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Abstract—The goal of this paper is to apply graph cut (GC)
theory to the classification of hyperspectral remote sensing
images. The task is formulated as a labeling problem on Markov
Random Field (MRF) constructed on the image grid, and graph
cut algorithm is employed to solve this task. In general, a
large number of user interactive strikes are necessary to obtain
satisfactory segmentation results. Due to the spatial variability
of spectral signatures, however, hyperspectral remote sensing
images often contain many tiny regions. Labeling all these tiny
regions usually needs expensive human labor. To overcome this
difficulty, a pixel-wise fuzzy classification based on support vector
machine (SVM) is first applied. As a result, only pixels with
high probabilities are preserved as labeled ones. This generates a
pseudo user strike map. This map is then employed for graph cut
to evaluate the truthful likelihoods of class labels and propagate
them to the MRF. To evaluate the robustness of our method,
we have tested our method on small training sets. Additionally,
comparisons are made between the results of SVM, SVM with
stacking neighboring vectors, SVM with morphological pre-
processing and our method. Comparative experimental results
demonstrate the validity of our method.

Index Terms—Hyperspecral, classification, graph cut, support
vector machine, Markov Random Field.

I. INTRODUCTION

Classification or segmentation of hyperspectral images is a
perennial topic in remote sensing imaging and has received
more and more research interest in the recent years. The
simplest approach is based on the pixel-wise classification,
where the whole spectral information is encapsulated as the
sole feature. However, this approach manages the data not as
an image but as a disarranged list of spectral signals, and
the spatial correlation between the image pixels can not be
reflected at all. As a result, the objects in the results through
this approach mostly lack continuity and often contain many
random noises at the boundaries.

The integration of spatial and spectral information is a
research focus in hyperspectral classification. One simple and
typical measurement is the vector stacking (VS) approach,
where the feature vectors are selected as the concatenation of
the pixels and their neighbors [1]. However, this concatenation
also introduces the extra burden of increasing dimensions,
making the original high dimensional classifications more
intractable. For this reason, some measures of dimension
reduction are necessarily carried out as the pre-processing
steps. One advance for the integration of spatial and spectral
information in the last years is the method based on mathemat-
ical morphology, which can generate good results. In [2] and
[3], the morphological algorithm is successfully introduced to

remote sensing imaging, proposing an entirely new approach
for the classification of remote sensing images. However, in
[4], the authors also point out that the spatial information
utilized in this methodology is mainly the sizes of structures.

Graph cut is a graph based method related to the MRF
approach using the thinking of semi-supervised learning. It
is well studied by some researchers in the field of computer
vision. This method aims to solve the well known metric
labeling (ML) problem via a maxflow/mincut algorithm [5].
The ML problem maps an object set to a label set by the
optimization of a minimum energy cost. Although it has a
history of more than ten years, it is only when a primal-dual
schema is proposed, in [6], [7], that this graph based ML
approximation algorithm becomes really practical and robust
to use.

This paper presents a methodology in the generalization of
the ML graph cut algorithm from natural image processing to
hyperspectral classification tasks. Our approach is developed
in terms of supervised classification with a very small number
of training samples. However, the good performances of graph
cut algorithm are obtained with enough user specified strokes
on the objects. To overcome this difficulty, we propose a two-
step strategy: a pixel-wise fuzzy SVM classifier is first used
and the pixels with high probabilities are preserved to simulate
the user interactive result (We call it “pseudo map”). This
pseudo map is then fed as input to the graph cut algorithm. In
the second step, the graph based method can regulate the initial
results, making fully use of the spatial relations. Our intention
to use the fuzzy pixel-wise classification is just to find the
reliable labeled samples. Other pixels are not considered to be
reliable so that they are left as unclassified.

The remainder of this paper is organized as follows. Section
II describes the fuzzy SVM algorithm. In section III we will
give a detailed description of the primal-dual solution to the
ML problem based on graph cut. The application of this
algorithm will be presented in section IV and experimental
results are reported in section V. In the final section we will
give some conclusions.

