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Timetabling Problems  
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Abstract In this work we investigate a new graph coloring constructive hyper-heuristic for 

solving examination timetabling problems. We utilize the hierarchical hybridizations of four 

low level graph coloring heuristics, these being largest degree, saturation degree, largest 

colored degree and largest enrolment. These are hybridized to produce four ordered lists. For 

each list, the difficulty index of scheduling the first exam is calculated by considering its order 

in all lists to obtain a combined evaluation of its difficulty. The most difficult exam to be 

scheduled is scheduled first (i.e. the one with the minimum difficulty index). To improve the 

effectiveness of timeslot selection, a roulette wheel selection mechanism is included in the 

algorithm to probabilistically select an appropriate timeslot for the chosen exam. We test our 

proposed approach on the most widely used un-capacitated Carter benchmarks and also on the 

recently introduced examination timetable dataset from the 2007 International Timetabling 

Competition. Compared against other methodologies, our results demonstrate that the graph 

coloring constructive hyper-heuristic produces good results and outperforms other approaches 

on some of the benchmark instances. 

 

Keywords: Examination timetabling ∙ Graph coloring∙ Hybridization∙ Hyper-heuristics∙ 

Roulette wheel selection. 

1 Introduction 

 

Educational timetabling is an ongoing challenge that most academic institutions face when 

scheduling courses or exams. This is due to the large number of constraints that have to be 

accommodated. Courses are often scheduled by the individual faculties and departments, 

whereas the examination timetable is usually centrally generated to cover the entire university. 

Both problems are complex, involving a variety of constraints, and thus present a challenging 

topic for both researchers and practitioners.  

Examination timetabling can be defined as the process of assigning a set of exams into a 

limited number of timeslots and rooms so as not to violate any hard constraints and to 

minimize soft constraint violations as much as possible (Qu et al. 2009). Hard constraints have 



to be respected in order to have a feasible timetable. For example, no student can sit more than 

one exam at the same time and there must be a sufficient number of seats to accommodate the 

exams being scheduled in a given room. A soft constraint represents a constraint that, ideally, 

should be satisfied as far as possible. However, the timetable is still considered feasible even if 

some of these soft constraints are violated. An example of a soft constraint is that exams 

should be spread within the timetable for a given student, and the aim is to minimize soft 

constraint violations. Therefore, the timetabling problem can be considered as a problem of 

minimizing soft constraint violations, while respecting all the hard constraints. 

A large number of different approaches have been developed for solving examination 

timetabling problems in the last four decades. These include graph based sequential techniques 

(Sabar et al. 2009a; Burke et al. 2007), constraint based techniques (Merlot et al. 2003; Müller 

2009), local search methods including tabu search (De Smet, 2008), simulated annealing 

(Thompson and  Dowsland 1998; Burke et al. 2004; Gogos et al. 2008; 2010), population 

based algorithms including genetic algorithms (Ross et al. 1998), ant colony optimization (Ely 

2007), scatter search (Mansour et al. 2011), pattern recognition based method ( Li et al. 2011) 

and hybrid approaches (Sabar et al. 2009b; Abdullah et al. 2009), etc. For more details please 

refer to (Qu et al. 2009). Most of these methods aimed to develop problem specific techniques 

that are able to produce the best results for one or more datasets (Burke et al. 2009a; 2010).  

Recently, there has been a growing trend toward more general methods. Hyper-heuristics 

represent one of these approaches (Burke et al. 2003; 2009a; 2010). The term hyper-heuristic 

refers to an approach that focuses on a search space of heuristics rather than a search space of 

solutions (Burke et al. 2009a; Burke et al. 2007; Qu and Burke 2009). Low level heuristics 

(e.g. different neighborhood move structures or different constructive heuristics) are controlled 

by high level general mechanisms (e.g. meta-heuristics or reinforcement learning) in order to 

provide solutions to a wider variety of problems, rather than developing tailor-made solutions 

for each problem encountered (McCollum 2007; Burke et al. 2009a). 

However, Qu and Burke (2009) commented that a small change to the heuristic list 

(especially at the beginning) often results in quite different solutions being generated. Thus, 

as long as the high level search is diversified, a simple multi-start local search works as well as 

a fine tuned tabu search when single heuristics are used in heuristic lists in their graph based 

hyper-heuristics (GHH). 
In GHH, as only single heuristics are used in heuristic lists, a lot of ties may occur when 

ordering (and selecting) exams and assigning them to timeslots during solution construction. 

By simply randomly choosing an exam from those of the same rank, potentially good 

solutions may be missed. Also by assigning a chosen exam to the first least-cost timeslot, only 

a small part of the solution search space can be explored by using the simple heuristic lists. 
Therefore, in this work, we introduce a new graph coloring constructive hyper-heuristic 

(GCCHH) which utilizes the hybridizations of four graph coloring heuristics in constructing 

four ordered lists of exams in timetable construction. GCCHH employs hierarchical 

heuristics and probabilistic timeslot selection. The focus is not to design another high level 

search but to investigate more intelligent criteria of  

exam ranking and timeslot selection. The latter is seldom studied in timetabling research. More 

potential solutions, of higher quality, in the solution space can thus be found. Instead of 

sequentially applying low level heuristics to construct timetables, as has been used in previous 

research (Burke et al. 2007; Qu and Burke, 2009), the hybridizations of the four low level 

heuristics are applied simultaneously. Four heuristic hybridizations, consisting of different 

graph coloring heuristics, have been developed and tested on the un-capacitated (where the 

size of the room is disregarded) Carter benchmarks (Toronto b, see Qu et al. 2009) and the ITC 

2007 (McCollum et al. 2007; 2010) examination timetabling datasets. 
 The paper is organized as follows: sections 2 and 3 review related work on hyper-heuristics 

and the ITC 2007examination timetabling, respectively. Our proposed GCCHH approach is 

presented in section 4, followed by our results in section 5. Finally discussions and concluding 

remarks are presented in sections 6 and 7. 

