
A GRAPH BASED BUNDLE ADJUSTMENT FOR INS-CAMERA CALIBRATION

D. Bendera,b, M. Schikoraa,b, J. Sturmb, D. Cremersb

a Department Sensor Data and Information Fusion, Fraunhofer FKIE, Wachtberg, Germany

(daniel.bender, marek.schikora)@fkie.fraunhofer.de
b Computer Vision Group, Technical University of Munich, Garching, Germany

(sturmju, cremers)@in.tum.de

KEY WORDS: GPS/INS, Camera, Non-Metric, Calibration, Georeferencing, Aerial, Bundle Adjustment, Graph Optimization

ABSTRACT:

In this paper, we present a graph based approach for performing the system calibration of a sensor suite containing a fixed mounted

camera and an inertial navigation system. The aim of the presented work is to obtain accurate direct georeferencing of camera images

collected with small unmanned aerial systems. Prerequisite for using the pose measurements from the inertial navigation system as

exterior orientation for the camera is the knowledge of the static offsets between these devices. Furthermore, the intrinsic parameters

of the camera obtained in a laboratory tend to deviate slightly from the values during flights. This induces an in-flight calibration of the

intrinsic camera parameters in addition to the mounting offsets between the two devices. The optimization of these values can be done

by introducing them as parameters into a bundle adjustment process. We show how to solve this by exploiting a graph optimization

framework, which is designed for the least square optimization of general error functions.

1 INTRODUCTION

There is ongoing research regarding the photogrammetric usage

of small unmanned aerial systems (UAS) with payload capabil-

ities of a few kilograms. These platforms are usually equipped

with a GPS corrected inertial navigation system (INS) and a cam-

era (Eisenbeiss, 2008). The exterior orientations of the aerial im-

ages are determinable by the usage of a bundle adjustment (BA)

software. Prerequisites are a sufficient number of ground control

points (GCP) and high image overlaps between adjacent flight

strips. The observations of the GCPs have to be identified in the

images as input for the BA procedure. This makes clear that the

BA is a time consuming post processing step, which has to be

performed after the measurement flight is completed.

In contrast to this development, time-critical surveillance and res-

cue tasks have a high demand for a more flexible flight plan-

ning and the direct determination of object positions (Schikora

et al., 2010). Despite the great development in visual navigation

(Engel et al., 2012), the usage of a high-precision INS leads to

the most accurate realtime pose information in outdoor scenar-

ios. The utilization of the measured positions and attitudes for

the exterior camera orientations eliminates the need for the time

consuming post processing in form of a BA to obtain the cam-

era poses. Required is the knowledge of the static coordinate

system transformation between the rigid mounted sensors. More

precisely the position offset (lever-arm) and the angle misalign-

ments (boresight) have to be estimated (Figure 1). This is known

as INS-camera calibration. The most accurate calibration proce-

dures estimate these parameters with an extended Kalman filter

(Weiss and Achtelik, 2012) or integrate them as unknowns in a

BA (Pinto and Forlani, 2002).

Presently, no freely available BA package is able to perform an

INS-camera calibration and the adaptation of the BA implemen-

tations is an error prone and time consuming task. In contrast to

this, the general graph optimization framework (g2o) is directly

designed for the least square optimization of general error func-

tions (Kuemmerle and Grisetti, 2011). The problem has to be

embedded in a graph by representing the parameters to be opti-

mized as vertices and the observations between them as edges.

Further requirements are the definition of error functions for the

Figure 1: The calibration of the static coordinate system offsets

between a camera and an INS enables the direct georeferencing

of images collected with small UAS.

observations and good initial values for the state variables. The

numerical solution of the problem can be computed with an im-

plementation of the Levenberg-Marquardt algorithm.

In this paper, we present a graph based BA approach for the INS-

camera calibration. The paper starts with an overview on related

research areas. It follows a description of the system setup which

is focused on in this work. After the general definition of the

problem, it is restated into a graph structure and the design of the

error functions is described. Finally the approach is analyzed in

numerical studies and the achieved results are discussed.

