
Short Papers___

A Graph-Based Approach for Discovering
Various Types of Association Rules

Show-Jane Yen and
Arbee L.P. Chen, Member, IEEE

AbstractÐMining association rules is an important task for knowledge discovery.

We can analyze past transaction data to discover customer behaviors such that

the quality of business decision can be improved. Various types of association

rules may exist in a large database of customer transactions. The strategy of

mining association rules focuses on discovering large itemsets, which are groups

of items which appear together in a sufficient number of transactions. In this paper,

we propose a graph-based approach to generate various types of association

rules from a large database of customer transactions. This approach scans the

database once to construct an association graph and then traverses the graph to

generate all large itemsets. Empirical evaluations show that our algorithms

outperform other algorithms which need to make multiple passes over the

database.

Index TermsÐData mining, knowledge discovery, association rule, association

pattern, graph-based approach.

æ

1 INTRODUCTION

FROM a large amount of data, potentially useful information may
be discovered. Techniques have been proposed to find knowledge
from databases [1], [3], [4], [5]. Data mining has high applicability
in the retail industry. The effective management of business is
significantly dependent on the quality of its decision making.
Therefore, it is important to improve the quality of business
decisions by analyzing past transaction data to discover customer
purchasing behaviors. In order to support this analysis, a sufficient
amount of transactions needs to be collected and stored in a
database. A transaction in the database typically consists of
customer identifier, transaction date (or transaction time), and
the items purchased in the transaction. Because the amount of
these transaction data can be very large, an efficient algorithm
needs to be designed for discovering useful information.

An association rule describes the associations among items in

which when some items are purchased in a transaction, the others

are purchased, too. In order to find association rules, we need to

discover all large itemsets from a large database of customer

transactions. A large itemset is a set of items which appear often

enough within the same transactions.
The following definitions are adopted from [2]. A transaction t

supports an item x if x is in t. A transaction t supports an itemset X

if t supports every item in X. The support for an itemset is defined as

the ratio of the total number of transactions which support this

itemset to the total number of transactions in the database. To

make the discussion easier, occasionally, we also let the total

number of transactions which support the itemset denotes the

support for the itemset. Hence, a large itemset is an itemset whose

support is no less than a certain user-specified minimum support.

An itemset of length k is called a k-itemset and a large itemset of

length k a large k-itemset.
After discovering all large itemsets, the association rules can be

generated as follows: If the large itemset Y � I1I2 . . . Ik; k � 2, all

rules that reference items from the set fI1; I2; . . . ; Ikg can be

generated. The antecedent of each of these rules is a subset X of Y

and the consequent Yÿ X. The confidence of X) YÿX in

database D is the probability that when itemset X occurs in a

transaction in D, itemset YÿX also occurs in the same transaction.

That is, the ratio of the support for itemset Y to the support for

itemset X. A generated rule is an association rule if its confidence

achieves a certain user-specified minimum confidence. Various

algorithms [2], [6], [7], [8], [9], [10] have been proposed to generate

all large itemsets from a large amount of transaction data. These

algorithms generate candidate k-itemsets for large k-itemsets, scan

each transaction in a database to count the supports for

these candidate k-itemsets, and find all large k-itemsets in the

kth iteration based on a predetermined minimum support.

However, because the size of the database can be very large, it is

very costly to repeatedly scan the database to count supports for

candidate itemsets.
In this paper, we propose a graph-based approach to discover-

ing various types of association rules, that is, primitive association

rules, generalized association rules, and multiple-level association rules.

A primitive association rule is an association rule which describes the

association among database items which appear in the database. A

primitive association pattern is a large itemset in which each item is a

database item.
A concept hierarchy of the items can usually be derived. An

example of the concept hierarchy is shown in Fig. 1, in which the

terminal nodes are database items, and the nonterminal nodes are

generalized items. If there is a path between nodes y and x, where y

is a ªhigher conceptº of x, then y is called an ancestor of x and x a

descendant of y. In [10], the concept of ªsupportº is extended such

that a transaction t supports an item x if x is in t or x is an ancestor

of some items in t. Association rules may exist at higher level

concepts if the itemsets at the lower level concepts cannot reach the

minimum support. Hence, significant association rules may not be

discovered if we only consider database items which are the lowest

level concepts in the concept hierarchy. A generalized association rule

is introduced in [10], which describes the association among items

which can be generalized items or database items. A generalized

association pattern is a large itemset in which each item is a

generalized item or database item.
Another type of association rule is called multiple-level associa-

