
A Graph-Based Higher-Order Intermediate Representation

Roland Leißa Marcel Köster Sebastian Hack
Department of Computer Science, Saarland University

{leissa, koester, hack}@cs.uni-saarland.de

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
G
O
*

Ar
t ifact *

A
E
C

Abstract
Many modern programming languages support both imper-
ative and functional idioms. However, state-of-the-art im-
perative intermediate representations (IRs) cannot natively
represent crucial functional concepts (like higher-order func-
tions). On the other hand, functional IRs employ an explicit
scope nesting, which is cumbersome to maintain across cer-
tain transformations.

In this paper we present Thorin: a higher-order, functional
IR based on continuation-passing style that abandons explicit
scope nesting in favor of a dependency graph. This makes
Thorin an attractive IR for both imperative as well as func-
tional languages. Furthermore, we present a novel program
transformation to eliminate the overhead caused by higher-
order functions. The main component of this transformation
is lambda mangling: an important transformation primitive
in Thorin. We demonstrate that lambda mangling subsumes
many classic program transformations like tail-recursion elim-
ination, loop unrolling or (partial) inlining. In our experiments
we show that higher-order programs translated with Thorin
are consistently as fast as C programs.

1. Introduction
Nowadays, many (existing and novel) programming lan-
guages (C++11, Java 8, Scala, Go, Rust, etc.) support imper-
ative and functional programming. Essentially, a function f
may be passed to another higher-order function (HOF) g
while f may contain free variables. The common way to im-
plement a function value is a closure: A record that contains
the pointer to a function and value bindings of its free vari-
ables. For example, the C++ code in Figure 1a results into
the (stylized) code in Figure 1b. This transformation is called
closure-conversion [3, chap. 10]. However, implementing clo-
sures straightforwardly can incur a significant performance
penalty. Ideally, the code in the example is compiled into a
simple loop.

The IRs used in compilers for imperative languages
(LLVM, Java Bytecode, etc.) are too low-level to represent
free variables directly. Therefore, these compilers implement
closure-conversion already in the front-end. This has several
drawbacks:

1. The implementation is language-specific and can hardly
be reused in another front-end.

2. The IR code is significantly bloated. For every function
abstraction a new struct is created. For example, the LLVM
code for the simple example consists of over 600 lines.

3. Finally, it is inelegant and inefficient to lower constructs
that have to be restored later on. LLVM, for example,
uses a combination of carefully coordinated analyses and
transformations to eliminate closures: Inline the call to
the closure’s function pointer to be able to SSA-construct
(mem2reg) the closure struct and finally dissolve the
struct to scalar values. This strategy, for instance, fails
to optimize recursive HOFs, like the one in the example
above: After optimizations, the example in Figure 1a is
still more than 250 lines of LLVM bitcode long.

IRs for functional languages [e.g. 3, 17] represent free
variables naturally. Closure conversion is much less involved
on these IRs because they contain closures as first-class
citizens. Therefore, the compiler does not need to re-discover
closures from their implementation as in imperative IRs.

However, one particular point makes the use of existing
functional IRs unattractive: They rely on scope nesting to bind
the use of a variable to its definition. Scopes are necessary to
disambiguate a variable use when the variable name is defined
more than once in the program. Although functional programs
share with SSA the property that every use has exactly one
reaching definition, they allow reusing the same variable
name. Figure 2a shows an imperative program, (b) the SSA
form of it in a stylized imperative IR, (c) the corresponding
version in a stylized functional IR that uses continuation-
passing style (CPS). Because the scope nesting is a feature
of the syntax of the IR, all program transformations must
maintain a correct scope nesting, which involves, among
other things, proper renaming of the variables to avoid name
capturing. This makes control-flow restructuring program
transformations cumbersome to implement.

In this paper, we present the IR Thorin that blends con-
cepts of imperative and functional IRs and is equally well-
suited to represent imperative as well as functional programs.
Thorin represents functions as first-class citizens and exploits
the long-known correspondence between SSA and CPS [16]
to uniformly represent control flow by continuations: jumps
to basic blocks, function calls, generators, exceptions, etc.
In that respect, Thorin is similar to an IR of a compiler for
functional languages.

2015 IEEE/ACM International Symposium on Code Generation and Optimization
978-1-4799-8161-8/15/$31.00 c©2015 IEEE

void range(int a, int b,
function <void(int)> f) {

if (a < b) {
f(a);

range(a+1, b, f);

}

}

void foo(int n) {
range(0, n, [=] (int i) {

use(i, n);

});

}

(a) Original C++ program

struct closurebase {
void (*f)(void* c, int i);

};

struct closure {
closurebase base;

int n;
};

void lambda(void* c, int i) {
use(i, (closure* c)->n);

}

void range(int a, int b, void* c) {
if (a < b) {

((closurebase*) c)->f(c, a);

range(a+1, b, c);

}

}

void foo(int n) {
closure c = {{&lambda}, n};

range(0, n, &c);

}

(b) Stylized imperative IR

range(a: int, b: int,
f: fn(int, fn()), rret: fn()):

a<b

branch(•, then, else)

then():

f(a, cont)

cont():

a+1

range(•, b, f, rret)

else():

rret()

foo(n: int, fret: fn()):

range(0, n, lambda, next)

lambda(i: int, out: fn()):

use(i, n, out)

next():

fret()

(c) Thorin version

foo(n: int, fret: fn()):

range’(0)

range’(a’: int):
a’<n

branch(•, then’, else’)

then’():

use(a’, n, cont’)

cont’():

a+1

range’(•)

else’():

next()

next():

fret()

(d) Optimized Thorin version

Figure 1. The higher-order function range and a call site within foo.

fn fac(n: int) → int {
if (n ≤ 1)
return 1;

r: int = 1;
for (i: int = 2; i ≤ n; ++i)
r *= i;

return r;
}

(a) Original program

fn fac(n: int) → int {
branch(n ≤ 1, then, else)

then:

return 1;
else:

r0: int = 1;
i0: int = 2;

head:

r1 = φ(r0 [else], r2 [body]);
i1 = φ(i0 [else], i2 [body]);
branch(i1 ≤ n, body, next)

body:

r2 = r1 * i1;
i2 = i1 + 1;
goto head;

next:

return r1;
}

(b) SSA-form version

fac(n: int, ret: int → ⊥):
let
then():

ret(1)

else():

letrec
head(i: int, r: int):
let
body():

head(i + 1, i * r)

next():

ret(r)

in
branch(i ≤ n, body, next)

in
head(2, 1)

in
branch(n ≤ 1, then, else)

(c) Classic CPS version

fac(n: int, ret: fn(int)):
n≤0

branch(•, then, else)

then():

ret(1)

else():

head(2, 1)

head(i: int, r: int):
i≤n

branch(•, body, next)

body():

i+1 i*r

head(•, •)

next():

ret(r)

(d) Thorin version (blockless)

Figure 2. Factorial in different versions. In Thorin, each definition is a node. Every use is an edge to this node. Names are solely
present for readability. They have no semantic meaning.