2 RELATED WORK

A related process of the INS-camera calibration is the so called

hand-eye calibration. Given a camera mounted on a robot arm,

the rigid-body transformation between the coordinate systems of

these devices is estimated. As a result, measurements from the

acquired images can be transformed in the robot arm coordinate

system. This is necessary to interact with objects recognized

and located in the images. The calibration is done by estimating

the rigid body transformation from corresponding poses. A di-

rect solution can be computed by firstly optimizing the rotational

part and solving the equations for the translation afterwards (Tsai

and Lenz, 1989). In contrast, it was shown that the nonlinear
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optimization for rotation and translation at the same time leads

to more robust results in case of noise and measurement errors

(Horaud and Dornaika, 1995). The motion of the robot arm is

typically obtained from encoders, whereas nearly all approaches

determine the camera movement by observing a calibration pat-

tern. In contrast to that, the camera poses can be determined by

a structure-from-motion approach. As a drawback, the camera

movement can only be estimated up to a similarity transforma-

tion. This leads to an unknown scale, which as well has to be

estimated during the calibration process. The obtained results are

not as accurate as the calibrations from methods using camera

calibration patterns (Andreff et al., 2001). However the approach

has the advantage of being feasible without any additional equip-

ment and therefore allows a recalibration during operation.

The algorithms developed for the hand-eye calibration had a big

influence on another related problem: The calibration between

an inertial measurement unit (IMU) and a camera. These de-

vices can be combined to a vision-aided inertial navigation sys-

tem. Measurements of the IMU in form of rotational velocities

and linear accelerations can be integrated to determine the posi-

tions, velocities and attitudes of the device. During this process

small estimation errors are summed up over time, which should

be corrected by an aided sensor. Typically this is achieved by

exploiting GPS measurements, which is not possible in space,

underwater or indoor applications. An alternative is the usage

of a camera in addition to the IMU. Prerequisite for exploiting

camera based corrections is the knowledge of the transformation

between the two devices. These offsets can be computed with

modified hand-eye calibration algorithms (Lobo and Dias, 2007).

The fact that consecutive measurements from shaft encoders are

uncorrelated in contrast to data from an IMU results in different

noise characteristics. Considering these time correlations leads

to a higher accuracy of the estimations (Mirzaei and Roumelio-

tis, 2008). The authors utilize an extended Kalman filter (EKF)

for estimating the pose transformation, which facilitates the com-

putation of the covariance for the estimated parameters as an in-

dicator of the achieved accuracy. In (Weiss and Achtelik, 2012)

the authors describe an approach for navigating an UAS based on

measurements from an IMU and a camera. By not using a cali-

bration pattern, they realize the online estimation of the mounting

parameters between these sensors with an EKF formulation.

To calibrate the transformation between a GPS-aided INS and a

camera, the algorithms for the IMU-camera calibration can be

used. This is based on the fact that an IMU is a fundamental

component of an INS. The only prerequisite for applying an IMU-

camera calibration is that the raw measurements of the IMU are

accessible. However this is not the predominantly used method

to perform a system calibration between an INS and a camera.

The commercially available INS provide an integrated filtering

process, exploiting the GPS measurements to correct the IMU

estimations. In conjunction with GPS correction signals from

ground control stations an INS accuracy in the range of a few

centimeters for the position and a few hundredths of a degree

for the attitude is achievable. Thus the INS provides a reliable

stand alone source describing its own movement. This leads to

the estimation of the rigid-body transformation between the INS

and the camera with methods similar to the hand-eye calibration.

In a first step the camera movement is calculated with a struc-

ture from motion (SFM) approach and refined in a BA procedure.

The observations of ground control points are used to scale the

3D-model to real world coordinates. In a second step, the trans-

formation between the two devices is estimated by relating these

absolute camera poses to time synchronized measurements from

the INS. This widely used approach is known as two step pro-

cedure (Cramer et al., 2000). The advantage is that each bundle

adjustment package can be used without modifications. On the

other hand, the integration of the mounting parameters as vari-

ables to optimize in the BA is possible. This approach is known

as single-step calibration and induces a simpler calibration of the

mounting offsets due to more flexible flight courses (Pinto and

Forlani, 2002). The simultaneous optimization of the rigid-body

transformation between the devices and the intrinsic camera pa-

rameters should consider correlations between these values. An

analysis of the flight pattern influence on the calibration parame-

ters is discussed in (Kersting et al., 2011). The authors also state

that at least one GCP is needed for the estimation of the vertical

lever-arm and that the addition of multiple GCP does not improve

the estimation results identifiable. The integrated sensor orienta-

tion has been examined and discussed widely within the OEEPE

test (Heipke et al., 2002). They conclude that it is a serious alter-

native for many applications, even though it does not achieve the

accuracies of the classical bundle adjustment.

