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A Graph Cut Approach to Artery/Vein Classification

in Ultra-Widefield Scanning Laser Ophthalmoscopy
Enrico Pellegrini, Gavin Robertson, Tom MacGillivray, Jano van Hemert, Graeme Houston and Emanuele Trucco

Abstract—The classification of blood vessels into arterioles and
venules is a fundamental step in the automatic investigation of
retinal biomarkers for systemic diseases. In this paper we present
a novel technique for vessel classification on ultra-wide-field-
of-view images of the retinal fundus acquired with a scanning
laser ophthalmoscope. To our best knowledge, this is the first
time that a fully automated artery/vein classification technique
for this type of retinal imaging with no manual intervention
has been presented. The proposed method exploits hand-crafted
features based on local vessel intensity and vascular morphology
to formulate a graph representation from which a globally
optimal separation between the arterial and venular networks
is computed by graph cut approach. The technique was tested
on three different datasets (one publicly available and two local)
and achieved an average classification accuracy of 0.883 in the
largest dataset.

Index Terms—Retina, scanning laser ophthalmoscope, ultra-
widefield, artery-vein classification, blood vessel, graph cut.

I. INTRODUCTION

IMPROVEMENTS in computerized imaging modalities

have made available to clinicians increasing volumes of

digital high-resolution images of the retina for the investigation

of eye and systemic diseases. In the retina, a rich portion

of the microvasculature of the human body can be observed

non-invasively. Hence, retinal microvascular features and their

changes have been investigated as candidate biomarkers in

association with different types of systemic conditions such

as cardiovascular disease, dementia and diabetes [1]–[5].

Studies of retinal biomarkers for systemic diseases have

traditionally been restricted to a small circular annulus centred

on the optic disc (OD) observed in fundus camera images [6]–

[9]. Acquiring single images of extended retinal regions

(beyond ∼45◦) was possible only via repeated acquisitions

and montages, the prime example being the Early Treatment

Diabetic Retinopathy Study (ETDRS) group protocol for dia-

betic retinopathy [10]. The introduction of the scanning laser

ophthalmoscope (SLO) [11] made it possible to capture in

one shot (Fig. 1) an image with an ultra-widefield of view

(UWFoV) of 180-200◦ [12], reducing patient discomfort while

guaranteeing good image resolution.
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Fig. 1. UWFoV SLO vs Fundus camera. (a) Example of UWFoV image,
(b) fundus camera image of the same eye. The black circle in (a) represents
approximately the FoV visible in (b).

An automated system providing measurements from UW-

FoV images for biomarker research must segment and classify

small retinal blood vessels reliably as arterioles or venules.

This operation is very time-consuming if performed manually,

therefore it is very important to develop software tools capable

of carrying it out effectively.

We propose a novel automated technique for artery / vein

(AV) classification of the retinal blood vessels visible in

UWFoV SLO images. We first extract hand-crafted features

along the vessel centrelines and train a local classifier from

which AV labels can be derived first at pixel level and then at

segment level. The classification accuracy is then significantly

improved by computing a representation of the network of the

blood vessel segments as an undirected graph and partitioning

the network ensuring the consistent propagation of the labels

at a global level. This is achieved by making use of a novel

formulation of soft constraints and edge costs for a graph

cut approach, aimed at disambiguating branching and crossing

point configurations throughout the entire vasculature network.

The strengths of the proposed method are:

• Accepting as input imperfect binary vessel maps com-

puted in a fully automatic way from real UWFoV images,

with no manual adjustment. To our best knowledge, the

only other comparable system reported using UWFoV

images [13] on the subject was validated on manually

specified centreline maps only.

• Globally optimal AV labelling is enforced to minimize

label inconsistencies along vessel paths.

• No fixed rules, based on local features of the vascular

morphometry, are pre-determined to disentangle crossing
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and bifurcation points. Instead, the parameters to carry

out this step were optimized on a separate set of images.

• Information regarding the branching and crossing points

morphology and the vessel local appearance are com-

bined and exploited simultaneously for the graph edge

classification stage, instead of being set according to fixed

a priori rules as in similar studies [14].

To our best knowledge, this is the first time that an AV clas-

sification algorithm is applied to obtain a global labelling in

UWFoV SLO images starting from an automatically generated

segmentation of blood vessels.

II. RELATED WORK

A. Local classification methods

Several automated techniques have been proposed for AV

classification in conventional fundus camera images. Individ-

ual steps differ considerably from one method to another

but four main phases can be found in the majority of the

approaches. First, the vessels are segmented, either with an

automatic or a manual tool. Second, the resulting binary map

is pruned and skeletonized in order to extract the centrelines

of the blood vessels. Third, a set of local features is computed

at each centreline pixel. Fourth, the feature vectors are used

to classify the pixels by either supervised or unsupervised

approaches and the resulting labels are combined to obtain

labels for whole vessels segments.

A well-known, early study by Grisan and Ruggeri [15]

addressed the task in a small circular region around the OD.

The authors obtained 0.93 classification accuracy for the main

vessels by utilizing a divide et impera strategy and selecting

only two colour features. A similar approach based on clus-

tering of features was proposed by Vazquez et al. [16] and

then extended, with a focus on features representative of the

cross-sectional profile of the blood vessels, by Saez et al. [17].

