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Abstract— This paper proposes a new and very flexible data 

model, called Gene Expression Graph (GEG), for genes 

expression analysis and classification. Three features 

differentiate GEGs from other available microarray data 

representation structures: (i) the memory occupation of a GEG 

is independent of the number of samples used to built it; (ii) a 

GEG more clearly expresses relationships among expressed 

and non expressed genes in both healthy and diseased tissues 

experiments; (iii) GEGs allow to easily implement very efficient 

classifiers. The paper also presents a simple classifier for 

sample-based classification to show the flexibility and user-

friendliness of the proposed data structure. 

I. INTRODUCTION 

icroarray technology has evolved since the 1980s. A 

DNA microarray is a collection of microscopic DNA 

spots, usually representing single genes, regularly arranged 

on a solid support, such as a glass microscope slide, and 

covalently attached via a chemical matrix. Tens of thousands 

of DNA probes can be attached to a single slide, and the 

genes they represent can all be analyzed in a single 

experiment. Microarrays provide simultaneous expression 

measurements for thousands of genes and facilitate the 

analysis of the complex relations among them. This new 

technology is being used to address several goals in 

bioinformatics [1][2].  

Among the different applications of microarrays, a 

challenging research problem is how to use genes expression 

data to classify diseases on a molecular level. It involves 

designing expression-based classifiers to discriminate 

differences in cells state, such as one type of cancer or 

another. An expression-based microarray phenotype 

classifier takes a vector of gene expression levels as input 

and outputs a class label to predict the class (phenotype) the 

input vector belongs to [3]. Classifiers design involves 

assessing expression levels from different microarrays 

experiments, determining spots/genes whose expression is 

relevant, and then applying a rule to design the classifier 

from the sampled microarray data.  

The main problem in this type of classification is the huge 

disparity between the number of potential gene expressions 

(thousands) and the number of samples (usually less than a 

hundred). This extreme disparity impacts the major aspects 

of the classifier design: the classification rule, the error 

estimation, and the feature selection. 
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Many machine-learning techniques have been applied to 

classify microarray data. These techniques include artificial 

neural networks [4], [5], [6] and [7], Bayesian approaches 

[8] and [9], support vector machines [10], [11] and [12], 

decision trees [13] and [14], and k nearest neighbors [15].  

Evolutionary techniques have also been used to analyze 

gene expression data. Genetic algorithms and genetic 

programming are mainly used in gene selection [23][24], 

optimal gene sets finding [25], disease prediction [26], and 

classification [27] [28] [29] [30]. Approaches that combine 

multiple classifiers have also received much attention in the 

past decade, and this is now a standard approach to 

improving classification performance in machine-learning. 

[31][32][33][34][35][36] 

While the proposed solutions mainly focus on the 

definition of very efficient classification algorithms, one 

issue that has not been widely addressed is the definition of 

flexible data structures that can be used to represent classes 

of phenotypes and features relationships.  

This paper proposes a new and very flexible data model 

for gene expression analysis and classification called Gene 

Expression Graph (GEG). Three features differentiate GEGs 

from other available microarray data representation 

structures, and in particular from Gene Expression Matrices 

[16]: (i) the memory occupation of a GEG is independent of 

the number of samples used to built it; (ii) a GEG more 

clearly expresses relationships among expressed and non 

expressed genes in both healthy and diseased tissues 

experiments; (iii) GEGs allow to easily locate potential 

informative genes, i.e. genes whose expression levels 

strongly correlate with a particular phenotype. 

We believe that this new data model is able to intrinsically 

express very useful information about microarray 

experiments that can support the development of new and 

very efficient feature extraction and classification 

algorithms. Although the goal of this paper is to introduce 

the new data model, to demonstrate the usability of the 

proposed representation, the paper also presents a simple 

classifier for sample-based classification and its applications 

on a set of microarray experiments for three well known 

diseases: Diffuse Large B-Cell Lymphoma, Lymphocytic 

Leukemia Watch&Wait and Lymphocytic Leukemia. 

The paper is organized as follows: Section II describes 

how to build a Gene Expression Graph starting from a set of 

experiments, and Section III proposes a simple example of 

classifier based on GEGs. Section IV presents some 

experimental results and Sections V concludes the paper 

suggesting future activities. 
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II. BUILDING GENE EXPRESSION GRAPHS 

A microarray experiment typically assesses a large 

number of DNA sequences (genes, cDNA clones, or 

expressed sequence tags ESTs) under multiple conditions. 

These conditions may be a collection of different tissue 

samples (e.g., normal versus cancerous tissues).  

