
23 August 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A graph-based representation of Gene Expression profiles in DNA microarrays / Benso, Alfredo; DI CARLO, Stefano;
Politano, GIANFRANCO MICHELE MARIA; Sterpone, Luca. - STAMPA. - (2008), pp. 75-82. ((Intervento presentato al
convegno IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) tenutosi
a Sun Valley (ID), USA nel 15-17 Sept. 2008 [10.1109/CIBCB.2008.4675762].

Original

A graph-based representation of Gene Expression profiles in DNA microarrays

Publisher:

Published
DOI:10.1109/CIBCB.2008.4675762

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1844482 since:

IEEE

Abstract— This paper proposes a new and very flexible data

model, called Gene Expression Graph (GEG), for genes

expression analysis and classification. Three features

differentiate GEGs from other available microarray data

representation structures: (i) the memory occupation of a GEG

is independent of the number of samples used to built it; (ii) a

GEG more clearly expresses relationships among expressed

and non expressed genes in both healthy and diseased tissues

experiments; (iii) GEGs allow to easily implement very efficient

classifiers. The paper also presents a simple classifier for

sample-based classification to show the flexibility and user-

friendliness of the proposed data structure.

I. INTRODUCTION

icroarray technology has evolved since the 1980s. A

DNA microarray is a collection of microscopic DNA

spots, usually representing single genes, regularly arranged

on a solid support, such as a glass microscope slide, and

covalently attached via a chemical matrix. Tens of thousands

of DNA probes can be attached to a single slide, and the

genes they represent can all be analyzed in a single

experiment. Microarrays provide simultaneous expression

measurements for thousands of genes and facilitate the

analysis of the complex relations among them. This new

technology is being used to address several goals in

bioinformatics [1][2].

Among the different applications of microarrays, a

challenging research problem is how to use genes expression

data to classify diseases on a molecular level. It involves

designing expression-based classifiers to discriminate

differences in cells state, such as one type of cancer or

another. An expression-based microarray phenotype

classifier takes a vector of gene expression levels as input

and outputs a class label to predict the class (phenotype) the

input vector belongs to [3]. Classifiers design involves

assessing expression levels from different microarrays

experiments, determining spots/genes whose expression is

relevant, and then applying a rule to design the classifier

from the sampled microarray data.

The main problem in this type of classification is the huge

disparity between the number of potential gene expressions

(thousands) and the number of samples (usually less than a

hundred). This extreme disparity impacts the major aspects

of the classifier design: the classification rule, the error

estimation, and the feature selection.

A. Benso, S. Di Carlo, G. Politano, and L. Sterpone are with the

Department of Computer and Control Engineering of Politecnico di Torino,

I-10129, Torino, Italy. Email: {alfredo.benso, stefano.dicarlo,

gianfranco.politano, luca.sterpone}@polito.it

Many machine-learning techniques have been applied to

classify microarray data. These techniques include artificial

neural networks [4], [5], [6] and [7], Bayesian approaches

[8] and [9], support vector machines [10], [11] and [12],

decision trees [13] and [14], and k nearest neighbors [15].

Evolutionary techniques have also been used to analyze

gene expression data. Genetic algorithms and genetic

programming are mainly used in gene selection [23][24],

optimal gene sets finding [25], disease prediction [26], and

classification [27] [28] [29] [30]. Approaches that combine

multiple classifiers have also received much attention in the

past decade, and this is now a standard approach to

improving classification performance in machine-learning.

[31][32][33][34][35][36]

While the proposed solutions mainly focus on the

definition of very efficient classification algorithms, one

issue that has not been widely addressed is the definition of

flexible data structures that can be used to represent classes

of phenotypes and features relationships.

This paper proposes a new and very flexible data model

for gene expression analysis and classification called Gene

Expression Graph (GEG). Three features differentiate GEGs

from other available microarray data representation

structures, and in particular from Gene Expression Matrices

[16]: (i) the memory occupation of a GEG is independent of

the number of samples used to built it; (ii) a GEG more

clearly expresses relationships among expressed and non

expressed genes in both healthy and diseased tissues

experiments; (iii) GEGs allow to easily locate potential

informative genes, i.e. genes whose expression levels

strongly correlate with a particular phenotype.