Colour features were also used in other unsupervised [18] and

supervised [19] algorithms for AV classification. Methods by

Niemeijer et al. [20], Zamperini et al. [21] and Mirsharif et

al. [22] explored larger sets of features extracted from single

pixels, regions of interest (ROI’s) centred on the vessel pixel in

question and from vessel segments. Feature selection was then

performed and a number of different classifiers were tested to

assess which one gave the best performance.

We built on the paper by Zamperini et al. [21] to devise

a large set of hand-crafted features, discriminative at pixel-

level. In the framework proposed in [21], intensity values

and their first- and second-degree moments were computed

in the channels of different colour spaces (RBG and HSV).

The values were extracted twice: first in a ROI centred on

the pixel in question and with a diameter equal to the width

of the vessel at that point, then in a ROI twice as large as

the previous one. Also, information regarding the location of

the pixel seemed to improve classification accuracy. Finally,

feature selection was carried out and several types of classifiers

were trained: the one achieving the best results was the linear

Bayesian classifier (LBC) [23].

B. Graph-based methods

More recently, the properties of the entire vasculature have

been taken into account to gain additional discriminative infor-

mation. The correct representation of vessels in the segmented

binary maps and the disentangling of ambiguous branching

and crossing points was investigated by Al-Diri et al. [24] and

by Huang et al. [25]. In these two papers, though, the results

were not evaluated in terms of AV classification. The first

representation of the vasculature as a graph specifically de-

signed for AV classification purposes was the semi-automated

one proposed by Rothaus et al. [26]. In this case, two paired

graphs were devised and the results were evaluated in terms

of labelling conflicts that were solved by the algorithm.

More recently a growing number of studies, among

which [14], [27]–[31] and [13], have proposed graph repre-

sentations to tackle the AV classification problem. Estrada et

al. [13] reported the first AV classification in UWFoV SLO

images. This technique is an extension of a previous paper

from the same authors [32], based on a heuristic optimiza-

tion algorithm to explore the space of anatomically plausible

vascular networks. A global likelihood model based on vessel

tree features was devised for each one of these configurations.

In these approaches, the structure of the vasculature is rep-

resented as a graph and exploited in order to ensure that the

proposed AV labels are consistent across the vascular trees and

over the entire FoV of the image.

Joshi et al. [14] started with the segmentation of blood

vessels and the creation of a refined centreline map where

vessel segments were connected at branching and crossing

point. They modelled the segments as nodes of a graph and

assigned to the graph edges a set of weights based on local

features. A partition of the graph was then obtained using the

Dijkstra algorithm. Labels were assigned to graph components

using fuzzy C-means clustering of a set of 4-D feature vectors

extracted at pixel-level. The vector components were four

colour features (mean and standard deviation of green channel

and hue) which proved to be very discriminative in the fundus

camera images considered. It is interesting to observe that

excluding pixels with very uncertain AV labels was considered

infeasible in UWFoV SLO image as it would have led to the

elimination of the majority of the data.

Finally the technique by Dashtbozorg et al. [28] was rele-

vant for this work for the preprocessing steps put in place. The

rest of the work was similar to the one by Joshi et al. in terms

of modelling AV classification as a graph partitioning problem.

The most notable differences were that the actual separation

was obtained by following a set of rules, defined empirically,

to solve all crossing and branching points in sequence and that

the local AV labels were devised by creating a larger feature

vector and using a linear discriminant classifier. Preprocessing

consisted of a set of fixed rules used to correct segmentation

errors visible in the centreline map. These empirical rules

were based on threshold values obtained by combining local

features of vessel segments. It is worth noting that the work by

Dashtbozorg et al. was one of the few graph-based algorithms

proposed in the literature that was validated and able to

perform reliably on centreline maps not obtained, or refined,
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TABLE I
DATASETS USED TO ASSESS THE PERFORMANCE OF THE AV CLASSIFICATION ALGORITHM.

Name Number of

images

Vessel

segments

Centreline

pixels

Number of

observers

Inter-observer

agreement

Location of

segments

Image

resolution*

Stereographic

projection

ZONE C 40 11.6 (1.2) 237.3 (31.2) 2 100 % Zone C Full No

WIDE 30 48.0 (7.3) 856.9 (74.9) 2 98 % Entire FoV Half No

TASCFORCE 470 113.5 (26.3) 1572.3 (112.5) 1 n. a. Entire FoV Full Yes

* For a non-projected UWFoV SLO image, “Full” resolution represents to an image of size 3072×3900 pixels covering a FoV of approximately
180◦. The respective size of a stereographically projected UWFoV SLO image covering the same FoV is 4000×4000 pixels. Vessel segments
and centreline pixels are reported as mean (standard deviation) per image.

manually unlike in [13], [32].

III. MATERIALS

The proposed AV classification algorithm was tested on

three sets of UWFoV SLO images differing in terms of image

resolution, number of observers, FoV taken into consideration

and whether the images underwent a stereographic projec-

tion [33] or not. A summary of the dataset characteristics is

presented in Table I.

The ZONE C dataset consists of 40 images captured from

healthy volunteers with a very low incidence of retinal patholo-

gies in 2013 at Ninewells Hospital (Dundee, UK) with a

P200C AF ophthalmoscope [11] (Optos plc, Dunfermline,

UK). The protocol involved non-mydriatic acquisition of 2

good-quality images, left and right, per subject. This set was

manually annotated by two trained observers who labelled as

arteries or veins up to 12 vessel segments per image. The

vessel selection was limited to zone C, defined as the annulus

between 0.5 and 2.5 optic disc diameters (ODD’s) from the

OD margin [5].