However, like low-level imperative IRs but unlike func-
tional IRs, Thorin has no scope nesting. Instead, Thorin is
graph-based like progressive imperative IRs (e.g. HotSpot [7,
22] or Firm [5]). That is, Thorin does not use named variables.
In Thorin, each value is a node in a graph and every reference
to a value is an edge to this node. Therefore, Thorin does not
require explicit scope nesting. Figure 2d shows the Thorin
graph for the example: A Thorin program consists of a set
of functions. A function introduces parameters and in turn
solely consists of a call. As Thorin uses CPS, the call does
not return and, hence, function types (denoted by fn(T))
do not have a return type. The callee and the arguments to
that call reference other definitions: functions (dotted edges),
function parameters (dashed edges) or primops (solid edges).
A primitive operation (primop) is a simple operation which
references other definitions to produce a new value. Note that

in this paper we nevertheless use names in Thorin programs
to make the presentation more accessible for humans. Names
have no meaning otherwise.

In summary, this paper makes the following contributions:

• We discuss Thorin formally by presenting its syntax as well
as its static and dynamic semantics (Section 3).
• We present lambda mangling (Section 4), a novel program

transformation that partially in- and outlines functions.
Partial inlining is the crucial step in closure elimination.
We show that lambda mangling is substantially simpler to
implement on Thorin than on existing IRs because Thorin
does not have explicit scope nesting. Furthermore, we
show how CPS helps to reduce other important control
flow transformations, such as tail-recursion elimination,
loop unrolling, and loop peeling, to lambda mangling.

We show that this simplifies the implementation of these
transformations significantly.
• We define the set of control flow form (CFF) Thorin

programs. These can be translated to control flow graphs
(CFGs) without dynamically-allocated closures. We define
the set of CFF-convertible programs, a superset of CFF
programs, and present an algorithm that is guaranteed to
convert them to CFF by using lambda mangling (Section 5).
This superset includes typical higher-order programming
idioms like map, fold and generators. Coming back to
the range example, Figure 1c is CFF-convertible and
Figure 1d shows the program in CFF after applying the
algorithm.
• We evaluate our approach on The Computer Benchmark

Game, a set of mid-sized programs to benchmark perfor-
mance across various programming languages, imperative
as well as functional ones. We ported the benchmark suite
to our research language Impala that provides imperative
as well as functional paradigms and uses Thorin as its IR.
We show that Impala’s implementations using HOFs match
the performance of the corresponding C implementations
(Section 6).

2. Overview
In this section, we briefly recap important properties of
existing IRs for functional languages and informally show
how Thorin differs from them.

2.1 Name Capture
A well-known problem when transforming functional pro-
grams is name capture [4]. The following naı̈ve β-reduction
of λx is incorrect:

λa.(λx.(λa.x)) a ⇒ λa.λa.a

Originally, the variable a referred to the outer λa but now it
refers to the inner λa. One solution is to introduce new names
during β-reduction: λa.λa′.a . This technique is used by the
inliner of the Glasgow Haskell Compiler (GHC) [23], for
example. The downside is compile-time and implementation
overhead in the compiler.

A simpler solution is to give up on names and use a graph.
Each use directly points to its definition:

λ • (λ • (λ • •))•) ⇒ λ • λ • •

The β-reduction becomes straightforward now. It is not
necessary to rename anything: We simply update the body of
the inner function to point to the substituting argument. The
reference in the substituting argument to the outer function
still points to its proper definition.

2.2 SSA, CPS, and Scopes
The similarities between SSA form and CPS have been noted
by Kelsey and Appel [2, 16]. Because understanding them is
important for the rest of the paper, we briefly recap them by

means of the example in Figure 2. SSA form introduces φ-
functions in order to merge values from different predecessors
(see the definitions of r1 and i1 in Figure 2b). The CPS
version on the other hand introduces parameters for a local
function (parameters i and r of the local function head in
Figure 2c). The arguments to the φ-function in the SSA-form
version appear as arguments to a call of head in the CPS
version.

The local function next in Figure 2c makes use of fac’s
higher-order parameter ret. This is possible as inner func-
tions can access values defined in outer functions. In the scope
of the inner function these references appear as free variables.
Assume next is not defined locally in fac. In this case the
callers of next must pass ret as an additional parameter to
next. To keep the number of parameters low, functions are
nested. Nesting functions according to the dominance tree
results in the minimal number of parameters [9, sec. 4.1].

The disadvantage of nesting becomes clear in the example
in Figure 3. Assume we want to add a conditional branch
in a to b and an additional function z, which in turn branches
to c. The original nesting must be repaired since c needs to be
visible from both b and z (see Figure 3b). Block/let floating
has to be applied to float c into a. The reverse transformation,
i.e. sinking c into b, is known as block sinking. Such situations
occur, for example, during jump threading.

Thorin removes the concept of nesting and names (Fig-
ure 2d). In Thorin, the function nesting is implicitly given by
data dependencies between functions. If a function f uses a
variable defined in another function g, f is implicitly nested
in g. Since Thorin does not have nesting, it abolishes block
floating and sinking (Figure 3c-d).1 We say Thorin is block-
less.

Another reason to abandon nesting is that a given nesting is
not necessarily minimal. Suppose a compiler wants to inline
the following function:
let f a b = let g x = x+1 in a + (g b)

The inliner would inline g as well although g does not use
any of f’s parameters. This is why compilers for functional
languages usually perform the aforementioned let floating
transformation beforehand [10, chap. 3.4]:
let g x = x+1
let f a b = a + (g b)

3. Thorin
In this section, we present Thorin formally by describing its
syntax, semantics, and type system (see Figure 4). We use
the common notation a to denote a list a1, . . . , an. We write
a � b if a is a subtree in the syntax tree of b.