 



2 Related work on Hyper-heuristics for Examination Timetabling Problems 

Recently, hyper-heuristics have been attracting increasing research attention. Burke et al. 

(2009a) define a hyper-heuristic as: “A search method or learning mechanism for selecting or 

generating heuristics to solve computational search problems”. The high level mechanism of 

the hyper-heuristic, at each iteration, selects the appropriate low level heuristic based on 

certain selection criteria. The high level mechanism can be, for example, any kind of meta-

heuristic algorithm; whilst the low level heuristics can be, for example, constructive heuristics, 

graph heuristics or a local search. One of the goals of a hyper-heuristic is to provide solution 

methodologies which are more general than currently possible (Burke et al. 2009a).  

Two types of hyper-heuristics are distinguished in the literature, namely constructive and 

improvement based hyper-heuristics (Burke et al. 2009a). Constructive based hyper-heuristics 

start with an empty timetable, and select low level heuristics to build a solution step by step. 

Improvement based hyper-heuristics start with an initial solution and, at each iteration, selects 

appropriate improvement low level heuristics to perturb the solution. These two types of 

approaches can be further extended to on-line or off-line approaches, based on the learning 

methods employed. In on-line hyper-heuristics, the learning takes place during the problem 

solving. In off-line hyper-heuristics, the learning happens during the training phase before 

solving other problem instances (see Burke et al. 2009b). Our work concentrates on on-line 

constructive hyper-heuristics for solving examination timetabling problems. 

Some hyper-heuristic approaches have been studied for examination timetabling problems. 

These include tabu search (Burke et al. 2005, 2007; Kendall and Hussin 2005a, 2005b ), case-

based reasoning (Burke et al. 2006; Yang and Petrovic 2005), variable neighborhood search 

(Burke et al. 2010; Qu and Burke 2009; Qu and Burke 2005), graph based methods (Burke et 

al. 2005, 2007; Qu and Burke 2009; Qu and Burke 2005; Asmuni et al. 2005), memetic 

algorithms (Ersoy et al. 2007), heuristic combinations (Pillay and Banzhaf 2009) and genetic 

programming (Pillay and Banzhaf 2007; Pillay 2008). More details of these hyper-heuristics 

can be found in a recent survey by Burke et al. (2010). 

In Burke et al. (2007), a tabu search was employed to hybridize six constructive graph 

coloring heuristics to solve both exam and course timetabling problems. Each move of the tabu 

search generates a new heuristic list by randomly changing some heuristics in the previous list. 

The low level heuristics in the list are sequentially applied to select exams, one by one, in 

order to construct a feasible timetable. In Burke et al. (2005), knowledge discovery techniques 

were used within a case based reasoning system, to recommend graph coloring heuristics in 

constructing exam timetables. A tabu search approach in Burke et al. (2007) explores the 

search space of two constructive graph coloring heuristics, saturation degree and largest 

degree, and was shown to outperform a systematic heuristic hybridization approach and the 

case based reasoning system on a set of random and four of the Carter benchmark instances in 

examination timetabling. In both of these works, the high level search (tabu search, case based 

reasoning and systematic hybridization) explores the search space of heuristics.  

Kendall and Hussin (2005a) developed a tabu search based hyper-heuristic. The process 

begins by generating an initial solution based on saturation degree or largest degree. This 

initial solution may not be feasible (i.e. not all exams can be scheduled). The neighborhood of 

the initial solution is then examined in order to improve the generated timetable. Four low-

level heuristics (move an exam, swap exams, select and schedule an exam and remove an 

exam) are utilized within a tabu search framework. The heuristic that produces the best 

improvement is applied next. The process is repeated until a time limit is reached or there are 

no improvements for a predefined number of iterations.   

Qu and Burke (2009) studied the effectiveness of using different high-level search 

algorithms including steepest descent, tabu search, iterated local search and variable 

neighborhood search in a graph based hyper-heuristic framework for examination timetabling. 

Experimental results showed that the choices of particular neighborhoods for the high level 

algorithms are not crucial within the hyper-heuristic framework, at least for the Carter 

benchmark datasets. An analysis on the characteristics of the two search spaces showed that 



the high level search is able to “jump” within the solution space thus exploring a larger area of 

the space. Good results obtained for both exam and course timetabling problems are 

comparable to state-of-the-art approaches. The difference between Qu and Burke (2009) and 

our work is that, in our approach, the low level heuristics are hybridized hierarchically and are 

simultaneously applied to identify the most difficult exams based on a difficulty index; whilst, 

in (Qu and Burke, 2009), the low level heuristics are applied sequentially.   