The 470 images (470 subjects, one image per subject) of the

TASCFORCE [34] set used in the experiments were captured

in the same setting as above but the two are not overlapping. In

the TASCFORCE set, the vessel segments that were manually

labelled, by only one observer because of time constraints,

were those included in the vessel binary map produced by our

automated technique [35].

The WIDE dataset was made publicly available by Estrada

et al. [13] and consists of 30 UWFoV SLO images that were

previously cropped to a smaller FoV and scaled down by a

factor of two, resulting in a lower resolution with respect to

the other sets used in the experiments. It is very important

to note that the WIDE dataset comprises only maps of vessel

centreline points that are labelled as arterioles or venules. To

the best of our knowledge, the full manual segmentation of the

blood vessels is not available, hence no information regarding

the local vessel width is provided. In this work, the images

from the WIDE dataset were first scaled back to their original

size by means of a bicubic interpolation and then processed.

The reasoning behind this choice was that the entire pipeline,

including the preprocessing steps, was optimized to work at

the native image size of the UWFOV SLO device. The only

vessels, among those automatically segmented, considered in

the experiments were those that had been labelled by the two

observers as belonging to the same class.

Fig. 2. Pipeline of the proposed method. White boxes indicate the
algorithm’s modules, grey boxes indicate input and output of the modules.

IV. METHODS

The pipeline of the proposed algorithm can be conceptu-

ally divided into four interconnected modules (Fig. 2). Each

module is detailed in one of the following subsections.

A. Pre-processing and centreline refinement

A binary map of the blood vessels was obtained for each

image by making use of an automated segmentation tech-

nique [35]. A circular area, centred on the OD and with a

diameter equal to 0.75 ODD’s, was masked out of the images

as not relevant for the purposes of this study. The map was

also thinned [36] in order to obtain the vessel centrelines. This

operation left foreground pixels with at most 4 neighbours in a

3×3 neighbourhood. According to the number of neighbours,

foreground pixels were labelled as either noise, end points,

segment points or meeting points (respectively, pixels with

0, 1, 2, more than 2 neighbours). Vessel segments were then

defined as all the connected components left in the centreline

map after the removal of noise, end and meeting points.

Subsequently, the centreline map underwent an automated

refinement aimed at correcting misinterpretations of the vascu-

lar structure introduced by the automated segmentation tech-

nique or by the thinning operation. Similar to [28], three types

of refinement were introduced: the creation of a missing vessel
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TABLE II
FEATURES FOR LOCAL AV CLASSIFICATION.

Feature

number

Description

1-6 Centreline pixel intensity in Red, Green, Hue, Value,

Greyscale and Gradient maps.

7-30 Mean, standard deviation, minimum and maximum values

in the sROI in Red, Green, Hue, Value, Greyscale and

Gradient maps.

31-54 Same as (7-30) but calculated in the lROI.

55-64 Centreline pixel intensity in five Gaussian-blurred versions

(σ = [2 4 8 12 16]) of Red and Green maps.

65-69 Polar coordinates* of the centreline pixel.

70 Vessel width at the centreline pixel location.

71-80 Vessel cross-sectional profile† in the Red map.

81-90 Vessel cross-sectional profile† in the Green map.

* Three reference systems: centred on the OD with the vertical axis of the
image, centred on the OD with the perpendicular to the direction OD-fovea
as the axis, centred on the image centre with the vertical axis of the image.
The radial coordinates were normalized according to the individual ODD.
† The profile length was determined as 140% of the estimated vessel width,
the intensity was approximated by a cubic spline interpolation and then
sampled at 10 equally spaced locations.

segment, the deletion of a false segment and the correction

of a split crossing point. The set of rules and threshold

values used to identify the locations needing refinement were

not pre-determined but devised as functions of a number of

parameters obtained from a training set in order to minimize

the occurrence of “wrong corrections” (e.g., creating a new

segment where there should not be one). This operation was

carried out by exhaustive search on a separated small set of

20 UWFoV SLO images and validated by visual inspection

with the aim of achieving the lowest possible false discovery

rate.

The use of a vessel map obtained automatically, always less

accurate than a manual map, and its refinement are crucial to

highlight that the proposed method is resilient to the errors

introduced by automatic vessel segmentation. This achieves

for the first time for UWFoV SLO images a pipeline for AV

classification requiring no manual interaction throughout the

process.

B. Local AV classification

After obtaining a refined centreline map, the vessel seg-

ments were sub-sampled at equally-spaced intervals: 1 sample

every 10 points along the centreline. Pixels that were edited

during the previous stage of automatic centreline refinement

were excluded from the pool of candidate samples. The final

number of pixels taken into consideration for further analysis

in each dataset is reported in Table I.

For each of the selected pixels, a hand-crafted 90-D feature

vector (Table II) was created. Twenty three of the features were

calculated twice: once in a small circular region of interest

(sROI) centred on the point, with a diameter equal to the vessel

width and once in a larger, concentric region (lROI) with a

diameter twice as large [21]. With this choice, the sROI and

its features were strictly representative of the vessel pixels

(a) (b)

Fig. 3. Graph representation of the vasculature. (a) Green channel with
vessel centrelines highlighted in white and where 8 segments and 3 meeting
points are visible, (b) Respective graph representation. The red dashed line
covers the edges belonging to the optimal cut C.

while the lROI gave information of both the vessel pixels and

its surrounding background. Location information, estimated

local width [37] and cross-sectional profile intensities were

finally added to complete the feature vector.

