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Abstract: Information mining from complex networks by identifying communities is 

an important problem in a number of research fields, including the social sciences, 

biology, physics and medicine. First, two concepts are introduced, Attracting Degree 

and Recommending Degree. Second, a graph clustering method, referred to as 

AR-Cluster, is presented for detecting community structures in complex networks. 

Third, a novel collaborative similarity measure is adopted to calculate node 

similarities. In the AR-Cluster method, vertices are grouped together based on 

calculated similarity under a K-Medoids framework. Extensive experimental results 

on two real datasets show the effectiveness of AR-Cluster. 
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1 Introduction 

In recent years, complex networks have been used in many domains. In these 

applications, networks can be modeled as graphs because of the richly latent 

expressive capabilities, such as scientific collaborative networks, social networks, 

sensor networks and the Web. The research on complex networks is important to 

understand the structure of the networks and the interaction of the entities in the 

networks. Some relevant graph clustering techniques are described in the literature 

[1-5]. 
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The structure of a community is one of the most important network attributes and 

has attracted widespread attention. Many methods have been proposed for community 

structure detection, and they have been applied successfully to real complex networks 

[6-12]. However, the majority of methods typically consider topological structures or 

attribute resemblances [13-15]. The main goal of graph clustering is to discover 

densely connected subgraphs in a large graph, so that the two most closely related 

ones are considered synthetically. (1) Vertices in the same subgraph should be highly 

cohesive but sparsely connected to other subgraphs. (2) Homogeneous vertices are 

partitioned into the same group, while heterogeneous vertices should be kept in 

different groups. Some graph clustering techniques, such as the heuristic method 

[3,16], can automatically discover the number of clusters in a graph; however, some 

require the number of clusters as an input parameter. Moreover, graph clustering 

approaches either consider the topological structures or homogeneous vertex 

properties. Until now, few methods have synthetically considered both. 

In this paper, we propose a new graph clustering method, AR-Cluster, based on 

Attracting and Recommending Degrees for graph clustering. AR-Cluster can 

accomplish the graph clustering process by identifying structural and attribute 

similarities at low computational cost. Compared with other relevant methods, 

AR-Cluster has the following characteristics. (I) A novel pair-wise structural 

similarity approach based on Attracting Degree and Recommending Degree is used. 

(II) A novel path selection strategy based on maximum recommending degree is 

employed. The contributions of this paper are summarized below. 

1. Two concepts, Attracting Degree and Recommending Degree, are presented. 

2. A new structural similarity measure based on Attracting Degree and 

Recommending Degree is presented. 

3. A graph clustering algorithm that combines structural and attribute properties 

concurrently is proposed. 

The rest of this paper is organized as follows. Section 2 introduces and analyzes 

the existing graph clustering algorithms. Section 3 addresses the concepts of 

Attracting Degree and Recommending Degree. We present a new collaborative 

similarity measure, and an iterative partitioning strategy is used for graph clustering. 



Section 4 carries out extensive experiments and shows the corresponding results. 

Finally, section 5 concludes the paper. 

2 Related works 

In this section, we introduce related works on graph clustering methods for 

community detection in complex networks. The ultimate goal of graph clustering 

technology is to partition vertices in a large graph into several subgraphs. 

Network topology reflects the relationship among vertices, and vertex attributes 

reflect the characteristics of the vertex. These two sources of data are relatively 

independent. If we can also consider two types of data when depicting the system 

sufficiently, we can avoid noise and make the clustering results more accurate. When 

a network is used to perform clustering analysis, it is not appropriate to use a 

community detection algorithm that only considers network topology or feature 

information. Yang et al. [17] utilized vertex feature information to pretreat the 

network but not vertex attribute information. Ester et al. [18] extended the k-center 

problem, which required a set of points constituting a connected subgraph. However, 

Ulitsky et al. [19] transformed the problem into a graph of community detection. They 

used the feature information to calculate the similarity between vertices and then 

superimposed these nodes‟ similarities onto the graph. Finally, they realized 

community detection. Eustace et al. [20] proposed the NRATIO algorithm based on a 

vertex neighborhood matrix to detect communities, but this method does not hold in 

non-dynamic large networks. Yoshida [21] constructed a similarity matrix using 

topological similarity and feature similarity; they then utilized the spectral clustering 

method to detect communities. 

Many graph clustering or partitioning algorithms [22,23] focus on the 

topological properties to achieve densely internal structures. The clustering algorithm 

based on normalized cut [24,25] is this type of method satisfied with global 

optimization criteria. However, the computational cost is high. Furthermore, it 

involves the problem of normalized segmentation criteria, which is an NP-Hard 

problem. The SCAN [26] algorithm uses structural similarity to detect clusters, hubs 



and outliers in the networks, and it visits every vertex only once. S-Cluster only 

considers the structural similarities of vertices and assigns these vertices to different 

clusters based on the random walk model. Cai et al. [27] also utilized the random 

walk model to detect communities in heterogeneous social networks. Pons and Latapy 

[28] proposed a method that uses a random walk model based on a certain distance L 

to calculate the pair-wise similarity values among nodes. Some methods based on 

modularity [3,29] share two characteristics and remove certain edges to split vertices. 

Then, they calculate similarity values again to detect community structures in social 

networks. Furthermore, Wu et al. [30] proposed an efficient algorithm named ImDS. 