We believe that this new data model is able to intrinsically

express very useful information about microarray

experiments that can support the development of new and

very efficient feature extraction and classification

algorithms. Although the goal of this paper is to introduce

the new data model, to demonstrate the usability of the

proposed representation, the paper also presents a simple

classifier for sample-based classification and its applications

on a set of microarray experiments for three well known

diseases: Diffuse Large B-Cell Lymphoma, Lymphocytic

Leukemia Watch&Wait and Lymphocytic Leukemia.

The paper is organized as follows: Section II describes

how to build a Gene Expression Graph starting from a set of

experiments, and Section III proposes a simple example of

classifier based on GEGs. Section IV presents some

experimental results and Sections V concludes the paper

suggesting future activities.

A Graph-Based Representation of Gene Expression Profiles in DNA

Microarrays

A. Benso, S. Di Carlo, G. Politano, L. Sterpone

M

75978-1-4244-1779-7/08/$25.00 ©2008 IEEE

II. BUILDING GENE EXPRESSION GRAPHS

A microarray experiment typically assesses a large

number of DNA sequences (genes, cDNA clones, or

expressed sequence tags ESTs) under multiple conditions.

These conditions may be a collection of different tissue

samples (e.g., normal versus cancerous tissues).

The result of a microarray experiment is a gene expression

dataset usually represented in the form of a real-valued

expression matrix, called Gene Expression Matrix (GEM)

[16][17]. A Gene Expression Matrix M defined for a set of m

samples, each involving n genes is defined as:

M = {wi, j |1≤ i ≤ n,1≤ j ≤ m} (1)

where:

• Each row

g i (1≤ i ≤ n) is associated to a gene. It

identifies the expression pattern of gene i over m

samples;

• Each column

s j (1≤ j ≤ m) is associated to a

sample. It represents the genes expression profile

of the sample;

• Each element wi, j ∈ M measures the expression

of gene i in sample j.

The original GEM obtained from the scanning process of

a set of microarrays usually contains noise, missing values,

and systematic variations arising from the experimental

procedure. This row data is therefore usually pre-processed

before performing any type of analysis. Examples of pre-

processing techniques (out of the scope of this paper) can be

found in [18][19][20].

A Gene Expression Graph modeling a microarray

experiment can be easily built starting from one or more

GEMs. A GEG elaborates the information contained in the

GEMs in order to clearly highlight those genes considered

“expressed”.

Since gene expression levels (wi, j) in a GEM are

represented as real numbers in a continuous interval of valid

values, it is clear that, in order to discriminate between

expressed and non-expressed genes, it is necessary to define

an expression threshold T able to remove the biological and

experimental noise. This is one of the most critical

parameters affecting the quality of the resulting GEG.

A Gene Expression Graph built over a GEM M is a non-

oriented weighted graph GEG = (V ,E) where:

• V is the set of vertices. The vertex v
i
∈ V is

associated with gene i of M;

• E = (u,v) | u,v ∈ V{ } is the set of edges

connecting vertices (genes). Two vertices u and v

are connected by an edge iff the corresponding

genes are both expressed in the same sample

s j ∈ M .

If n genes are expressed in the same sample

s j ∈ M ,

each corresponding vertex is connected to the other n-1 in

the graph. Therefore, genes expressed in the same sample

constitute a clique in the graph.

Each edge (u,v)∈ E is finally weighted with a weight

W
u,w

 that counts the number of times the genes associated

with vertexes u and v are simultaneously expressed in the

same sample over the m samples included in M. In a graph

representing a single sample (microarray), each edge will be

weighted as 1. Adding additional experiments will modify

the graph by introducing additional edges and/or by

modifying the weight of existing ones. Implicitly, this

representation takes also into account non-expressed genes.

Missing vertexes correspond to non-expressed genes

relationships.

Algorithm 1 summarizes, using a pseudo-code formalism,

the steps required to build a GEG starting from a Gene

Expression Matrix.

Since differential analysis between healthy and diseased

tissues is widely used in gene expression analysis, to

represent a complete microarray experiment we would need

two graphs, one for the healthy tissue (green dye in c-DNA

microarrays) and one for diseased one (red dye in c-DNA

microarrays). Since both experiments share the same set of

genes, we can compact the two resulting GEGs into a single

graph GEG = (V ,E
d
,E

h
) with two sets of edges:

• Diseased edges (E
d
): representing the genes

expression relationships in the diseased tissues;

• Healthy edges (E
h
): representing the genes

expression relationships in the healthy tissue.