The local AV classification of the centreline pixels was

carried out independently for each set of images, in each

case performing a leave-one-image-out cross-validation. The

training sets were sub-sampled to ensure class balance between

arteriolar and venular pixels and the features rescaled into the

[0, 1] range. A LBC [23] and the entire 90-D feature vector

were used so that at the end of the process, every pixel pi was

given a probability Pa(pi), also referred to as A-probability, of

belonging to the arteriole class. These values were thresholded

at 0.5 to obtain the individual AV labels L(pi) that were

taken in consideration in the evaluation of the classification

accuracy on pixels. Finally, the A-probabilities of the pixels

belonging to each vessel segments were averaged to obtain

segment-level A-probabilities. The latter were thresholded as

well and the resulting values were considered in the evaluation

of classification accuracy on segments.

Preliminary tests were run on the ZONE C dataset to inves-

tigate classification accuracy values achievable by combining

different feature selection techniques (1-way ANOVA, elastic

net [38], LASSO [39]) and classifiers (ordinary and regularized

least squares, linear regression, linear and RBF SVM’s). The

results of these experiments are reported in Appendix A.

Ultimately, the LBC with no feature selection proved to be

the most accurate combination (Table IX) and was thus used,

from this point forward, for the rest of the experiments.

C. Graph representation of the vasculature and n-edge clas-

sification

Each connected component of the refined centreline map

was modelled as an undirected graph where the vessel seg-

ments were represented by nodes. Segments sharing a meeting

point were connected by an edge in the graph model (Fig. 3).

The graph G = (V, E), where V was the set of nodes (or

vertices) and E the set of edges, was defined accordingly.

The final goal of the proposed method was to identify the

cut C ⊂ E (Fig. 3b) such that all the nodes representing

respectively venules and arterioles became separated in the
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induced graph G(C) = (V, E \ C). By deleting all the edges

belonging to the cut, obtained by making use of a max-flow

algorithm [40], an optimal AV classification, consistent at

global level, is achieved.

Two additional nodes, the source s and the sink t, were

added to the graph and fully connected to all the other nodes.

Following the notation in [41], edges between neighbouring

nodes of the original set V were defined as n-edges. The edges

connecting all the nodes in V and the terminals s and t were

instead defined as t-edges. A weight was associated to each

edge as an indication of the cost of cutting it. A high cost was

imposed to n-edges edges joining vessel segments of the same

AV class and a low cost to those between an arteriole and a

venule. Also, high and low costs, respectively, were assigned

to t-edges between nodes representing venule segments (vice

versa for arteriole segments) and the terminals s and t. The

cost of all the edges was determined by the output of the

previous step of local AV classification and by the output a set

of n-edges classifiers aimed at discriminating between Class

0 n-edges (e.g., links between an arteriole and a venule) and

Class 1 n-edges (i.e., links between segments belonging to the

same AV class). This second stage of classification is described

in the following subsection.

To determine the class of a n-edge, it was not sufficient to

focus on the information regarding the two vessel segments

that formed it. It was also necessary to gather information

representative of the configuration of the meeting point from

which the edge was originated. The final feature vector of

each n-edge, therefore, was the concatenation of a set of

segment features and a set of meeting point features. This

constitutes a novelty aspect of the proposed method with

respect to previous techniques where, to make sense of the

morphology of the vasculature, only local geometrical features

were considered [28] or a hierarchy of features was determined

a priori [14] by an observer.

The meeting points were divided in subgroups according to

their degree, defined as the number of vessel segments attached

to them. A different LBC, based on different hand-crafted

features, was trained to classify edges from each one of these

subgroups. Across the entire WIDE and TASCFORCE image

sets, only four configurations were detected as the maximum

degree of a meeting point was found to be 5. The feature

vectors for the edges from configuration of degree 2, 3 and

4 are reported in Table III. Since only five occurrences of

5-degree configurations were detected across all the dataset,

not enough data was available to train a classifier for edges

originating from this type of configuration. In these few cases,

arbitrarily set values of probability were assigned to the edges:

the edge between the two segment separated by the angle

closest to 180◦ was associated with a probability equal to 0.8,

while 0.5 was the probability assigned to the remaining edges.

D. Graph cut approach for global AV classification

Once the undirected graph representation was obtained for

each connected component of the retinal vasculature and the

two classification tasks (AV and n-edge) were completed,

the two vessel segments with the highest and the lowest

TABLE III
FEATURE VECTORS FOR n-edge CLASSIFICATION GROUPED BY MEETING

POINT’S DEGREE.

Degree Type of

features

Feature

number

Description

2 Segment

features

1 Difference of segments’ AV

probabilities.

2 Smallest angle between segments.

3 Difference of segments’ average

Euclidean distances from the OD.

3 Segment

features

1, 2 A-probabilities of the two

segments.

3-5 Difference of widths and intensities

on the red and the green channel

between the two segments.

6 Smallest angle between the two

segments.

7, 8 Segments’ Euclidean distances

from the OD.

Meeting

point

features

9, 10 Angles between the two segments

in question and the main segment*.

11 Angles between the third segment

and the main segment.

12 Number of end segments† attached

to the meeting point.

13 A-probability of the third segment.

4 Segment

features

1-8 Same as those for Degree = 3.