tion rule [6]. The multiple-level association rules are discovered

from a large database of customer transactions in which all items

are described by a set of relevant attributes. Each attribute

represents a certain concept and these relevant attributes form a

set of multiple-level concepts. The concept level for an attribute is

defined by domain experts. For example, food items can be

described by the relevant attributes ªcategory,º ªcontent,º and

ªbrand,º and attribute ªcategoryº represents the first-level concept

(i.e., the highest level concept), attribute ªcontentº the second-level

concept and attribute ªbrandº the third-level concept. There is a set

of domain values for an attribute. Each item in the database

contains a domain value for each relevant attribute. For example, if

the ªcategory,º ªcontent,º and ªbrandº of an item have the domain

values ªbread,º ªwheat,º and ªWonder,º respectively, then this

item is described as ªWonder wheat breadº in the database.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2001 839

. S.-J. Yen is with the Department of Computer Science and Information
Engineering, Fu Jen Catholic University, Taipei, Taiwan, R.O.C.
E-mail: sjyen@csie.fju.edu.tw.

. A.L.P. Chen is with the Department of Computer Science, National Tsing
Hua University, Hsinchu, Taiwan 300, R.O.C.
E-mail: alpchen@cs.nthu.edu.tw.

Manuscript received 7 Aug. 1997; revised 19 Mar. 2000; accepted 19 Apr.
2000; posted to Digital Library 6 Apr. 2001.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 105484.

1041-4347/01/$10.00 ß 2001 IEEE

From the items in the database, we can derive other items at
different concept levels. The domain values of the attribute at the
first (i.e., the highest) concept level are the items at the first concept
level. An item at the kth concept level can be formed by combining
a domain value of the attribute at the kth concept level with an
item at the �kÿ 1�th concept level. Hence, item ªbreadº is at the
first concept level, item ªwheat breadº at the second concept level,
and item ªWonder wheat breadº at the third concept level. For an
item, the items at the corresponding higher (lower) concept level of
this item are more general (specific) than this item. For example,
items ªbreadº and ªwheat breadº are the items at the correspond-
ing higher level of item ªWonder wheat bread.º

In general, items at higher concept levels have a larger support
than those of items at lower concept levels. If we want to find
associations among items at relatively low concept levels, many
uninteresting associations among items at higher concept levels
may also be generated. Hence, the minimum supports specified at
higher concept levels should be larger than the minimum supports
specified at lower concept levels. A multiple-level association rule
[6] is an association rule which describes the associations among
items at the same concept level. For each concept level, both
minimum support and minimum confidence are specified. A
multiple-level association pattern is a large itemset in which all items
are at the same concept level. For an item I to be in a multiple-level
association pattern, the items at the corresponding higher concept
levels of the item I need to be large at their corresponding concept
levels. This is to avoid the generation of many meaningless
combinations formed by the items at the corresponding lower
concept level of the nonlarge items. For example, if ªbreadº is not a
large item, item ªwheat breadº which is at the corresponding
lower concept level of item ªbreadº need not be further examined.

In our previous work [11], we proposed a graph-based
approach to analyze a large amount of transaction data and to
generate primitive association rules. In this paper, we extend the
graph-based approach to generate generalized association rules
and multiple-level association rules. We propose a uniform data
mining framework to discover various types of association rules:

1. Numbering phase: In this phase, all items are assigned an
integer number.

2. Large item generation phase: This phase generates large
items and records related information. A large item is an
item whose support is no less than a user specified
minimum support.

3. Association graph construction phase: This phase con-
structs an association graph to indicate the associations
between large items.

4. Association pattern generation phase: This phase generates
all association patterns by traversing the constructed
association graph.

5. Association rule generation phase: The association rules
can be generated directly according to the corresponding
association patterns.

This paper focuses on the association pattern generation,
because after generating the association patterns, the association
rules can be generated from the corresponding association
patterns. In this paper, we present three algorithms for generating
primitive association patterns, generalized association patterns,
and multiple-level association patterns.

The rest of this paper is organized as follows: The algorithms to
discovering primitive association patterns, generalized association
patterns and multiple-level association patterns are presented in
Section 2, 3, and 4, respectively. Section 5 evaluates the performance
of our data mining algorithms. Finally, we conclude the paper and
present directions for future research in Section 6.