Pillay and Banzhaf (2009) also studied hierarchical heuristic combinations in a hyper-

heuristic framework for the examination timetabling problem, where heuristics in each 

combination are implemented simultaneously rather than sequentially. A set of low level 

heuristics are used to construct heuristic combinations (largest degree, largest enrolment, 

largest weighted degree, saturation degree, and a new low-level heuristic called highest cost). 

Four heuristic combinations are generated using two or three low level heuristics. Exams are 

ordered based on heuristic combinations and the most difficult exam is scheduled in the 

timeslot causing the minimum penalty. Experimental results on the Carter benchmark datasets 

are comparable to those obtained by other hyper-heuristic approaches. Our work is similar to 

Pillay and Banzhaf (2009) in that, we also use four lists which are generated by the 

hybridization of low level heuristics. However, the difference in our work is that the four lists 

are generated by the hybridization of four low level heuristics, whilst in Pillay and Banzhaf 

(2009), each list contains the combination of two or three heuristics. Exams are scheduled 

based on heuristic combinations to the minimum penalty timeslot, whilst in our work, exams 

are selected based on their difficulty index and are scheduled in an appropriate timeslot, which 

is selected by a roulette wheel selection mechanism. 

Motivated by the above works, our approach utilizes a difficulty index, which is a 

mechanism to select the most difficult exams based on hierarchical heuristic hybridizations. A 

probabilistic timeslot selection method is also developed to further improve the efficiency of 

the approach. 

 

 

3 Related work on ITC (International Timetabling Competition) 2007 Examination 

Timetabling Track 

Based on the success of the first International Timetabling competition in 2003, organized by 

the Metaheuristic Network, the second International Timetabling Competition (ITC 2007) was 

released. The ITC 2007 includes one track on examination timetabling and two tracks on 

course timetabling (post enrolment based course timetabling and curriculum based course 

timetabling). The aim of the competition is to facilitate a better understanding of real world 

timetabling problems and to reduce the gap between research and practice (McCollum et al. 

2007, 2009; 2010). There have been a number of papers tackling the problem instances of the 

examination track at ITC 2007.  

Müller (2009) developed a three phase constraint-based solver. The first phase uses an 

Iterative Forward Search algorithm to construct an initial feasible solution. At each iteration, 

an exam is selected and allocated to a room and timeslot. Backtracking is employed to 

unschedule exams that are already in the schedule and cause a conflict with the exam being 

scheduled. In the second phase, hill climbing is carried out where a list of neighborhoods to be 

applied including swapping or changing timeslots and rooms for randomly selected exams is 

determined based on a probability. Hill climbing stops after a specified number of iterations or 

when no further improvement is possible. Finally a great deluge algorithm is applied to 

improve the solution from the second phase. Müller was the competition winner of the ITC 

2007 examination track and achieved the best results for ten of the twelve instances.  

Gogos et al. (2008; 2010) applied a GRASP based heuristic to the ITC 2007 datasets. In the 

construction phase, initial solutions are generated based on five lists of exams, constructed by 

using different criteria. A tournament based method is then used to choose the exam to be 

scheduled until all lists are empty. A backtracking strategy, employing a tabu list, is also used. 

In the improvement phase, a simulated annealing procedure improves the initial solutions. In 



the third phase, branch and bound is used to analyze timeslots that need room changes.  

Timeslots are then selected based on the overall satisfaction of particular soft constraints. 

Based on the ITC 2007 evaluation, Gogos was ranked second in the competition. 

Atsuta et al. (2007) applied a general purpose solver, combining iterated local search and 

tabu search. The solver begins with predetermined initial weights and then the differences 

between the weights of soft and hard constraints are dynamically controlled during the process. 

The instances are represented using linear 0-1inequalities and quadratic 0-1 inequalities with 

all-different constraints. The technique is very effective across all tracks of the competition and 

was placed third in the examination timetabling track. 

De Smet (2008) incorporated tabu search techniques within the Drools Solver, an open-

source business rule management system. Constraints are written in the drools rule language. 

Exams are ordered based on their size and duration and scheduled into the 'best' timeslot 

chosen by a placement heuristic. The tabu search employs three neighborhoods (timeslot 

change, room change and exam swap). The Drools Solver was placed fourth in the 

examination timetabling track. 

Pillay (2007) developed an approach based on cell biology. Exams are ordered using 

saturation degree and sequentially scheduled to available “cells” (timeslots) that cause the 

minimum penalty with ties being randomly broken. Rooms are selected using the best fit 

heuristic. If no feasible cells remain, the exams which have already been placed are moved to a 

cell causing the minimal overall soft constraint penalty (called cell division). If this is not 

possible, cell interaction, employing a swapping operation, will be employed to remove the 

hard constraint violations. This process is repeated to find a feasible solution, which is then 

improved by cell migration, by heuristically swapping the contents of cells with equal 

durations. Pillay (2007) was placed fifth in the ITC 2007 examination track.  

McCollum et al. (2009) employs an extended great deluge technique that was originally 

proposed by McMullan (2007) to solve ITC 2007 examination timetabling problems. The 

extended great deluge technique employed a reheating mechanism which is invoked after a 

predefined number of consecutive non improvement moves to recalculate the initial level and 

decay rate.  The author carried out a large number of runs (e.g. 51 runs for each instance) 

compared to the other approaches in the ITC 2007 competitions (e.g. 11 runs for each 

instance). The proposed approach outperformed others on six of the ITC 2007 datasets. 

