A Graph and its Complement with Specified Properties. IV. Counting Self-Complementary Blocks

Jin Akiyama

NIPPON IKA UNIVERSITY KAWASAKI, JAPAN

Frank Harary

THE UNIVERSITY OF MICHIGAN ANN ARBOR, MICHIGAN

Dedicated to Robert W. Robinson

ABSTRACT

In this series, we investigate the conditions under which both a graph G and its complement \overline{G} possess certain specified properties. We now characterize all the graphs G such that both G and \overline{G} have the same number of endpoints, and find that this number can only be 0 or 1 or 2. As a consequence, we are able to enumerate the self-complementary blocks.

1. NOTATIONS AND BACKGROUND

In the first paper [1] in this series, we found all graphs G such that both G and its complement \overline{G} have connectivity 1, and other properties. In the second paper [2], we determined the graphs G for which G and \overline{G} are obtained from some graph by the same unary operation. More recently [3] we characterized the graphs such that both G and \overline{G} have the same girth and the same circumference 3 or 4.

An *endpoint* of graph has degree 1. We denote the number of endpoints in G by e = e(G) and in \overline{G} by \overline{e} . We characterize all the graphs G with $e = \overline{e}(\geq 2)$ in the next section, and count the number of self-complementary blocks in the last section.

Journal of Graph Theory, Vol. 5 (1981) 103–107 © 1981 by John Wiley & Sons, Inc. CCC 0364-9024/81/010103-05\$01.00 Following the notation and terminology of [5], we define the join $G_1 + G_2$ of two graphs to be the union of G_1 and G_2 with the complete bigraph having point sets V_1 and V_2 , and the corona $G \circ H$ of two graphs G with p points v_i and H is obtained from G and p copies of H by joining each point v_i of G with all the points of the *i*th copy of H. For our result later we need a *ternary operation* written $F+G \circ H$ which is defined in [3] as the union of the join F+G with the corona $G \circ H$. Thus this resembles the composition of the path P_3 not with just one other graph but with three graphs, one for each point, for example, Figure 1 illustrates the graph $A = K_1 + K_2 \circ K_1$.

2. ENDPOINTS

Let g_p be the number of graphs of order p.

Lemma 1. For $n \ge 1$, the mapping $F \to F + K_n \circ K_1$ which takes graphs F of order p to graphs $G = F + K_n \circ K_1$ of order p + 2n is one-to-one.

Proof. Suppose G can be written in the form $F+K_n \circ K_1$. We will show that F is uniquely recoverable from G. Let S be the set of points of G which are adjacent to endpoints. Clearly S is the point set of the distinguished subgraph K_n . Let H be the subgraph induced by V(G)-S. Then H has at least n isolates, and removing exactly n isolates from H leaves F.

Lemma 2. If G has two endpoints, then \overline{G} has at most two endpoints.

Proof. Let v_0 and v_1 be two endpoints of G, adjacent to u_0 and u_1 , respectively. Then obviously the only candidates for endpoints in \overline{G} are u_0 and u_1 .

Theorem 1. A graph G of order $p \ge 4$ has $e = \overline{e} = 2$ iff G is of the form $F + K_2 \circ K_1$, where F is a graph of order p - 4.

FIGURE 1. $A = K_1 + K_2 \circ K_1$

Proof. If $e = \bar{e} = 2$, then G has exactly two points v_0 and v_1 of degree p-2 and exactly two points u_0 and u_1 of degree 1, where u_0 , u_1 are not adjacent to v_0 , v_1 , respectively. Since deg $v_0 = \deg v_1 = p-2$, v_i is adjacent to every point other than u_i for i = 0, 1. On the other hand, u_i is not adjacent to any point other than v_{1-i} for i = 0, 1, since deg $u_0 = \deg u_1 = 1$. Denote by F the subgraph of G induced by the point set $V(G) - \{v_0, v_1, u_0, u_1\}$. Then in G any point v of F must be adjacent to both v_0 and v_1 which are adjacent to each other by the above observations. Thus G is a graph of the form $F + K_2 \circ K_1$.

The converse follows immediately from the proof of Lemma 1.

Corollary 1. The number of graphs of order p with $e = \bar{e} = 2$ is g_{p-4} .

Proof. By Theorem 1, G is of the form $F + K_2 \circ K_1$ where F has p-4 points. Hence by the 1-1 correspondence of Lemma 1, the number of graphs G with $e = \bar{e} = 2$ is g_{p-4} .

Corollary 2. All graphs with $e = \bar{e} = 2$ have diameter 3.

Proof. The maximum distance between two points of $F + K_2 \circ K_1$ is 3, as this is the distance between the two endpoints.

3. SELF-COMPLEMENTARY GRAPHS

A graph G is self-complementary (or briefly, s-c) if it is isomorphic to its complement \overline{G} . The isomorphism between G and \overline{G} can be represented as a permutation, α , on V(G). We will write $\alpha(G) = \overline{G}$ and call α a complementing permutation for G as in Gibbs [6]. We will assume that all permutations are expressed as the product of disjoint cycles. We first state the result obtained independently by Ringel [8] and Sachs [10], which gives the cycle structure of a complementing permutation.