ImDS is an improvement of the original density shrink algorithm for community 

detection. It replaces the procedure of finding and merging micro-communities by 

finding and merging dense pairs, which increase the accuracy and decrease the 

runtime. 

The above-mentioned algorithms are usually used to find densely connected 

parts. Unfortunately, they only consider the graph‟s topological structure and ignore 

the vertex properties. In many applications, vertex properties are also important. For 

example, they represent people‟s roles in social networks. Tian et al. [31] proposed an 

effective OLAP-style aggregation method for large graph datasets, in which two 

phases are involved, the SNAP and k-SNAP operations. It can attain homogeneous 

attribute values within clusters. However, it neglects the intra-cluster topological 

structures. Sun et al. [32] proposed a clustering algorithm called RankClus that 

directly integrates clustering with ranking in heterogeneous information networks. It 

is shown to be superior in terms of clustering quality. Huang et al. [33] uses a 

cell-based subspace clustering approach, SCMAG, for detecting communities in 

multi-valued attributed networks. Random walk with restart is used to measure 

structural connectivity and attribute similarity. Cheng et al. [34] proposed an 

algorithm based on a random walk strategy, W-Cluster, which combines both 

structural and attribute aspects. SA-Cluster [35] also uses a unified distance measure 

to integrate them. Vertex closeness is measured by a neighborhood random walk 

model in the augmented graph, but it is unsatisfactory in terms of scalability. Gü

-nnemann et al. [36] proposed a new method named GAMer to find homogeneous 



object groups in a single vertex-labeled graph. It combines the paradigms of dense 

subgraph mining and subspace clustering to obtain sets of objects that are densely 

connected within the associated graph and also show high similarity regarding their 

attributes. Nawaz et al. [37] proposed IGC-CSM, which also combines structural and 

attribute aspects, and utilized the K-Medoids [38] framework for clustering. This 

approach is simple for similarity measures, but it is difficult to scale up for large 

graphs. 

3 AR-Cluster algorithm 

In this section, we propose a graph clustering algorithm based on Attracting 

Degree and Recommending Degree. It can be applied in multiple graphs. 

3.1 Problem statement 

An undirected, weighted and attribute graph is denoted as )Λ  W,E, V,(G  , 

where V  is the set of vertices, E  is the set of undirected edges and two vertices iv  

and jv  are connected with an undirected edge having weight ijw . Each vertex in a 

graph has a set of attributes, which is denoted as },,,{ 21 nattrattrattr  , and the set 

of attribute values for any arbitrary vertex iv  on attributes 
jattr  is presented as 

)}(,),({)( 1 imiij vattrvattrvattr  . )( ivd  represents the degree of a vertex iv . If two 

vertices iv  and jv  in a graph have a direct link, we define them as directly 

connected; otherwise, they are indirectly connected. 

The purpose of graph clustering based on structural and attribute measures is to 

partition a large graph into k disjoint subgraphs, where i

k

i v1V   and for any ji  , 

ji vv  . A graph clustering method should consider the following two aspects. (I) 

These vertices in a subgraph should be highly cohesive and sparsely connected to 

other subgraphs. (II) The homogeneous vertices are partitioned into the same 

subgroup, while heterogeneous vertices should be kept in different subgroups. 

There are two core problems in our proposed algorithm. They are the similarity 

measure and the clustering strategy. We discuss them in the following sections. 



3.2 Attracting and Recommending Degrees 

A graph typically consists of its topological structure and vertex properties. Both 

are of great importance, but most of the existing approaches merely consider one of 

them. In view of these, we propose a graph clustering algorithm called AR-Cluster. 

This method is based on the Attracting Degree and Recommending Degree. Some 

frequently used symbols are presented in Table 1. 

Table 1 Commonly used symbols and their descriptions. 

Symbols Description 

nm vv   A direct link between two vertices  

nm vv   An indirect link between two vertices 

nm vv   Two vertices are disconnected 

),( YXsim  Similarity between two arbitrary set of elements 

),( nm vvcsim  Collaborative similarity measure between two vertices 

)( mvd  Number of edges incident on vertex m  

objF  
Objective function which can be defined as the weighted ratio of 

Density and Entropy 

In reality, the graph is usually used to model complex networks. The connectivity 

relationships for a pair of directly connected vertices represent the intimating degree 

between objects. The close relationships reveal that these objects are attracted to each 

other. In addition, a path from one source to another one is a sequence of edges that 

contain important transitivity information in indirectly connected relationships. 

Considering this critical information, we present a new clustering method. 

Definition 1 (Attracting Factor): In an undirected attribute graph, structural 

characteristics among a pair of directly connected vertices reveal their closeness 

relationships. We define these intimating connections as the Attracting Factor. Let mv  

and nv  be a pair of directly connected vertices. )( mvd  and )( nvd  are the degrees 

of mv  and nv , respectively. An undirected single link between mv  and nv  contains 

weight mnw . The Attracting Factor ),( nm vvf  between 
mv  and 

nv  is defined as Eq. 