The investigations for the INS-camera calibration performed in

the last decades are targeted at manned aircrafts equipped with

high-precision INS and aerial cameras at high altitude. In con-

trast to this our goal is the direct georeferencing with small UAS.

In this work, we investigate how the calibration process can be

performed with an open source toolkit for general graph opti-

mization to bypass the need for a commercial BA package.

3 SYSTEM SETUP

The objective of this research is the estimation of the rigid body

transformation between a camera and a high-precision INS. The

latter is based on fiber optic gyroscopes, which have a stability

up to some hundredths of a degree per hour. In combination with

real time kinematic enhanced GPS measurements very accurate

pose information are generated. An absolute accuracy of ±2cm

in the position and 0.01◦ for the attitude angles are achieved in

our system setup. This pose information shall be exploited for

the determination of the exterior orientation of an optical cam-

era. Precondition for this are a rigid mounting and a hardware

synchronization between the two devices. If these conditions are

fulfilled, the mounting offsets (Figure 2) can be estimated by pro-

cessing data from a measurement flight.

XI

YI

ZI

XC

YC

ZC

xL

yL
zLθB

φB

ψB

Figure 2: The rigid mounting of a camera and an INS induces

static offsets between the underlying coordinate systems denoted

by C and I. More precisely position offsets xL, yL and zL as well

as angle misalignments, here visualized in form of Euler angles

yaw = ψB, pitch = θB and roll = φB, arise. These have to be

determined in an INS-camera calibration.

Nearly every outdoor application utilizing a camera mounted on

an aerial platform induces that the camera focus has been set to

infinity. Furthermore, wide angle lenses are frequently the right

choice for a given task. The minimal distance for a focused im-

age and the big opening angle lead to an impractical size for the
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calibration pattern and make standard camera calibration proce-

dures laborious. An easier estimation of these parameters can

be achieved by performing an in-flight calibration, which uses

a structure from motion (SFM) approach on the images acquired

during a flight. Another advantage of this is that the intrinsic cam-

era parameters are estimated during real conditions, which leads

to slightly different values in comparison to a laboratory calibra-

tion due to climate and temperature changes (Jacobsen, 2001).

The INS measures the attitude as Euler angles, namely yaw, pitch

and roll, with regard to local navigation systems. The latter are

local East, North, Up (ENU) coordinate systems, each with the

origin in the current device position described through a GPS

measurement in form of latitude, longitude and altitude (Figure

3). This implies tiny differences between the orientations of these

coordinate systems and thus also in the measured attitude for

successive timestamps. Our INS-camera calibration will be per-

formed in an area of only a few hundred square meters, which

allows to neglect these differences. Besides, we perform the INS-

camera calibration in an ENU coordinate system with the origin

at a ground control point in the middle of the observed area. This

prevents the need for earth curvature corrections which occur in

mapping frames like the universal transverse mercator (UTM) co-

ordinate system. To obtain the transformation from the position

information of the INS given in latitude, longitude and altitude to

ENU coordinates the earth-centered, earth-fixed coordinate sys-

tem (Figure 3) is used as an intermediate step.

Figure 3: Both, the navigation systems of the INS and the world

reference frame are based on Eeast, North, Up (ENU) coordinate

systems (green). They are local Cartesian coordinate systems

with the origin tangential to the earth ellipsoid. Further we use

the global earth-centered, earth fixed (ECEF) coordinate system

(blue), to convert between ENU-coordinates and GPS measure-

ments taken in latitude (ϕ) and longitude (λ) as polar coordinates

(orange).

4 DEFINITIONS

We define the world reference frame W as ENU coordinate sys-

tem with the origin being approximately in the middle of our cal-

ibration area. The rigid body motion gCiW
describes the camera

pose at the middle exposure time ti, i = 1, 2, ..., n with regard

to the world frame W. Likewise specifies gIiW
the corresponding

configuration of the INS as rigid body motion.