 

 

4 A Graph Coloring Constructive Hyper-Heuristic (GCCHH) Algorithm  

Burke et al. (2007), Ayob et al. (2007) and Qu et al. (2009) argued that although simple graph 

heuristics have been widely used, a single strategy in determining the difficulty level of the 

exam to be scheduled in solution construction is not sufficient to provide high quality 

solutions. Therefore, in our proposed GCCHH approach, the difficulty level of scheduling an 

exam is determined by hybridizing several graph coloring heuristics simultaneously. In 

GCCHH, at the higher level, the difficulty index of exams is calculated by using hierarchical 

hybridisations of four graph coloring heuristics. The most difficult exam to be scheduled (i.e. 

the one with minimum difficulty index) will be allocated first to the appropriate timeslot 

determined by a roulette wheel selection mechanism. If two or more exams have the same 

difficulty index, one exam will be selected randomly. At the lower level, four low level graph 

coloring heuristics are used to generate four heuristic hybridisations. Algorithm 1 shows the 

pseudo-code of the GCCHH approach. 

In our work, we use four graph coloring heuristics (other heuristics might also be 

applicable). These heuristics have been chosen because they are the most widely applied graph 

coloring heuristics and have produced good quality solutions for examination timetabling 

problems (Burke et al. 2005, 2007; Kendall and Hussin 2005a; Asmuni et al. 2005). The 

heuristics we use are: 

 



 Largest Degree First (LD): exams are ordered, in decreasing order, by the number of 

conflicts they have with all other exams.  

 Saturation Degree First (SD): exams are ordered dynamically, in ascending order, by 

the number of remaining timeslots. 

 Largest Colored Degree First (LCD): exams are ordered based on LD, but only 

considering the number of conflicts with those already scheduled exams in non-

increasing order. 

 Largest Enrolment First (LE): exams are ordered by the number of students enrolled, 

in decreasing order. 

 

Algorithm 1 Pseudo-code of the GCCHH approach 

1- Initialization  

Generate the four ordering lists of exams by using hi , i = 1, …, 4 (Table 1 and Algorithm 2) 

2- While (ordering lists are not empty) do  

      { 

a. Calculate the difficulty index of the first exam in each list using Equation (1).  

b. Select the exam e that has the minimum difficulty index. Randomly select one exam if there is 

more than one exam with the same difficulty index. 

c. Assign exam e to the timeslot selected by Roulette_wheel_timeslot_selection (Algorithm 3) 

d. Remove e from all ordering lists. 

e. Reorder all ordering lists using hi.  

 }     

Verify if all the hard constraints are satisfied. 

If (ordering lists are empty and all hard constraints are satisfied) then return the feasible   solution. 

Otherwise, return infeasible solution.   

In this work, we use four heuristic hybridizations to order exams which produce four sorted 

lists (see Table 1). 

Table 1 The four heuristic hybridization strategies 

hi Heuristic hybridizations 

h1 In this heuristic hybridization (LD+LE+SD+LCD), the exams to be 

scheduled are arranged in a non-increasing order of the number of conflicts 

they have with other exams (LD); those with equal LD evaluations are then 

arranged in a non increasing order of the number of student enrolments (LE), 

then in a non decreasing order of the number of available timeslots (SD) and, 

finally, in a non-increasing order of the number of conflicts the exam has with 

those already scheduled (LCD). 

h2 Similar to h1, this heuristic hybridization (SD+LCD+LD+LE) arranges the 

exams to be scheduled by using SD, LCD, LD and LE hierarchically. 

h3 Same as the above, with a different hierarchy of heuristics 

(LCD+SD+LD+LE). 

h4 Same as the above, with a different hierarchy of heuristics 

(LE+LD+SD+LCD). 

Algorithm 2 presents the pseudo-code of h1 which constructs a list of exams ordered by using 

the heuristic hybridization (LD+LE+SD+LCD). Similarly the other three lists of exams are 

constructed by using h2, h3 and h4, respectively. In this work, we define dynamic or static lists 

based on the first ranking criteria. We then have two dynamic lists (i.e. h2 and h3, which order 



exams dynamically by the number of remaining timeslots or by the number of conflicts with 

those exams already assigned) and two static lists (i.e. h1 and h4). The idea of hybridizing 

different heuristics (dynamic and static) is motivated by their different performance during the 

solution construction and for different problem instances. Some of heuristics may work well at 

the beginning (especially LE and LD), whilst others may work well at the end of solution 

construction. For example, saturation degree (SD) may not be efficient at the beginning since 

most timeslots are not occupied. Whereas largest degree (LD) may be efficient at the beginning 

since it selects the most conflicted exam to be scheduled first (Qu and Burke 2009). In our 

GCCHH approach, we employ four different heuristics (either dynamic or static) to overcome 

the shortcoming of using single heuristics. 

 

 

h1, h2, h3 and h4 serve as the low level heuristics for the GCCHH approach (see Algorithm 1). 

A low level heuristic prioritizes exams according to the level of difficulty in scheduling them 

into the timetable. The rationale behind this is to make sure that the most difficult exams are 

scheduled first (Burke et al. 2007). 

Based on the four ordered lists of exams constructed by using h1-h4, we introduce the 

difficulty index which is calculated for the first exam of each ordered list using Equation (1).  