(1). 
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Definition 2 (Attracting Degree): Let mv  and nv  be a pair of directly connected 

vertices in an undirected attribute graph. The Attracting Degree ),( nm vvA  between 



mv  and nv  is defined as Eq. (2). 
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),( nm vvf  is the corresponding Attracting Factor. By analyzing the Attracting Factor, 

we can judge which vertex is more important and infer ),(),( mnnm vvfvvf   between 

two directly connected vertices due to different weights and degrees. ),( nm vvf  does 

not meet the symmetry, but ),( nm vvA  satisfies because of the mutual calculations 

between two vertices. We can also conclude that the Attracting Factor is affected by 

the connecting structure of the former vertex in Eq. (2). For example, an author can 

establish multiple coauthor relationships [39] with many authors on a real 

bibliographic network, whereas the degree of importance of each of these 

coauthorships is not symmetrical. A paper may be published by an author and his/her 

students, while another paper may be published by him/her and other famous 

professors. Different partners have different degrees of importance, and thus the 

connectivity relationships in a graph are not balanced. That is, the corresponding 

weights on undirected edges are different. Thus, the Attracting Factors among a pair 

of directly connected vertices in a graph present a striking contrast according to Eq. 

(1). As shown in Fig. 1, it is an undirected, weighted and multi-attribute graph. Each 

vertex considers two attributes, job and sports hobby. The corresponding Attracting 

Factors and Attracting Degrees are shown in Table 2 and Table 3, respectively. 

 

 

Fig. 1 An undirected, weighted and attribute graph sample. 

 

 

 

 



Table 2 Attracting Factor among vertices given in Fig. 1. 

       Vertex 

    

      Attracting  

      Factor 

Vertex 

1v  
2v  3v  

4v  5v  
6v  

7v  

1v  0 0 0.5112 0 0 0 0.8422 

2v  0 0 0.6931 0 0 0 0 

3v  0.9163 0.7538 0 0.3185 0 0 0 

4v  0 0 0.4055 0 0 0.9163 0 

5v  0 0 0 0 0 0 0.8472 

6v  0 0 0 0.6931 0 0 0 

7v  0.7617 0 0 0 0.6931 0 0 

 

Table 3 Attracting Degree among vertices given in Fig. 1. 

          Vertex 

 

   Attracting 

      Degree 

Vertex 

1v  
2v  3v  

4v  5v  
6v  

7v  

1v  0 0 0.4024 0 0 0 0.8020 

2v  0 0 0.7235 0 0 0 0 

3v  0.4020 0.7235 0 0.3620 0 0 0 

4v  0 0 0.3620 0 0.5490 0.8047 0 

5v  0 0 0 0.5490 0 0 0.7701 

6v  0 0 0 0.8047 0 0 0 

7v  0.8020 0 0 0 0.7701 0 0 

Attracting Degree is used to compute relationships in a directly connected 

situation. However, there are also potential relationships among a pair of indirectly 

 

 



connected vertices in a graph. A path from one source vertex mv  to another 

destination vertex nv  is a sequence of edges ),( 1mm vv , ),( 21  mm vv ,…, ),( 1 nn vv   

that have important guiding functions, where Evve iii   ),( 1 , nim  . We refer 

to such passing information as recommending information. This recommending 

information accumulates continuously and finally reaches a destination vertex. 

Definition 3 (Recommending Degree): Given a path ),,,,,( 1 nimmm vvvvPT    

from one source vertex mv  to one destination vertex nv , where ],0[ mni  , the 

Recommending Degree ),( nm vvR  from mv  to nv  is defined as Eq. (3). 

nm

desnode

srcnodei iinm vvvvfvvR Θ , ),(),( 1                                   (3) 

Here, ),( 1ii vvf  is the Attracting Factor in a directly connected situation, as shown 

in Eq. (1). 

In an attribute graph, there are multiple paths used for Recommending Degree 

calculations from source to destination nodes. We utilize the path that can attain the 

maximum recommending degree. We use an example to explain. Suppose we want to 

calculate the Recommending Degree between a pair of indirectly connected vertices, 

1v  and 
5v , as shown in Fig. 1. It is obvious that there are two paths between them, 

571 vvv   and 5431 vvvv  . Through calculation, we obtain Recommending 

Degree 1v  and 5v ; under these two paths, they are 1.5404 and 1.5288, respectively. 

According to the strategy of maximum recommending degree, we select the first path. 

3.3 Structural and attribute similarities 

In our method, the Jaccard similarity coefficient is used as a basic structural 

similarity measure. 
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The Jaccard similarity coefficient is given in Eq. (4). It has been widely used to 

discover the relevance among objects. IGC-CSM [38] analyzes the topological 

structure of graphs and discovers that the important structural factor of a graph is the 

links that have related weights. For this reason, IGC-CSM redefines a similarity 

measure based on a fixed Jaccard similarity coefficient for an undirected, weighted 



and multi-attribute graph. Connectivity relationships of all vertices defined by 

IGC-CSM have the following three forms. (a) directly connected; (b) indirectly 

connected; and (c) disconnected. As shown in Eq. (5) and Eq. (6), there are two 

concrete similarity calculation measures in situation (a) and (b), respectively. The 

structural similarity value is zero for disconnected vertices. 
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V and vvvvvsimvvsim inm

desnode

srcnodei connectediiindirconnnm    Θ , ),(),( 1          (6) 

In Eq. (6), ),( 1ii vvsim  is the structural similarity based on a pair of directly 

connected vertices. There may be a mass of paths from one source to another 

destination vertex. IGC-CSM [38] uses a weighted shortest path instead of all paths. 

As a result, the structural similarity value for a pair of indirectly connected vertices is 

calculated through the linear product of direct structural similarity values. 

After obtaining the Attracting Degree and Recommending Degree, we can 

calculate the similarities among pairs of vertices. Inspired by the IGC-CSM method 

[38], our proposed similarity method also uses the collaborative similarity measure. 