In general, a rigid body motion g ∈ SE(3) describes how the

points of a rigid object change over time. Instead of consider-

ing the continuous path of the movement, we bring into focus

the mapping between the initial and the final configuration of the

rigid body motion. This movement can be described by a rota-

tion matrix R ∈ SO(3) and a translation vector t ∈ R
3. Conse-

quently the rigid body displacement G of a 3D point p ∈ R
3 can

be performed by

G : SE(3) × R
3 → R

3
, G(g,p) = Rp + t. (1)

The representation of the rotational part in form of the overde-

termined rotation matrix R is not suitable for the optimization

performed in this work. A minimal representation is required.

Being aware of the singularities which can occur by using Eu-

ler angles, we represent a rigid body motion by twist coordinates

ξ = (v,ω)⊤ ∈ R
6. Thereby, v ∈ R

3 describes the translational

and the skew-symmetric matrix ω̂ ∈ so(3) the rotational part

of the full motion. The rotation angle in radians is encoded as

||ω||2. An element ξ̂ ∈ se(3) can be written in its homogeneous

representation as

ξ̂ =

(

ω̂ v

0 0

)

. (2)

Given ξ̂ ∈ se(3), we get a rigid body motion by the matrix expo-

nential, which is defined as the always converging power series:

exp : se(3) → SE(3), exp(ξ̂) =

∞
∑

k=0

ξ̂k

k!
. (3)

This leads to an alternative formulation of Equation (1) using

twist coordinates to describe the displacement of a point p ∈ R
3

according to the rigid body motion g as follows:

G : SE(3) × R
3 → R

3
, G(g,p) = exp(ξ̂)p. (4)

For more details on the used representation of rigid body motions

we refer to (Ma et al., 2003).

Further we define the set of intrinsic camera calibration parame-

ters

k = {fx, fy, ox, oy, k1, k2}, (5)

whereby (fx, fy) describe the focal length, (ox, oy) the princi-

pal point and (k1, k2) the radial distortion of the camera. The

projection π performs the mapping from a transformed 3D point

G(g,p) = (x, y, z)⊤ to pixel coordinates as

π(k, G(g,p)) =

(

dfxx

z
− ox,

dfyy

z
− oy

)⊤

, (6)

with the radial distortion factor d being defined by

d = 1 + k1

(

x2 + y2

z2

)

+ k2

(

x2 + y2

z2

)2

. (7)

5 PROBLEM FORMULATION

In order to describe the rigid body motion gCiW
of the camera

using the measured rigid body motion gIiW
of the INS (Figure 4),

the devices have to be rigidly mounted. This induces that the

offsets between them are static and especially comprises that the

rigid body motions describing the movements from the INS to the

camera at various exposure times are equal

∀k, l ∈ {1, 2, ..., n} : gCk Ik

!
= gCl Il

, (8)

with {1, 2, ..., n} being the middle exposure times of the images.

Therefore we can simplify the notation by omitting the indices

for the rigid body motion gCI describing the mounting offsets.

The composition with the measured INS movement leads to the

camera motion

gCiW
= gCIgIiW

. (9)
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gIiW

gCiW

gCI

W

I C

Figure 4: Both, the poses of the INS frame I and of the camera

frame C can be described by rigid body motions with regard to the

world frame W. The estimation of the static rigid body motion gCI

between the devices (dotted arrow), enables by composition with

the INS measurements gIiW
the description of the camera poses

gCiW
.

This results in the problem considered in this work, the estimation

of the rigid body motion gCI out of synchronized data from mea-

surement flights. As a first step a SFM approach, which delivers

an initial sparse 3D structure of the observed area and the cor-

responding pixel observations, has to be performed (Hartley and

Zisserman, 2004). The refinement of this is usually done in a BA

process, where the initial estimation of the 3D points and cam-

era poses are optimized. Given a number of n images associated

with the camera poses Ci and m 3D points pj with correspond-

ing pixel observations xij . The classical BA approach minimizes

the reprojection error of the 3D points according to:

min
k,gCiW

,pj

n
∑

i

m
∑

j

(π(k, G(gCiW
,pj)) − xij)