For the purpose of the paper we restrict Thorin’s type
system to three types: the zeroth order types int and bool,
and the higher-order function type fn(t). For example, the
type fn(int, fn(bool)) denotes a type of a second-order

1 For the remainder of the paper we waive edges and use unique names to
resolve the declaration of a definition in order to increase readability.

a(x: int, ret: int → ⊥) → ⊥
let
b() → ⊥

let
c() → ⊥

ret(x)

in
c()

in
b()

(a) Classic CPS version

a(x: int, ret: int → ⊥) → ⊥
let
b() → ⊥

c()

z() → ⊥

c()

c() → ⊥

ret(x)

in
branch(x = 0, b, z)

(b) Classic CPS with new branch z

a(x: int, ret: fn(int)):
b()

b():

c()

c():

ret(x)

(c) Thorin version

a(x: int, ret: fn(int)):
branch(x = 0, b, z)

b():

c()

z():

c()

c():

ret(x)

(d) Thorin version with new branch z

Figure 3. This example illustrates Thorin’s blockless representation.

type tF int | bool (int/bool type)
| fn(t) (function type)

program pF L → fn(t): b
body bF e(e)

expression eF �(e) (primop)
| ` (abstraction)
| `i i ∈ N (parameter)

value vF c ∈ V (literal)
| 〈`, σ〉 (closure)

Body: p, σ, ` ⇒ σ′, `′

E-Body

p[`] = : e0(e1, . . . , en)
σ, e0 ⇓ 〈`

′, σ′〉 σ, e1 ⇓ v1 · · · σ, en ⇓ vn

p, σ, ` ⇒ σ′[` 7→ v1, . . . , vn], `′

Expression: σ, e ⇓ v

E-Primop
σ, e1 ⇓ v1 · · · σ, en ⇓ vn

σ,�(e) ⇓ ⊗(v)
E-Abs

σ, ` ⇓ 〈`, σ〉

E-Param
σ[`] = v1, . . . , vn 1 ≤ i ≤ n

σ, `i ⇓ vi

Program: ` p

T-Prg
p B [`1 7→ : b1, . . . , `n 7→ : bn] p ` b1 · · · p ` bn

` p

Body: p ` b

T-Body
p ` e0 : fn(t) p ` e1 : t1 · · · p ` en : tn

p ` e0(e)

Expression: p ` e : t

T-Primop
t = check�(e)

p ` �(e) : t
T-Abs

p[`] = fn(t):

p ` ` : fn(t)

T-Param
p[`] = fn(t1, . . . , tn): 1 ≤ i ≤ n

p ` `i : ti

p ` b live b′

L-Param
` , `′ p[`′] = : b`′ ∃i : `i � b`′

p ` ` live `′

L-Abs
` , `′ p ` ` live `′′ p[`′] = : b`′ `′′ � b`′

p ` ` live `′

Figure 4. Syntax, Semantics, Typing and Liveness in Thorin

function which expects two arguments: An integer and a first-
order function which expects a boolean. As functions do not
return (because of CPS), they have no return type. Note that
function types are at least of first order. Parameters can be of
zeroth order or higher.

A Thorin program consists of a map which maps a label
` ∈ L to a function fn(t): b. Note that we use the label `
only in the formalism of Thorin to refer to the node that
contains the function fn(t): b. In Thorin’s implementation,
labels do not exist. In addition, the textual representation
in the examples introduces parameter names. A function
consists of its type or signature fn(t) and its body b =

e0(e) which is a call to e0 with arguments e. The examples
use a function branch of type fn(bool, fn(), fn()) for
conditional branches. An expression can be

1. a primop �(e), where � is an operator (e.g. +, −, . . .),
2. the ith parameter `i of a function ` or
3. the abstraction of a function `.

Typing. Rule T-Prg checks the body of each function in the
program. Rule T-Body gathers all argument types and checks
whether each matches the type of the callee. Note that the
body itself does not possess a type as the call never returns.

A primop only expects specific input types and in turn has
a specific output type. The function check�(e) in T-Primop
handles these primop-specific rules. The type of a function is
resolved by looking up its signature in the program map (T-
Abs). A reference to a parameter projects the corresponding
type from the function’s signature (T-Param).

Semantics. Expression evaluation is defined by a big-step
semantics. Memory operations or side-effects are explicitly
tracked by a functional store [27, 28]. The environment σ :
L → V × · · · × V maps a function label to the values of its
parameters. Each value is either some literal c of a setV (here:
integers and booleans) or a closure. This is a pair consisting of
a function label and environment at the moment the function
is captured (E-Abs). E-Primop evaluates all arguments to
values and determines a new value (operator ⊕ denotes the
arithmetic operation as opposed to the syntactic terminal �).
The expression `i extracts the ith parameter value from `’s
parameter list (E-Param).

Bodies are evaluated in small step: We evaluate the argu-
ments e to values. The calling expression e0 must evaluate to
a closure `′ to which the program steps to. The new state σ′

is formed by replacing the old parameter values of `′ by the
newly evaluated arguments.

The Scope: Identifying Function Dependencies. As out-
lined in previous sections, functions in a Thorin program are
not explicitly nested. For example, in Figure 2d the func-
tions then and next directly depend on fac as both functions
reference fac’s parameter ret. Likewise, head directly de-
pends on fac because head uses fac’s parameter n. In Fig-
ure 2d function else depends on fac albeit else’s body does
not directly use any of fac’s parameters. However, else in-
vokes head, which directly depends on fac. Therefore, func-
tion else indirectly depends on fac and, hence, is also im-
plicitly nested in fac. For many analyses and transformations
(including lambda mangling, as presented in Section 4), we
need to know all direct and indirect dependences from the
view of a function. We obtain this information by applying
a liveness analysis. It holds p ` ` live `′ if function ` is
live in `′. L-Param finds direct dependencies whereas L-Abs
transitively determines indirect dependencies. We call all
functions which are live from the view of an another func-
tion `e the scope of `e: scopep(`e) B {` | p ` `e live `}. We
call `e the entry function of that scope.

4. Lambda Mangling
In this section, we present Thorin’s main transformation
primitive: lambda mangling—a combination of lambda lift-
ing [15] and dropping [9]. We demonstrate how many tradi-
tional compiler optimizations can be implemented with this
transformation and how to deal with simple as well as mutual
recursion.

When reading Figure 5a from left to right, we see how
function g is lambda-lifted out of f by introducing a new
parameter ret’ which eliminates g’s free variable ret. The
new lifted version is called g’. Likewise—when reading
Figure 5a from right to left—we see how function g’ is
lambda-dropped into the body of f by eliminating g’’s
parameter ret’ and introducing a free variable ret.

Figure 5b depicts the same procedure for a Thorin program.
Since Thorin programs are blockless, we do not have to move
g/g’ out of/into f. The scope analysis (Section 3) will identify
that g is a function nested in f (in the left box) whereas g’
and f will be discovered as two independent functions (in the
right box).

4.1 Combining Lambda Lifting and Dropping
The local function pow(a, b) in Figure 6a computes ab.
The function has two call sites: in calcx and calcy. As
both callers pass 3 for parameter b to pow, we want to
specialize pow. For this reason, we drop pow’s parameter
b and substitute each occurrence of b with 3. In doing so,
we also apply local optimizations (constant propagation,
common subexpression elimination, etc.). Thus, the check
b = 0 and related blocks are eliminated in the new function
pow d (Figure 6b). Moreover, we update the call sites in calcx
and calcy to call the new function pow d instead.