Finally, each vertex v of a GEG is also labeled with a set

of additional information that may in turn be useful for

future elaborations:

• The Name and UnigeneID [21] of the corresponding

gene;

• The Total Expression Intensity (TEI) for both the

healthy and the diseased tissues over the different

samples. The TEI is computed as the sum of the

expression intensities of the same gene in the different

samples;

• The Expression Counts (EC) of the gene, i.e., the

number of times the gene is expressed in the healthy and

the diseased samples.

76

Fig. 1 shows an example of GEG construction from a set

of six samples already filtered with the threshold T in order

to identify expressed and not expressed genes. Mh and Md

are the two GEMs corresponding to the healthy and diseased

tissue experiments used for creating the final graph. The

label of each vertex in the graph reports the gene name, and

the two expressions counts.

If new samples become available from new experiments

referring to the same pathology, the related information can

be easily added to the corresponding GEG at anytime. Since

GEGs store information about both expressed and non-

expressed genes, by simply changing the expression

thresholds T it is possible to drastically reduce the number of

significant genes to be used for clustering or signature

extraction, and also to precisely target the set of genes to be

investigated in future experiments. Finally, the memory

occupation of a GEG is independent of the number of

samples in the initial dataset.

A. Gene Expression Graphs Representation

To efficiently represent a GEG, we use a modified

ADjacency Matrix (ADM). A standard ADM for a non-

oriented graph G = (V ,E) is a n × n symmetrical matrix

ADM = {c i, j |1≤ i ≤ n,1≤ j ≤ n} (with n equal to the

number of vertices of G) where each cell c i, j stores the

weight of the edge connecting vertex i to the vertex j.

The GEGADM uses the two halves of the matrix to

represent the weights of the healthy edges (upper right half)

and the diseased edges, respectively. In this way we are able

to keep all the necessary information regarding the

experiment on the same type of pathology in one very

compact data structure. Fig. 2 shows the GEGADM for the

example of Fig. 1.

The more experiments are available, the more information

the matrix will store. The memory occupancy of this

structure is independent of the number of experiments.

M
h

=

A

B

C

D

0 0 0 0 0 0

1 1 1 1 1 1

0 0 1 0 1 1

0 0 0 1 1 0

M
d

=

A

B

C

D

1 1 1 1 1 1

0 0 0 0 0 0

1 1 0 1 0 0

1 1 1 0 0 1

Fig. 1. GEG Construction Example

Algorithm 1: GEG Construction

1. – GEM filtering using the threshold T

2. for each wi, j ∈ Mdo

3. if wi, j > T then

4. wi, j ←1

5. else

6. wi, j ← 0

7. end if

8. end for

9. – GEM construction begins

10. V ←∅

11. E←∅
12. for i←1…m do

13. for
 j←1…n −1 do

14. if w j,i ==1 then

15. if v j ∉ V then add v j to V

16. for
 k← j +1…n do

17. if w
k,i
==1 then

18. if v
k
∉ V then add v

k
 to V

19. if (v j ,vk)∉ E then

20. add (v j ,vk) to E

21. Wv j ,vk
← 0

22. end if

23. Wv j ,vk
←Wv j ,vk

+1

24. end if

25. end for

26. end if

27. end for

28. end for

77

B. Informative Genes

Besides using GEGs as data structures for the definition of

efficient classifiers, they also allow deriving useful

information about gene expression characteristics that can be

used to understand the meaningfulness of a gene and its

correlation with the informative genes describing a given

pathology. If built from a dataset representing a well-defined

phenotype, a GEG will start displaying clusters of edges

with very high weights that show a very strong relationship

in the expression of the genes corresponding to the vertices

connected in the cluster. These clusters can be used to select

the informative genes that represent the considered

phenotype.

III. CLASSIFIER

To show the flexibility of the proposed data model we

designed a simple classifier able to provide a Proximity

Measure between a GEG representing a given phenotype

(GEGpat), and a GEG generated from a single microarray

sample (GEGexp).