2
. (10)

The estimations for the intrinsic camera parameters k tend to dif-

fer slightly from a laboratory calibration, due to the climate and

environmental conditions. Thus it is an advantage to optimize k

by using images from a measurement flight in the classical BA

procedure. Nevertheless, errors can be introduced to the intrinsic

parameters, which are compensated by the independent camera

positions. Therefore the joint calibration of the intrinsic camera

parameters in conjunction with the mounting offsets gCI promises

more accurate results. The latter are introduced by adding a term

which measures how well the parameters of the camera poses

gCiW
in composition with the mounting offsets gCI satisfy the INS

measurements. This is realized by comparing a synthetic mea-

surement generated out of the actual camera pose and mounting

offsets with the measured INS pose by using the inverse and the

composition of rigid body motions. By adding this constraint in

the form of an additional sum to Equation (10), we specify our

objective function:

min
k,gCiW

,pj ,gCI

n
∑

i

m
∑

j

(π(k, G(gCiW
,pj)) − xij)

2+

n
∑

i

(g−1

CI gCiW
)−1

gIiW
.

(11)

6 GRAPH OPTIMIZATION

The non linear least square problem defined in Equation (11) can

be optimized by using g2o, the general graph optimization frame-

work (Kuemmerle and Grisetti, 2011). The problem has to be

embedded in a graph by introducing the variables to optimize as

nodes and the observations between them as edges. In the follow-

ing we will present the restatement of our objective function into

the graph-based formulation.

The calibration parameters represented as the intrinsic camera pa-

rameters k and the mounting offsets gCI are added as nodes to the

graph. Furthermore, we add each 3D point pj and each cam-

era pose gCiW
as a node to the graph. The connection between

these nodes is given by inserting our observations as edges into

the graph. A pixel measurement connects three different nodes,

namely: a camera, a 3D-point and the intrinsic calibration param-

eters. This constraint can be realized with a hyperedge, which is

able to connect an arbitrary number of nodes. The edge of an

INS measurement connects the corresponding rigid body motion

of the camera with the mounting offsets. A visualization of the

graph is given in Figure 5.

Ii
gCI

gIiW gCiW
xij

k

pj

Figure 5: The objective function of the stated problem can be

illustrated by a hyper-graph. The measurements (boxes) are pre-

sented as links between the nodes concerning each multiple sets

of variables (circles). For improved overview multiple state vari-

ables and measurements of the same type are visualized in a

stacked view unrelated to their number of occurrence.

Further, we have to define error functions, which measure how

well our measurements are described by the state variables they

are connecting. Our first constraint measures the error occurring

by the reprojection of a 3D point into the image, in the same form

as in Equation (10). The error function for this constraint can be

expressed as:

e
k
ij(k, gCiW

,pj ,xij) = π(k, G(gCiW
,pj)) − xij . (12)

The resulting error vector has dimension two and is 0 if the pixel

observation is perfectly described by the state variables. Our sec-

ond error function states how well the INS measurements can be

described by the composition of the camera poses gCiW
and the

mounting offsets gCI as follows:

e
g
i (gCI, gCiW

, gIiW
) = (g−1

CI gCiW
)−1

gIiW
. (13)

Using the twist representation for the rigid body motions, we re-

ceive a 6-dimensional error vector, which is 0 if the parameters

perfectly satisfy the measurement.

Without limiting the generality, we refer to the whole state vec-

tor [k, gCiW
,pj , gCI] as y and reformulate our objective function

stated in Equation (11) as follows:

min
y

n
∑

i

m
∑

j

e
k
ij(y)⊤I e

k
ij(y) +

n
∑

i

e
g
i (y)⊤I e

g
i (y). (14)

The g2o framework uses the Levenberg-Marquardt (LM) algo-

rithm to compute a numerical solution of Equation (14) and there-

fore needs a good initial guess y̆ of the state vector. Iteratively,

the first order Taylor expansion around the current guess y̆ is used

to approximate Equation (14) and optimize the local increments
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∆y by solving the resulting sparse linear system. The center for

the next iteration is obtained by adding the optimized increments

to the current guess. This is done by using the motion composi-

tion for the state variables represented by rigid body motions and

a simple addition for the 3D points and intrinsic camera parame-

ters. For a detailed description of the LM algorithm we refer the

reader to (Lourakis and Argyros, 2009).

