

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 9, Issue 4, April 2020

ISSN (Online): 2409-4285 www.IJCSSE.org Page: 20-29

A Graph Based Approach to Prioritization of Software Functional
Requirements

Muhammad Yaseen1, Aida Mustapha2, Sidra Qureshi3, Abdullah Khan4 and Atta Ur Rahman5

1, 2 Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia.

3 SubHealth (Pvt.) Ltd, KPK, Peshawar, Paksitan
4 Department of Computer Science, Univeristy of Swat, Pakistan

5 Dapartment of Software Engineering, Comsats University Islamabad, Pakistan

yaseen_cse11@yahoo.com

ABSTRACT
Requirements prioritization plays important role for a successful
requirements implementation. Functional requirements, in
specific, represents the specification of behavior between the
inputs and outputs. They are prioritized based on the high-level
requirements of the system and subsystems functionalities, as
well as the type of software, expected users and the type of
system where the software is used. Nonetheless, prioritization of
functional requirements is very challenging considering a project
where the requirements are huge. In practice, prioritization of
functional requirements highly depends on stakeholders'
preference for giving priorities in features selection instead of
based on its internal structure and characteristics. This is because
the key information in functional requirements concern on
business processes, security, performance, data migration and
conversion. This paper proposes a graph-based approach for
prioritizing functional requirements using directed acyclic graphs
for relating requirements with one another on the basis of its
importance to overall project and how much it is required for
other requirements.
The proposed approach is then evaluated in terms of total time
estimation to project completion. The experimental results
showed that the graph-based approach is able to effectively
prioritize functional requirements with lower estimated project
completion time as compared to non-prioritized requirements.
The approach will help software vendors to deliver projects well
within the total project duration.

Keywords: Requirement Prioritization, Functional Require-

ments, Directed Graph.

1. INTRODUCTION

Requirement prioritization (RP) is an important activity
during requirements implementation phase in requirement
engineering
[1][2]. RP is about giving priority to requirements for
better time planning during implementation [3][4].
Without requirements prioritization, development phase
could be costly as it takes more efforts to complete all the
requirements within the specified timeframe [5][6].
Existing techniques from the literature have shown that

they are not scalable for large set of requirements
especially in dealing with dependency issues between the
functional requirements. When one requirement is
dependent on other requirements, prioritization on the
basis of internal structure of the implementation becomes
necessary [7][8]. There are three types of requirements; (1)
business requirements which deals with benefits and cost
issues of requirements along with time constraint, (2)
functional requirements which are necessary for software
system to develop, and (3) non-functional requirements
that are not directly demanded but are necessary for
ensuring quality product such as security and performance
issues.
Along this line, research on requirements prioritization
techniques depends on the type of requirement under study
whether at business level [9][10][11], non-functional level
[12][13][14] or at functional level [15][16][14].
Meanwhile, some of the techniques are able to cater for all
types of requirements [17][18]. In addition to the types of
requirements, requirements prioritization techniques also
depends on the size of the requirements data. For example,
AHP and cumulative voting are more suitable for a small
set of functional requirements but often fail on large
requirements due to high time consumption. From the
implementation point of view, requirements prioritization
has to consider how much a particular requirement
deserves to be assigned with high priority considering the
internal linking structure of the requirements especially
when the size of requirements is huge [19]. For instance,
certain requirements may have higher priority from the
user's side, but gets assigned a lower priority from the
developer's side. Therefore, there is need for a new
requirements prioritization approach that considers both
factors but is able to achieve high accuracy but at a lower
time computational efforts.
This paper is set to propose a graph-based approach for
prioritizing functional requirements by relating
requirements with one another on the basis of its
importance to the overall project and how much it is
required by other requirements. The remainder of this

21

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 9, Issue 4, April 2020
M. Yaseen et. al

paper proceeds as follows. Section II presents the related
work on requirements prioritization approach in
requirements engineering. Section III presents the
proposed graph-based functional requirements
prioritization algorithm. Section IV presents the evaluation
of the proposed approach, Section V discusses the results,
and finally Section VI concludes with some indication for
future work.