The classification rule is in fact implemented as a

weighted comparison between the two graphs. GEGexp, is

characterized by having all edges weighted with 1;

moreover, it is by construction, a clique. GEGpat, extracted

from the dataset as described in the beginning of the

previous section, contains edges weighted from the

expression information of the considered phenotype.

We basically have four possible matching situations (Fig.

3):

1) Perfect match: GEGexp and GEGpat perfectly match. For

each edge in GEGexp there is a corresponding edge in

GEGpat with weight greater then zero, and viceversa.

Consequently, in this case, the set of expressed genes

in GEGexp and in GEGpat exactly match;

2) Partial Match: GEGexp and GEGpat partially match.

There are three possible sub cases:

a) The set of vertices in GEGexp and the set of vertices

in GEGpat share some element, i.e., some of the

genes expressed in GEGexp (not all) are also

expressed in GEGpat, and viceversa;

b) GEGexp is a subset of GEGpat. All genes expressed

in GEGexp are also expressed in GEGpat, but not

viceversa;

c) GEGpat is a subset of GEGexp. All genes expressed

in GEGpat are also expressed in GEGexp, but not

viceversa.

The proximity measure defined in our classifier is

computed multiplying two values: (i) a Matching Score

(MS) providing a measure of how many edges in GEGexp

cover informative edges (edges with a high weight) in

GEGpat; and (ii) a Confidence Score (CS), that can be

considered as an error estimation. It measures the quality of

the match, taking into account how much of GEGexp actually

matches GEGpat, and how much of it is left out because it is

expressing genes that are not even present in the phenotype

it is compared with.

CS is ranged between 0 and 1. Depending on the four

matching situations of Fig. 3, we should expect the behavior

reported in Table 1.

To compute the MS and CS we have first to introduce

additional measures:

• The Sample Signature Weight (SSW) as the sum of all

the weights of the arcs of GEGexp:

SSW = W i, j

(i, j)∈EGEGexp

∑ (2)

• The Perfect Match Distance (PMD) as the distance of

the matching portion of GEGpat from the optimal

situation of matching with a complete clique with all the

edges with maximum weight (equal to the number of

samples #DS in the dataset):

TABLE I

MS AND CS BEHAVIOR

 CS

Perfect match 1

Partial Match-a 0÷1

Partial Match-b 1

Partial Match-c 0÷1

Fig. 3. GEGpat and GEGexp possible matches

GEGADM =

0 0 3 4

0 0 0 0

0 3 0 2

0 2 1 0

Fig. 2. GEG Adjacency Matrix

78

PMD = #DS −W i, jGEGpat
(i, j)∈EGEGexp

∑ (3)

The better is the match; the higher is PMD, which in case

of a perfect match would tend to ∞;

• The Sample Matching Weight (SMW) as the sum of the

weights of all the edges in GEGexp that have a matching

arc in GEGpat (or, since the weights of GEGexp are all

equal to 1, SMW corresponds to the number of matching

arcs):

SMW = W ijGEGpat
∑ |∃(i, j) in EGEGexp

 (4)

• The GEG Matching Weight (GMW) as the sum of the

weights of all the edges in GEGpat that have a

corresponding edge in GEGexp.

GMW = W ij∑
GEGexp

|∃(i, j) in EGEGpat
 (5)

The Matching Score (MS) can now be defined as:

MS =GMW
PMD

 (6)

The Confidence Score (CS) of the disease sample

compared with the dataset graph is defined as:

CS = SMW
SSW

 (7)

Finally, the Proximity Measure (PM) is computed as:

PM = CS ⋅ MS (8)

IV. EXPERIMENTAL RESULTS

Before discussing the experimental results, it is important

to analyze the data sources we used to generate our test

GEGs. Each used dataset comes from cDNA Stanford’s

Microarray database [22]. The problem with this data is that

in many cases it refers to old experiments done on first

generations of microarrays affected by probe sensing

problems, reduced gene-set, and lack of UnigeneID [21] for

many spots. Moreover, since old microarrays often used to

duplicate spots in order to have more reliable results, in our

GEG generation procedure we considered as “expressed” a

gene expressed in at least one of its copies on the

microarray. Also, we had to discard all information

concerning spots that did not have a valid UniGeneID.