2 MINING PRIMITIVE ASSOCIATION RULES

In this section, an algorithm PAPG (Primitive Association Pattern
Generation) is presented to generate primitive association patterns,
which is the same as the algorithm DLG [11]. Because we focus on
the association pattern generation, in the following, we describe
the first four phases discussed in Section 1 for the algorithm PAPG.

2.1 Association Graph Construction

In the numbering phase, the algorithm PAPG arbitrarily assigns
each item a unique integer number. In the large item generation
phase, PAPG scans the database and builds a bit vector for each
item. The length of each bit vector is the number of transactions in
the database. If an item appears in the ith transaction, the ith bit of
the bit vector associated with this item is set to 1. Otherwise, the
ith bit of the bit vector is set to 0. The bit vector associated with
item i is denoted as BVi. The number of 1s in BVi is equal to the
number of transactions which support the item i, that is, the
support for the item i.

Example 2.1. Consider the database TDB1 in Table 1. Each record is
a <TID, Itemset> pair, where TID is the identifier of the
corresponding transaction, and Itemset records the items
purchased in the transaction. Assume that the minimum
support = is 50 percent (i.e., 2 transactions).

After the numbering phase, the numbers of the items A, B, C, D,
and E are 1, 2, 3, 4, and 5, respectively. In the large item generation
phase, the large items found in the database TDB1 are items 1, 2, 3,
and 5, and BV1, BV2, BV3, and BV5 are �1010�, �0111�, �1110�, and
�0111�, respectively. In the following, we use the number of an item
to represent this item.

Property 2.1. The support for the itemset fi1; i2; . . . ; ikg is the number of
1s in BVi1 ^ BVi2 ^ . . . ^ BVik, where the notation ª^º is a logical
AND operation.

In the association graph construction phase, PAPG applies the
algorithm AGC (Association Graph Construction) to construct an

840 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2001

Fig. 1. An example of concept hierarchies.

TABLE 1
A Database TDB1 of Transactions

association graph. The AGC algorithm is described as follows: For

every two large items i and j�i < j� , if the number of 1s in BVi ^

BVj achieves the user-specified minimum support, a directed edge

from item i to item j is created. Also, itemset �i; j� is a large

2-itemset. The association graph for the Example 2.1 is shown in

Fig. 2.

2.2 Primitive Association Pattern Generation

The large 2-itemsets are generated after the association graph

construction phase. In the association pattern generation phase, the

algorithm LGDE (Large itemset Generation by Direct Extension) is

proposed to generate large k-itemsets �k > 2�, which is described as

follows: For each large k-itemsets �k � 2�, the last item of the

k-itemset is used to extend the large itemset into k� 1-itemsets.

Lemma 2.1. If an itemset is not a large itemset, then any itemset which

contains this itemset cannot be a large itemset.

Lemma 2.2. For a large itemset �i1; i2; . . . ; ik�, if there is no directed edge

from item ik to an item v, then itemset �i1; i2; . . . ; ik; v� cannot be a

large itemset.

Suppose �i1; i2; . . . ; ik� is a large k-itemset. If there is no

directed edge from item ik to an item v, then the itemset need

not be extended into k� 1-itemset, because �i1; i2; . . . ; ik; v� must

not be a large itemset according to Lemma 2.2. If there is a

directed edge from item ik to an item u, then the itemset

�i1; i2; . . . ; ik� is extended into k� 1-itemset �i1; i2; . . . ; ik; u�. The

itemset �i1; i2; . . . ; ik; u� is a large k� 1-itemset if the number of

1s in BVi1 ^ BVi2 ^ . . . ^ BVik ^ BVu achieves the minimum

support. If no large k� 1-itemsets can be generated, the

algorithm LGDE terminates. For example, consider Example 2.1.

After the association graph construction phase, the large 2-

itemsets (1, 3), (2, 3), (2, 5), (3, 5) are generated. For the large 2-

itemset (2, 3), there is a directed edge from the last item 3 of the

itemset (2, 3) to item 5 in the association graph shown in Fig. 2.

Hence, the 2-itemset (2, 3) is extended into 3-itemset (2, 3, 5).