Theorem RS. If G is s-c of order p and $\alpha(G) = \overline{G}$, then if $p \equiv 0 \pmod{4}$, each cycle of α has length divisible by 4 and if $p \equiv 1 \pmod{4}$, α has exactly one cycle of length 1 and all other cycles have length divisible by 4.

We begin with the result concerning the number of endpoints of a s-c graph, which was communicated to us by R. W. Robinson and proved nicely by one of the referees.

Lemma 3. A self-complementary graph does not have exactly one endpoint.

Proof. Suppose G is s-c with a unique point of degree 1. Then G must have a unique point of degree p-2 and these observations hold for \overline{G} as well. In G let deg $v_1 = 1$ and deg $v_2 = p-2$. Hence in \overline{G} , deg $v_1 = p-2$ and deg $v_2 = 1$. But v_1 and v_2 are adjacent in exactly one of G and \overline{G} , a contradiction.

We now characterize all s-c graphs with two endpoints.

Lemma 4. All s-c graphs of order p+4 having two endpoints can be constructed using the ternary operation $G = F + K_2 \circ K_1$, where F is a s-c graph of order p.

Proof. Let G be any s-c graph of order p+4 having 2 endpoints. Since $G \cong \overline{G}$ and G has exactly 2 endpoints, we know that G is of the form $F+K_2 \circ K_1$ for some graph F of order p by Theorem 1. On the other hand, it is easy to see that $G = F+K_2 \circ K_1$ is s-c iff F is s-c. Thus, G can be constructed using the ternary operation $G = F+K_2 \circ K_1$ for some s-c graph F of order p.

We denote by s_p the number of all s-c graphs of order p and by s''_p the number of s-c graphs of order p which have 2 endpoints. Since the ternary operation $G = F + K_2 \circ K_1$ is 1 - 1 as proved in Lemma 1, we have the following equality from Lemma 4.

Lemma 5. For any positive integer p,

 $s_{p+4}'' = s_p.$

Recall [5, p. 24] that G is a *block* if G is connected and has no cutpoint. The number of blocks was determined by Robinson [9]. Our object is to derive the number of self-complementary blocks.

Lemma 6. If G is a s-c graph with no endpoints, then G is a block.

Proof. Assume that G is s-c with no endpoints but has a cutpoint v. The removal of v from G results in a subgraph with at least 2 components. Let G_1 be a component of G-v and let $G-v = G_1 \cup G_2$. Thus $\overline{G-v}$ contains a complete spanning bigraph B whose point sets are $V(G_1)$ and $V(G_2)$. The cardinalities of both $V(G_1)$ and $V(G_2)$ are at least 2 by the hypothesis that G has no endpoints. Therefore \overline{G} is 2-connected and hence $G = \overline{G}$ cannot have a cutpoint, a contradiction.

Read [7] found a formula for the number of self-complementary graphs s_p . Frucht and Harary [4] derived an alternative equation. We now see how to count s-c blocks in terms of the numbers s_p .

Theorem 2. For any positive integer $p \ge 5$, the number of s-c blocks of order p is $s_p - s_{p-4}$.

Proof. Let G be a self-complementary block of order p, so that $p \ge 5$. By Lemmas 3 and 6, the number of s-c blocks equals s_p less the number of s-c graphs with e = 2. But this is s_{p-4} by Lemma 5.

ACKNOWLEDGMENT

We thank Geoffrey Exoo for several helpful comments.

References

- [1] J. Akiyama and F. Harary, A graph and its complement with specified properties I: Connectivity. Internat. J. Math. and Math. Sci. 2 (1979) 223–228.
- [2] J. Akiyama and F. Harary, A graph and its complement with specified properties II: Unary operations. *Nanta Math.* To appear.
- [3] J. Akiyama and F. Harary, A graph and its complement with specified properties III: Girth and circumference. *Internat. J. Math. and Math. Sci.* 2 (1979) 685–692.
- [4] R. Frucht and F. Harary, Self-complementary generalized orbits of a permutation group. *Canad. Math. Bull.* 17 (1974) 203–208.
- [5] F. Harary, Graph Theory. Addison-Wesley, Reading, MA (1969).
- [6] R. A. Gibbs, Self-complementary graphs. J. Combinatorial Theory Ser. B 16 (1974) 106–123.
- [7] R. C. Read, On the number of self-complementary graphs and digraphs. J. London Math. Soc. 38 (1963) 99-104.
- [8] G. Ringel, Selbstkomplementäre Graphen. Arch. Math. 14 (1963) 354–358.
- [9] R. W. Robinson, Enumeration of non-separable graphs. J. Combinatorial Theory 9 (1970) 327-356.
- [10] H. Sachs, Über selbstkomplementäre Graphen, Publ. Math. Debrecen 9 (1962) 270-288.