The result of a microarray experiment is a gene expression 

dataset usually represented in the form of a real-valued 

expression matrix, called Gene Expression Matrix (GEM) 

[16][17]. A Gene Expression Matrix M defined for a set of m 

samples, each involving n genes is defined as: 

 

M = {wi, j |1≤ i ≤ n,1≤ j ≤ m} (1) 

 

where: 

• Each row 
  

 
g i  (1≤ i ≤ n ) is associated to a gene. It 

identifies the expression pattern of gene i over m 

samples; 

• Each column 
  

 
s j  (1≤ j ≤ m ) is associated to a 

sample. It represents the genes expression profile 

of the sample; 

• Each element wi, j ∈ M  measures the expression 

of gene i in sample j. 

 

The original GEM obtained from the scanning process of 

a set of microarrays usually contains noise, missing values, 

and systematic variations arising from the experimental 

procedure. This row data is therefore usually pre-processed 

before performing any type of analysis. Examples of pre-

processing techniques (out of the scope of this paper) can be 

found in [18][19][20]. 

A Gene Expression Graph modeling a microarray 

experiment can be easily built starting from one or more 

GEMs. A GEG elaborates the information contained in the 

GEMs in order to clearly highlight those genes considered 

“expressed”.  

Since gene expression levels (wi, j ) in a GEM are 

represented as real numbers in a continuous interval of valid 

values, it is clear that, in order to discriminate between 

expressed and non-expressed genes, it is necessary to define 

an expression threshold T able to remove the biological and 

experimental noise. This is one of the most critical 

parameters affecting the quality of the resulting GEG. 

A Gene Expression Graph built over a GEM M is a non-

oriented weighted graph GEG = (V ,E)  where: 

• V is the set of vertices. The vertex v
i
∈ V  is 

associated with gene i of M;  

• E = (u,v) | u,v ∈ V{ } is the set of edges 

connecting vertices (genes). Two vertices u and v 

are connected by an edge iff the corresponding 

genes are both expressed in the same sample 

  

 
s j ∈ M .  

If n genes are expressed in the same sample 
  

 
s j ∈ M , 

each corresponding vertex is connected to the other n-1 in 

the graph. Therefore, genes expressed in the same sample 

constitute a clique in the graph.  

Each edge (u,v)∈ E  is finally weighted with a weight 

W
u,w

 that counts the number of times the genes associated 

with vertexes u and v are simultaneously expressed in the 

same sample over the m samples included in M. In a graph 

representing a single sample (microarray), each edge will be 

weighted as 1. Adding additional experiments will modify 

the graph by introducing additional edges and/or by 

modifying the weight of existing ones.  Implicitly, this 

representation takes also into account non-expressed genes. 

Missing vertexes correspond to non-expressed genes 

relationships. 

Algorithm 1 summarizes, using a pseudo-code formalism, 

the steps required to build a GEG starting from a Gene 

Expression Matrix. 

Since differential analysis between healthy and diseased 

tissues is widely used in gene expression analysis, to 

represent a complete microarray experiment we would need 

two graphs, one for the healthy tissue (green dye in c-DNA 

microarrays) and one for diseased one (red dye in c-DNA 

microarrays). Since both experiments share the same set of 

genes, we can compact the two resulting GEGs into a single 

graph GEG = (V ,E
d
,E

h
) with two sets of edges: 

• Diseased edges ( E
d
): representing the genes 

expression relationships in the diseased tissues; 

• Healthy edges ( E
h
): representing the genes 

expression relationships in the healthy tissue. 

Finally, each vertex v of a GEG is also labeled with a set 

of additional information that may in turn be useful for 

future elaborations: 

• The Name and UnigeneID [21] of the corresponding 

gene; 

• The Total Expression Intensity (TEI) for both the 

healthy and the diseased tissues over the different 

samples. The TEI is computed as the sum of the 

expression intensities of the same gene in the different 

samples; 

• The Expression Counts (EC) of the gene, i.e., the 

number of times the gene is expressed in the healthy and 

the diseased samples. 
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Fig. 1 shows an example of GEG construction from a set 

of six samples already filtered with the threshold T in order 

to identify expressed and not expressed genes. Mh and Md 

are the two GEMs corresponding to the healthy and diseased 

tissue experiments used for creating the final graph. The 

label of each vertex in the graph reports the gene name, and 

the two expressions counts. 