Meeting

point

features

9, 10 Same as those for Degree = 3.

11, 12 Angles between the other two segments

and the main segment.

13 Ranking of the angles between the two

segments in question with respect to the

rest of angles between segment couples.

14, 15 A-probability of the remaining segments.

16 Number of segments with a Euclidean

distance from the OD larger than the one

of the meeting point.

* The main segment of the configuration was defined as the one with the
shortest distance from the OD.
ˆ The third segment was defined as the only segment connected to the

meeting point not touch by the edge in question.
† An end segment was defined as a segments connected to one end point.

A-probability were identified, respectively, as seeds s1 and

s2. For each node vi ∈ V , the cost Rvi of its t-edges was

calculated according to Table IV, using as starting point the

sets of probabilities previously discussed.

In particular:

Ci = (1 +
∑

v∈Nsi

Pe(si, v)), i ∈ [1, 2], (1)

where Pe(si, v) was the probability of the n-edge between

nodes si and v of being a Class 1 n-edge and Nv (neighbour-
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TABLE IV
COST OF t-edges IN THE GRAPH MODEL.

Node Edge with s Edge with t

s1 λ1C1 (1− λ1)C1

s2 (1− λ1)C2 λ1C2

v ∈ V : v 6= s1, s2 λ2Pa(v) λ2(1− Pa(v))

hood) was the set of nodes v ∈ V that shared an edge with

si. Finally, Pa(vi) was the A-probability of vi.

All the Rvi
values were rescaled preserving the resolution

in order to make them positive integers. The coefficients λ1

and λ2 were the two model parameters to be optimized.

A novel aspect of the proposed technique is that, differently

from the approach in [41], it does not rely on a pre-defined

set of seed points that result in enforcing of hard constraints

on the graph formulation. The seeds used in the proposed

method were not selected manually but were rather obtained

from the first stage (i.e., the local AV classification) of the

method itself. Since they were the result of a classification

technique with a certain level of accuracy, the constraints

forcing the seeds to belong to a specific AV class were relaxed

according to the coefficient λ1 ∈ [0.5, 1]. This coefficient

was introduced to represent the confidence in the selection

of the seed nodes, i.e. the ability of the local AV classification

technique to assign very high or very low A-probabilities to the

more representative segments of the two classes. For example,

λ1 = 1 would indicate that the local AV classification is

considered always correct in the assignment of the highest and

the lowest A-probability in a set of vessel segments. In that

case, the cost of severing the edge (s1, s) connecting s1 to the

terminal s would be higher than the total cost of severing the

edge (s1, t) and all the n-edges between s1 and its neighbours

combined. The opposite would happen for seed s2.

The second coefficient λ2 > 0 specified the relative im-

portance of the A-probabilities over the edge probabilities. It

could therefore be considered an indication of the confidence

on the accuracy of the AV and the edge classifiers.

The cost B(vi, vj) of the n-edges between vi and each

other node vj in its neighbourhood was calculated according

to the following rule:

B(vi, vj) =











1 for true edges

0 for false edges

Pe(vi, vj) for all other edges

, (2)

where true and false edges were defined as those affected,

and thus respectively deemed correct or not, by the automatic

corrections of the centreline map during the pre-processing

stages. For example, consider the case of a crossing point (4-

degree) between an arteriole and a venule that was first repre-

sented in the centreline map as two different 3-degree meeting

points (Fig. 4a). If this wrong configuration was recognized

during pre-processing and automatically corrected (Fig. 4b),

the relevant 6 n-edges in the respective graph representation

would be set to four false edges, associated with a cost equal

to 0, and two true edges, associated with a cost equal to 1.

It is worth noting this aspect of the proposed method since

(a) (b)

Fig. 4. Centreline map refinement and definition of true and false n-edges.

(a) Example of 4-degree meeting point wrongly represented by two 3-degree
meeting points connected by segment e. (b) Centreline map after automated
refinement: segment e is deleted and the two meeting points are merged into
a single one. In the respective graph representation, the edges between the
couples a-d and b-c are defined as true edges and the edges a-b, a-c, b-d and
c-d as false edges.

it highlights how deep are the repercussions of the automated

pre-processing operations on the graph formulation.

All the costs B(vi, vj) were then rescaled consistently with

the costs Rvi
.

For the final formulation, let L = [L1, . . . , Lv, . . . , L|V|]
be a binary vector where each component Lv specified the

AV label assign to each vessel segment v ∈ V . The vector L

defined a global AV classification of the entire vasculature.

The cost function to be minimized to solve the problem was:

E(L) = R(L) +B(L), (3)

where

R(L) =
∑

vi∈V

Rvi
(Lvi), (4a)

B(L) =
∑

{vi,vj}∈E

Bvi,vj
δ(Lvi , Lvj

), (4b)

δ(Lvi
, Lvj ) =

{

1, if Lvi
6= Lvj

0, otherwise
. (4c)

In the proposed formulation, the coefficients λ1 and λ2 did

not explicitly appear in (3) but they were embedded in the

term R(L) according to Table IV. Their optimization was

carried out through an exhaustive search to achieved the

highest average value of classification accuracy on pixels at

Global level (i.e., the third step of the proposed method) across

th entire set of test images in a leave-one-image-out cross-

validation setup.