Body: M, b . b′

M-Body
M, e0 . e′0 · · · M, en . e′n

M, e0(e1, . . . , en) . e′0(e′1, . . . , e
′
n)

Expression: M, e . e′

M-Mapped
M[e] = e′

M, e . e′
M-Primop

�(e1, . . . , en) < dom(M)
M, e1 . e′1 · · · M, en . e′n

M,�(e1, . . . , en) . �(e′1, . . . , e
′
n)

M-Abs
` < dom(M)

M, ` . `
M-Param

`i < dom(M) M, ` . `′

M, `i . `i
′

Figure 7. Term rewriting for lambda mangling

function mangle(p, `e, t,M)
foreach ` ∈ scopep(`e) \ `e do M[`]← new label
foreach ` ∈ scopep(`e) \ `e do

fn(t): b← p[`] / get `’s signature and body
`′ = M[`] / get `’s associated new label
p[`′]← fn(t): b′ / insert new `′ where M, b . b′

end
`′e ← new label / now deal with entry: create new label
: be ← p[`e] / get `e’s body

p[`′e]← t: b′e / insert new entry where M, be . b′e
return `′e / return entry to new mangled region

end

Algorithm 1. Lambda mangling expects the program p to
work on, the entry label `e of the scope to mangle, the new
signature t and a map M which maps `e’s signature to t.

The scope of function pow in Figure 6a uses f’s parameter
ret as free variable. Assume we would like to eliminate
pow’s dependency on f. To this end, we want to lift pow by
introducing a new parameter ret l (Figure 6c).

If we want to apply both transformations, we could either
first drop and then lift, or first lift and then drop (Figure 6d).
Or more elegantly: apply both transformations simultane-
ously. Both, dropping and lifting, extend the program p by a
clone of `’s scope. In this clone all expressions are rewritten
with respect to a map M (Figure 7).

Reconsider the example in Figure 6. We substitute b with
3 and keep the parameter a called a d in the dropped version.
We specify this mapping as follows: M B {a 7→ a d, b 7→ 3}.
We substitute ret with pow l’s new parameter ret l and
keep parameters a and b called a l and b l in the lifted
version: M B {a 7→ a l, b 7→ b l, ret 7→ ret l}. We can
simultaneously drop b with 3 and lift pow’s free variable
ret to a new parameter ret m while obeying the mapping
M B {a 7→ a m, b 7→ 3, ret 7→ ret m}.

Algorithm 1 performs this reconstruction for the whole
scope of an entry label `e, with the new signature te (in the ex-
ample fn(int, fn(int))) and a corresponding mapping M.
The new region is added to the program p.

4.2 Recursion
As all function calls in CPS occur in tail position, it is
tempting to think that in a CPS program only tail-recursion
happens. This is not the case as can be seen in Figure 8.
The function else passes cont to fac. Reconsider Thorin

f(ret: int → ⊥):
let
g(x: int):
ret(x)

in g(23)

f(ret: int → ⊥):
g’(23, ret)

g’(x: int, ret’: int → ⊥):
ret’(x)

lift

drop

(a) Classic CPS version

f(ret: fn(int)):
g(23)

g(x: int):
ret(x)

f(ret: fn(int)):
g’(23, ret)

g’(x: int, ret’: fn(int)):
ret’(x)

lift

drop

(b) Thorin version

Figure 5. Lambda lifting/dropping

f(x: int, y: int, ret: fn(int)):
branch(..., calcx, calcy)

pow(a: int, b: int):
branch(b = 0, then, else)

then():

ret(1)

else():

head(0, a)

head(i: int, r: int):
branch(i < b, body, next)

body():

head(i+1, r*a)

next():

ret(r)

calcx():

pow(x, 3)

calcy():

pow(y, 3)

(a) The nested pow computes ab.

f(x: int, y: int, ret: fn(int)):
branch(..., calcx, calcy)

pow_d(a_d: int):
head(0, a_d)

head(i: int, r: int):
branch(i < 3, body, next)

body():

head(i+1, r*a_d)

next():

ret(r)

calcx():

pow_d(x)

calcy():

pow_d(y)

(b) Dropped pow d computes a d3.

pow_l(a_l: int, b_l: int,
ret_l: fn(int)):

branch(b_l = 0, then, else)
then():

ret_l(1)

else():

head(0, a_l)

head(i: int, r: int):
branch(i < b_l, body, next)

body():

head(i+1, r*a_l)

next():

ret_l(r)

f(x: int, y: int, ret: fn(int)):
branch(..., calcx, calcy)

calcx():

pow_l(x, 3, ret)

calcy():

pow_l(y, 3, ret)

(c) Lifted pow l doesn’t use free variables.

pow_m(a_m: int,
ret_m: fn(int)):

head(0, a_m)

head(i: int, r: int):
branch(i < 3, body, next)

body():

head(i+1, r*a_m)

next():

ret_m(r)

f(x: int, y: int, ret: fn(int)):
branch(..., calcx, calcy)

calcx():

pow_m(x, ret)

calcy():

pow_m(y, ret)

(d) Dropped and lifted pow m.

Figure 6. The function pow in (a) is always invoked with 3 as second argument. Hence, we want to specialize pow. Also, we
would like to get rid of the free variable ret. Lambda dropping performs the specialization, lambda lifting eliminates pow’s
dependency on f and lambda mangling applies both transformations simultaneously.

fn fac(n: int) → int {
if (n ≤ 1)

return 1;
return n * fac(n-1);

}

(a) Original program

fac(n: int, ret: fn(int)):
branch(n ≤ 1, then, else)

then():

ret(1)

else():

fac(n-1, cont)

cont(res: int):
ret(n*res)

(b) Thorin version

Figure 8. Naı̈ve, recursive implementation of factorial

semantics (Figure 4): cont is a function abstraction and is
evaluated to a closure. This closure captures the state of this
iteration. For this reason, fac itself is not tail-recursive albeit
the recursive call of fac occurs in else’s tail position.

Compare this to the tail-recursive implementation in Fig-
ure 9a. It consists of a base case fac and a helper function
help which implements the loop. The recursive call in help
passes h ret to help. Parameter h ret is not a function ab-
straction but a parameter that is just passed around. Therefore,
no closure is captured.

Concluding, it is important to distinguish tail-recursion
and recursive tail-calls. Therefore, standard text book defi-
nitions for tail-recursion [e.g., 14, chap. 17.4] do not apply
to CPS programs. Thus, we introduce our own nomenclature
that is based on the following higher-order call graph:

1. Create a node for each Thorin function
2. For each function `, draw an edge to all functions which

occur in `’s body.

A strongly connected component (SCC) in this graph forms
a recursion. We classify:

recursive call: Any call within an SCC.
simple recursive call: A recursive call within the scope of
the callee.

mutual recursive call: All other recursive calls.
static parameter: A parameter which does not change its
value within an SCC.

first-order recursive call: A recursive call which only uses
static parameters as higher-order arguments.

loop: An SCC formed by recursive calls that are only of
zeroth order.