The number of 1s in BV2 ^ BV3 ^ BV5 (i.e., �0110�) is 2. Hence,

the 3-itemset (2, 3, 5) is a large 3-itemset, since the number of 1s

in its bit vector is no less than the minimum support threshold.

The LGDE algorithm terminates because no large 4-itemsets can

be further generated.

3 MINING GENERALIZED ASSOCIATION RULES

We propose the algorithm GAPG (Generalized Association Pattern

Generation) to discover all generalized association patterns. In the

following, we also describe the four phases for the algorithmGAPG.

3.1 A Numbering Method

To generate generalized association patterns, one can add all

ancestors of each item in a transaction to the transaction and then

apply the algorithm PAPG on the extended transactions. However,

because if an item is a large item, then the 2-itemset which contains

the item and its ancestor is also a large 2-itemset, the number of the

edges in the association graph can be very large, and the

LGDE algorithm needs to take much more time to traverse the

association graph to generate all large itemsets.

Lemma 3.1 [10]. The support for an itemset X that contains both an

item xi and its ancestor �i will be the same as the support for the

itemset Xÿ �i.

Rationale. Suppose the itemset X � fx1; . . . ; xi; �i; xi�1; . . . ; xng. The

support for itemset X is the number of 1s in

BVx1 ^ . . . ^ BVxi ^ BV�i
^ BVxi�1 ^ . . . ^ BVxn;

and the support for itemset Xÿ �i is the number of 1s in

BVx1 ^ . . . ^ BVxi ^ BVxi�1 ^ . . . ^ BVxn;

according to Property 2.1. Because the set of the transactions

which contain an item xi is the subset of the set of the

transactions which contain the ancestor �i of item xi,

BVxi ^ BV�i � BVxi. Hence, the support for X is the same as

the support for the itemset X ÿ �i.

From Lemma 3.1, when an itemsetX contains both an item x and

its ancestor �, if the itemsetXÿ � is a large itemset, then itemsetX is

also a large itemset. Lemma 3.1 can be employed to reduce the cost

for large itemset generation. Hence, the problem of mining general-

ized association patterns becomes to find all generalized association

patterns which do not contain both an item and its ancestor.
In the numbering phase, GAPG applies the numbering method

PON (POstorder Numbering method) to number items at the

concept hierarchies. For each concept hierarchy, PON numbers

each item according to the following order: For each item at the

concept hierarchy, after all descendants of the item are numbered,

PON numbers this item immediately, and all items are numbered

increasingly. After all items at a concept hierarchy are numbered,

PON numbers items at another concept hierarchy.

Lemma 3.2. If the numbering method PON is adopted to number items,

and for every two items i and j �i < j�, item # is an ancestor of item i

but not an ancestor of item j, then # < j.

Rationale. According to PON numbering method, after all

descendants of an item are numbered, this item is numbered

immediately, and these items are numbered increasingly.

Hence, for an item i, if it is numbered, then its ancestor # must

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2001 841

Fig. 2. The association graph for Example 2.1.

TABLE 2
A Database TDB2 of Transactions

be numbered before the other item j which is not a descendant

of item # is numbered. So, # < j:

Example 3.1. Consider the database TDB2 in Table 2 and the

concept hierarchies in Fig. 1. Assume that the minimum

support = is 40 percent (i.e., 2 transactions).

After applying the PON method on the concept hierarchies in

Fig. 1, all items at the concept hierarchies are numbered, where the

number within the parentheses below each item in Fig. 1 is the

number of the item.

3.2 Large Item Generation

In the large item generation phase, GAPG builds a bit vector for

each database item, and finds all large items (include database

items and generalized items). Here, we assume that all database

items are specific items.

Lemma 3.3. Suppose items i1; i2; . . . ; and im are all specific descendants

of the generalized item in. The bit vector BVin associated with item in

is BVi1 _ BVi2 _ . . . _ BVim, and the number of 1s in BVi1 _

BVi2 _ . . . _ BVim is the support for item in, where the notation "_"

is a logical OR operation.

From Lemma 3.3, the bit vector associated with a generalized

item is obtained by performing logical OR operations on the bit

vectors associated with all specific descendants of the general-

ized item.

3.3 Generalized Association Graph Construction

In the association graph construction phase, GAPG applies the

algorithm GAGC (Generalized Association Graph Construction) to

construct a generalized association graph to be traversed. The

algorithm GAGC is described as follows: For every two large

items i and j �i < j�, if item j is not an ancestor of item i and the

number of 1s in BVi ^ BVj achieves the user-specified minimum

support, a directed edge from item i to item j is created. Also,

itemset �i; j� is a large 2-itemset.