In Eq. (7), structnm vvsim ),(  presents the structural similarity between two vertices 

mv  and nv . The concrete similarity calculation strategy is considered based on three 

types of connection. (a) A directly connected pair of vertices utilizes the Attracting 

Degree and a fixed Jaccard similarity coefficient measure to calculate the structural 

similarity value. (b) An indirectly connected pair of vertices employs the linear 

product of direct structural similarity values and their maximum recommending 

degree to estimate the similarity value. (c) The structural similarity value for a 

disconnected vertex is zero. 
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In a weighted attribute graph, the similarity measure should consider the 

attributes of all vertices. A node can reflect multiple attribute characteristics. For 

instance, a vertex represents a person who has some relevant properties in social 

networks. When these nodes appear in different semantic environments, the 



importance of their attributes is evident. Thus, we should consider attribute 

similarities to attain much better cohesiveness among nodes. A vertex can contain 

several associated attributes, and each attribute can contain multiple values. We utilize 

a unified number of attributes for each vertex. For example, we define two attributes 

for each vertex as shown in Fig. 1. Both of the two attributes have four values. The 

weight of each attribute is assumed to be 1. We adopt the IGC-CSM [38] method for 

calculating attribute similarities. The concrete formulas are given in Eq. (8) and Eq. 

(9), where attrw  represents the attribute weight. 
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In Eq. (8) and Eq. (9), all parameters are initialized at the beginning of our 

algorithm. The ultimate similarity measure combining both structural and attribute 

similarities is given in Eq. (10). 

attributenmstructnmnm vvsimvvsimvvcsim ),()1(),(),(                 (10) 

The problem studied in this paper is clustering a large-scale graph associated 

with attributes based on both structural and attribute similarities. The parameter   

(alpha) is a weight factor that is used to control the influence of both connectivity and 

semantics. This method is simple, but it requires that the parameter be given in 

advance. The appropriate value is to partition the graph into k clusters with cohesive 

intra-cluster structures and homogeneous attribute values. 

3.4 Algorithm description 

After calculating the final similarity values, we utilize distance values to finish 

the clustering process for all vertices in a graph. The distance function is defined in 

Eq. (11), and it is the reciprocal of the similarity value. It is expected that the distance 

value in close proximity is low because of the transitivity property. The smaller the 

distance is, the better the clustering quality is. 
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In the specific implementation process of our algorithm, we adopt a K-Medoids 

framework using distance value for partitioning the vertices. At the beginning of the 

algorithm, we select top k maximum degree vertices as k centroids. In each iteration, 

these centroids in the clustering process are updated, and the remaining vertices are 

assigned to the nearest centroids according to the minimum distance criterion. Our 

clustering algorithm AR-Cluster is described as follows. 

 

Algorithm AR-Cluster 

Input: an undirected, weighted and multi-attribute graph G, the number of clusters k, 

the weight factor  , the maximum of iteration onNumberMaxIterati . 

Output: k clusters C1, C2,…, Ck. 

1. Initialization 

   distance[ iv ][
jv ]=0, iteration=0, ClusterCentriod[]=0, 1,,,

21


Mattrattrattr www  . 

2. Similarity Calculation 

for each vertex pair iv  and jv  in V where i  j  

attributejistructjiji vvsimvvsimvvcsim ),()1(),(),(    

),(

1
),(

ji

ji
vvcsim

vvdistance   

end for 

3. K-Medoids clustering 

Select top k maximum degree vertices in V as initial k centroids for C1, C2,…, Ck, 

ClusterCentroid[]=TopK(V). 

while( objF  is not maximized || iterations onNumberMaxIterati   ) 

  for each vertex iv  in V 

Cluster[ i ]= )}({ i,jdistancemini,j  for all centroids j =1...k 

  end for 

  for(each cluster j ; kj  ; j ++) 

if(the sum of distance values is minimum) then 



update ClusterCentroid[ j ] 

end if 

  end for 

end while 

return k clusters: C1, C2,…, Ck. 

3.5 Computational complexity analysis 

This method is suitable in the undirected, weighted and multi-attribute graphs. 

The AR-Cluster algorithm requires two predetermined parameters: the number of 

clusters and the impact factor  . 

In the initial stage of the algorithm, it must confirm the number of attributes. 

Each attribute also ensures the number of values. The data information of the graph is 

stored in the main memory. Because of the clustering strategy, the distance function is 

the key of this algorithm. Distance values are based on the collaborative similarity 

measure using Eq. (11). In addition, in an undirected graph, the first parts of Eq. (7) 

and Eq. (8) satisfy the symmetry of values. For example, mv  and nv  are a pair of 

directly connected vertices, and thus ),(),( mnnm vvcsimvvcsim  . 

There are multiple paths among source-to-destination vertices. Our algorithm 

uses the path with the maximum recommending degree to calculate the 

Recommending Degree of Eq. (3) and also adopts the weighted shortest path for 

calculating the linear product of the direct structural similarity values of Eq. (6). This 

strategy avoids massive calculation. We suppose that the number of vertex set V is n. 

The process of path selection uses the binomial heap, so the time complexity is 

)log(O nn . The variable onNumberMaxIterati  is the number of iterations, and k  is 

the number of clusters. Finally, the time complexity is 

]log[O knonNumberMaxIteratinnn  , so our method is suitable for small
1
 and 

medium
2
 scale graphs. 