                
4
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where Iki is the order of exam ei in the list produced by heuristic hk.  

 

By using the difficulty index, the first exam across all lists which has the minimum difficulty 

index, F(ei), will be chosen to be scheduled at each iteration of the solution construction.  

 
Table 2 An illustrative example of exam selection by using difficulty index 

Algorithm 2 Pseudo-code of heuristic hybridization h1 

h1 (exam e1, exam e2) 

Begin  

If (e1.LD = e2.LD and e1.LE ≠ e2.LE) 

       if ( e1.LE > e2.LE) 

      Return e1 > e2 

      Else  Return e2 > e1  

Else if (e1.LD = e2.LD and e1.LE = e2.LE and e1.SD ≠ e2.SD)  

      if ( e1.SD < e2.SD) 

      Return e1 < e2 

      Else  Return e2 < e1 

Else if (e1.LD = e2.LD and e1.LE = e2.LE and e1.SD = e2.SD and e1.LCD ≠ e2.LCD)  

      if ( e1.LCD > e2.LCD) 

      Return e1 > e2 

      Else  Return e2 > e1  

Else return e1> e2 

End 

                           order 

Heuristics  

1 2 3 4 5 6 7 

LD+LE+SD+LCD e3 e5 e1 e6 e7 e4 e2 

SD+LCD+LD+LE e7 e5 e6 e3 e2 e4 e1 

LCD+SD+LD+LE e6 e3 e5 e7 e4 e1 e2 



 

Table 2 presents an illustrative example of calculating the difficulty index. Assume by using h1-

h4, exams to be scheduled are ordered as shown in Table 2. By using Equation (1), the 

difficulty indexes for the first exam in each list are as follows: 

 

 e3 = 1+4+2+3=10  

 e7 = 5+1+4+4=14  

 e6 = 4+3+1+7=15  

 e4 = 6+6+5+1=18  

 

 

Since exam e3 has the minimum difficulty index, it will be scheduled at this iteration.  

By using this mechanism, the difficulty level to schedule an exam is determined based on 

multiple criteria rather than a single ordering strategy.  

In constructing an exam timetable, heuristics on exam selection have been most widely 

studied, utilizing a range of ordering criteria. However, timeslot selection for the chosen exam 

is not so often considered. Usually, the timeslot which causes the minimum penalty is selected, 

ties are broken by choosing the first timeslot (Burke et al. 2007; Qu and Burke 2009), or one at 

random (Burke et al. 2007; Qu and Burke 2009). This may not necessarily guarantee a good 

quality, or even feasible solution in some cases. Indeed, they always produce the same 

solutions (except for a random approach) for every run. Therefore, in this work, we propose a 

probabilistic timeslot selection mechanism, roulette wheel selection, to choose the appropriate 

timeslot so that we (usually) are returned a different solution from every run. Moreover, this 

selection mechanism may potentially produce good quality solutions since timeslots which 

cause smaller penalties are more likely to be chosen compared to those with a higher penalty. 

Algorithm 3 presents the pseudo-code of the roulette wheel selection method.  

 

 

Algorithm 3 Pseudo-code of Roulette wheel selection for timeslot selection 

Roulette_ wheel_timeslots_selection (exam e) 

Begin 

- Find all feasible timeslots for exam e 

- Calculate the cost for each feasible timeslot C(i) 

- Calculate the segment span for each available timeslots S(i) using Equation (2). 

- Generate a random number r between [0, 1]. 

- Select timeslot s where r falls in its segment span 

- Assign exam e to timeslot s 

- Return true  

End 

 

In roulette wheel timeslot selection, the segment span S(i) for each feasible timeslot is 

determined based on the penalties of assigning the chosen exam by using Equation (2) as 

follows:  
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LD+LE+SD+LCD e4 e2 e3 e7 e1 e5 e6 



where i is the i
th

 feasible timeslot, S(i) is the segment span of the i
th

 timeslot and C(i) is the cost 

for the i
th

 timeslot and S(0) =0.  

By using roulette wheel selection a timeslot is chosen in proportion to the segment span 

calculated based on the sum of penalties.  

 

 

5 Experimental Results 

We evaluate our GCCHH approach on two sets of benchmark examination timetabling 

datasets. These are Carter’s un-capacitated (Toronto b Type I in Qu et al. 2009) and the ITC 

2007 (McCollum et al. 2007; 2009; 2010) examination timetabling benchmark datasets. The 

algorithm was developed using Microsoft Visual C++ 6.0 and all simulations were run on a 

Windows XP 2002 machine with an AMD Athlon 1.92 GHz processor with 512MB of RAM. 

 

5.1 GCCHH for Carter’s Uncapacitated Benchmark Dataset 

The proposed GCCHH was evaluated on Carter’s un-capacitated examination timetabling 

benchmark dataset which contains 13 instances. It was introduced by Carter et al. (1996) and 

extended to several variants over the years. We test our GCCHH approach on the Toronto b 

variant (Qu et al. 2009). Table 3 presents the characteristics of this dataset. Twenty 

independent runs (each set of 20 run taking 1-4 hours depending on the size of the problem 

instance) were carried out for each of the 13 instances using different random seeds. Please 

note that this run time is acceptable in university timetabling problems because the timetables 

are usually produced months before the actual schedule is required (Qu et al. 2009). 