2. RELATED WORK

In requirements prioritization, cumulative voting is a
method where stakeholders are given 100 points and they
have to distribute these points on all requirements, similar
to a voting mechanism. The requirement with high votes
will be given more priority. However, the problem arise
when the requirements are too large or the number of
stakeholders are more than one. Another problem is
biasness, whereby a stakeholder may vote a requirement
that he or she likes, regardless of the importance of the
requirements. Another challenge with the voting approach
that the stakeholders may assign a zero to a particular
requirement when they do not consider the requirement
[20]. To address this issue, an improved statistical model
called CODA was presented to solve the interdependencies
arise among the requirements. In [21], requirements
prioritization is proposed to be developed on the basis of
benefits and cost of the requirement to the customers. In
other words, the requirements are prioritized on the basis
of how much efforts are needed and how much benefits
they provide. In dealing with the dependencies between
the requirements in terms of cost and its respective value,
the prioritization algorithm used the concept of binary tree,
whereby the requirements are first arranged in a sequence
and then a binary tree is formed based on the sequence.
This technique was compared to AHP but was found more
difficult in use considering the structure of the binary tree.
Nonetheless, this technique is very helpful due to the
smaller number of comparisons needed as compared to
AHP even though with increased number of requirements
In binary tree, prioritization was carried out based on
sorting mechanism to prioritize the requirements whether
in ascending or descending order [22]. The method is
although consuming less time as compare to AHP but it is
difficult to use. Also, the method is not automatic but user
have to give input and arrange requirements in binary tree.
In determining the priority of requirements at the business
level, the goals and criteria for the project and customer
should be identified as earlier as possible. Some goals are
fixed throughout the project while some goals can vary as
time progresses due to external environment effects such
as laws, stakeholders, diversity of customers, requirements
and business constraints or new market needs. Due to
hierarchical structure of an organization, different people

can have different opinions and suggestions about the
requirements. Along with stakeholder preferences it is also
necessary to have prioritization on the basis of
dependencies in requirements. DRANK an automated
algorithm is presented to do comparisons on the
importance of dependent requirements and compared the
results with AHP and other techniques. Experiments
proved that this technique is more efficient and takes less
time [23].
In [24], the research proposes two matrices; for
stakeholder goals' weight and criteria weight. This work is
similar to AHP in terms of using weights for goals, the
number of comparisons is a lot smaller as compared to
technique by AHP. To avoid the issue of biasness when
gathering priorities from individual stakeholders, group
decisions have also found helpful. After getting remarks
from individual stakeholder, a group of people will
analyze the requirements. At the end, on the basis of group
decision, all the requirements are prioritized accordingly
[25].
Intelligent-based solution was proposed by [26] for
prioritization of collected requirements from stakeholders
through the use of machine learning technique. First,
stakeholders were requested to prepare requirements.
Next, clustering was applied to group similar
requirements, then the Artificial Neural Network (ANN)
was applied for second layer of before AHP was applied at
the end for final comparisons. In another paper, clustering
technique using the K-means algorithm for prioritization
was proposed. Through clustering techniques, similar
objects or requirements can be combined together by
assigning them to whether low or high priority groups.
The case study were conducted on websites data of seven
airports where priority were assigned on the basis of
services in terms of passengers in airport. There were four
clusters representing the level of importance i.e. very
important, important, less important and not necessary [8].
[27] Proposed the use of Case-based Ranking (CBR),
which combines stakeholders' preferences with
requirement ordering approximations computed through
machine learning approaches. The two goals were
minimizing efforts during elicitation and to make partial
orders in attributes. The findings reported that by using
machine learning approach for requirements during
elicitation was able to reduce the efforts during
prioritization.
The literature also showed prioritization techniques
focusing on the importance of non-functional or quality
requirements prioritization. Assessing the importance of
quality requirements is normally carried out based on
quality survey. Standard quality requirements gets low
priority but if attention is made to this side software can be
made more successful. Quality criteria highly depends on
the customer opinions of a particular quality attribute.
Although many techniques like clustering are known to

22

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 9, Issue 4, April 2020
M. Yaseen et. al

solve problem with large requirements, they do not solve
problems related to internal structure of functional
requirements.

3. GRAPH BASED FUNCTIONAL

REQUIREMENTS PRIORITIZATION

This paper proposes a graph-based approach to
prioritization of functional requirements. The inputs are
the functional requirements collected from any sources
using appropriate elicitation technique and must be
specified in the form of Software Requirement
Specification (SRS). In this research, the functional
requirements are represented as alphabets R1, R2, . . . , Rn
enclosed in circles as nodes. Figure 1 shows notations used
for representing the requirements in a graph form.