The graph cut algorithm was finally run on all the graph

representations in order to divide each one of them into two

partitions. The A-probability of each partition was calculated

as the average of the A-probabilities Pa(pi) of the centreline

pixels belonging to it. The partition with the highest A-

probability was considered as the arterial network while the

other partition was labelled as the venular network. A proof

of the robustness of the proposed formulation was given by

the fact that across all three datasets, no graph after the cut

resulted in both partitions having global A-probability values
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TABLE V
LOCAL AV CLASSIFICATION RESULTS.

First step (Pixel-level) Second step (Segment-level)

Dataset Zone C Central

region

Periphery Total Zone C Central

region

Periphery Total Segment

accuracy

ZONE C 0.835

(0.016)

n.a. n.a. 0.835

(0.016)

0.862

(0.018)

n.a. n.a. 0.862

(0.018)

0.865

(0.018)

WIDE 0.762

(0.036)

0.755

(0.029)

0.723

(0.035)

0.753

(0.032)

0.812

(0.032)

0.803

(0.028)

0.762

(0.035)

0.801

(0.030)

0.806

(0.031)

TASCFORCE 0.792

(0.017)

0.787

(0.024)

0.756

(0.031)

0.777

(0.025)

0.843

(0.020)

0.830

(0.022)

0.802

(0.029)

0.822

(0.024)

0.827

(0.027)

Accuracy values at the first two steps of the AV classification framework. All columns, except the last one, represent
values of accuracy on pixels. The vessel accuracy was obtained by evaluating how many vessel segments were classified
correctly after the majority voting step. This metric can be considered as an accuracy weighted according to the length of
the blood vessels. Values are expressed as mean and (standard deviation).

higher or lower than 0.5 at the same time.

Finally, the terminal nodes, s and t, were discarded from

the graph representation and each connected component of

the two partitions was considered as a single vessel tree. The

centreline pixels of each tree were assigned a final global A-

probability equal to their average value. This probability was

then thresholded at 0.5 to obtain a binary label, which was

used for the evaluation of AV classification at global (i.e.,

vascular tree) level.

V. EXPERIMENTAL RESULTS

The proposed technique was evaluated in terms of accuracy

of AV classification at different stages of the pipeline and in

terms of improvement in the classification of graph n-edges.

For further comparison, and to highlight the challenges posed

by UWFoV SLO images, two AV classification algorithms

developed for fundus camera images [18], [21] were tested

on the same three datasets. Results are reported in Table X in

Appendix A.

A. AV classification results

For each dataset, the values of accuracy at end of each of the

first two steps of the proposed method are shown in Table V:

the first step was the single centreline pixel classification,

the second was the averaging of A-probability values from

centreline pixels belonging to the same vessel segment. At

the first step of the proposed pipeline, the best results were

achieved on the ZONE C dataset. It is worth noting, though,

that since the classifier and feature selection combination was

chosen according to tests on this set, it is likely that our

technique is overfitted to this particular set. For the WIDE and

the TASCFORCE sets, the dependency of the accuracy on the

distance of the segments from the OD was assessed as well.

This evaluation is important since the appearance of arterial

and venular vessel segments is more similar in the periphery of

the image. Thus, grouped values for pixels located in zone C,

in the central region (annulus between 2.5−5.5 ODDs centred

on the OD) and in the periphery of the image are reported.

This procedure was not applicable to the ZONE C dataset

given the limited FoV (details in Table I). Finally, accuracy

TABLE VI
GLOBAL AV CLASSIFICATION RESULTS.

Third step (Global-level)

Dataset Zone C Central

region

Periphery Total Segment

accuracy

WIDE 0.867

(0.033)

0.865

(0.033)

0.841

(0.029)

0.862

(0.032)

0.864

(0.032)

TASCFORCE 0.896

(0.024)

0.885

(0.023)

0.872

(0.019)

0.882

(0.021)

0.883

(0.024)

Accuracy values at the final stage of the AV classification. All columns,
except the last one, represent values of accuracy on pixels. Values are
expressed as mean and (standard deviation).

values in classifying entire vessel segments are reported in the

last column of the table.

The results of the third step of global AV classification after

the graph partitioning for the WIDE and the TASCFORCE

sets are reported in Table VI. Consistently with the previous

steps of the analysis, the accuracy was evaluated in different

regions of the image (zone C, central region and periphery).

The same rationale was used to run the experiments reported

in Appendix A. Table VI is therefore directly comparable with

Table V and Table X.

The global running time for feature extraction and classifica-

tion of a full size UWFOV SLO image was approximately

20 minutes while the training time for one experiment on

the TASCFORCE dataset, by far the largest of the three

investigated (Table I), was approximately 10 minutes. This

performance was achieved making use of a non-optimized

software, coded in MATLAB (ver 2014b), run on a machine

with a single i5-3450 CPU @ 3.10 GHz and 8.00 GB of

RAM).

B. N-edge classification results

The proposed algorithm was also evaluated in terms of

n-edge classification accuracy on the WIDE and the TASC-

FORCE sets separately. In both cases a leave-one-image-out

cross-validation was put in place to keep consistency with the

AV classification analysis.

The results of the n-edge classification task that was carried

out before the implementation of the graph cut technique are



8

(a) (b) (c) (d)

Fig. 5. Example image at different stages of the process (a) Original UWFoV SLO image. (b) Binary vessel map. (c) AV labels after the first two steps
of AV classification (red = correctly classified arterioles; blue = correctly classified venules; green = wrongly classified vessels). (d) AV labels at the end of
the pipeline. The classification accuracy on this image at the second step was equal to 0.783 and after the final step was equal to 0.881. Notice how the
graph cut approach is able to improve results in regions characterized by a large number of vessel segments connected to each other but is less powerful in
configurations made by few vessel segments or presenting segmentation errors.

reported in the fourth and the fifth columns of Table VII

and Table VIII, for the WIDE and the TASCFORCE datasets

respectively.