We adopt a K-Medoids framework for graph clustering, and this process is an 

iterative partitioning method. We refer to the objective function objF  proposed by 
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IGC-CSM [38]. objF  is given in Eq. (12), and it is the ratio of density and entropy. 

The formulas of density and entropy are given in Eq. (13) and Eq. (14), respectively. 

In each iteration process, objF  is maximized. We select the top k maximum degree 

vertices as initial k centroids, and the rest of the vertices are assigned to their closest 

centroids. In each iteration, the centroid of each cluster is replaced with a vertex that 

has maximum aggregated similarity compared with the remaining vertices of the same 

cluster. The clustering process is repeated until convergence. 
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To obtain good clustering effectiveness, the objective function 
objF  needs to 

achieve the maximum value for clustering quality improvement. A high density value 

represents a densely structured connection, and a low entropy value demonstrates that 

most vertices in the same cluster have similar attributes. In Eq. (10) and Eq. (12), the 

weight factor   is used to balance the influences of both structure and attributes. Its 

value is in the interval of [0,1]. When   is 0, vertices having similar attributes 

become clustered in one region, irrespective of their interconnection and associated 

weights. However, value 1 has the opposite impact of grouping densely connected 

regions of vertices instead of their context. The choice of appropriate value for this 

parameter is critical. The appropriate value is to partition the graph into k clusters 

with cohesive intra-cluster structures and homogeneous attribute values. In the 

experimental parts, we discuss it in detail. 

4 Experiments 

In this section, we analyze our proposed algorithm, AR-Cluster, by performing 

extensive experiments. All experiments are performed on a PC with Windows XP, an 

i3 CPU (2.16GHz) and 1GB main memory. The programming environment is JDK 

1.6. 

4.1 Datasets 

In our experiments, we use two real datasets—political blogs and DBLP. 



Political Blogs Dataset The political blogs dataset is a network that contains 

1490 web blogs on United States politics with 19090 hyperlinks between these web 

blogs. Each blog contains an attribute value that represents political leaning. „0‟ 

indicates liberal, and „1‟ indicates conservative. If there is a connection between the 

two blogs, the weight of the connection edge is 1. The political blogs network dataset 

can be downloaded from http://www-personal.umich.edu/~mejn/netdata/. 

DBLP Dataset We use the subset of DBLP bibliography information data. The 

DBLP dataset can be downloaded from http://dblp.uni-trier.de/db/. Our selected 

subset contains four research areas
3
 of Artificial Intelligence (AI), Information 

Retrieval (IR), Data Mining (DM) and DataBase (DB). We build a coauthor graph 

including 10,000 authors and their coauthor relationships. A coauthor relationship is 

interpreted as nodes and weighted edges to represent the number of combined 

publications in a graph. In addition, a vertex in a coauthor graph has two relevant 

attributes, “prolific topic” and “primary topic”. The attribute “prolific topic” has three 

possible values. If an author has greater than or equal to 20 papers, he/she is labeled 

as highly prolific; and if the number of his/her papers is between 10 and 20, it is 

labeled as prolific; and if the number of papers is less than or equal to 10, it is labeled 

as low prolific. For the attribute “primary topic”, we extract 100 research topics as the 

second attribute using a topic modeling method [39]. These research topics are based 

on a document collection of paper titles from these selected authors. Each extracted 

topic is related to the probability distribution of keywords associated with the topic. 

Each author is assigned one out of 100 topics as a primary topic. 

4.2 Contrast methods 

W-Cluster [34] This algorithm also considers the structural and attribute aspects 

with a random walk strategy. The weighted function between 
iv  and 

jv  is 

),(),(),( jiAjiSji vvdvvdvvd    and both of the weight factors   and   

are 0.5. ),( jiS vvd  and ),( jiA vvd  represent the structural distance and attribute 

distance, respectively. 

                                                             
3
 The detailed conference list is DB: SIGMOD, VLDB, PODS, ICDE, EDBT; DM: KDD, ICDM, SDM, PAKDD, 

PKDD; IR: SIGIR, CIKM, ECIR, WWW; AI: IJCAI, AAAI, UAI, NIPS. 



SA-Cluster [35] This uses a unified distance measure to combine structural and 

attribute similarities. This method inserts a set of attribute vertices and edges to the 

original graph to connect vertices that share the same attribute values. In addition, it 

utilizes a weight adaptive strategy to learn the contribution degree of different 

attributes. Unfortunately, it is time-consuming. 

IGC-CSM [38] The algorithm utilizes a collaborative similarity measure that 

combines both structural and attribute similarities. The K-Medoids framework based 

on an iterative partitioning method is used for graph clustering. In addition, a shortest 

path strategy is adopted for reducing extensive computational cost and the search 

space. However, it requires the number of clusters and a weight factor as input 

parameters. 

AR-Cluster This is our proposed algorithm. It also combines the structural and 

attribute similarities for graph clustering. In addition, Attracting and Recommending 

Degrees are referred to in this algorithm. 

4.3 Evaluation Measures 

Considering that these compared methods adopt density and entropy for 

evaluating the clustering quality, we also use the two criteria. The definitions are 

shown as follows: 

(a) Density 

The ultimate goal of what we expect is to obtain the structural closeness of 

clusters, and thus density is an ideal choice. 
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(b) Entropy 

Entropy is used to determine the attributed relevance among vertices. 
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where i  is the number of clusters, i ={1,2,…,k}, n  is attribute values and 
cn  is 

the number of attribute values. 
cinPrcnt  is defined as the percentage of vertices in the 

same cluster j  that have the value 
cnattr  on attribute 

cattr . 