Fig. 1. Notations for representing requirements

3.1 Using DAG For Relating Requirements

A graph G = (V;E) consists of a finite set of vertices V and
a finite set of edges E. Graphs are useful for the
representation of any kind of data in particular sequence.
This research uses directed acyclic graphs (DAG) rather
than cyclic graphs. A directed graph E is a set of ordered
pairs of vertices (u; v). The arrows in the graph indicates
the dependency of a requirement on another requirement.
The requirement generates arrow and points to another
requirement indicating that it is necessary or required for
another requirement.
For example, R1 R2 indicates that R1 is depended
on R2 or R2 is required for the completion of R1. Given
the requirements collected as shown in Figure 1, Figure 2
shows the graph representation of requirements through
directed acyclic graph.

Fig. 2. Representing requirements through directed acyclic graph

3.2 Assigning Priority to a Specific Requirement

In order to assign priority value to requirements certain
rules are defined. Following hypothesis are finalized for
defining the rules of prioritization.
Hypothesis 1 (H1): Requirement generates higher number
of arrows to other requirements is assigned with high
priority i.e. prioritizing key and important requirements on
the basis of how much it is required for other requirements
as a whole.
Note that highlighting the requirements that are more
important than others are extremely important because in a
large software development projects, the development of
requirements is running in parallel. This means
specification of many requirements are needed and
necessary for other requirements of the same or different
modules, hence delaying implementation if the
relationships between the requirements are not identified
and prioritized. Figure 3 shows the relationships among
the requirements.

Fig. 3. Relationships among requirements

As shown in Figure 3, R4 will get higher priority score
because three requirements are dependent on R4. This also
signifies the importance of R4, whereby it is high because
more requirements are depending on it. However, R4
depends on R6 for its completion, therefore R6 is assigned
with higher priority than R4. Note that although there is
only one requirement i.e. R4 is required for R6, R6 still
gains higher priority. This proves that for assigning
priority solely based on the number of dependencies is
insufficient. This leads to the second hypothesis as
follows.
Hypothesis 2 (H2): Requirement which is prerequisite for
the completion of other requirement is assigned more
priority. To demonstrate the hypothesis, Figure 4 shows
two independent chain of requirements. R5 is assigned
higher priority than R4 and R4 is assigned higher priority
than R2, which in turns is assigned higher priority than R1.
Similarly, R8 is assigned more priority than R7 and R6.
However, when the development process is about to
commence, which requirement R5 and R8 should be
assigned with higher priority? Figure 4 proves that if
modules or chains of requirements have same importance

R

1
R

4
R

3

R

5
R

6

R

2

R1 R

2

R

4

R3

R6

R R R4 R5

R3

23

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 9, Issue 4, April 2020
M. Yaseen et. al

than the requirements on the two chains will all receive the
same priority although both the chains have different
number of requirements. Similarly, R4 and R7 will gain
the same priority while R6 and R2 will gain the same
priority. Finally, the priority of both R6 and R2 will be
greater than R1 because R2 is needed for R1.

Fig. 4. Requirements needed for other requirements

Figure 5 shows the new representation of Figure 4 such as
R7 is depended on R4 as well as R8. Now R5 and R8 will
receive the same priority but the priority of R4 and R7 will
be not equal. R4 will be assigned higher priority than R7.
In this example, the requirement chain is not independent
anymore but are depending on each other.

Fig. 5. Requirements with additional prioritization information

Consider that a new requirement R9 is now added to the
existing chain of requirements as shown in Figure 6.
According to H2, priority of R8 and R5 should be equal.
However, between the two cases, R8 has two dependent
requirements, therefore should be assigned with additional
priority than R5 due to its importance.

Fig. 6. A new requirement added in

Given all the additional information on priority scores or
values among the requirements, Figure 7 shows the final
graph structure to this example. Comparing the priority of
R5 with R8, R5 now has more importance as compared to
R8 as it is needed for two requirements while R8 is only
required for R7. Therefore, it should be assigned higher
priority but R8 is required for R7 and R7 receives more
importance as compared to R1, R2, and R4 because it is
required for three requirements and R6 also receives more
importance as compare to these requirements. On this
chain, total arrows or dependent requirements are five
while in upper chain total arrows of importance are four.

This indicates that R8 is more important hence should
have higher priority as compared to R5. R8 will be
assigned to group having higher priority than R5.

Fig. 7. Final requirements structure

In summary, a priority should be given not only on the
basis of the number of chains in a set of requirements but
also from the perspective of the importance in overall
chain.