Example. Reconsider (Figure 9a). The call of help in then2
is simple recursive since then2 belong’s to help’s scope. The
call of help in else is not recursive as it is not part of the SCC
formed by help and then2. The parameter h ret is static in
that SCC. This makes the call of help in then2 first-order
recursive. The call of fac in else is not first-order recursive
as the call passes the higher-order argument cont (Figure 8b).
Note how the definition of first-order recursion reflects non-
CPS tail-recursion.

4.2.1 Mangling Simple Recursion
Let us drop help into fac by dropping help’s parameters h n
and h ret with fac’s parameters n and f ret. However, our
algorithm would not touch the recursive call within help’s
scope because we do not put the entry `e = help into the
map M. We would obtain a dropped version of help, say
help d, which still calls the original function help. Just
substituting `e with the new mangled function would create
an ill-typed call site: help d(i+1, r*i, h n, h ret). The
recursive call help(i+1, r*i, h n, h ret) uses as third

argument h n and fourth argument h ret. These are help’s
static parameters. For this reason, we replace this call with
help d(i+1, r*i) (Figure 9b). Moreover, we replace the call
site help(1, 2, n, f ret) in else nested inside fac with
help d(1, 2) as holds:

help(1, 2, n, f ret) = help(1, 2, h n, h ret) = help d(1, 2) .

Note that the resulting program is identical to the iterative
implementation (Figure 2d). In other words, with lambda
mangling we performed tail-recursion elimination by trans-
forming help to a loop help d.

When we drop all parameters of the resulting function
help d with 1 and 2, we perform loop peeling (see Fig-
ure 9c). In this case we cannot substitute the recursive call
help d(i+1, i*r) by help p() as the arguments are not
static parameters.

Based on the program in Figure 9b, we can also drop
all parameters of help d with i+1 and r*i. This performs
loop unrolling (Figure 9d). For the same reason as above,
we cannot substitute the recursive call help d(i+1, i*r) by
calling the new function help u(), either.

In general, we substitute calls to the entry function by calls
to the mangled one if all dropped parameters are static. In
the case of simple recursion, we can take this insight into
account by checking for this pattern when rewriting the body
in Algorithm 1.

4.2.2 Mangling Mutual Recursion
In Figure 10a functions iseven and isodd invoke each other
in a mutual recursive way. There exists only a sole user of
this construct: Function foo calls iseven. For performance
reasons, we would like to drop iseven and isodd into foo
by substituting eret/oret with foo’s parameter ret. Cur-
rently, our mangling algorithm does not support this trans-
formation: When dropping iseven to iseven’ we do not
know that we are going to analogously drop isodd, too, and
thus, cannot substitute the recursive call isodd(ei-1, eret)
with isodd’(ei’-1). Likewise, we cannot replace the call
iseven(oi-1, oret) with iseven’(oi’-1) when dropping
isodd.

However, we know beforehand the mapping Me B {ei 7→
ei’, eret 7→ ret} when dropping iseven to iseven’ and the
mapping Mo B {oi 7→ oi’, oret 7→ ret} when dropping
isodd to isoddd. When considering this during mangling, we
can directly substitute any call of the form iseven(X, eret)
with iseven’(X) and any call of the form isodd(Y, oret)
with isodd’(Y) as both eret and oret are static parameters
in the SCC formed by iseven, ethen, isodd and othen.
Finally, the program in Figure 10b emerges. Note that the
recursive calls now form a loop. Thus, we performed mutual
tail-recursion elimination.

5. Code Generation
In order to translate Thorin programs to a lower-level pro-
gram representation like machine code or an SSA-based rep-

foo(i: int, ret: fn(bool)):
iseven(i, ret)

iseven(ei: int, eret: fn(bool)):
branch(ei>0, ethen, eelse)

ethen():

isodd(ei-1, eret)

eelse():

eret(true)

isodd(oi: int, oret: fn(bool)):
branch(oi>0, othen, oelse)

othen():

iseven(oi-1, oret)

oelse():

oret(false)

(a) Functions iseven and isodd
are first-order recursive.

foo(i: int, ret: fn(bool)):
iseven ’(i)

iseven ’(ei’: int):
branch(ei’>0, ethen’, eelse ’)

ethen ’():

isodd’(ei’-1)

eelse ’():

ret(true)

isodd’(oi’: int):
branch(oi’>0, ethen, oelse)

othen ’():

iseven ’(oi’-1)

oelse ’():

ret(false)

(b) The optimized version consists of
a loop.

Figure 10. Lambda mangling to eliminate mutual tail-
recursion formed by iseven, ethen, isodd and othen.

resentation (like LLVM) we classify Thorin functions in the
following way:

basic block (BB)-like function: A first-order function.
returning function: A second-order function with exactly
one first-order parameter.

top-level function: A function whose scope does not contain
free variables.

bad function: A function that is neither BB-like, nor top-
level and returning.

control flow form: A scope that does not use bad functions.

Example. Reconsider Figure 2: All basic blocks in the SSA-
form version are BB-like functions in Thorin. The function
fac is returning and top-level. As fac’s scope does not contain
any bad functions the scope is in CFF.

5.1 Converting Thorin to SSA Form
It is straightforward to generate code from a CFF program.
For example, we can use Kelsey’s algorithm [16] to translate
the program to SSA form:

• All returning functions become ordinary functions in the
SSA-form program. This first-order parameter acts as
“return”.
• All BB-like functions become basic blocks. For each pa-

rameter we introduce a φ-function. The corresponding argu-
ments of the BB’s predecessors determine the φ-function’s
arguments.
• Calls to returning functions become “normal” calls. The

parameter of the call’s continuation forms the result value
in the SSA-form program.

Example. Using this algorithm we obtain Figure 2b from
Figure 2d.

5.2 Beyond Control Flow Form
The remaining top-level functions that are not in CFF, can
be translated with standard code generation techniques for
higher-order CPS programs [1, 3, 26]. An alternative is to
eliminate bad functions. Algorithm 2 sketches how to keep

fac(n: int, f_ret: fn(int)):
branch(n ≤ 1, then, else)

then():

f_ret(1)

else():

help(1, 2, n, f_ret)

help(i: int, r: int, h_n: int,
h_ret: fn(int)):

branch(i ≤ h_n, then2, else2)
then2():

help(i+1, r*i, h_n, h_ret)

else2():

h_ret(r)

(a) Tail-recursive implementaion of
factorial

fac(n: int, f_ret: fn(int)):
branch(n ≤ 1, then, else)

then():

f_ret(1)

else():

help_d(1, 2)

help_d(i: int, r: int):
branch(i ≤ n, then2_d, else2_d)

then2_d():

help_d(i+1, r*i)

else2_d():

f_ret(r)