Lemma 3.4. If an itemset X is a large itemset, then any itemset generated

by replacing an item in itemset X with its ancestor is also a large

itemset.

Lemma 3.5. If (the number of 1s in Bvi ^ BVj) � minimum-support,

then for each ancestor u of item i and for each ancestor v of item j, (the

number of 1s in BVu ^ BVj) � minimum-support and (the number

of 1s in BVi ^ BVv� � minimum-support.

From Lemma 3.5, if an edge from item i to item j is created, the
edges from item i to the ancestors of item j, which are not ancestors
of item i, are also created. According to Lemma 3.2, the numbers of
the ancestors of item i, which are not the ancestors of item j, are all
less than j. Hence, if an edge from item i to item j is created, the

edges from the ancestors of item i, which are not ancestors of item
j, to item j are also created.

After applying the GAGC algorithm in the association graph
construction phase, the generalized association graph for
Example 3.1 is constructed in Fig. 3, where there are no edges
between an item and its ancestors.

3.4 Generalized Association Pattern Generation

In the association pattern generation phase, GAPG applies the

LGDE algorithm to generate all generalized association patterns by

traversing the generalized association graph.

Theorem 3.1. If the numbering method PON is adopted to number items

and the algorithm GAGC is applied to construct a generalized

association graph, then any itemset generated by traversing the

generalized association graph (i.e., performing the LGDE algorithm)

will not contain both an item and its ancestor.

Proof. We use mathematical induction to prove this theorem.

. Basis of induction. By the GAGC algorithm, because
there is no edge between an item and its ancestor, any
large 2-itemset does not contain an item and its ancestor.

. Inductive hypothesis. We assume that any large
k-itemset �i1; i2; . . . ; ik� does not contain both an item
and its ancestor.

. Inductive step. Suppose there is a directed edge from
item ik to item w in the generalized association graph
constructed by applying GAGC algorithm. By the
LGDE algorithm, the large k-itemset �i1; i2; . . . ; ik� is
extended into k� 1-itemset �i1; i2; . . . ; ik; w�. Suppose
items #1; #2; . . . , and #kÿ1 are the ancestors of items
i1; i2; . . . ; and ikÿ1, respectively, but none are ancestors
of item ik. Because items are numbered by the
PON method, ik > #j�1 � j � kÿ 1� (Lemma 3.2).
Hence, there are no edges from item ik to the ancestors
of items i1; i2; . . . ; and ik. So, item w cannot be an
ancestor of item i1; i2; . . . ; or ik. tu

4 MINING MULTIPLE-LEVEL ASSOCIATION RULES

In this section, we present the algorithm MLAPG (Multiple-Level

Association Pattern Generation) to generate all multiple-level

association patterns. In Section 1, we have mentioned that each

item in the database contains domain values of the relevant

attributes for the problem of mining multiple-level association

rules. For an attribute, each domain value is arbitrarily given a

unique number in the numbering phase. Besides, each item in a

transaction is numbered according to its domain values.
After the numbering phase, MLAPG performs the remaining

three phases for each concept level (from the highest concept level

to the lowest concept level), which are similar to the associated

three phases in the PAPG algorithm. The large item generation

phase scans the database once to build a bit vector for each item

and find large items at the current concept level. Also, the size of

842 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2001

Fig. 3. The generalized association graph for Example 3.1.

TABLE 3
A Database TDB3 of Transactions

the database is progressively trimmed by eliminating the items

which are not large items at the previous concept level. Notice that,

for the last concept level, the database need not be further

trimmed. The association graph construction phase constructs an

association graph by applying the AGC algorithm for the large

items found at the current concept level. The association pattern

generation phase performs the algorithm LGDE on the constructed

association graph to generate all large itemsets at the current

concept level.

Example 4.1. Consider the database TDB3 in Table 3 in which there

are three concept levels defined, and the items at each concept

level are numbered. For example, in Table 3, item ª221º can be

the item ªWonder wheat bread,º where the first number ª2º

represents the domain value ªbreadº of the attribute ªcategoryº

at level-1, the second number ª2º for the domain value ªwheatº

of the attribute ªcontent º at level-2, and the third number ª1º

for the domain value ªWonderº of the attribute ªbrandº at

level-3. Assume that the minimum supports =1, =2, and =3

specified at the levels 1, 2, and 3 are 4, 3, and 3 transactions,

respectively.