3.3 Adjacency Matrix

In this work, the functional requirements are represented
using the adjacency matrix representation, |V| * |V| matrix
A where, Aij=1 if arrow points from “i” towards “j” and it
is zero otherwise.
 Following [15] and [16], Table 1 shows the adjacency
matrix for ten requirements for Figure 7 where both rows
and columns represent every requirement against all other
requirements. Requirements on right side of the column
will points to other requirements on the above row for
which it is required. The value is 1 against that
requirement for which it is required while 0 for rest of
requirements.
This matrix shows requirements needed for other
requirements.

Table 1: Adjacency matrix

 R1 R2 R3 R4 R5 R6 R7 R8 R9 R11

R1 - 0 0 0 0 0 0 0 0 0
R2 1 - 0 0 0 0 0 0 0 0
R3 0 0 - 0 0 0 0 0 0 0
R4 0 1 0 - 0 0 0 0 0 0
R5 0 0 0 1 - 0 0 0 1 0

R6 1 0 0 0 0 - 0 0 0 0
R7 0 0 1 0 0 1 - 0 0 1

R8 0 0 0 0 0 0 1 - 0 0

R9 0 0 0 0 0 0 0 0 - 0

R11 0 0 0 0 0 0 0 0 0 -

R1 R2 R4 R5

R6 R7

R8

R8

R8 R1

1

R3

R4
R7

R8

R5

R1 R2 R4 R5

R6 R7 R8 R9

R1 R2 R4 R5

R6 R7 R8

24

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 9, Issue 4, April 2020
M. Yaseen et. al

3.4 Priority Value Table

Given the adjacency matrix presented in Table 1, a
prioritized adjacency matrix is produced as shown in Table
2. Based on hypothesis, we will put 1 not only for those
requirements that are directly needed for other
requirements but will put 1 against all other requirements
which directly or indirectly need it and where the
implementation of other requirements against this
particular requirement become impossible. Thus,
Following H1, this matrix maps the priority of
requirements calculated not only on the basis of
importance of one particular requirement but rather
aggregated from all requirements within the same chain of
requirement.

Table 2: Prioritized adjacency matrix

 R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R11 sum

R1 - - - - - - - - - - 0

R2 1 - - - - - - - - - 1

R3 - - - - - - - - - - 0

R4 1 1 - - - - - - - - 2

R5 - 1 - 1 1 - - - - - 3

R6 1 - - - - - - - - - 1

R7 1 - 1 - - 1 - - - 1 4

R8 1 - 1 - - 1 1 - - 1 5

R9 - - - - - - - - - - 0

R11 - - - - - - - - - - 0

Next, a priority value table will produced as shown in
Table 3 which aggregates the priority values from the
entire chain of requirements based on H2.

Table 3: Priority value table

R1 R2 R3 R4 R5 R6 R7 R8 R9 R11
1 2 2 3 4 2 3 4 3 0

3.5 Requirement Prioritization Algorithm

The algorithm for graph-based functional requirements
prioritization proposed in this work has the following
steps:
Step 1: Count number of requirements of each and every
module (chain of requirements). Say max is number of
maximum requirements of any chain i.e. if we have two
modules, one contain 5 requirements and other contain 8
requirements than max will be assigned with value of 8.
This value will be assigned to high priority requirement of
every chain.
Step 2: Start prioritizing requirements of the first module
(chain of requirements).
Step 3: Assign the high priority requirement in module
with value of max.
Similarly the second most priority requirement in this
chain will be assign with value of one less i.e. max-1.

Continue the process by decrementing max value till the
first or less priority requirement is assigned with lowest
possible value.
Step 4: Continue the same process for 2nd module and all
other modules, by assigning max value to the high priority
requirement inside chain. Continue the same process for
all requirements.
Step 5: Make groups of similar value requirements from
all modules and keep in descending order of priority.
Step 6: Inside each group, further prioritize requirements
in descending order on the basis of how much they are
important. I.e. how much they are required for other
requirements.
In summary, G1, R8 will get higher priority as compared
to R5 because the equivalent importance of R8 is 5 while
that of R5 is 3. Likewise, the priority of R4 will be higher
than R9 in G2. Similarly, in G3, the priority of R3 will be
lower than R2 and R6 but priority of both R2 and R6 will
be the same as shown in Table 3.