 

 
If new samples become available from new experiments 

referring to the same pathology, the related information can 

be easily added to the corresponding GEG at anytime. Since 

GEGs store information about both expressed and non-

expressed genes, by simply changing the expression 

thresholds T it is possible to drastically reduce the number of 

significant genes to be used for clustering or signature 

extraction, and also to precisely target the set of genes to be 

investigated in future experiments. Finally, the memory 

occupation of a GEG is independent of the number of 

samples in the initial dataset. 

A. Gene Expression Graphs Representation 

To efficiently represent a GEG, we use a modified 

ADjacency Matrix (ADM). A standard ADM for a non-

oriented graph G = (V ,E)  is a n × n  symmetrical matrix 

ADM = {c i, j |1≤ i ≤ n,1≤ j ≤ n}  (with n equal to the 

number of vertices of G) where each cell c i, j  stores the 

weight of the edge connecting vertex i to the vertex j.  

The GEGADM uses the two halves of the matrix to 

represent the weights of the healthy edges (upper right half) 

and the diseased edges, respectively. In this way we are able 

to keep all the necessary information regarding the 

experiment on the same type of pathology in one very 

compact data structure. Fig.  2 shows the GEGADM for the 

example of Fig. 1. 

The more experiments are available, the more information 

the matrix will store. The memory occupancy of this 

structure is independent of the number of experiments. 
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Fig. 1.  GEG Construction Example 

 

Algorithm 1: GEG Construction 

 

1.   – GEM filtering using the threshold T 

2.    for each wi, j ∈ Mdo  

3.         if  wi, j > T  then 

4.              wi, j ←1 

5.         else 

6.              wi, j ← 0  

7.         end if 

8.     end for 

9.   – GEM construction begins 

10. V ←∅ 

11. E←∅ 
12. for   i←1…m  do   

13.     for 
  j←1…n −1 do 

14.           if  w j,i ==1 then 

15.                 if v j ∉ V  then add v j  to V 

16.                 for 
  k← j +1…n  do 

17.                      if  w
k,i
==1 then 

18.                           if v
k
∉ V  then add v

k
 to V 

19.                           if (v j ,vk )∉ E  then  

20.                               add (v j ,vk )  to E 

21.                              Wv j ,vk
← 0  

22.                           end if 

23.                          Wv j ,vk
←Wv j ,vk

+1 

24.                      end if 

25.                 end for 

26.           end if 

27.     end for 

28. end for 
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B. Informative Genes 

Besides using GEGs as data structures for the definition of 

efficient classifiers, they also allow deriving useful 

information about gene expression characteristics that can be 

used to understand the meaningfulness of a gene and its 

correlation with the informative genes describing a given 

pathology. If built from a dataset representing a well-defined 

phenotype, a GEG will start displaying clusters of edges 

with very high weights that show a very strong relationship 

in the expression of the genes corresponding to the vertices 

connected in the cluster. These clusters can be used to select 

the informative genes that represent the considered 

phenotype. 

III. CLASSIFIER 

To show the flexibility of the proposed data model we 

designed a simple classifier able to provide a Proximity 

Measure between a GEG representing a given phenotype 

(GEGpat), and a GEG generated from a single microarray 

sample (GEGexp).  

The classification rule is in fact implemented as a 

weighted comparison between the two graphs. GEGexp, is 

characterized by having all edges weighted with 1; 

moreover, it is by construction, a clique. GEGpat, extracted 

from the dataset as described in the beginning of the 

previous section, contains edges weighted from the 

expression information of the considered phenotype.  

We basically have four possible matching situations (Fig. 

3): 

1) Perfect match: GEGexp and GEGpat perfectly match. For 

each edge in GEGexp there is a corresponding edge in 

GEGpat with weight greater then zero, and viceversa. 

Consequently, in this case, the set of expressed genes 

in GEGexp and in GEGpat exactly match; 

2) Partial Match: GEGexp and GEGpat partially match. 

There are three possible sub cases: 

a) The set of vertices in GEGexp and the set of vertices 

in GEGpat share some element, i.e., some of the 

genes expressed in GEGexp (not all) are also 

expressed in GEGpat, and viceversa; 

b) GEGexp is a subset of GEGpat. All genes expressed 

in GEGexp are also expressed in GEGpat, but not 

viceversa; 

c) GEGpat is a subset of GEGexp. All genes expressed 

in GEGpat are also expressed in GEGexp, but not 

viceversa. 

 
The proximity measure defined in our classifier is 

computed multiplying two values: (i) a Matching Score 

(MS) providing a measure of how many edges in GEGexp 

cover informative edges (edges with a high weight) in 

GEGpat; and (ii) a Confidence Score (CS), that can be 

considered as an error estimation. It measures the quality of 

the match, taking into account how much of GEGexp actually 

matches GEGpat, and how much of it is left out because it is 

expressing genes that are not even present in the phenotype 

it is compared with. 