Because there are three concept levels defined, MLAPG needs

to perform the above three phases three times to generate all

multiple-level association patterns. For the first level, only the

level-1 items in the transactions are considered. After the large

item generation phase, the found level-1 large items are ª1**º and

ª2**º and the associated bit vectors are �1111100� and �1110110�,

respectively, where the notation ª*º represents any item. In the

association graph construction phase, the association graph for the

level-1 large items is constructed, as shown in Fig. 4a and the level-

1 large 2-itemset (1**, 2**) is generated.
For the second level, MLAPG scans the database TDB3 to build

a bit vector for each level-2 item and find level-2 large items in the

large item generation phase. The level-2 large items found are 11*,

12*, 21*, and 22*, and the associated bit vectors are �1111100�,

�1011100�, �1100110�, and �1110100�, respectively. By the way,

MLAPG eliminates nonlarge items at the first level from the

database TDB3. The trimmed database is shown in Table 4.
In the association graph construction phase, MLAPG performs

the AGC algorithm for the level-2 large items. The constructed

association graph is shown in Fig. 4b. After the association pattern

generation phase, the level-2 large 3-itemsets (11*, 21*, 22*) and
(11*, 12*, 22*) are generated by performing the algorithm LGDE.

For the last level, after scanning the trimmed database in
Table 4, the found level-3 large items are 111, 211, and 221, and the
associated bit vectors are �110110�, �110011�, and �101010�,
respectively. The association graph constructed for the level-3
large items is shown in Fig. 4c, and there is only one level-3 large
2-itemset (111, 211) generated.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the three algorithms
PAPG, GAPG, and MLAPG. In [11], we have evaluated the
performance of PAPG (called DLG in [11]) and demonstrated that
PAPG has a better performance than other approaches [2], [7], [8],
[9]. In the following sections, we analyze the performance of the
two algorithms, GAPG and MLAPG.

5.1 Performance Evaluation for GAPG Algorithm

In this section, we evaluate the performance of the GAPG algorithm
by comparing this algorithm with the algorithm Cumulate [10].

We first generate the synthetic data for the experiment by

applying the method described in [10]. The parameters for the

synthetic data are set as follows: The number of transactions is

100,000, the number of items is 100,00, the number of concept

hierarchies is 100, the fanout is 5, the number of the potentially

large itemsets is 5,000, the average size of the transactions is 10,

and the average size of the potentially large itemsets is 5.

Suppose in the kth iteration, the set GLk of the large k-itemsets

is generated. In the first iteration, Cumulate scans the database to

add the ancestors of each item in a transaction to the transaction,

and count the support for each item in the extended database. For

GAPG, it first applies the PON method to number items at the

concept hierarchies, and then scans the database to count the

support and build a bit vector for each item in the database. The

support for the generalized items can be obtained by performing

logical OR operations on the bit vectors associated with some

specific items. Hence, in the first iteration, the two algorithms,

Cumulate and GAPG, takes a similar time to generate large items.
In the second iteration, Cumulate generates candidate

2-itemsets by combining every two large items and deletes any
candidate 2-itemset that consists of an item and its ancestor. For
these remaining candidate 2-itemsets, Cumulate adds the ancestors
of each item in a transaction, which are present in any of the
candidates, to the transaction and count the support for each
candidate 2-itemset by scanning each extended transaction.
However, the number of the candidate 2-itemsets to be counted
and the size of the extended database both are very large. It is very
time consuming to search such a large number of candidates and
scan the large extended database. For the GAPG algorithm, it
applies GAGC algorithm to construct a generalized association

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2001 843

Fig. 4. The association graphs for Example 4.1. (a) Level-1 association graph. (b) Level-2 association graph. (c) Level-3 association graph.

TABLE 4
The Trimmed Database of TDB3

graph. Suppose the average number of the ancestors of each large

item is p. GAGC algorithm at most needs to perform

jGL1j�jGL1j ÿ 1�

2
ÿ jGL1j � p

logical AND operations on the bit vectors to construct a general-
ized association graph and generate large 2-itemsets.