4. EVALUATION

 In order to evaluate the performance of the proposed
graph-based algorithm for the functional requirements
prioritization, the algorithm is applied on twenty seven
functional requirements collected from mobile sales shop.
The requirements were elicitated using the interview
elicitation technique. The collected user requirements are
shown in Table 4. The column “Required for" represents
requirements which are required or pre-requisite for a
specific requirement in the “Functional Requirement"
column.

Table 4: Functional requirements for mobile shop

Functional Requirement Notation Required for
Sale main R1 R3, R25
Customer R2 R1, R12 ,

24,25
Sales detail R3
Product R4 R3, R7, R11,

R13
Category R5 R4
Company R6 R4
Purchase detail R7
Purchase main R8 R7, R26
Supplier R9 R8, R10, R26,

R27
Purchase return main R10 R11, R26
Purchase return detail R11
Sale return main R12 R13, R25
Sale return detail R13
Bank information R14 R15, R16
Bank debit R15
Bank credit R16
Employee R17 R21, R22,

R23, R18
Sale man R18 R1, R12,
Area R19 R1, R12,

25

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 9, Issue 4, April 2020
M. Yaseen et. al

Expenses module R20
Employee Leave request R21
Employee salary structure R22
Employee salary generation R23
Customer payment R24
Customer debit R25
Supplier debit R26
Supplier payment R27

Table 5: Requirements priority table

Functional Requirement Chain
priority

Equivalent
importance

Sale main 2 2
Customer 3 8
Sales detail 1 0
Product 2 4
Category 3 5
Company 3 5
Purchase detail 1 0
Purchase main 2 2
Supplier 3 8
Purchase return main 2 2
Purchase return detail 1 0
Sale return main 2 2
Sale return detail 1 0
Bank information 2 2
Bank debit 3 0
Bank credit 3 0
Employee 3 10
Sale man 3 7
Area 3 7
Expenses module 3 0
Employee Leave request 2 0
Employee salary structure 2 0
Employee salary generation 2 0
Customer payment 2 0
Customer debit 1 0
Supplier debit 1 0
Supplier payment 2 0

Figure 8 shows the graphical representation of
requirements. Next, the chain priority and equivalent
importance are calculated for giving priority to each
requirement.

Table 5 shows the chain priority value and equivalent
importance value. In table 6, requirements are shown in
descending order of priority with G1 assigns the highest
priority and G3 the lowest. In G1, R17 is assigned the
highest priority while R16 is assigned the lowest priority
value. Similarly in G2, R4 gets high priority while R27
gets the lowest. In G3, the highest priority is for R3 and
the lowest is for R26. Overall the highest priority
requirement is R17 and lowest is R26.
Implementing requirements that have been prioritized is
crucial in order to manage requirements especially in cases
where requirements are implemented in parallel by
different teams, and each requirement is waiting for the
pre-requisite requirements with higher or equivalent
priority importance.

5. RESULTS AND DISCUSSION

Let the requirements to be developed by the four team
members; A, B, C and D working in parallel. Given the
information on effort estimation produced by the graph-
based approach, Table 6 shows the how the functional
requirements are grouped and prioritized so the
requirements can be distributed among parallel teams and
integrated once they are completed.

Table 6: Priority groups

Functional
Requirements

Group Functional
Requirements

Group

R17 G1 R10 G2
R2 G1 R12 G2
R9 G1 R21 G2
R5 G1 R22 G2
R6 G1 R23 G2

R18 G1 R24 G2
R19 G1 R27 G2
R1 G1 R3 G3

R15 G1 R7 G3
R16 G1 R11 G3
R4 G2 R13 G3
R8 G2 R25 G3

R14 G2 R26 G3

26

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 9, Issue 4, April 2020
M. Yaseen et. al

Fig. 8. Graphical representation of requirements for mobile shop

The effort estimation values as shown in Table 7 gives an
approximation of how much time a particular requirement will
take during an implementation. Suppose all the functional
requirements are classified in three categories in accordance
with efforts i.e. High, Average, and Low. The categories
resulted from the graph-based requirement prioritization
algorithm are made after calculation on the basis of functional
point analysis and use cases. Low effort requirements takes 8
hours on average as calculated. Average effort requirements
take 16 hours while and high effort requirements take 30
hours. Table 7 shows all the requirements with how much

efforts required to implement them. The three different cases
when distributing requirements are described as follows.