Even if the model allows to use and combine together data

coming from different types of microarrays embedding

different genes, in this set of experiments we used samples

that have the same microarray’s technology and genes set.

A. Data source and Dataset

The Stanford’s collection catalogs a huge number of

experiments using the cDNA chip technology. cDNA chips

use two colors to distinguish tissues: green for the healthy

tissue (wavelength of 635nm) and red for the diseased one

(wavelength of 532 nm).

Besides the microarray image, each experiment is

associated with the corresponding microarray’s image and a

text file in CSV (Comma Separated Values) format in which

each line describes a spot. From the set of CSV files we

derived a Gene Expression Matrix for each considered

dataset.

We created three datasets: B-Cell, Lymphocytic Leukemia

Watch&Wait and Lymphocytic Leukemia. The first dataset

used to create the graph is a group of 53 microarrays related

to Diffuse Large B-Cell Lymphoma (that is a non-Hodgkin

Lymphoma disease). From parsing the corresponding CSV

files we obtained a GEG of 6826 correctly named (using

UniGeneID) vertices. The second dataset is a group of 22

microarrays focusing on Lymphocytic Leukemia

Watch&Wait. From this set we extracted valid information

for 7628 genes. Finally, the third dataset targeting

Lymphocytic Leukemia is a group of 12 experiments from

which we were able to extract valid information for 6826

genes.

To select the expressed nodes, we analyzed the expression

levels distribution of the spots on all datasets and we

performed various experiments using different values of T.

As a result of this analysis we decided to adopt a threshold

equal T=3000 (the expression ranges between 0 and 25,000)

that seems (in our case) able to keep enough information

about expressed genes.

B. Classifier

To verify the usability of the proposed model for sample-

based classification algorithms, we applied the classification

procedure described in Section II.B using, as samples, 6

different sets of microarrays data downloaded from Stanford

Microarray’s Database. Each set contains 11 distinct

experiments. We used the three datasets described in Section

IV.A as classes in which to classify the samples.

Each sample set is targeting a different phenotype:

1. Lymphocytic Leukemia W&W (watch and wait);

2. Lymphoma Normal Subset – non specific lymphoma

subset;

3. Lymphocytic Leukemia - non specific subset;

4. Diffuse Large B-cell Lymphoma – Subset of B-cell

sample not used during the graph creation and used

here as cross-validation of the B-cell dataset;

5. Tumor: Brain – solid tumor;

6. Tumor: Ovarian – solid tumor.

We divided the 8 sample sets into four main groups. The

first group contains pathologies #5 and #6, which are both

referred to as solid tumors and therefore highly different

from the lymphoma. We expect a strong difference from all

datasets. The second group includes pathology #2,

characterized by a slight affinity with the dataset. The third

79

group, including phenotypes #1 and #3, is very important

because each sample represents a subset of very similar

tissues. The idea is to observe if their unspecificity is evident

in a sufficient distance from the specific B-Cell signature of

the dataset. Finally, the fourth group contains the sample #4,

a non-folded subset of the B-cell disease. This is the same

pathology than the one used to generate the Dataset and it is

used as cross-reference check for the classifier.

Fig. 4-5-6-7 report the Proximity Distances results

computed by the classifier for pathologies 1 to 4. For the last

two, the classifier correctly returned a null match with the

three datasets.

Fig. 4 shows how the classifier correctly puts the

Lymphocytic Leukemia W&W in the W&W dataset. The

same happens for the Diffuse Large B-Cell Lymphoma

classified in the B-Cell dataset of Fig. 7.

Fig. 5 shows how the classifier is able to classify the

sample to all three classes. This is important since we do not

have a dataset for that particular type of Lymphoma.

Nevertheless, the classifier correctly recognizes the disease

as a Lymphoma.

Fig. 6 is also very important because as expected the

classifier recognizes that the sample (Lymphocytic) is not a

Diffuse Large B-cell Lymphoma; it correctly classifies the

sample in both the remaining datasets.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we presented a new data structure designed

for the analysis of gene expression data in microarrays

experiments. The proposed model is essentially based on a

graph representing meaningful expression relationships

between spots. Gene Expression Graphs have many

advantages over other known standards, as Gene Expression

Matrices, in particular in terms of memory occupation and

identification of the most informative genes and genes

relationships. The full potential of this new data model is

still under investigation, but it is believed to be able to

provide a very useful ground for the development of new

gene expression analysis algorithms.