(b) Tail-recursion elimination

fac(n: int, f_ret: fn(int)):
branch(n ≤ 1, then, else)

then():

f_ret(1)

else():

help_p()

help_p():

branch(1 ≤ n, then2_d, else2_d)
then2_p():

help_d(2, 2)

else2_p():

f_ret(2)

help_d(i: int, r: int):
branch(i ≤ n, then2_d, else2_d)

then2_d():

help_d(i+1, r*i)

else2_d():

f_ret(r)

(c) Loop peeling

fac(n: int, f_ret: fn(int)):
branch(n ≤ 1, then, else)

then():

f_ret(1)

else():

help_d(1, 2)

help_d(i: int, r: int):
branch(i ≤ n, then2_d, else2_d)

then2_d():

help_u()

help_u():

branch(i+1 ≤ n, then2_u,
else2_u)

then2_u():

help_d(i+2, r*i*i)

else2_u():

f_ret(r*i)

else2_d():

f_ret(r)

(d) Loop unrolling

Figure 9. Tail-recursion elimination, loop peeling and loop unrolling by using lambda mangling

function lower2cff(p)
repeat

L← {` ∈ dom(p) | ` is bad}
foreach ` ∈ L do / for all bad functions

foreach u ∈ uses(`) do mangle uses(p, `, u) / mangle all uses
end
remove unreachable functions from p

until |L| = 0
end
function mangle uses(p, `, u)

if p[u] = `(e1, . . . , en) ∧ u < scopep(`)
χ← {i | ei is higher-order} / indices corresponding to higher-order args
t ← cut(t` , χ) / cut higher-order part where p ` ` : t`
foreach i ∈ χ do M[`i]← ei / map higher-order args to their parameters
`′ ← mangle(p, `, t,M) / drop higher-order args
args← cut((e1, . . . , en), χ) / get zeroth order args
p[u]← `′(args) / update call site

end
end

Algorithm 2. This algorithm elminates bad functions in
program p.

specializing higher-order arguments to bad functions. This
routine will only terminate if all bad functions eventually
disappear. In general, it is undecidable whether this will
be the case for an arbitrary program p: Basically, each
lambda dropping performs a function specialization. This
in turn partially evaluates the program. Due to the halting
problem, we cannot statically prove that all bad functions
will eventually be lowered.

However, the presented lowering algorithm always reduces
non-recursive calls of bad functions. Each specialized call
removes one use of the bad function. This property still holds
when mangling first-order recursive functions because the
mangled version does not reference the original function
anymore (see Section 4.2). We call such programs CFF-
convertible. When mangling recursive but not first-order
recursive functions, those references usually remain. In this
case, specializing the call does not decrease the number of
uses of the bad function.

Example. The program in Figure 1c uses the HOF range
to iterate over an interval [a, b[. We now apply lower2cff.

foo(n: int, fret: fn()):
range’(0, n)

range ’(a’: int, b’: int):
branch(a’<b’, then’, else’)

then’():

lambda(a’, cont’)

cont’():

range’(a’+1, b’)

else’():

next()

lambda(i: int, out: fn()):
use(i, n, out)

next():

fret()

(a) Mangling range

foo(n: int, fret: fn()):
range ’(0, n)

range’(a’: int, b’: int):
branch(a’<b’, then’, else’)

then’():

lambda ’(a’)

cont’():

range ’(a’+1, b’)

else’():

next()

lambda ’(i’: int):
use(i’, n, cont’)

next():

fret()

(b) Mangling lambda

Figure 11. Lower2cff optimizes the program in Figure 1c.

First, lower2cff mangles range to range’ because range is
a bad function with the higher-order parameters yield and
ret. Note how mangling eliminates the static parameters
(Figure 11a). The returning function lambda with the higher-
order parameter out is bad since it is nested inside of f due to
its dependency on f’s parameter n. For this reason, lower2cff

mangles lambda and the program in Figure 11b emerges
which is in CFF and the algorithm terminates. Using lambda
mangling, we also inline lambda’ and specialize range’’s
parmeter b’ to n to finally obtain the program in Figure 1d.

Enhancements. The presented lowering algorithm always
uses lambda dropping. In certain cases it is worthwhile to use
lambda lifting instead as lifting will not increase the code
size. However, lambda lifting is only reasonable in the case
of returning, non-top-level functions which only contain free
variables of zeroth order (lambda in Figure 11b, for example).
Then, the lifted function will be a returning, top-level function.
Otherwise, when lifting free variables of order one or higher,
the resulting function is not a returning function anymore.

Moreover, lower2cff always specializes all higher-order
arguments. However, in order to use Kelsey’s algorithm it
suffices to have top-level, returning functions. This means,
that it is fine to keep one first-order, potentially non-static
parameter (the “return”) of top-level bad functions. The
property of first-order recursion must then only hold for the

C Impala Rust GHC

aobench 1.220 1.357 n/a 22.540
fannkuch-redux 27.137 28.070 n/a 34.670
fasta 2.313 1.517 n/a 1.443
mandelbrot 2.143 2.113 n/a 2.013
meteor-contest 0.047 0.043 0.050 0.327
n-body 5.497 6.130 5.163 6.867
pidigits 0.710 0.763 4.940 0.903
regex 6.477 6.470 18.020 7.720
reverse-complement 1.090 1.220 n/a 1.300
spectral-norm 4.423 4.480 n/a 19.347

Table 1. Median execution times of eleven runs in seconds

remaining parameters. This essentially allows to transform a
greater class of programs to CFF.

Summary. Compilation works as follows:

1. Identify all bad functions.
2. Use lower2cff to eliminate all non-recursive and first-order

recursive uses. For such uses lower2cff will terminate. If
all uses are of these kinds, the original bad function will
become unreachable and can be removed.

3. Translate all functions which are not bad with Kelsey’s
algorithm.

4. Translate remaining functions with conservative code
generation techniques.

6. Implementation and Evaluation
6.1 Performance
We implemented a language called Impala2—a dialect of
Rust3. Besides semantic analyses the Impala compiler does
not perform any further analyses or transformations on the
abstract syntax tree (AST). As Rust directly compiles to
LLVM, the compiler implements many complicated analyses
and transformations before translating to LLVM as pointed
out in Section 1. The Impala compiler directly translates the
AST—including higher-order, nested and/or polymorphic
functions—to Thorin4. Thorin then performs its own set
of optimizations including the presented lower2cff phase to
eliminate closures before translating the Thorin program with
Kelsey’s algorithm to LLVM.