Table 7: Efforts calculated for requirements

Functional
Requirements

Efforts Functional
Requirements

Efforts

R17 Low R10 Low
R2 Low R12 High
R9 Low R21 Low
R5 Low R22 Low
R6 Low R23 Average

R18 Low R24 Average

R1 R2

R6
Sale

R4 R3

R5

R7

Purchase
R17

R8 R9

R18

R10
R19

Purchase return

R11

R20

R2
1

R12

Sale return
R2
2

R13
R23

Purchase account R24

Sale account

R25

R2
6 R15

R14 R2
7

R16

27

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 9, Issue 4, April 2020
M. Yaseen et. al

R19 Low R27 Average
R1 Low R3 High

R15 Average R7 High
R16 Average R11 High
R4 Low R13 High
R8 Low R25 Average

R14 Low R26 Average

CASE 1 (WORST CASE): In this case, requirements are
arranged in a way as shown in Table 8. The requirements in
parallel are depended on each other e.g. R1, R3, R24, R25,
R12, R13 are depending on R2, R4 which are implementing
by C. In this case, R2 and R4 are assigned low priority. It can
see that R2 and R4 also depended on R5 and R6, which means
R5 and R6 both are both required for the completion of R2
and R4. Nonetheless, both requirements are assigned with low
priority despite its high importance. The worst case is
considered as worst case as the required requirements of C and
D are assigned low priority.

Table 8: Distribution of requirements in Case 1

A B C D

R18 R8 R17 R14
R1 R7 R20 R15
R3 R27 R21 R16

R24 R26 R22 R9
R25 R10 R23 R19
R12 R11 R4 R5
R13 R2 R6

CASE2: (AVERAGE CASE): In this case, requirements are
arranged in a way as shown in Table 9. R5 and R6 of D are
assigned with top priority but R2 and R4 are still assigned
with low priority.

Table 9: Distribution of requirements in Case 2

A B C D

R18 R8 R17 R5
R1 R7 R20 R6
R3 R27 R21 R14

R24 R26 R22 R15
R25 R10 R23 R16
R12 R11 R4 R9
R13 R2 R19

CASE3: (BEST CASE): In this case, requirements are
arranged in a way as shown in Table 10. R2, R4, R5 and R6
all are assigned with high priority values and bring to the top
in the table.

Table 10: Distribution of requirements in Case 3

A B C D

R18 R8 R4 R5
R1 R7 R2 R6
R3 R27 R17 R14

R24 R26 R20 R15
R25 R10 R21 R16
R12 R11 R22 R9
R13 R23 R19

5.1 Time Efforts for All Requirements

In calculating the time effort of all the requirements, the total
estimated time for requirements of A, B, C and D are
calculated without considering any delay.
Total time estimation for A = 8 + 8 + 30 + 16 + 16 + 8 + 30 =
108 hours.
Total time estimation for B = 8 + 30 + 16 + 16 + 8 + 30 = 100
hours. Total time estimation for C = 8 + 16 + 8 + 8 + 16 + 8 +
8 = 72 hours. Total time estimation for D = 8 + 16 + 16 + 8 +
8 + 8 + 8 = 72 hours.

5.2 Total time estimation of project completion in case
01

As requirements of A are dependent on R2 and R4, they are
then dependent on R5 and R6. This indicates that R5 and R6
should be implemented first. In Case 1, the priority of these
requirements are very low with the total development time of
D to completion is 72 hours. This means R2 and R4 have to
wait for 72 hours in waiting for C to be implemented. R17,
R20, R21, R22 and R23 will be implemented during this
duration and will take a total of 56 hours (8 + 16 + 8 + 8 + 16
= 56). Now instead of 72, R4 and R2 will now wait for 16
hours (72 - 56 = 16). Total time completion of C will become
88 hours (72 + 16 = 88). Now after 80 hours, A can start
implementing requirements.
As total time estimation in parallel project development will
be equal to maximum, the entire team has to prioritize the
cases so it will be near to total. For example, the total time of
A is 108 hours but due to delay and finishing time of C, the
total estimation time will now become 196 hours (108 + 88 =
196). This is similar to the case of B but total overall delay
will be 80 hours.