II. THE FUZZY SVM AND ITS PROBABILISTIC OUTPUT

Consider the two-class case. f is the output of general SVM
and y ∈ {−1, 1} is the label. What we are interested in here
is the posterior probability P (y = 1|f). To map the SVM
outputs to posterior probabilities, an empirical sigmoid model
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is constructed instead of Bays formulation:

P (y = 1|f) =
1

exp(Af + B)
(1)

The inner function g = Af + B is a linear function of f .
The unknown parameters are A and B. Given a training set
{(xi, yi)}, let us define a new set {(fi, ti)}, where fi is the
output of standard SVM, and ti is defined as:

ti =
yi + 1

2
(2)

According to (1), we also define pi:

pi =
1

exp(Afi + B)
(3)

This estimation of parameters finally turns out to be a mini-
mization problem with a so called cross-entropy minimization
function:

min
∑

i

ti log(pi) + (1 − ti) log(1 − pi) (4)

A remaining problem is how to generalize the probabilistic
results from the case of two-class to multi-class. In [8], an
optimization method is suggested based on the strategy of
OAO. For a single sample x, let rij be the probability that
the sample belongs to class i when considering only the
two classes i and j, which can be obtained from the above
discussion, and pi is the final probability that we need to solve.
It is obviously that we have rij = 1− rji, and pi satisfies the
following constraint:

k∑
i=1

pi = 1 (5)

With this constraint, the target function is:

min
p

1
2

k∑
i=1

∑
j:j �=i

(rjipi − rijpj)2 (6)

In [9] it is reported that this probabilistic algorithm has sim-
ilar accuracies when comparing to the traditional SVM. The
advantage is that this estimation can predict the probability
that a sample belongs to a certain class as well as the assigned
class labels.

III. THE PRIMAL-DUAL ML ALGORITHM BASED ON

GRAPH CUT

This section mainly discusses the definition and solution
to the ML problem based on graph cut, which will be
employed in our experiment specially to the classification of
hyperspectral images.

A. The Description of the Problem

A general description of the ML problem is: given a set of
objects V and a set of labels L, the goal is to find a labeling
function f : V −→ L so that the cost C(f) can be minimized.
Granted that E is a collection of pairs of objects that are
connected, this cost can be expressed as:

C(f) =
∑
p∈V

Cp,f(p) +
∑

(p,q)∈E

wpqd(f(p), f(q)) (7)

The first term in (7) is the loss function of the classification
result for single objects, where Cp,f(p) is the label cost for
each object. The second term, however, is regarding to the
pairwise relationships among the objects, where wpq is the
weight between edges and d(f(p), f(q)) is a metric distance
which stands for the separation cost when labeling the pairs
of objects p and q with f(p) and f(q).

Before the solution to (7) is given, it is necessary to give
some formulations for the terms to fit the labeling model,
making fully use of the spatial characteristic of hyperspectral
images. To describe these formulations clearly, a distance
between the pixels is firstly to be defined.

For a pixel p, xp is the data vector, and (px, py) is its spatial
coordinate. To reflect the spatial information related to the
pixels, a new vector is introduced by combining the data and
the spatial coordinate: zp = (xT

p , px, py)T . The data vector
xp and the spatial coordinate are both normalized, with all
their components within [−1, 1]. Therefore, we have d(p, q) =
d(zp, zq). When the traditional Euclid distance is used, this
distance can be formulated as:

d(p, q) =
√
‖xp − xq‖2 + (px − qx)2 + (py − qy)2 (8)

The detailed formulations in (7) can be expressed as follows.
Cp,f(p): In this work, we first cluster training samples of

each class to a few subsets and then calculate the distances
between the pixel and the center of each clustered subset. The
cost function is thus defined as the minimum distance. Let
l ∈ L be the label and the training samples with this label
are clustered to nl groups by the algorithm of K-means. The
cluster center of the ith group is denoted as cl,i, i = 1, · · ·nl.
Contrast with (7), the assigned label is f(p). That is l = f(p).
Then the first item in (7) can be expressed as:

Cp,f(p) =
nf(p)

min
i=1

d(p, cf(p),i) (9)

d(f(p), f(q)) is a metric distance that measures the labeling
smoothness cost. For the sake of simplicity, we define it as:

d(f(p), f(q)) =

{
0, f(p) = f(q)
1, f(p) �= f(q)

(10)

It is easy to prove that the distance defined by (10) is a
metric distance.

wpq: In the graph G = (V,E), this parameter can be
interpreted as the weight of edges that connect the vertexes
in the edge set E. We use this distance between the two



feature vectors to express this similarity. The expression of
our formulation is as (11):

wpq =

⎧⎨
⎩

1
ε + d(p, q)

p, q are neighbors

0 others
(11)

In (11) a constant value ε is added to the denominator just
for the purpose of avoiding a zero divisor.

B. Solution

(7) has been considered as a NP-hard problem and several
works have explored the solution to this problem. Specifically
to the purpose of our application, we adopt the method
proposed by Komodakis in [6], which is based on graph cut as
well, and gives a primal-duel solution. In this paper we only
give a brief description of this algorithm. Readers may read
[6] for the details.

Like other work, this ML problem is first formulated as
an integer linear one. However, the novel contribution of this
work is to change the linear programm to its dual form by
relaxing the constraints, and the dual variables are called
balance variables. An iterative primal-dual scheme is then
carried out based on the principal of relaxed complementary
slackness. The iteration steps consist of two layers of iterations
called the inner iteration and the outer iteration. In each inner
iteration, a label c is fixed and only the balance variables
of the c labels are modified. This is called a c-iteration and
the primal-dual pairs of solutions are updated in this step.
All the c-iterations make up the outer iteration and after this
iteration, the approximate optimal solution can be reached. Our
experiment has testified the convergence is very fast. It only
takes a few outer iteration steps and quite a little computing
time.

IV. APPLICATIONS IN HYPERSPECTRAL CLASSIFICATION

In this work, we introduce a two-step strategy for classifica-
tion. With the limited training set, this image is first processed
by a pixel-wise fuzzy SVM classifier. In this fuzzy output, only
a sub set of the resultant pixels with the probabilistic value
above a certain threshold are retained and others are deserved
as unknowns. We call this pseudo map because the classified
pixels in it are treated as if they were labeled manually and
act as the training samples for the next step. As is discussed
in section IV, the graph cut based classification is carried out,
using this pseudo map as the training and the original image.

A remaining problem is how to decide the probability
threshold. In our experience, this threshold is controlled to
allow about 1/2 ∼ 2/3 of the pixels can pass this selection.
These reserved samples can then be used as training for the
purpose of further classification based on graph cut.

V. EXPERIMENTAL RESULTS

The data set, Pavia center, in our experiment is provided by
the HySens project, operated by the Deutschen Zentrum fur
Luft-und Raumfahrt (DLR, the German Aerospace Agency).
These data are from the ROSIS-3 optical sensor. The spatial

TABLE I
INFORMATION ABOUT THE DATA SET OF PAVIA CENTER

Label Name Training Testing Color

1 Water 824 65971 0,0,255

2 Asphalt 816 9248 192,192,192

3 Trees 820 7598 0,128,0

4 Shadow 476 2863 255,255,0

5 Meadows 824 3090 0,255,0

6 Bare Soil 820 6584 184,92,0

7 Tiles 1260 42826 255,102,0

8 Bricks 808 2685 255,0,0

9 Bitumen 808 7287 0,255,255

resolution of about 1.3m per pixel is acquired. The number of
bands is 102. This data set has been atmospherically corrected.