CS is ranged between 0 and 1. Depending on the four 

matching situations of Fig. 3, we should expect the behavior 

reported in Table 1. 

 

 
To compute the MS and CS we have first to introduce 

additional measures: 

• The Sample Signature Weight (SSW) as the sum of all 

the weights of the arcs of GEGexp: 

SSW = W i, j

(i, j )∈EGEGexp

∑  (2) 

• The Perfect Match Distance (PMD) as the distance of 

the matching portion of GEGpat from the optimal 

situation of matching with a complete clique with all the 

edges with maximum weight (equal to the number of 

samples #DS in the dataset): 

 

TABLE I 

MS AND CS BEHAVIOR 

 CS 

Perfect match 1 

Partial Match-a 0÷1 

Partial Match-b 1 

Partial Match-c 0÷1 

 

 

 
 

Fig. 3.  GEGpat and GEGexp possible matches 

GEGADM =

0 0 3 4

0 0 0 0

0 3 0 2

0 2 1 0

 

 

 
 
 
 










 

 

Fig. 2.  GEG Adjacency Matrix 
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PMD = #DS −W i, jGEGpat
(i, j )∈EGEGexp

∑  (3) 

The better is the match; the higher is PMD, which in case 

of a perfect match would tend to ∞; 

 

• The Sample Matching Weight (SMW) as the sum of the 

weights of all the edges in GEGexp that have a matching 

arc in GEGpat (or, since the weights of GEGexp are all 

equal to 1, SMW corresponds to the number of matching 

arcs): 

SMW = W ijGEGpat
∑ |∃(i, j) in EGEGexp

  (4) 

 

• The GEG Matching Weight (GMW) as the sum of the 

weights of all the edges in GEGpat that have a 

corresponding edge in GEGexp.  

GMW = W ij∑
GEGexp

|∃(i, j) in EGEGpat
  (5) 

 

The Matching Score (MS) can now be defined as: 

 

MS =GMW
PMD

  (6) 

 

The Confidence Score (CS) of the disease sample 

compared with the dataset graph is defined as: 

 

CS = SMW
SSW

  (7) 

 

Finally, the Proximity Measure (PM) is computed as: 

 

PM = CS ⋅ MS   (8) 

IV. EXPERIMENTAL RESULTS 

Before discussing the experimental results, it is important 

to analyze the data sources we used to generate our test 

GEGs. Each used dataset comes from cDNA Stanford’s 

Microarray database [22]. The problem with this data is that 

in many cases it refers to old experiments done on first 

generations of microarrays affected by probe sensing 

problems, reduced gene-set, and lack of UnigeneID [21] for 

many spots. Moreover, since old microarrays often used to 

duplicate spots in order to have more reliable results, in our 

GEG generation procedure we considered as “expressed” a 

gene expressed in at least one of its copies on the 

microarray. Also, we had to discard all information 

concerning spots that did not have a valid UniGeneID. 

Even if the model allows to use and combine together data 

coming from different types of microarrays embedding 

different genes, in this set of experiments we used samples 

that have the same microarray’s technology and genes set. 

A. Data source and Dataset 

The Stanford’s collection catalogs a huge number of 

experiments using the cDNA chip technology. cDNA chips 

use two colors to distinguish tissues: green for the healthy 

tissue (wavelength of 635nm) and red for the diseased one 

(wavelength of 532 nm). 

Besides the microarray image, each experiment is 

associated with the corresponding microarray’s image and a 

text file in CSV (Comma Separated Values) format in which 

each line describes a spot. From the set of CSV files we 

derived a Gene Expression Matrix for each considered 

dataset.  

We created three datasets: B-Cell, Lymphocytic Leukemia 

Watch&Wait and Lymphocytic Leukemia. The first dataset 

used to create the graph is a group of 53 microarrays related 

to Diffuse Large B-Cell Lymphoma (that is a non-Hodgkin 

Lymphoma disease). From parsing the corresponding CSV 

files we obtained a GEG of 6826 correctly named (using 

UniGeneID) vertices. The second dataset is a group of 22 

microarrays focusing on Lymphocytic Leukemia 

Watch&Wait. From this set we extracted valid information 

for 7628 genes. Finally, the third dataset targeting 

Lymphocytic Leukemia is a group of 12 experiments from 

which we were able to extract valid information for 6826 

genes. 

