

source and conditioning node. Note that here the mandatory conditioning takes care of poten-

tial synergies. For the general case ofm-tuples, this would generalize to jVj
m

� �

possible subsets of

sizem, where for each tuplem � (m − 1) possible interaction motifs exist. As for approximative

approaches, such an analysis is feasible for small numbers ofm only.

Application scenarios for the proposed algorithm

The most basic application scenario for the proposed algorithm is as post-processing step after

bivariate reconstruction of directed, delay-weighted interactions from a set of neural sources.

Here, the algorithm helps to prune potentially spurious edges to obtain an approximative, sta-

tistically conservative network representation of the physical interactions. In this scenario, our

algorithmic correction is favorable over multivariate interaction reconstruction whenever

available data is limited or high-dimensional, such that data points are not sufficient to esti-

mate highly multivariate interactions. Here, our algorithm is more data-efficient because it

relies on bivariate interaction reconstruction only. Such data-efficiency is especially relevant

for information theoretic measures, where quantities are often estimated using kernel estima-

tors or neighbor methods (as for example proposed in [61]); applying these kernel estimators

to the estimation of highly multivariate data may lead to very high dimensional search spaces,

which suffer from the curse of dimensionality, hindering a reliable estimation of the quantities

of interest.

The application of our algorithm may prove beneficial prior to calculating graph theoretical

measures from networks of reconstructed interactions. We argue that these measures are more

reliable when applied to a statistically conservative network representation.

The algorithm may further be used in conjunction with modeling approaches such as DCM,

where it serves to limit the model space to be tested. DCMmay also help to identify the most

plausible network representation from models, after in- and excluding individual tagged edges

respectively.

The presented algorithm may further serve as a preprocessing step for trivariate estimation

of information transfer: By testing only the triangle motifs identified by the algorithm, the

number of necessary information transfer estimations reduces drastically compared to the
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brute-force approach discussed in the last subsection. Necessary estimations include bivariate

interaction reconstruction (jVj � (jVj − 1) calculations for jVj nodes) and subsequent multivari-

ate interaction reconstruction for identified triangle motifs. The actual number of multivariate

reconstructions depends on the number of motifs: The approach is asymptotically faster if 90%

or less of the possible jVj
3

� �

triangle motifs are actually present in the data (for network sizes jVj

> 12). Trivariate estimation of TE has been implemented in TRENTOOL [20], which also

includes the reference implementation of the proposed algorithm. Thus, both analyses may be

used in conjunction to estimate multivariate TE of order three. An extension to higher orders

is theoretically possible although not implemented as it is not deemed feasible for practical

purposes.

Finally, the algorithm is especially suitable for the application in simulated networks where

all information transfers have a delay of unity, such as elementary cellular automata, and spuri-

ous interactions are therefore easily found.
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