Once the global AV classification was performed, the n-edges

that belonged to the cut were labelled as Class 0 and the

remaining were labelled as Class 1. This final labelling was

evaluated in order to show the amount of improvement in edge

classification that was due to the graph cut and is reported

in the second-last two columns of the tables. Since for each

configuration type the two classes were highly unbalanced, the

accuracy value for each class is shown. For further comparison

with the other algorithms tested, in the last column of the

two tables we also report the accuracy in disambiguating 3-

degree (i.e., bifurcation points vs wrongly segmented crossing

points) and 4-degree meeting points (i.e., crossing points vs

wrongly segmented series of two bifurcations). These values

are directly comparable with those reported in Table X.

The improvements throughout the three steps of the pro-

posed algorithm are visualized by receiver operating charac-

teristic (ROC) curves for the pixel AV classification on the

TASCFORCE set (Fig. 6). The values for the ROCs were

obtained by thresholding the A-probabilities at intervals of

0.05 between 0 and 1.

In order to assess the significance of these improvements,

two statistical tests were run. A McNemar’s [42] test (α =
0.05, p ≤ 0.001) confirmed that the AV classification accuracy

achieved at Global-level step of the framework proposed was

significantly higher than the accuracy achieved at the segment-

level step on the TASCFORCE dataset. This aspect was also

confirmed by a Wilcoxon [43] test over the 10-fold cross-

validation values of accuracy (α = 0.05, p ≤ 0.001).

VI. CONCLUSION

In this paper, we have presented a novel multi-stage fully

automated technique for the classification of retinal blood

vessels in UWFoV SLO images into arteries and veins. To

our best knowledge, this is the first time that a fully automatic

method is reported to solve this task on UWFoV SLO images,

i.e., starting from a vessel map computed automatically from

the raw image.

Fig. 6. AV classification ROCs. ROC plots of each stage (pixel-level,
majority voting, global-level) of pixel AV classification on the TASCFORCE
dataset.

The method was tested on three datasets with different

characteristics. The results obtained (Table V and Table VI)

show consistent performance across the datasets. In every case

the second step (segment-level) helped improve the accuracy

by correcting the pixels wrongly classified along otherwise

correctly labelled vessel segments. In the TASCFORCE and

the WIDE sets, a drop in performance in the outer regions of

the image was confirmed. This finding was expected since in

the periphery vessels may be very thin and colour features less

powerful in discriminating between classes. The smaller width

contributes in two ways to the deterioration of the method’s

performance. First, SLO resolution is not enough to enable

the retrieval of informative cross-sectional profile features

from such small vessels [35]. Second, a higher uncertainty

on the width estimation results in a higher uncertainty in

the determination of the size of the two regions of interest.

This can potentially introduce uncertainty on almost the entire

feature vector.

Overall, a significant improvement of performance at each

step of the process was recorded for both TASCFORCE and

WIDE datasets but there were also relevant differences due
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TABLE VII
n-edge CLASSIFICATION ACCURACY FOR WIDE DATASET

Degree
Number of

n-edges
Edge classification Final edge labelling

Meeting point

disambiguation

accuracy

(Class 0 - 1)
Class 0

accuracy

Class 1

accuracy

Class 0

accuracy

Class 1

accuracy

2 14 82 0.857 0.914 0.857 0.976 n.a.

3 624 4098 0.776 0.817 0.872 0.899 0.894

4 964 497 0.922 0.931 0.946 0.949 0.946

Accuracy of the classification of n-edges in the WIDE dataset at two stages of the framework:
after the initial n-edges classification task and after the graph cut for the global AV classification.
n-edges are grouped according to the degree of the meeting point (i.e., number of vessel segments
attached to the meeting point) from which they originated. In the last column the power of the
algorithm in disambiguating meeting points of a certain degree is reported.

TABLE VIII
n-edge CLASSIFICATION ACCURACY FOR TASCFORCE DATASET

Degree
Number of

n-edges
Edge classification Final edge labelling

Meeting point

disambiguation

accuracy

(Class 0 - 1)
Class 0

accuracy

Class 1

accuracy

Class 0

accuracy

Class 1

accuracy

2 256 5095 0.867 0.969 0.867 0.969 n.a.

3 3488 48454 0.827 0.860 0.912 0.930 0.928

4 14776 7778 0.923 0.943 0.964 0.973 0.963

Accuracy of the classification of n-edges in the TASCFORCE dataset at two stages of the
framework: after the initial n-edges classification task and after the graph cut for the global
AV classification. n-edges are grouped according to the degree of the meeting point (i.e.,
number of vessel segments attached to the meeting point) from which they originated. In the
last column the power of the algorithm in disambiguating meeting points of a certain degree
is reported.

to different factors. The WIDE dataset proved to be the most

challenging because of its low resolution negatively affecting

all the stages of the framework. The vessels were segmented

less accurately and the pixel-based features for local AV

classification were less discriminative. Both aspects reflected

on the performance of edge classification, ultimately resulting

in a lower value of global AV classification accuracy.