5.3 Total time estimation of project completion in case
02

In this case, R5 and R6 which are pre-requisites for R2 and R4
will be assigned to D and will be given higher priority as
shown in the Table 9. Now, the waiting time will be reduced
to 16 hours, which is equivalent to the total time of
implementation of R5 and R6. However, this time will not
cause any delay for any requirement for C because
implementation of requirements for C will take 56 hours.
Nonetheless, the total time is equal to 72 hours. A will wait for
72 hours as all requirements are depending on R2 and R4, so
total estimation time of the delivery will be equal to 180 hours
(108 + 72 = 180). There is a difference of 16 hours in Case 1
and Case 2 showing that Case 2 is better than Case 1.

5.4 Total time estimation of project completion in case
03

In this case, R2, R4, R5 and R6 all are assigned high priority
and brought to the top as shown in Table 10. R2 and R4 will
wait for only 16 hours to D. Similarly, A will wait for 16
hours to C and the total waiting time will reach 32 hours. Total
time estimation will be now equal to 140 hours (108+32 =
140). Now by comparing the best and worst case, there is a

28

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 9, Issue 4, April 2020
M. Yaseen et. al

difference of 56 working hours. Since in day there are 8
working hours, the difference found is nearly equal to 7 days.
The results of all the cases proved that the proposed graph-
based prioritization of functional requirements is able to
reduce the total time estimation for any software project.

Figure 9 shows that out of these three cases, case 03 is
considered to be best because in case 03, the overall
estimation time of project is reduced. This shows the
importance of prioritized requirements in parallel
development.

Fig. 9. Time estimation for all three cases

6. CONCLUSION

A new graph-based approach is presented for prioritizing
functional requirements in requirement engineering on
the basis of how much they are required for other
requirements by marking them as key requirements. The
proposed graph-based approach has solved dependency
issues of one requirement with other, which are not
addressed by other techniques. The proposed technique
will not only prioritize requirements that are required for
other requirements but will also prioritize them on the
basis of how much important these requirements are in
terms of how much they are needed for other
requirements. The proposed approach was evaluated
through a case study. The results concluded that
requirements that are prioritized take lesser time to
complete the project as compared to those requirements
that are not prioritized. The graph-based approach will
help software vendors in better implementation of
requirements that will help them to deliver projects
within the time frame. In future, the approach will be
tested on big industrial projects like the Enterprise
Resource Planning (ERP) systems.

REFERENCES

[1] M. Yaseen, A. Mustapha, and N. Ibrahim, ‘Prioritization
of Software Functional Requirements : Spanning Tree
based Approach’, vol. 10, no. 7, pp. 489–497, 2019.

[2] M. Yaseen, A. Mustapha, and N. Ibrahim, ‘An
Approach for Managing Large-Sized Software
Requirements During Prioritization’, 2018 IEEE Conf.
Open Syst., pp. 98–103, 2019.

[3] N. Misaghian and H. Motameni, ‘An approach for
requirements prioritization based on tensor
decomposition’, Requir. Eng., 2016.

[4] M. Yaseen, N. Ibrahim, and A. Mustapha,
‘Requirements Prioritization and using Iteration Model
for Successful Implementation of Requirements’, Int. J.
Adv. Comput. Sci. Appl., vol. 10, no. 1, pp. 121–127,
2019.

[5] M. Yaseen, A. Mustapha, N. Ibrahim, and U. Farooq,
‘International Journal of Advanced Trends in Computer
Science and Engineering Effective Requirement
Elicitation Process using Developed Open Source
Software Systems’, vol. 9, no. 1, 2020.

[6] M. Ramzan and M. A. Jaffar, ‘Value Based Fuzzy
Requirement Prioritization and its Evaluation
Framework’, pp. 1464–1468, 2009.

[7] M. Yaseen, I. Journal, M. Yaseen, A. Mustapha, M. A.
Salamat, and N. Ibrahim, ‘International Journal of
Advanced Trends in Computer Science and Engineering
Available Online at
http://www.warse.org/IJATCSE/static/pdf/file/ijatcse09
912020.pdf Prioritization of Software Functional

0

50

100

150

200

250

CASE 01 CASE 02 CASE 03

Time Estimation

Time Estimation

29

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 9, Issue 4, April 2020
M. Yaseen et. al

Requirements : A Novel Approach using AHP and
Spanning Tree’, vol. 9, no. 1, 2020.

[8] N. Setiani and T. Dirgahayu, ‘Clustering Technique for
Information Requirement Prioritization in Specific
CMSs’, 2016.

[9] Z. Ali and M. Yaseen, ‘Critical Challenges for
Requirement Implementation in Global Software
Development : A Systematic Literature Review Protocol
with Preliminary Results’, vol. 182, no. 48, pp. 17–23,
2019.