 

Table 3 Characteristics of Carter’s un-capacitated examination timetabling benchmark dataset, 

Carter et al. (1996) 

 

Data sets Number of Timeslots Number of Exams Number of Students 

Car-f-92-I 32 543 18419 

Car-s-91-I 35 682 16925 

Ear-f-83-I 24 190 1125 

Hec-s-92-I 18 81 2823 

Kfu-s-93 20 461 5349 

Lse-f-91 18 381 2726 

Pur-s-93-I 43 2419 30032 

Rye-s-93 23 486 11483 

Sta-f-83-I 13 139 611 

Tre-s-92 23 261 4360 

Uta-s-92-I 35 622 21267 

Ute-s-92 10 184 2750 

Yor-f-83-I 21 181 941 

 

Table 4 lists the best and average results of GCCHH for each of the benchmark instances. The 

results represent the calculation of soft constraints violations. They are comparable to the 

current state-of-the-art hyper-heuristics employing graph coloring heuristics (best results from 

the literature using hyper-heuristic approaches are shown in bold). Compared to the other 

hyper-heuristics, GCCHH obtained the best results on two out of 13 instances. We also provide 

the best results obtained by non-hyper-heuristic approaches (bespoke methods) in the literature 

in the last column of Table 4. Note that our GCCHH approach is a single pass stochastic 

method, rather than being an iterative process (i.e. it is just a constructive heuristic). We are 

not aiming to beat these bespoke methods which usually employ both a constructive phase and 

an improvement phase in obtaining the best results.  



Table 4 Results of GCCHH compared against the best results of current graph coloring based 

hyper-heuristics in the literature. 

Datasets Our Results FZLO 

 

VNS 

 

HGH 

 

 

TS 

 

GHH 

 

HC 

 

NON-

HH 

Best Average 

Car-f-92-I 4.70 4.93 4.52 4.7 - 4.53 4.16 4.28 3.93 

Car-s-91-I 5.14 5.26 5.2 5.4 - 5.36 5.16 4.97 4.5 

Ear-f-83-I 37.86 38.77 37.02 37.29 45.60 37.92 35.86 36.86 29.3 

Hec-s-92-I 11.90 12.01 11.78 12.23 - 12.25 11.94 11.85 9.2 

Kfu-s-93 15.30 15.94 15.81 15.11 - 15.2 14.79 14.62 13.0 

Lse-f-91 12.33 13.10 12.09 12.71 - 11.33 11.15 11.14 9.6 

Pur-s-93-I 5.37 6.76 - - - - - 4.37 - 

Rye-s-93 10.71 11.06 10.35 - - - - 9.65 6.8 

Sta-f-83-I 160.12 161.56 160.42 158.8 158.2 158.19 159.00 158.33 157.2 

Tre-s-92 8.32 9.01 8.67 8.67 - 8.92 8.6 8.48 7.9 

Uta-s-92-I 3.88 4.13 3.57 3.54 4.52 3.88 3.59 3.4 3.14 

Ute-s-92 32.67 33.73 27.78 29.68 35.40 28.01 28.3 28.88 24.4 

Yor-f-83-I 40.53 41.84 40.66 43.0 - 41.37 41.81 40.74 36.2 

 

Note: 

- FZLO: Fuzzy multiple graph coloring ordering criteria proposed by Asmuni et al. (2005). 

-  VNS: Hybrid variable neighbourhood hyper-heuristics proposed by Qu and Burke (2005). 

-  HGH: Hybrid graph heuristics in hyper-heuristics proposed by Burke et al. (2005). 

-  TS: A graph based hyper-heuristic proposed by Burke et al. (2007). 

- GHH: Hybridisations within a graph based hyper-heuristic framework proposed by Qu and 

Burke (2009).  

- HC: A study of heuristic combinations for hyper-heuristic systems proposed by Pillay and 

Banzhaf (2009). 

- NON-HH: Best reported results (non hyper-heuristics) Qu et al. (2009). Note that all 

compared methods are single pass methods except TS, GHH and NON-HH methods.  

 

As shown in Table 4, GCCHH obtained comparable results across all methods for all tested 

instances. It is able to obtain better solutions on 5 (Kfu-s-93, Pur-s-93, Sta-f-83, Tre-s-92 and 

Yor-f-83) and 7 (Car-s-91, Hec-s-92, Lse-f-91, Pur-s-93, Rye-s-93, Tre-s-92 and Yor-f-83) 

instances compared to FZLO and VNS, respectively. On the other hand, when compared to 

HGH and TS, GCCHH is able to achieve better results on 3 (Ear-f-83, Uta-s-92 and Ute-s-92) 

and 4 (Ear-f-83, Hec-s-92, Tre-s-92 and Yor-f-83) instances, respectively. Note that, HGH was 

tested on 4 out of 13 instances and the best results obtained from graph coloring hyper-

heuristics in TS are further improved by applying a steepest decent local search. Our approach 

also outperformed GHH and HC on 4 (Car-s-91, Hec-s-92, Tre-s-92 and Yor-f-83) and 2 (Tre-

s-92 and Yor-f-83) instances, respectively. Furthermore, only HC reported results for Pur-s-93 

and Rye-s-93 instances. Whilst, GHH, TS, HGH and VNS did not report results on Rye-s-93 

and Pur-s-93 datasets (we suspect, due to the inconsistence of the data files for these 

instances). Moreover, all the compared methods have employed complex mechanisms such as 

fuzzy logic, tabu search or variable neighbourhood to select the most suitable low level 

heuristics. Whilst, in GCCHH, we only use a simple method to chose the low level heuristic 

and produce competitive results compared to other methods.  