This data set contains 1096 × 1096 pixels, with a 381
wide-pixel black strip. Similar with the experiments in [4], we
remove this strip and get an image with 1096 × 715 pixels.
This image consists of nine classes. Table I presents the list
of the nine classes including the training and testing samples,
and the labels and their corresponding colors used to illustrate
our classification results.

To apply our method, a fuzzy SVM classification with RBF
kernel is first performed with the training set in this image. For
more challenges, we randomly selected 15 training samples for
each class from the training set in Table I. In this experiment,
we use the spectral vector as the feature without any dimension
reduction. According to our method, we select 0.55 as the
truncation threshold. 404233 out of 783640 pixels are left
unclassified. Then this pseudo map is used as the training for
further processing via the algorithm based on graph cut. For
more details, the number of clusters for each class is set to
20. Our experiments have also testified that there exist almost
no differences in the case of more cluster.

For comparisons, three methods are selected as the base-
lines besides ours (SVM/GC). One is SVM with the spectral
features (SVM). Another is the vector stacking approach,
followed by an SVM classifier (VS/SVM). In the third one, the
feature is obtained with EMP pre-processing and then also fed
to a SVM classifier (EMP/SVM). All the SVM parameters are
automatically tuned to achieve best results via cross-validation.
For reference, the middle result, which we call pseudo map,
is also presented in the figures.

Besides the accuracies for each class, an overall accuracy
(OA) is also listed, calculated by the number of correctly
classified samples divided by the number of test samples. For
more comparisons, a kappa coefficient is presented as well
[10].

By the comparisons in Fig. 1, the positive effect of spa-
tial/spectral integration can easily be seen. The result of SVM
lacks continuity for many objects. There exist many discrete
pixels, which is contradictory to common human sense. This
is mainly because in the pixel-wise classification, the spatial
correlations between the pixels are not considered at all. In the



         SVM                   VS/SVM                EMP/SVM                Pseudo map               SVM/GC 

Fig. 1. Experimental results of Pavia center with the reduced training set, 15 samples for each class. From left to right: (a) SVM; (b) VS/SVM; (c) EMP/SVM;
(d) Pseudo map with T=0.55; and (e) Our SVM/GC.

TABLE II
ACCURACY OF THE PAVIA CENTER IN PERCENTAGE WITH REDUCED

TRAINING SAMPLES, 15 SAMPLES FOR EACH CLASS

Class 1 96.57 98.31 99.17 100

Class 2 93.09 97.85 97.76 95.80

Class 3 81.93 79.21 83.43 85.14

Class 4 99.83 99.51 99.62 97.07

Class 5 88.35 88.77 94.47 92.91

Class 6 88.68 86.85 99.04 93.33

Class 7 97.39 98.14 98.28 98.57

Class 8 60.97 77.73 88.19 81.97

Class 9 78.02 88.76 82.83 91.27

OA 93.82 95.73 96.92 97.31

κ 91.31 93.99 95.65 96.19

results of VS/SVM, EMP/SVM and our SVM/GC method,
more continuities can be seen for most of the structures.
This benefits greatly from to the integration of spatial and
spectral information. Another advantage of our method is that,
from the figures, the sharp corners of the objects can be seen
clearly, benefiting from the idea of MRF with minimal spatial
smoothing effect.

The accuracies reported in Table II can validate our method.
The SVM results exhibit relative low accuracies. This is
mainly due to the absence of spatial information. VS/SVM
has considered the neighboring information of pixels. How-
ever, the simple stacking vectors also reduce the separability
between the classes, resulting in the reported accuracies even
lower than the spectral SVM approach. The EMP approach
performs very well because the structural characteristic of this
data set is rather dominant.

VI. CONCLUSION

The goal of this paper is to investigate the application of
a graph based method in hyperspectral classification. A two-
step strategy for classification is proposed, including a fuzzy
SVM classifier and the graph cut based classification. The

main advantage of our algorithm is to make fully use of
the spatial information to achieve fine results. The adoption
of SVM classifier also enables the robustness for the small
training sets. Experiments have demonstrated the satisfactory
results of our method.
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