[10] M. Yaseen, Z. Ali, and M. Humayoun, ‘Requirements
Management Model (RMM): A Proposed Model for
Successful Delivery of Software Projects’, Int. J.
Comput. Appl., vol. 178, no. 17, pp. 32–36, 2019.

[11] A. U. Rahman, M. Yaseen, and Z. Ali, ‘Identification of
Practices for Proper Implementation of Requirements in
Global Software Development : A Systematic Literature
Review Protocol’, vol. 177, no. 13, pp. 53–58, 2019.

[12] M. Yaseen and M. A. Awan, ‘Practices for Effective
Software Project Management in Global Software
Development : A Systematic Literature Review’, vol.
177, no. 36, pp. 1–6, 2020.

[13] Z. Ali, M. Yaseen, and S. Ahmed, ‘Effective
communication as critical success factor during
requirement elicitation in global software development’,
vol. 8, no. 03, pp. 108–115, 2019.

[14] M. Yaseen and Z. Ali, ‘Success Factors during
Requirements Implementation in Global Software
Development : A Systematic Literature Review’, vol. 8,
no. 3, pp. 56–68, 2019.

[15] M. Yaseen and Z. Ali, ‘Practices for Effective
Communication during Requirements Elicitation in
Global Software Development’, vol. 8, no. 06, pp. 240–
245, 2019.

[16] M. Yaseen, ‘Effective Negotiations Practices in Global
Software Development : A Systematic Literature
Review’, vol. 9, no. 1, pp. 87–91, 2020.

[17] M. Yaseen, S. Ali, . A., and N. Ullah, ‘An Improved
Framework for Requirement Implementation in the
context of Global Software Development: A Systematic
Literature Review Protocol’, Int. J. Database Theory
Appl., vol. 9, no. 6, pp. 161–170, 2016.

[18] M. Yaseen and U. Farooq, ‘Requirement Elicitation
Model (REM) in the Context of Global Software
Development’, Glob. J. Comput. Sci. Technol., vol. 1,
no. 2, pp. 1–6, 2018.

[19] M. Yaseen, A. Mustapha, and N. Ibrahim,
‘MINIMIZING INTER-DEPENDENCY ISSUES OF
REQUIREMENTS IN PARALLEL DEVELOPING
SOFTWARE PROJECTS WITH AHP’, vol. 8, no. Viii,
2019.

[20] P. Chatzipetrou, L. Angelis, P. Roveg??rd, and C.
Wohlin, ‘Prioritization of issues and requirements by
cumulative voting: A compositional data analysis
framework’, Proc. - 36th EUROMICRO Conf. Softw.
Eng. Adv. Appl. SEAA 2010, pp. 361–370, 2010.

[21] M. Daneva and A. Herrmann, ‘Requirements
Prioritization Based on Benefit and Cost Prediction : A
Method Classification Framework’, pp. 240–247, 2008.

[22] R. Beg, Q. Abbas, and R. P. Verma, ‘An Approach for
Requirement Prioritization using B-Tree’, pp. 1216–
1221, 2008.

[23] F. Shao, R. Peng, H. Lai, and B. Wang, ‘The Journal of
Systems and Software DRank : A semi-automated
requirements prioritization method based on preferences
and dependencies’, vol. 126, pp. 141–156, 2017.

[24] M. A. A. Elsood and H. A. Hefny, ‘A Goal-Based
Technique for Requirements Prioritization’, 2014.

[25] A. Felfernig and G. Ninaus, ‘Group Recommendation
Algorithms for Requirements Prioritization’, pp. 59–62,
2012.

[26] M. I. Babar, M. Ghazali, D. N. A. Jawawi, S. M.
Shamsuddin, and N. Ibrahim, ‘Knowledge-Based
Systems PHandler : An expert system for a scalable
software requirements prioritization process’,
KNOWLEDGE-BASED Syst., 2015.

[27] A. Perini, A. Susi, and P. Avesani, ‘A Machine
Learning Approach to Software Requirements
Prioritization’, vol. 39, no. 4, pp. 445–461, 2013.

	3.1 Using DAG For Relating Requirements
	3.2 Assigning Priority to a Specific Requirement
	3.3 Adjacency Matrix
	3.4 Priority Value Table
	3.5 Requirement Prioritization Algorithm