To demonstrate the flexibility of the approach we also

implemented a very simple classifier. The results

demonstrate how the topological information extracted from

the GEGs allows a very easy classification.

A lot of work is under way on GEGs. One of the first

problems we encountered is the choice of the optimal

threshold to use when building the graph. The results

obtained so far showed that the efficiency of the

classification algorithm is too sensitive to the choice of the

threshold. We are therefore modifying the GEG generation

algorithm, avoiding to base it on absolute expression values,

but considering instead the differential expression between

healthy and diseased samples. This new approach is

guaranteeing a significant increase in the robustness of the

data structure and a consequent reduction of the sensitivity

of the classification algorithms to the expression threshold.

Also, we are working on the development of more

detailed and complete supervised and unsupervised analysis

algorithms able to fully exploit the information stored in a

GEG.

REFERENCES

[1] G. Gibson, “Microarray Analysis”, PLoS Biology, Vol.1, No. 1, Oct.

2003, pp. 28-29

[2] P. Larranaga, B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza, J.

A. Lozano, R. Armananzas, G. Santafe, A. Perez and V. Robles,

“Machine learning in bioinformatics”, Briefings in Bioinformatics,

Vol. 7, No. 1, Feb. 2006, pp. 86-112

[3] E. R. Dougherty, “The fundamental role of pattern recognition for

gene-expression/microarray data in bioinformatics”, Pattern

Recognition, Vol. 38, No. 12, Dec. 2005, pp. 2226-2228

[4] F. Azuaje, “A computational neural approach to support the discovery

of gene function and classes of cancer”, IEEE Trans. Biomed. Eng.

Vol. 48, 2001, pp. 332–339

[5] J. Khan, J. Wei, M. Ringner, L. Saal, M. Ladanyi and F. Westermann

et al., “Classification and diagnostic prediction of cancers using gene

expression profiling and artificial neural networks”, Nat. Med. Vol. 7,

2001, pp. 673–679

[6] A. Albrecht, S. Vinterbo and L. Ohno-Machado, “An epicurean

learning approach to gene-expression data classification”, Artif Intell

Med Vol. 28, 2003, pp. 75–87

[7] C. Huang and W. Liao, “Application of probabilistic neural networks

to the class prediction of leukemia and embryonal tumor of central

nervous system”, Neural Process Lett, Vol. 19, 2004

[8] V. Roth and T. Lange, “Bayesian class discovery in microarray

datasets”, IEEE Trans Biomed Eng, Vol. 51, 2004, pp. 707–718

[9] X. Zhou, K. Liu and S. Wong, “Cancer classification and prediction

using logistic regression with Bayesian gene selection”, J Biomed

Inform, Vol. 37, 2004

[10] F. Pan, B. Wang, X. Hu and W. Perrizo, “Comprehensive vertical

sample-based KNN/LSVM classification for gene expression

analysis”, J Biomed Inform, Vol. 37, 2004, pp. 240–248

[11] C. Ding and I. Dubchak, “Multi-class protein fold recognition using

support vector machines and neural networks”, Bioinformatics, Vol.

17, 2001, pp. 349–358

[12] S. Ramaswamy, P. Tamayo, R. Rifkin, S. Mukherjee, C. Yeang and

M. Angelo et al., “Multiclass cancer diagnosis using tumor gene

expression signatures”, Proc Natl Acad Sci 98, 2001, pp. 15149–

15154

[13] N. Camp and M. Slattery, “Classification tree analysis: a statistical

tool to investigate risk factor interactions with an example for colon

cancer”, Cancer Causes Contr Vol. 13, 2002, pp. 813–823

[14] H. Zhang, C. Yu and B. Singer, “Cell and tumor classification using

gene expression data: construction of forests”, Proc Natl Acad Sci

Vol. 100, 2003, pp. 4168–4172

[15] L. Li, C. Weinberg, T. Darden and L. Pedersen, “Gene selection for

sample classification based on gene expression data: study of

sensitivity to choice of parameters of the GA/KNN method”,

Bioinformatics, Vol. 17, 2001, pp. 1131–1142

[16] Wen, X., Fuhrman, S., Michaels, G.S., Carr, D.B., Smith, S., Barker,

J.L., and Somogyi, R., 1997, “Large-scale temporal gene expression

mapping of CNS development”, Proc. Natl. Acad. Sci., in press.