In order to evaluate the effectiveness of our approach,
we ported The Computer Benchmark Game5 to Impala. We
elided some programs which focus on measuring API or
runtime overhead. Additionally, we ported aobench6. Table 1
reports the median execution times of eleven runs for C,
Impala, Rust (if available) and GHC in seconds. Our test ran
on an Intel R© Ivy Bridge CoreTM i7-3770K CPU. We consider
the C implementations as baseline. We included Rust in our
measurements as Impala has similar syntax. We also included
Haskell versions of the benchmarks in order to see how well

2 https://github.com/AnyDSL/impala
3 http://www.rust-lang.org
4 https://github.com/AnyDSL/thorin
5 http://benchmarksgame.alioth.debian.org/
6 https://code.google.com/p/aobench

SLoC Volume Difficulty Effort

CloneFunction.cpp 359 21298 107 2269693
CodeExtractor.cpp 523 34599 124 4287983
InlineFunction.cpp 526 32288 109 3511359
LoopUnroll.cpp 279 15393 80 1229623

total 1687 120421 207 24968883

mangle.cpp 132 6636 75 496757

Table 2. Source lines of code (SLoC) and Halstead numbers
for LLVM’s C++ implementations compared to Thorin’s
mangle implementation.

GHC’s Core IR performs. From the original benchmark suite
we selected programs which were neither hand-vectorized
nor hand-parallelized. We used clang 3.4.2, rustc 0.11 and
GHC 7.8.3. The exact compile flags and benchmarks are
apparent in our benchmark suite.7

Although we used the C versions of the benchmarks as a
template for the Impala version, it is important to note that
Impala does not offer C-style for-loops. Instead, we use
HOFs to write appropriate generators and rely on Thorin’s
lower2cff phase. For example, in order to iterate over an
interval we use a HOF range as presented in Section 5.2.

The performance of the Impala programs is mostly on a par
with the C implementations except for fasta where Impala
is about 1.5 times faster than C. We are still investigating this
slowdown for C. Rust’s performance stands or falls by the
quality of the used libraries. GHC is for the most part roughly
on a par with C/Impala. However, some benchmarks—in
particular aobench—run significantly slower.

6.2 Engineering Effort
In order to estimate the engineering effort to develop code
transformations we compare the Halstead metric [13] of
Thorin’s lambda mangling implementation versus LLVM 3.4.2
(Table 2).8 On the one hand, LLVM is a full featured compiler
suite which makes these metrics biased towards Thorin. On
the other hand, lambda mangling is much more versatile:
For LLVM we did not include any source code to eliminate
tail-recursion (Section 4.2). Furthermore, LLVM completely
lacks functionality for partial inlining, partial outlining or
to represent HOFs at all. Still, LLVM’s pendants are in total
roughly 2.8 times more difficult to implement while it takes
about 50 times more time to program.

7. Discussion and Related Work
Graph-Based IRs and CPS. Graph-based IRs for impera-
tive languages [like 5, 7, 22] are not designed for functional
aspects and do not natively support HOFs and closures as
Thorin does. On the other hand, higher-order CPS-based
IRs used in compilers for functional languages use explicit
scope nesting and an AST rather than a graph in contrast

7 https://github.com/AnyDSL/benchmarks-impala
8 SLoC were generated using David A. Wheeler’s ’SLOCCount’;
Halstead numbers were computed with c3ms [12].

https://github.com/AnyDSL/impala
http://www.rust-lang.org
https://github.com/AnyDSL/thorin
http://benchmarksgame.alioth.debian.org/
https://code.google.com/p/aobench
https://github.com/AnyDSL/benchmarks-impala

to Thorin [1, 3, 26]. We discussed that graphs instead of
names and implicit scope nesting simplify program trans-
formations (Section 2 and 4). An alternative to CPS is A-
normal form (ANF) [11] or a monadic language [21]. These
languages do not use CPS but are in the spirit of CPS by
binding each new temporary to a new name. However, as
Kennedy [17] points out, such languages introduce problems
not present in a faithful CPS presentation: For example, ANF
needs a re-normalization phase after β-reduction.

SSA Form. SSA form was invented by Rosen et al. [24]
and became popular after Cytron et al. [8] described an
efficient algorithm for computing SSA form. As already
outlined, SSA form is a restricted form of CPS. In fact,
Impala exploits an SSA construction algorithm [6] to directly
construct a Thorin program from the AST without further
analyses like the computation of a dominance tree. The
scope of a top-level function in CFF is akin to an SSA-
form program because Kelsey’s algorithm is only of syntactic
nature (Section 5.1). However, in contrast to classic SSA
programs Thorin programs can be higher-order. Even classic
imperative languages would profit from a higher-order IR.
It is often important to annotate code regions (for example,
to mark a loop for parallelization). LLVM uses metadata to
annotate code. This introduces many subtle problems. For
instance, transformations must pay attention to not mistakenly
destroy metadata designated for a different pass. HOFs solve
this problem in a clean and type-safe way by wrapping
the code region to be annotated in a HOF. Köster et al.
[18] use this technique to annotate code regions for SIMD
vectorization and GPU execution.

Lambda Lifting and Dropping. Lambda lifting was in-
vented by Johnsson [15]. His algorithm uses currying in order
to abstract free variables:

λx. . . . y . . . ⇒ λy.λx.

Danvy and Schultz [9] observe that we can directly append y
to the parameter list in the case of first-order programs with
n-ary functions:

λ(x). . . . y . . . ⇒ λ(x, y).

They invented lambda dropping as reverse transformation
to Johnsson’s algorithm. When dealing with HOFs, their
algorithm uses Johnsson’s currying approach since in general
a compiler cannot rewrite call sites of a function passed
as argument to another function. As we want to eliminate
closures, currying is not an option for us. After all, a curried
function is not a returning function anymore (Section 5).
For this reason, lambda mangling does not use currying to
introduce or eliminate parameters. It rather produces one
new generalized and/or specialized function with an updated
signature which is at that point not connected to the rest
of the program. It is in the responsibility of other passes to
orchestrate mangling in a reasonable way and to connect a
mangled function to the rest of the program properly. Due to

Thorin’s blockless representation we can fuse both algorithms
into one simple recursive reconstruction algorithm which
does not need the block floating/sinking pass of the original
algorithms.

Static Argument Transformation. We are not the first to
note that an argument/parameter pair of a recursive call is
superfluous if the argument is just the parameter. The static
argument transformation [10] identifies such recursive calls
and eliminates them in the following way:

f: (a, b)

... use(a) ...

f(a, x)
⇒

f: (a, b)

letrec f’: (b)
... use(a) ...

f’(x)

in f’(b)

Note that f itself is not recursive anymore and, hence, is a
potential candidate for inlining. For mutual recursive func-
tions, we must find out which parameters do not change their
values within an SCC. For this reason, we rather speak of
static parameters than of arguments. However, applying the
static argument transformation on a mutual recursive function
still leaves the function recursive whereby further inlining
becomes problematic. Our algorithm on the other hand con-
siders all functions within one SCC simultaneously and, thus,
can eliminate static parameters (Section 4.2).