 

 

 



5.2 GCCHH for the ITC 2007 Dataset 
 

To apply GCCHH to the ITC 2007 datasets (McCollum et al. 2007, 2009; 2010), we have 

made small changes to the low level heuristics. Due to the size of the dataset in ITC 2007, we 

reduced the number of heuristic hybridizations. That is, for each low-level heuristic, we only 

hybridize two graph coloring heuristics as follows:  

 

1. h1(LD+LE): exams are ordered decreasingly by the number of conflicts and then those 

with the same number of conflicts ordered decreasingly by student enrolments. 

2. h2(SD+LCD): similar to the above but using SD and LCD for ordering.  

3. h3(LCD+SD): Same as above, with a slightly different ordering.  

4. h4(LE+LD): Same as above, with a slightly different ordering. 

To reduce the computational time, each exam is randomly allocated to the best feasible 

timeslot and a best fit room. Two repair mechanisms (timeslot and room repair mechanisms) 

are used to repair violations of the additional hard constraints present in the ITC 2007 dataset. 

- In the timeslot repair mechanism, we verify all timeslot related hard constraints by 

moving or swapping appropriate exams. For example, if Exam_A must be scheduled 

after Exam_B, then the timeslot repair mechanism will be applied to satisfy this 

constraint.  

- In the room repair mechanism, we verify all room related hard constraints by moving 

all exams violating this constraint. For example, if Exam_A cannot share a room with 

other exams, then all exams assigned to the same room as Exam_A will be moved to 

other suitable rooms. 

Both the timeslot and room repair mechanisms are invoked when all exams have been 

scheduled. The algorithm terminates after a given time and returns either a feasible, if the 

repair process is successful, or an infeasible solution if it is not successful.  

Computational experiments were carried out on eight (actually there are 12 instances listed 

on the web site but only eight was available at the time of experimentation) instances from the 

ITC 2007 examination timetabling track. Details of problem descriptions and specification can 

be found in (McCollum et al. 2007; 2009; 2010). Table 5 shows the main characteristics of 

these instances. 

Table 5 The ITC 2007 benchmark examination timetabling datasets 

Data sets A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

Dataset 1 7891 607 54 7 5 7 5 10 100 30 5 7833 
Dataset 2 12743 870 40 49 5 15 1 25 250 30 5 12484 

Dataset 3 16439 934 36 48 10 15 4 20 200 20 10 16365 
Dataset 4 5045 273 21 1 5 9 2 10 50 10 5 4421 
Dataset 5 9253 1018 42 3 15 40 5 0 250 30 10 8719 
Dataset 6 7909 242 16 8 5 20 20 25 25 30 15 7909 
Dataset 7 14676 1096 80 15 5 25 10 15 250 30 10 13795 

Dataset 8 7718 598 80 8 0 150 15 25 250 30 5 7718 

Note: 

A1: No. of students reported in McCollum et al. (2007); A2: Number of exams; A3: Number of 

timeslots; A4: Number of rooms; A5:  Two in a day penalty; A6: Two in a row penalty; A7: 

Timeslots spread penalty; A8: No mixed duration penalty; A9: Number of largest exams; A10: 

Number of last timeslots to avoid; A11: Front load penalty; A12: Number of actual students in 

the datasets. 



The GCCHH approach was run 20 times on each instance with different random seeds. The 

stopping condition is set at 650 seconds (determined by benchmark programs provided at the 

ITC 2007 web site). Table 6 presents our experimental results (best and average) which 

represent the calculation of soft constraints violations. The best results in the literature are 

shown in bold. The results show that GCCHH is competitive with the ITC 2007 competition 

winners’ approaches, and in two cases (Datasets 2 and 4), outperformed all other approaches 

from across the literature (including bespoke approaches). 

 

Table 6 Results of GCCHH on the ITC 2007 compared to the best results of ITC 2007 winners 

Data sets Our results Muller 
2009 

Gogos 
et al. 
2008 

Atsuta 
et al. 
2007 

De Smet 
2008 

Pillay 
2007 

Best  Average 

Dataset 1 6234 6311 4370 5905 8006 6670 12035 

Dataset 2 395 400 400 1008 3470 623 3074 

Dataset 3 13002 13120 10049 13862 18622 - 15917 

Dataset 4 17940 18011 18141 18674 22559 - 23582 

Dataset 5 3900 3986 2988 4139 4714 3847 6860 

Dataset 6 27000 27420 26950 27640 29155 27815 32250 

Dataset 7 6214 6345 4213 6683 10473 5420 17666 

Dataset 8 8552 8624 7861 10521 14317 - 16184 

 

Note that the Atsuta et al. (2007) and Pillay (2007) are single pass methods. It is not really fair 

to compare our results with those of Müller (2009), Gogos et al. (2008) and De Smet (2008), as 

their algorithms employed two-phase approaches where a constructive phase is followed by an 

improvement phase (as explained in section 3). Whilst, our method only employs a 

constructive phase. Our approach was outperformed Müller (2009) on 2 instances, and 

outperformed Gogos (2008) and De Smet (2008) on 7 and 3 datasets, respectively. Note that 

the algorithm by De Smet (2008) did not obtain a feasible solution for three datasets. Indeed, 

when compared against constructive methods (Atsuta et al. 2007 and Pillay 2007), our method 

obtained better results on all tested instances. Again, we can see that the results obtained by 

GCCHH are comparable with other methods (or even better in some cases). This indicates that 

GCCHH is a simple yet efficient method which outperformed existing constructive methods 

and is competitive with the best bespoke two-phase based methods on the ITC 2007 datasets.  