To our best knowledge, only Estrada et al. tried to perform

automatic AV classification in UWFoV SLO images but a

direct comparison of the proposed method’s accuracy and the

results (Accuracy = 0.910 for the WIDE dataset) reported

in [13] would not be fair considering that the starting point

of the two pipelines is fundamentally different: an imperfect

vessel map obtained automatically in our case, an optimal map

refined by trained observers in the other. The consequences of

this difference are visible in Fig. 5d. Where the automatic

segmentation fails to detect blood vessels leaving a gap in

the vascular network, the AV classification task becomes

more challenging. This is especially true when spurious vessel

segments are left completely disconnected from the rest of the

graph. In such cases, the proposed technique cannot leverage

any meaningful information from the vessel morphology and

correct the wrong labels obtained at the first step of the

pipeline. On the other hand, false positives in the vessel

segmentation, are likely to results in crossing point being split

into what resembles two “back-to-back” bifurcation points.

The use of manually annotated vessel masks would drastically

reduce the number of this type of error.

Unfortunately, direct comparison cannot be performed because

of the lack of fully manual vessel masks, and the high time cost

(estimated 18 hours per image [35]) that would be required to

create them, for the WIDE dataset], as previously discussed

(Section III).

The results reported here are also lower than those reported

in the literature by similar studies involving fundus camera im-

ages but also in this case a fair comparison can not be directly

made. The two imaging modalities are inherently different

and this affects resolution, image contrast, and illuminance.

Moreover, one of the strengths of the proposed technique is

its power in disambiguating meeting points (Tables VIII, VII

and X) and a lower number of these points is visible in the

much smaller FoV of a conventional fundus camera image.

Evaluating the edge classification, it can be noticed how

the initial accuracy (i.e., before the graph cut consistency

enforcement)depends strongly on the degree of the meeting

points considered. Edges originated from 2-degree and 4-

degree meeting points were classified with a high accuracy

from the first stage and experienced only a small improvement

after the application of the graph cut technique. The lowest

accuracy was instead obtained for 3-degree points. The reason
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Fig. 7. Examples of 3-degree meeting points. Two examples of 3-degree
meeting points: actual bifurcation point (circled in green), wrongly segmented
4-degree point resulting in a 3-degree one in the centreline map (circled in
red).

has to be attributed to the fact that locally the morphology of a

bifurcation in a centreline map is very often indistinguishable

from the one of a wrongly segmented crossing point with a

missing segment (Fig. 7). The proposed graph cut approach

was able to overcome this issue at the final step, achieving a

considerable improvement in the labelling of 3-degree Class 0

edges (accuracy from 0.827 to 0.912) reported in Table VIII.

In the future, the approach could be improved by exploiting

the knowledge of which meeting point configurations are

allowed in the centreline map. Disjunctive constraints might

be enforced on n-edges in the formulation. For example, in a

3-degree configuration, the only possible solutions are that all

the three edges are labelled as Class 1 or that only one is. This

kind of constraints on graph partitioning and feasible methods

to implement them are being investigated in recently reported

systems [44], [45].

A final but important observation is that more work is

needed to establish what level of accuracy in AV classification

is sufficient for supporting a reliable investigation of retinal

biomarkers. To our best knowledge, in the main literature this

issue has only partially been address in [27], where only the

central retinal arterial and venular equivalents and the average

tortuosity were considered as outcome measures for validation.

APPENDIX A

ADDITIONAL EXPERIMENTS

The results of the preliminary tests carried out on the ZONE

C dataset to investigate different combinations of classifiers

and feature selection techniques are reported in Table IX.

The values shown above were obtained by averaging the

results of a 3-fold cross-validation. In the same setting, the

LBC coupled with no feature selection, achieved a segment-

level accuracy equal to 0.847. The abbreviations used in the

table are explained below:

• FiltKbets = only the top k features with the highest F-

value from a 1-way ANOVA were selected.

TABLE IX
ACCURACY VALUES AT SEGMENT-LEVEL OF DIFFERENT COMBINATIONS

OF CLASSIFIERS AND FEATURE SELECTION TECHNIQUES.

LBC OLS RLS LR LSVM RBF

None 0.847 0.819 0.812 0.797 0.8000 0.777

FiltKbest 0.832 0.817 0.821 0.802 0.760 0.779

ENet 0.844 0.840 0.840 0.840 0.842 0.805

LASSO 0.781 0.793 0.794 0.792 0.791 0.771

TABLE X
AV CLASSIFICATION AND DISAMBIGUATION ACCURACY OF TECHNIQUES

DEVELOPED FOR FUNDUS CAMERA IMAGES TESTED ON UWFOV SLO

IMAGES.

[21] [18]

ZONE C 0.774 0.759

WIDE - zone C 0.721 0.734

WIDE - central 0.708 0.697

WIDE - peripehery 0.643 0.625

TASCFORCE - zone C 0.762 0.748

TASCFORCE - central 0.723 0.699

TASCFORCE - peripehery 0.664 0.648

WIDE 3-degree points 0.769 0.738

WIDE 4-degree points 0.805 0.749

TASCFORCE 3-degree points 0.772 0.744

TASCFORCE 4-degree points 0.801 0.753

• ENet = elastic net [38].

• LASSO = least absolute shrinkage and selection opera-

tor [39].

• OLS = ordinary least squares.

• RLS = regularized least squares.

• LR = linear regression.

• LSVM = linear support vector machine.

• RBF = RBF-kernel support vector machine.
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