7 EVALUATION

In this section, we present results from numerical studies to vali-

date the proposed approach. The main purpose of this is to ana-

lyze the influence of various flight configuration and settings on

the calibration parameters by comparing the estimations with the

known ground truth.

In the simulations we set the mounting parameters consisting of

the lever-arm components xL, yL and zL as well as the angle mis-

alignments in form of the Euler angles yaw = ψB, pitch = θB

and roll = φB (Figure 2) according to the ground truth defined in

Table 1. The initialization with θB = 180◦ is a result of the defini-

tion of the INS frame as ENU coordinate system, while the down-

ward directed camera is modeled with the z-coordinate pointing

in viewing direction. The intrinsic camera parameters stated in

Table 1 describe the modeled camera with an image size of 3296
by 2472 pixels using a wide angle lens. The simulated flight

courses consist of INS poses sampled along straight lines accord-

ing to the camera exposure times, determined by the velocity of

the UAS and the cameras frames per second. For a more realistic

flight path, the ideal poses are modified by a small random factor

and the resulting poses are considered as ground truth. One GCP

is defined in the middle of the observed area. A fixed number of

additional 3D points are sampled in the observed area. The pixel

observations are determined by projecting the 3D points into the

images according to Equation (6) using both, the generated cam-

era poses and the ground truth of the intrinsic camera parameters

defined in Table 1. A realistic number of observations is produced

by defining a probability of detection of 50% instead of using all

projections of the 3D-points which are in the field of view of a

camera. Concerning noise, we simulate the image observations

with an accuracy of 0.5 pixels. Further we add white Gaussian

noise to the INS poses using a standard deviation of σL = 0.02
for the position components and σB = 0.01 for the Euler angles.

The principle of the flight configuration stated as optimal in (Ker-

sting et al., 2011) was used to define our first simulated flight

course. At a flying height of 20 m we defined two lines with a

Unit Initialization Ground truth Difference

xL [m] 0.13 0.132 +0.002
yL [m] 0.1 0.096 −0.004
zL [m] 0.1 0.104 +0.004
ψB [◦] 0.0 2.344 +2.344
θB [◦] 180.0 183.291 +3.291
φB [◦] 0.0 −1.937 −1.937
fx [pel] 1650.0 1663.31 +13.31
fy [pel] 1650.0 1662.84 +12.84
ox [pel] 1648.0 1651.52 +3.52
oy [pel] 1236.0 1234.67 −1.33
k1 [pel2] 0.0004 0.00076 +0.00036
k2 [pel4] 0.008 0.00908 +0.00108

Table 1: This table states the initialization and ground truth values

used in our experiments. For an easier interpretation the differ-

ence between the values is also stated.

distance of 20 m (Figure 6a). We sampled our INS poses along

these lines twice, once in each direction. This results in an image

side overlap of 50% for poses on the adjacent lines. The same

maneuver was simulated at a flying height of 30 m resulting in a

side overlap of about 66%. Two different altitudes in combination

with a GCP were used to decouple the high correlation between

the lever-arm and the focal length as well as the principal point.

The definition of 20 m strip length in conjunction with a speed

of 36 km/h and 5 images per second leads to a total number of

80 images with more than 93% image overlap in flying direction.

This course was used in Simulation 1, 2 and 3 by sampling 1000,

3000 and 6000 points. As assumed the results in Table 2 show

that increasing the point number leads to smaller errors for the

calibration parameters. Remarkable is that the angle misalign-

ment is nearly the same for Simulation 2 and 3, which shows that

increasing this value further will have little influence on these pa-

rameters. The error in the lever arm component zL is for all three

Simulations about four times bigger than in the other directions,

which is also reflected in the estimation of the correlated focal

length and principal point (Table 2).

(a) Sim. 1,2,3,4,7 (b) Sim. 5 (c) Sim. 6

Figure 6: The three flight configurations investigated in this study

are visualized in a top view. Each line is sampled in both direc-

tions, resulting in an image overlap of approximately 100%.