(c) NMI (Normalized Mutual Information) 

Given two partitions A and B of a network, N  is defined as a confusion matrix, 

where the rows correspond to the “real” communities, and the columns correspond to 

the “found” communities. The element of N , ijN , is the number of nodes in the real 

community i  that appear in the found community j . Normalized Mutual 

Information ),( BAI  is defined as Eq. (16). 
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Where the number of real communities is denoted 
AC  and the number of found 

communities is denoted 
BC , the sum over row i  of matrix ijN  is denoted .iN , and 

the sum over column j  is denoted jN. . If the found partitions are identical to the 

real communities, then ),( BAI  takes a value of 1. If the partition found by the 

algorithm is totally independent of the real partition, then ),( BAI  takes a value of 0. 

4.4 Results 

In our proposed AR-Cluster and other contrast algorithms,   is set to be 0.5 in 

the absence of special instructions to achieve an effective comparison. The quality of 

the results are evaluated using state-of-the-art evaluation measures, i.e., density and 

entropy. The ultimate results are shown as follows. 

To achieve a tight connecting structure among vertices in the same cluster, our 

experimental results should have high density values. 

Fig. 2 shows the density comparison for the four algorithms on Political Blogs. 

We set the cluster number k = 3, 5, 7 and 9. As k is increasing gradually, the density 

values of all four methods are declining. W-Cluster is the lowest compared with other 

methods when the number of clusters is the same. When k = 3 or 5, the density value 

of SA-Cluster is higher than that of IGC-CSM. The density value of SA-Cluster is low, 



and it falls more quickly than IGC-CSM when k = 7 or 9; the structural similarity of 

SA-Cluster becomes even worse when k is increasing gradually. Our proposed 

AR-Cluster method is superior to the other three methods. The density value declines 

gently with the number of clusters increasing. We can conclude that AR-Cluster is 

much better than the other algorithms in terms of structure. 

 

Fig. 2 Density value comparisons on Political Blogs. 

Fig. 3 shows the density comparison for four algorithms on DBLP when the 

cluster number is set as k = 10, 30, 50 and 70. The density of W-Cluster is the lowest, 

and that of AR-Cluster is the highest. The density values of AR-Cluster and IGC-CSM 

are almost the same when k = 10 or 30. However, when k is over 30, the density value 

of IGC-CSM becomes lower than that of AR-Cluster. The density value of SA-Cluster 

stands in between. It decreases sharply when k increases from 10 to 30. The density 

value is the lowest when k = 30. When k = 50 or 70, SA-Cluster is rising slightly 

compared with k=30, but it remains low. 

 

Fig. 3 Density value comparisons on DBLP. 

Entropy is used to estimate the attribute relevancies among vertices. Low entropy 

values ensure that most of the vertices in the same cluster have similar attribute 



values. 

Fig. 4 shows the entropy comparison for four methods on Political Blogs for 

cases where cluster number k = 3, 5, 7 and 9. The entropy values of AR-Cluster and 

IGC-CSM are almost close. They remain below 0.1 and are steady when k is 

increasing. When k increases from 7 to 9, IGC-CSM has a slightly higher entropy 

than that of AR-Cluster. We can infer that IGC-CSM and AR-Cluster strictly enforce 

attribute similarity. In terms of the entropy of SA-Cluster, it is always steady below 

0.1 when k = 3, 5 or 7, but the entropy undergoes a sharp rise when the value of k 

increases from 7 to 9. In addition, the entropy of W-Cluster is rising rapidly when k = 

3 or 5. Combining the density in Fig. 2 and the entropy of W-Cluster, we can infer that 

the distance function compromises structural similarity and attribute similarity. 

 

Fig. 4 Entropy value comparisons on Political Blogs. 

Fig. 5 shows the entropy values of four algorithms on DBLP when we set the 

cluster number k = 10, 30, 50 and 70. In all four algorithms, the entropy of IGC-CSM 

is highest and remains around 3.5 to 4. W-Cluster exhibits an extremely low entropy 

of around 0 to 0.5, which is better than those of the other three methods. When k = 30, 

the entropy value of SA-Cluster falls rapidly and shows the lowest value. When the k 

value increases from 50 to 70, the entropy of AR-Cluster is declining while that of 

SA-Cluster is rising; moreover, its value exceeds that of AR-Cluster. Compared with 

SA-Cluster, AR-Cluster partitions a graph into several clusters, where each cluster 

contains nodes with much better attribute similarity. 



 

Fig. 5 Entropy value comparisons on DBLP. 

Fig. 6 (a) and (b) show density and entropy values for Political Blogs with 

different  ( [0,1]) values for AR-Cluster. Here, we set the cluster number k = 15 

and take the average value of the five experimental results. As shown in Fig. 6(a), the 

density value declines rapidly when   is between 0.5 and 0.7. Thus, we can 

conclude that  =0.5 is the start drop point. As shown in Fig. 6(b), the entropy value 

is always steady and low when   is between 0 and 0.9. However, both of these 

values are sharply rising when   is greater than 0.9. 

 

   

             (a) density                                   (b) entropy 

Fig. 6 Impact of   on Political Blogs. 