Table 7 shows the comparison of our results with the post-ITC 2007 approaches. Best results 

are shown in bold. 

 

 

Table 7 Results of GCCHH on the ITC 2007 examination timetabling datasets compared to the 

best results of the Post-ITC 2007 approaches 

 

 

 

 

 

 

 

 

 

 

 

 

Data sets Our results Gogos 
et al. 

2010 

Post- 
Müller 

McCollum 
et al. 

2009 Best  Average 

Dataset 1 6234 6311 4775 4370 4633 

Dataset 2 395 400 385 385 405 

Dataset 3 13002 13120 8996 9378 9064 

Dataset 4 17940 18011 16204 15368 15663 

Dataset 5 3900 3986 2929 2988 3042 

Dataset 6 27000 27420 25740 26365 25880 

Dataset 7 6214 6345 4087 4138 4037 

Dataset 8 8552 8624 7777 7516 7461 



Note that the post-ITC 2007 approaches performed more runs compared to the competition 

winners, i.e. McCollumn et al. (2009) performed 51 runs, Post- Müller performed 100 runs and 

Gogos et al. (2010) performed 100 runs, for each instance, see more details in McCollumn et 

al. (2009).  

As can be seen from Table 7, our results are competitive when compared to all post-ITC 

2007 approaches. It outperformed the algorithm in McCollumn et al. (2009) on one dataset. 

Again, our results are compared with those post-ITC 2007 approaches where two phases are 

employed.  

 

 

6 Discussion 

As shown in sections 5.1 and 5.2, in both set of experiments (Carter and ITC 2007 datasets), 

GCCHH obtained competitive results when compared against existing best methods in the 

literature.  

For the Carter dataset, all compared hyper-heuristic methods employed single sequential 

graph coloring heuristics with an intelligent high level strategy to determine the most suitable 

heuristics (heuristics lists). The results obtained by our GCCHH reveal that hierarchically 

combining graph coloring heuristics using difficulty index mechanisms is able to produce 

competitive results. 

For the ITC 2007 datasets, all compared methods are specifically designed to solve the ITC 

2007 problems. In Atsuta et al. (2007), the constructive methods used constraint satisfaction 

problems solver; whilst the other constructive method Pillay (2007) used a biological approach 

which mimics cell behavior. The results show that our GCCHH approach is able to produce 

competitive results compared to these constructive heuristics (with regard to ITC 2007 

datasets). In De Smet (2008), the initial solution generated by a single graph coloring heuristic 

is improved by tabu search. The approach obtained feasible timetables for 5 out of 8 datasets. 

This indicates that single pass graph coloring heuristics are not efficient on their own or even 

used together with meta-heuristic algorithms. However, when hybridizing several graph 

coloring heuristics, the combinations of graph coloring heuristics are able to produce feasible 

timetables for all tested instances without any improvements. 

Given that our method is a construction phase only approach the results produced are very 

competitive indeed. Furthermore the approach is simple enough to be easily implemented. 

It can be seen that in both benchmark examination timetabling problems, our constructive 

approach which is a single pass stochastic method is able to produce competitive results 

compared with current best approaches in the literature. We believe this is due to the use of a 

difficulty index to select the most difficult exams based on the simultaneous use of dynamic 

and static heuristics lists and the use of the roulette wheel selection for timeslot assignment. 

Furthermore, dynamic and static heuristics, when hierarchically hybridized, is able to select the 

most difficult exams to be scheduled first based on different ordering criteria. Moreover, there 

are only two parameters that need to be tuned in our GCCHH which are the length of the 

hybrid heuristic lists and the stopping condition. Whilst, most of compared methods have some 

parameters that need to be tuned in advance in order to obtain the best results. 

Overall, our approach does not rely on complicated search approaches to find out how to 

sequentially employ low level heuristics. Rather provides a general mechanism to construct the 

solution. It is simple to implement, and can be easily hybridized with any other meta-

heuristics. In another words, it provides a fundamentally simple constructive approach which is 

general enough. 

 

 



7 Conclusion 

This work has proposed a new hybrid constructive hyper-heuristic for solving examination 

timetabling problems. Widely used graph coloring heuristics are hybridized to generate four 

new low level heuristics via the construction of ordered lists. A difficulty index is used to 

determine which exam is to be scheduled first based on the order of the exam across all lists. 

The most difficult exam to be scheduled is scheduled first (i.e. the one with the minimum 

difficulty index). The index is calculated based on a combined, rather than a single, ordering 

criteria. Results of the approach on two sets of benchmark examination timetabling datasets 

(Carter and ITC 2007) show that this simple, yet efficient, approach produces competitive or 

better results when compared to the best approaches in the literature (with regards to Carter 

and ITC 2007 datasets).  
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