To select the expressed nodes, we analyzed the expression 

levels distribution of the spots on all datasets and we 

performed various experiments using different values of T. 

As a result of this analysis we decided to adopt a threshold 

equal T=3000 (the expression ranges between 0 and 25,000) 

that seems (in our case) able to keep enough information 

about expressed genes. 

B. Classifier 

To verify the usability of the proposed model for sample-

based classification algorithms, we applied the classification 

procedure described in Section II.B using, as samples, 6 

different sets of microarrays data downloaded from Stanford 

Microarray’s Database. Each set contains 11 distinct 

experiments. We used the three datasets described in Section 

IV.A as classes in which to classify the samples. 

Each sample set is targeting a different phenotype: 

1. Lymphocytic Leukemia W&W (watch and wait); 

2. Lymphoma Normal Subset – non specific lymphoma 

subset; 

3. Lymphocytic Leukemia  - non specific subset; 

4. Diffuse Large B-cell Lymphoma – Subset of B-cell 

sample not used during the graph creation and used 

here as cross-validation of the B-cell dataset; 

5. Tumor: Brain – solid tumor; 

6. Tumor: Ovarian – solid tumor. 

We divided the 8 sample sets into four main groups.  The 

first group contains pathologies #5 and #6, which are both 

referred to as solid tumors and therefore highly different 

from the lymphoma. We expect a strong difference from all 

datasets. The second group includes pathology #2, 

characterized by a slight affinity with the dataset. The third 
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group, including phenotypes #1 and #3, is very important 

because each sample represents a subset of very similar 

tissues. The idea is to observe if their unspecificity is evident 

in a sufficient distance from the specific B-Cell signature of 

the dataset. Finally, the fourth group contains the sample #4, 

a non-folded subset of the B-cell disease. This is the same 

pathology than the one used to generate the Dataset and it is 

used as cross-reference check for the classifier. 

Fig. 4-5-6-7 report the Proximity Distances results 

computed by the classifier for pathologies 1 to 4. For the last 

two, the classifier correctly returned a null match with the 

three datasets. 

Fig. 4 shows how the classifier correctly puts the 

Lymphocytic Leukemia W&W in the W&W dataset. The 

same happens for the Diffuse Large B-Cell Lymphoma 

classified in the B-Cell dataset of Fig. 7. 

Fig. 5 shows how the classifier is able to classify the 

sample to all three classes. This is important since we do not 

have a dataset for that particular type of Lymphoma. 

Nevertheless, the classifier correctly recognizes the disease 

as a Lymphoma. 

Fig. 6 is also very important because as expected the 

classifier recognizes that the sample (Lymphocytic) is not a 

Diffuse Large B-cell Lymphoma; it correctly classifies the 

sample in both the remaining datasets.  

 

V. CONCLUSIONS AND FUTURE WORKS 

In this paper we presented a new data structure designed 

for the analysis of gene expression data in microarrays 

experiments. The proposed model is essentially based on a 

graph representing meaningful expression relationships 

between spots. Gene Expression Graphs have many 

advantages over other known standards, as Gene Expression 

Matrices, in particular in terms of memory occupation and 

identification of the most informative genes and genes 

relationships. The full potential of this new data model is 

still under investigation, but it is believed to be able to 

provide a very useful ground for the development of new 

gene expression analysis algorithms. 

To demonstrate the flexibility of the approach we also 

implemented a very simple classifier. The results 

demonstrate how the topological information extracted from 

the GEGs allows a very easy classification.  

A lot of work is under way on GEGs. One of the first 

problems we encountered is the choice of the optimal 

threshold to use when building the graph. The results 

obtained so far showed that the efficiency of the 

classification algorithm is too sensitive to the choice of the 

threshold. We are therefore modifying the GEG generation 

algorithm, avoiding to base it on absolute expression values, 

but considering instead the differential expression between 

healthy and diseased samples. This new approach is 

guaranteeing a significant increase in the robustness of the 

data structure and a consequent reduction of the sensitivity 

of the classification algorithms to the expression threshold. 

Also, we are working on the development of more 

detailed and complete supervised and unsupervised analysis 

algorithms able to fully exploit the information stored in a 

GEG. 
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Fig. 5.  Classifier results: Lymphoma Hematopoietic 

  

 
Fig. 4.  Classifier results: Chronic Lymphocytic Leukemia (CLL) Watch & Wait 
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Fig. 7.  Classifier results: Diffuse Large B-cell Lymphoma 

  

 
Fig. 6.  Classifier results: Lymphocytic Leukemia (LL) – no specific subset 
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