Fig. 7 (a) and (b) show density and entropy values for DBLP with different 

 ( [0,1]) values for AR-Cluster. We set the cluster number k as 25. We take the 

average value of the five experimental results. As shown in Fig. 7(a), the density 

value reaches the maximum when   is 0.5. It drops quickly when   is between 

0.8 and 0.9. As shown in Fig. 7(b), the entropy value remains around 3.65 to 3.7 when 

  is between 0.2 and 0.8. It slightly declines with  =0.5. When   increases from 

0.8 to 1, the density value declines, while the entropy value rises. Therefore, we can 

infer that the structural and attribute similarities can be helpful in obtaining the best 

results with  =0.5. 



 

  

               (a) density                                  (b) entropy 

Fig. 7 Impact of   on DBLP. 

We also used NMI (Normalized Mutual Information) to measure the proposed 

algorithm. In Fig. 8, we compare the AR-Cluster algorithm with three reported 

algorithms as applied to two real datasets. The experimental results show that our 

proposed algorithm outperforms the other three algorithms on two real datasets. In the 

case of the Political Blogs dataset, we set the cluster number k as 3. The NMI value of 

AR-Cluster is the highest, so AR-Cluster can correctly partition the network. For the 

DBLP, we set the cluster number k as 10. AR-Cluster achieves the maximum value 

among the four algorithms. 

 

 

Fig. 8 NMI comparisons on two real datasets. 

5 Conclusions 

In this paper, we propose an effective graph clustering algorithm called 

AR-Cluster for community detection in complex networks. The proposed method 

adopts two concepts, Attracting Degree and Recommending Degree, to strengthen the 

structural similarities among vertices. In addition, the path with the maximum 



recommending degree is taken for the calculating pairs of indirectly connected 

relationships. The experimental results show that the approach performs well 

compared to the other three methods. However, it is difficult to use for large graphs
4
. 

In the future, we will discuss it in detail. 

Acknowledgments 

This research was supported by the National Science Foundation of China under 

Grant 61402363, and the Education Department of Shaanxi Province Key Laboratory 

Project under Grant 15JS079, and the Ministry of Education of Shaanxi Province 

Research Project under Grant No. 14JK1545, and the Xi'an Science Program Project 

under Grant CXY1509(7), and the Beilin district of Xi'an Science and Technology 

Project under Grant GX1625. 

References 

[1] P. Drineas, A. Frieze, R. Kannan, S. Vempala, V. Vinay, Clustering large graphs via the 

singular value decomposition, Machine Learning 56(1)(2004) 9-33. 

[2] G.W. Flake, R.E. Tarjan, K. Tsioutsiouliklis, Graph clustering and minimum cut trees, 

Internet Mathematics 1(4)(2003) 385-408. 

[3] X. Huang, W. Lai, Clustering graphs for visualization via node similarities, Journal of Visual 

Languages & Computing 17(3)(2006) 225-253. 

[4] M.E.J. Newman, Detecting community structure in networks, The European Physics Journal 

B - Condensed Matter and Complex Systems 38(2004) 321-330. 

[5] H. Zanghi, C. Ambroise, V. Miele, Fast online graph clustering via Erdös-Rényi mixture, 

Pattern Recognition 41(12)(2008) 3592-3599. 

[6] H. Zhang, T. Ma, G.B. Huang, Z. Wang, Robust global exponential synchronization of 

uncertain chaotic delayed neural networks via dual-stage impulsive control, IEEE 

Transaction on Systems Man & Cybernetics Part B Cybernetics 40(3)(2010) 831-844. 

[7] F. Wei, W.N. Qian, C. Wang, A.Y. Zhou, Detecting overlapping community structures in 

networks, World Wide Web 12(2)(2009) 235-261. 

[8] Y.J. Liu, Y.Q. Zheng, Adaptive robust fuzzy control for a class of uncertain chaotic systems, 

Nonlinear Dynamics 57(3)(2009) 431-439. 

[9] X. Liu, J.Y.-L. Forrest, Q. Luo, D.Y. Yi, Detecting community structure using biased random 

merging, Physica A: Statistical Mechanics and its Applications 391(4)(2012) 1797-1810. 

[10] L.L. Cui, H.G. Zhang, B. Chen, Q.L. Zhang, Asymptotic tracking control scheme for 

                                                             
4
 106—109 nodes 



mechanical systems with external disturbances and friction, Neurocomputing 73(7-9)(2010) 

1293-1302. 

[11] H.W. Shen, X.Q. Cheng, K. Cai, M.B. Hu, Detect overlapping and hierarchical community 

structure in networks, Physica A: Statistical Mechanics and its Applications 388(8)(2009) 

1706-1712. 

[12] Y.J. Liu, S.C. Tong, D. Wang, T.S. Li, C.L.P. Chen, Adaptive neural output feedback 

controller design with reduced-order observer for a class of uncertain nonlinear SISO 

systems, IEEE Transactions on Neural Networks 22(8)(2011) 1328-1334. 

[13] Y.Y. Ahn, S. Han, H. Kwak, S. Moon, H. Jeong, Analysis of topological characteristics of 

huge online social networking services, in: Proceedings of the 16th International Conference 

on World Wide Web, WWW‟07, ACM, New York, NY, USA, 2007, pp. 835-844. 

[14] J. Leskovec, K.J. Lang, A. Dasgupta, M.W. Mahoney, Statistical properties of community 

structure in large social and information networks, in: Proceedings of the 17th International 

Conference on World Wide Web, WWW‟08, ACM, New York, NY, USA, 2008, pp. 695-704. 