[17] D. Jiang, C. Tang, and A, Zhang, “Cluster Analysis for Gene

Expression Data: A Survey”, IEEE Transaction On Knowledge and

Data Engineering, Vol. 16, No. 11, Nov. 2004.

[18] Troyanskaya O., Cantor M., Sherlock G. Brown P., Hastie T.,

Tibshirani R., Botstein D. and Altman R., “Missing value estimation

methods for dna microarrays”, Bioinformatics, in press

[19] Hill A., Brown E., Whitley M., Tucker-Kellog G., Hunter C., Slonim

D., “Evaluation of normalization procedures for oligonucletide array

data based on spiked cRNA controls” Genome Miology, Vo. l2, No.

12, 2001

[20] Schuchhardt J., Beule D., Malik A., Wolski E., Eickhoff H., Lehrach

H., and Herzel H., “Normalization strategies fo cDNA microarrays”,

Nucleic Acids Research, Vol. 28, No. 10, 2000

[21] UniGene, http://www.ncbi.nlm.nih.gov/sites/entrez?db=unigene

[22] cDNA Stanford’s Microarray database http://genome-

www.stanford.edu/

80

[23] 15. Li L, Weinberg CR, Darden TA, et al. Gene selection for sample

classification based on gene expression data: study of sensitivity to

choice of parameters of the GA/KNN method. Bioinformatics

2001;17(12):1131–42.

[24] 16. Durbin R, Eddy SR, Krogh A, et al. Biological Sequence Analysis:

Probabilistic Models of Proteins and Nucleic Acids. Cambridge

University Press, 1998.

[25] 17. Gary B. Fogel, David W. Corne. Evolutionary Computation in

Bioinformatics. Morgan Kaufmann, 2002.

[26] 18. Frasconi P, Shamir R (eds). Artificial Intelligence and Heuristic

Methods in Bioinformatics, Volume 183, NATO Science Series:

Computer and Systems Sciences Edited. NATO, 2003.

[27] 19. Higgins D, Taylor W (eds). Bioinformatics. Sequence, Structure,

and Databanks. Oxford University Press, 2000.

[28] 20. Husmeier D, Dybowski R, Roberts S (eds). Probabilistic Modeling

in Bioinformatics and Medical Informatics. Springer Verlag, 2005.

[29] 21. Jagota A. Data Analysis and Classification for Bioinformatics.

Bioinformatics by the Bay Press, 2000.

[30] 22. Jiang T, Xu X, Zhang MQ (eds). Current Topics in Computational

Molecular Biology. The MIT Press, 2002.

[31] 24. Scholkopf B, Tsuda K, Vert J.-P (eds). Kernel Methods in

Computational Biology, . The MIT Press, 2004.

[32] 25. Seiffert U, Jain LC, Schweizer P (eds). Bioinformatics Using

Computational Intelligence Paradigms. Springer Verlag, 2005.

[33] 26. Wang JTL, Zaki MJ, Toivonen HTT, et al. (eds). Data Mining in

Bioinformatics. Springer-Verlag, 2004.

[34] 27. Wu CH, McLarty JW. Neural Networks and Genome

Identification. Elsevier, 2000.

[35] 28. Larran˜ aga P, Menasalvas E, Pen˜ a JM, et al. Special issue in

data mining in genomics and proteomics. Artificial Intelligence in

Medicine 2003;31:III–IV.

[36] 29. Li J, Wong L, Yang Q. Special issue on data mining for

bioinformatics. IEEE Intelligent Systems 2005;20(6).

Fig. 5. Classifier results: Lymphoma Hematopoietic

Fig. 4. Classifier results: Chronic Lymphocytic Leukemia (CLL) Watch & Wait

81

Fig. 7. Classifier results: Diffuse Large B-cell Lymphoma

Fig. 6. Classifier results: Lymphocytic Leukemia (LL) – no specific subset

82