In the kth �k > 2� iteration, Cumulate generates candidate
k-itemsets by applying join-based algorithm [2]. The execution time

of Cumulate still depends on the number of generated candidate

itemsets and the amount of data that has to be scanned. For the
GAPG algorithm, it applies LGDE algorithm to generate large

k-itemsets. LGDE extends each large kÿ 1-itemset into k-itemsets

according to the generalized association graph and performs

logical AND operations. Suppose the average out-degree of each
item in the generalized association graph is q. LGDE performs

�kÿ 1� � jGLkÿ1j � q logical AND operations to find all large

k-itemsets. Hence, as the minimum support decreases, the number
of logical AND operations performed increases because the two

values jGLkÿ1j and q increase.
Since the number of the candidate itemsets to be counted and

the size of the extended database to be scanned by Cumulate are
much larger than the logical AND operations performed by GAPG,

and GAPG needs only one database scan but Cumulate needs to
scan the extended database in each iteration, GAPG always

outperforms Cumulate for various minimum supports which is

shown in Fig. 5a. Fig. 5b shows the relative execution time for
Cumulate and GAPG for various database sizes, in which the

minimum support is set to 1 percent.The GAPG algorithm
outperforms the Cumulate algorithm significantly and the perfor-

mance gap increases as the minimum support decreases or the
database size increases because the number of candidate itemsets

and the number of database scans increases for Cumulate.

5.2 Performance Evaluation for MLAPG Algorithm

Han and Fu [6] presented four similar algorithms to generate

multiple-level association patterns, in which the algorithm
ML_T2L1 is used to compare with our algorithm MLAPG.

The synthetic data generation method is the same as the
method described in [6]. The parameters used to generate synthetic

data are set as follows: The number of transactions is 100,000, the
number of items is 1,000, the number of potentially large itemsets

is 2,000, the average size of the transactions is 5, and the average
size of the potentially large itemsets is 10. Besides, the number of

the concept levels is set to 4 and the fanouts for levels 2, 3, and 4

are set to 5, 5, and 5, respectively. Hence, the number of nodes at
level-1 is 8.

Fig. 6 shows the relative execution time of MLAPG and
ML_T2L1 for various database sizes. In this experiment, we set

the minimum supports for levels 1, 2, 3, and 4 to 50 percent,

10 percent, 5 percent, and 2 percent, respectively, because in this

case, the algorithm ML_T2L1 has the best performance among the

four algorithms presented in [6].
For the concept level i, ML_T2L1 needs to generate level-i

candidate k-itemsets �k � 1� and scan the database to count the

support for each level-i candidate k-itemset in the kth iteration. If

there are n concept levels defined and Apriori [2] needs to perform

ri iterations to find all level-i large itemsets, then there are

Xn

i�1

ri

database scans needed to generate all large itemsets at each

concept level. However, MLAPG needs only n database scans to

generate all large itemsets at every concept level. Because MLAPG

and ML_T2L1 apply algorithms PAPG and Apriori, respectively,

for each concept level, we analyze the performance of the two

algorithms PAPG and Apriori.
Suppose in the kth iteration, the set Lk of the large k-itemsets is

generated. For the first iteration, PAPG and Apriori both need to

scan the database to count the support for each item. By the way,

PAPG builds the bit vector for each item.
In the second iteration, PAPG performs

jL1j�jL1 ÿ 1j�

2

logical AND operations on the bit vectors to construct an

association graph and generate large 2-itemsets. However, Apriori

needs to generate

jL1j�jL1 ÿ 1j�

2

844 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2001

Fig. 5. Relative Execution Time (Cumulate/GAPG).

Fig. 6. Relative Execution Time (ML_T2L1/MLAPG).

candidate 2-itemsets. After generating candidate 2-itemsets, a priori
scans the database to combine every two items in each transaction
and search these candidate 2-itemsets to count their supports.

In the kth iteration �k > 2�, PAPG applies the LGDE algorithm
to generate large k-itemsets. Suppose the average out-degree of
each item in the association graph is q. LGDE performs �kÿ 1� �
jLkÿ1j � q logical AND operations to find all large k-itemsets.
However, Apriori needs to generate candidate k-itemsets from
large kÿ 1-itemsets. After generating candidate k-itemsets, Apriori
scans the database to combine every k items in each transaction
and search these candidate k-itemsets to count their supports.
Hence, the execution time of Apriori depends on the number of
generated candidate itemsets and the amount of data that has to be
scanned.