Super-β inlining. Super-β inlining enables inlining of a
closure call c with a function literal f . This transformation is
only valid if (1) all applications of c are closures over f
and (2) the environment at c is always equivalent to the
one where the closure is captured. A control flow analysis
(CFA) [19, 25] addresses the first condition. ∆-CFA [20]
also takes the environment where a closure is captured into
account. This allows aggressive inlining and, thus, aggressive
closure elimination. The focus in our work is different. The
presented lower2cff algorithm specializes (in contrast to
inlining) HOFs even more aggressively. Consider the function
range from Figure 1. Suppose, there are two call-sites of
range which pass different function literals g1 and g2 to
range’s parameter f:

range(..., g1, ...)

range(..., g2, ...)

A ∆-CFA discovers that inlining the closure call of f within
range’s scope is not possible since condition (1) is violated.
Thorin’s lower2cff on the other hand, specializes each call-
site and, hence, gets rid of the HOF range (Section 5.2).

Other Closure-Elimination Strategies. The SML/NJ com-
piler [3] allocates garbage-collected closures on the heap. An
additional phase tries to find closures whose lifetime can be
statically proven to be nested in a simple way. These closures
can be allocated on the stack instead. Additionally, the com-
piler lambda-lifts functions that are not passed as argument
to other functions. Then, these so-called known functions (as
opposed to escaping functions) do not require a closure at all.
An additional η-split phase splits functions that are used in a
known as well as in an escaping context. Finally, SML/NJ’s

inliner tries to decrease escaping contexts. Other compilers
like Scala9 also rely on inlining to eliminate explicit closures.

In summary, state-of-the-art functional compilers rely on
inline heuristics to eliminate closures. Thorin guarantees to
eliminate all closures in programs that are CFF-convertible.
As future work we want to design a type system that captures
this property in order to inform the programmer whether his
higher-order program will need explicit closures.

8. Conclusions
We presented the functional, CPS-based IR Thorin. Thorin is
equally suited to represent imperative as well as functional
programs. Its novelty is that it does not use scope nesting to
associate the use of a value with its definition, but is graph-
based. We built on this property to devise lambda mangling,
which generalizes partial in- and outlining. Lambda mangling
serves as a building block for other important control-flow
transformations, especially closure elimination. Finally, we
presented a novel closure elimination algorithm on the basis
of lambda mangling.

We evaluate Thorin experimentally using our research lan-
guage Impala, a dialect of Rust, on The Computer Benchmark
Game, a program suite to benchmark performance across
several languages (and their implementations). Impala uses
HOFs and closures to represent loop constructs in a generic
way. Nevertheless, Thorin’s closure elimination algorithm
successfully removes all overhead of closure allocation on
this benchmark set and produces programs that match the
performance of C.

Acknowledgments
This work is supported by the Federal Ministry of Education
and Research (BMBF) as part of the ECOUSS project as well
as by the Intel Visual Computing Institute Saarbrücken.

References
[1] N. Adams, D. Kranz, R. Kelsey, J. Rees, P. Hudak, and

J. Philbin. Orbit: an optimizing compiler for scheme. In
Symposium on Compiler Construction, SIGPLAN, 1986.

[2] A. W. Appel. SSA is functional programming. SIGPLAN Not.,
1998.

[3] A. W. Appel. Compiling with Continuations (corr. version).
Cambridge University Press, 2006.

[4] H. Barendregt. The Lambda Calculus: Its Syntax and Seman-
tics. Elsevier Science, 1985.

[5] M. Braun, S. Buchwald, and A. Zwinkau. Firm—a graph-based
intermediate representation. Technical report, 2011.

[6] M. Braun, S. Buchwald, S. Hack, R. Leißa, C. Mallon, and
A. Zwinkau. Simple and efficient construction of static single
assignment form. In CC, 2013.

[7] C. N. Click and Jr. Combining Analyses, Combining Optimiza-
tions. PhD thesis, Rice University, 1995.

9 http://magarciaepfl.github.io/scala

[8] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficiently computing static single assignment form
and the control dependence graph. TOPLAS, 1991.

[9] O. Danvy and U. P. Schultz. Lambda-dropping: Transforming
recursive equations into programs with block structure, 2001.
This is an extended version of Danvy’s and Schultz’ original
paper of the same title which appeared at PEPM’97.

[10] A. L. de M. Santos. Compilation by Transformation in
Non-Strict Functional Languages. PhD thesis, University of
Glasgow, 1995.

[11] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The
essence of compiling with continuations. In PLDI, 1993.

[12] C. H. Gonzalez and B. B. Fraguela. A generic algorithm
template for divide-and-conquer in multicore systems. In
HPCCC, 2010.

[13] M. H. Halstead. Elements of Software Science (Operating and
Programming Systems Series). Elsevier Science Inc., 1977.

[14] M. R. Hansen and H. Rischel. Introduction to Programming
using SML. Addison Wesley Longman, 1999.

[15] T. Johnsson. Lambda lifting: Transforming programs to
recursive equations. In Functional programming languages
and computer architecture, 1985.

[16] R. A. Kelsey. A correspondence between continuation passing
style and static single assignment form. SIGPLAN Not., 1995.

[17] A. Kennedy. Compiling with continuations, continued. In
ICFP, 2007.

[18] M. Köster, R. Leißa, S. Hack, R. Membarth, and P. Slusallek.
Code refinement of stencil codes. PPL, 24, 2014.

[19] J. Midtgaard. Control-flow analysis of functional programs.
ACM Computing Surveys, 2012.

[20] M. Might and O. Shivers. Environment analysis via ∆-CFA. In
POPL, 2006.

[21] E. Moggi. Notions of computation and monads. IC, 1991.

[22] M. Paleczny, C. Vick, and C. Click. The Java HotSpotTM server
compiler. In JVM, 2001.

[23] S. Peyton Jones and S. Marlow. Secrets of the glasgow Haskell
compiler inliner. Journal of Functional Programming, 2002.

[24] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value
numbers and redundant computations. POPL, 1988.

[25] O. Shivers. Control-Flow Analysis of Higher-Order Languages.
PhD thesis, Carnegie Mellon University, 1991.

[26] G. L. Steele, Jr. Rabbit: A compiler for scheme. Technical
report, 1978.

[27] B. Steensgaard. Sparse functional stores for imperative pro-
grams. In ACM SIGPLAN Workshop on Intermediate Repre-
sentations, pages 62–70, 1995.

[28] C. Strachey. Fundamental concepts in programming languages.
Higher-Order and Symbolic Computation, 2000.

http://magarciaepfl.github.io/scala

	Introduction
	Overview
	Name Capture
	SSA, CPS, and Scopes

	Thorin
	Lambda Mangling
	Combining Lambda Lifting and Dropping
	Recursion
	Mangling Simple Recursion
	Mangling Mutual Recursion

	Code Generation
	Converting Thorin to SSA Form
	Beyond Control Flow Form

	Implementation and Evaluation
	Performance
	Engineering Effort

	Discussion and Related Work
	Conclusions