The first three simulations show that the accuracy of the lever-

arm optimization is worse than usual measurements out of con-

structions drawing or terrestrial measurement. Due to this obser-

vation, we fix the lever-arm components to the initialization in

the following experiments. For Simulation 4, the same flight and

parameter configuration as in Simulation 2 was used. The opti-

mization leads to better results in all estimated parameters (Ta-

ble 3). The fixed lever-arm also removes the requirement of two

flight altitudes. We investigated the influence of the flight course

by performing simulations of the patterns visualized in (Figure

6), whereby for each simulation a total number of 3000 points

RMSE

Sim. 1 Sim. 2 Sim. 3

xL 0.00824 0.00849 0.008
yL 0.00728 0.00582 0.00588
zL 0.03169 0.02167 0.01443
ψB 0.01237 0.01072 0.01052
θB 0.0003 0.0009 0.00039
φB 0.01925 0.01719 0.01762
fx 2.39323 1.57664 1.0141
fy 2.35976 1.57361 1.01957
ox 0.18362 0.12286 0.07928
oy 0.24893 0.1674 0.11551
k1 4.1539e−5 2.3002e−5 1.7486e−5

k2 5.1066e−5 3.4519e−5 2.2469e−5

Table 2: This table shows the RMSE of the calibration parameters

achieved by performing 100 Monte Carlo trials for the first flight

course with an increasing number of 3D-points.
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was sampled in the observed area. By performing the quadratic

course in Simulation 5 and the star pattern in Simulation 6 only at

an altitude of 20 m, we get the same number of cameras as in all

other simulations. In comparison with Simulation 4, the errors of

Simulation 5 are slightly smaller for the intrinsic camera param-

eters, but higher for the roll angle. The star pattern performed in

Simulation 6 leads to a bigger error in the yaw angle (Table 3).

Overall the influence of the investigated flight courses on the ac-

curacies of the estimated calibration parameters is small. Another

observation was made by performing the flight course depicted in

Figure 6a at altitudes of 200 m and 300 m in Simulation 7, which

is ten times higher than in Simulation 4. As expected, the errors

in the angle misalignment are smaller due to there bigger influ-

ence on the object points at higher altitudes (Table 3).

RMSE

Sim. 4 Sim. 5 Sim. 6 Sim. 7

ψB 0.0111 0.01065 0.02525 0.00357
θB 0.00037 0.00123 0.00182 0.00009
φB 0.00986 0.01128 0.01028 0.00475
fx 1.10761 0.78936 1.02642 0.15332
fy 1.11969 0.78776 1.02301 0.23633
ox 0.0895 0.05326 0.05658 0.1043
oy 0.1314 0.07603 0.10738 0.13719
k1 2.2965e−5 2.8315e−5 3.7536e−5 2.5814e−5

k2 2.5092e−5 1.8952e−5 2.3544e−5 1.0906e−5

Table 3: This table shows the RMSE of the calibration parameters

achieved by performing 100 Monte Carlo trials for the optimiza-

tion with an fixed lever-arm for various flight maneuvers.

8 CONCLUSION AND FUTURE WORK

In this paper we presented a graph-based approach for the INS-

camera calibration. We showed how to integrate the calibration

parameters in the bundle adjustment equation and presented a re-

formulation in a graph structure. The latter was used to estimate

both, the mounting offsets between the devices and the intrinsic

camera parameters.

The high correlation between the lever-arm of the mounting off-

sets and the intrinsic camera parameters should be decoupled by

performing the flight maneuvers at two different altitudes. Even

though, the produced results showed that the accuracy of the

lever-arm optimization is worse than usual measurements out of

construction drawings or terrestrial measurements. Our simula-

tions confirmed that the best results are achieved if only the in-

trinsic camera parameters and the misalignment angles between

the devices are optimized in the system calibration. Moreover,

this eliminates the constraint of using two different altitudes. In

conjunction with the small influence of the flight patterns a re-

calibration during each operation seems possible. Regarding the

usage of small UAS, which in general are used at low altitude, we

conclude that the calibration of the angle misalignment should be

performed as high as possible to achieve the most accurate cali-

bration results.

Future work will investigate the proposed procedure in more de-

tail. Based on the gathered insight, we will perform real flight

experiments and evaluate the approach further.
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