Since for each concept level, the number of logical AND
operations performed by MLAPG is much less than the number of
the candidate itemsets to be counted and the sizes of the databases
to be scanned by ML_T2L1, ML_T2L1 takes much more time than
MLAPG for each concept level. Fig. 6 shows that MLAPG
outperforms ML_T2L1 significantly and the performance gap
increases as the size of the database increases because the number
of candidate itemsets and the number of database scans increase
for ML_T2L1 algorithm.

6 CONCLUSION AND FUTURE WORK

We propose a uniform graph-based approach to discover the three
types of association rules: primitive association rules, generalized
association rules, and multiple-level association rules. The
approach includes the five phases: numbering phase, large item
generation phase, association graph construction phase, associa-
tion pattern generation phase, and association rule generation
phase. We present the three algorithms: PAPG, GAPG, and
MLAPG to generate the three types of association patterns:
primitive association patterns, generalized association patterns,
and multiple-level association patterns.

In [11], the algorithm PAPG has been demonstrated to have a
better performance than other approaches [2], [7], [8], [9]. In this
paper, we compare GAPG and MLAPG to the previously known
algorithms, Cumulate [10] and ML_T2L1 [6], respectively. The
experimental results show that GAPG and MLAPG outperform
Cumulate and ML_T2L1, respectively. When the minimum
support decreases or the size of the database increases, the
performance gap increases because the number of candidate
itemsets generated by GAPG or MLAPG increases and the number
of database scans also increases.

For our approach, the related information may not fit in the
main memory when the size of the database is very large. In the
future, we shall consider this problem by reducing the memory
space requirement. Also, we shall apply our approach on different
applications, such as document retrieval and resource discovery in
the World Wide Web environment.

ACKNOWLEDGMENTS

This work was partially supported by the Republic of China
National Science Council under contract no. 89-2213-E-030-022.
The authors would like to thank the Societas Verrbi Divini for their
financial support.

REFERENCES

[1] Y. Aumann et al., ªBorders: An Efficient Algorithm for Association
Generation in Dynamic Databases,º J. Intelligent Information Systems,
pp. 61-73, 1999.

[2] R. Agrawal and R. Srikant, ªFast Algorithm for Mining Association Rules,º
Proc. Int'l Conf. Very Large Data Bases, pp. 487-499, 1994.

[3] R.J. Bayardo Jr., ªEfficiently Mining Long Patterns from Databases,º Proc.
ACM SIGMOD Int'l Conf. Management of Data, pp. 85-93, 1998.

[4] C.L. Carter and H.J. Hamilton., ªEfficient Attribute-Oriented Algorithms
for Knowledge Discovery from Large Databases,º IEEE Trans. Knowledge
and Data Eng., vol. 10, no. 2, pp. 193-208, Mar./Apr. 1998.

[5] R.J. Hilderman et al., ªData Mining in Large Databases Using Domain
Generalization Graphs,º J. Intelligent Information Systems, pp. 195-234, 1999.

[6] J. Han and Y. Fu, ªMining Multiple-Level Association Rules in Large
Databases,º IEEE Trans. Knowledge and Data Eng., pp. 798-805, 1999.

[7] M. Houtsma and A. Swami, ªSet-Oriented Mining for Association Rules in
Relational Databases,º Proc. Int'l Conf. Data Eng., pp. 25-33, 1995.

[8] H. Mannila et al., ªEfficient Algorithm for Discovering Association Rules,º
Proc. AAAI Workshop Knowledge Discovery in Databases, pp. 181-192, 1994.

[9] J.S. Park, M.S. Chen, and P.S. Yu, ªAn Effective Hash-Based Algorithm for
Mining Association Rules,º Proc. ACM SIGMOD, vol. 24, no. 2, 1995.

[10] R. Srikant and R. Agrawal, ªMining Generalized Association Rules,º Proc.
Int'l Conf. Very Large Data Bases, pp. 407-419, 1995.

[11] S.J. Yen and A.L.P. Chen, ªAn Efficient Approach to Discovery Knowledge
from Large Databases,º Proc. IEEE/ACM Int'l Conf. Parallel and Distributed
Information Systems, pp. 8-18, 1996.

. For more information on this or any computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2001 845