[15] H.F. Zhou, J. Guo, Y.H. Wang, A feature selection approach based on term distributions, 

SpringerPlus 5(1)(2016) 1-14. 

[16] M.E.J. Newman, Fast algorithm for detecting community structure in networks, Physical 

Review E 69(6)(2004) 066133. 

[17] S.Q. Yang, B. Wu, H.Y. Long, B. Wang, Community detection in large-scale social networks, 

in: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on web mining and 

social network analysis, ACM, 2007, pp. 16-25. 

[18] M. Ester, R. Ge, B.J. Gao, Z. Hu, B. Ben-Moshe, Joint cluster analysis of attribute data and 

relationship data: the connected k-center problem, in: Proceedings of Siam International 

Conference on Data Mining, SDM‟06, 2(2)(2006) 90-98. 

[19] I. Ulitsky, R. Shamir, Identification of functional modules using network topology and 

high-throughput data, BMC systems biology 1(1)(2007) 1-8. 

[20] J. Eustace, X.Y. Wang, Y.Z. Cui, Overlapping community detection using neighborhood ratio 

matrix, Physica A: Statistical Mechanics and its Applications 421(2015) 510-521. 

[21] T. Yoshida, Toward finding hidden communities based on user profile, Journal of Intelligent 

Information Systems 40(2)(2013) 380-387. 

[22] Z. Liu, J.X. Yu, Y. Ke, X. Lin, L. Chen, Spotting significant changing subgraphs in evolving 

graphs, in: Proceedings of the 8th IEEE International Conference on Data Mining, ICDM‟08, 

Pisa, Italy, 2008, pp. 917-922. 

[23] J. Sun, Y. Xie, H. Zhang, C. Faloutsos, Less is more: Sparse graph mining with compact 

matrix decomposition, Statistical Analysis and Data Mining 1(1)(2008) 6-22. 

[24] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Transactions on Pattern 

Analysis and Machine Intelligence 22(8)(2000) 888-905. 

[25] H.F. Zhou, X.H. Zhao, X. Wang, An effective ensemble pruning algorithm based on frequent 

patterns, Knowledge-Based Systems 56(3)(2014) 79-85. 

[26] X. Xu, N. Yuruk, Z. Feng, T.A.J. Schweiger, Scan: a structural clustering algorithm for 

networks, in: Proceedings of the 13th ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining(KDD‟07), ACM, New York, NY, USA, 2007, pp. 

824-833. 

[27] D. Cai, Z. Shao, X. He, X. Yan, J. Han, Mining hidden community in heterogeneous social 



networks, in: Proceedings of Workshop on Link Discovery: Issues, Approaches and 

Applications, LinkKDD‟05, Chicago, IL, 2005, pp. 58-65. 

[28] P. Pons, M. Latapy, Computing communities in large networks using random walks, Journal 

of Graph Algorithms and Applications 10(2)(2006) 191-218. 

[29] M.E.J. Newman, M. Girvan, Finding and evaluating community structure in networks, 

Physical Review E 69(2)(2004) 026113. 

[30] J.S. Wu, Y.T. Hou, Y. Jiao, Y. Li, X.X. Li, L.C. Jiao, Density shrinking algorithm for 

community detection with path based similarity, Physica A: Statistical Mechanics and its 

Applications 433(2015) 218-228. 

[31] Y.Y. Tian, R.A. Hankins, J.M. Patel, Efficient aggregation for graph summarization, in: 

Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, 

SIGMOD‟08, ACM, New York, NY, USA, 2009, pp. 567-580. 

[32] Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, T. Wu, RankClus: Integrating clustering with 

ranking for heterogeneous information network analysis, in: Proceedings of the 12th 

International Conference on Extending Database Technology, EDBT‟09, Saint Petersburg, 

Russia, 2009, pp. 565-576. 

[33] X. Huang, H. Cheng, J.X. Yu, Dense community detection in multi-valued attributed 

networks, Information Sciences 314(2015) 77-99. 

[34] H. Cheng, Y. Zhou, J.X. Yu, Clustering large attributed graphs: A balance between structural 

and attribute similarities, Acm Transactions on Knowledge Discovery from Data 5(2)(2011) 

190-205. 

[35] Y. Zhou, H. Cheng, J.X. Yu, Graph clustering based on structural/attribute similarities, in: 

Proceedings of the VLDB Endowment, VLDB‟09, ACM, Lyon, France, 2(1)(2009) 718-729. 

[36] S. Günnemann, I. Färber, B. Boden, T. Seidl, GAMer: a synthesis of subspace clustering and 

dense subgraph mining, Knowledge & Information Systems 40(2)(2014) 243-278. 

[37] W. Nawaz, K. Khan, S.Y. Lee, Intra graph clustering using collaborative similarity measure, 

Distributed and Parallel Databases, 33(4)(2015) 583-603. 

[38] L. Kaufman, P.J. Rousseeuw, Clusteing by means of medoids, Statistical Data Analysis based 

on the L1 Norm (1987) 405-416. 

[39] Y. Sun, R. Barber, M. Gupta, J. Han, C.C. Aggarwal, Co-Author relationship prediction in 

heterogeneous bibliographic networks, in: Proceedings of the 2011 International Conference 

on Advances in Social Networks Analysis and Mining, 2011, pp. 121-128. 

 


