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Abstract—Graph entropy measures have recently gained wide
attention for identifying and discriminating various networks in
biology, society, transportation, etc. However, existing methods
cannot sufficiently explore the structural contents by merely
considering the elementary invariants of a graph, ignoring the
underlying patterns in higher-order features. In this paper, we
propose a general entropy-based graph representation framework
(GREET) based on four pertinent properties of graphlet topol-
ogy from urelement to higher-order statistics. Specifically, we
introduce an unbiased graphlet estimation strategy for obtaining
both urelement and higher-order statistics. Additionally, we define
a novel family of information functions based on hierarchical
topological features to compute the graph entropy, then construct
a graph information entropy (GIE) vector using the obtained
local and global structural statistics to facilitate downstream tasks.
Furthermore, there are some advantages that our GREET exhibits
over other methods: (a) high accuracy with<1% relative error; (b)
scalable for even larger vertex graphlets; (c) efficient calculation
procedure with feasible speedup. Extensive experiments show that
GREET exhibits superior performance on graph classification and
clustering tasks, achieving remarkable improvements compared to
several baselines. Altogether these findings pave the way for a wide
range of applications of graphlet-based entropy as a complexity
metric in graph analysis.

Index Terms—Graph entropy, induced subgraphs, higher-order
graphlets, graphlet estimation, graph characterization.

I. INTRODUCTION

THERE are ubiquitous graph structures in various real-
world complex systems, which call for trustworthy and

effective graph characterization paradigms for more accurate
and ultimately more useful representations. During the past
decades, dozens of graph representation methods have been pro-
posed for many networks, including communication networks
[1], [2], social networks [3], [4], and biological networks [5], [6],
etc. Generally, representation learning for networks is widely
considered as a promising yet more challenging task, which
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requires the advancement of many techniques. One important
issue in network characterization is to measure the complexity
of these networks [7]–[9], by summarizing the underlying
graph structure such as the micro-macro structure, community
structure, core-periphery structure, etc.

To explore the inherent structural complexity of graphs, many
entropy based methods are presented [10]–[12]. Historically,
the entropy measure originates from information theory and is
used to describe the chaos of a system. Built upon the Shannon
entropy, the graph entropy is usually associated with features
defined on a finite graph such as the probability distribution of
vertices [13], [14], edge automorphism group [15], and degree
sequence of the subgraph [16], etc. However, the entropy of a
graph defined by those elementary properties may encounter
severe difficulties in distinguishing the non-isomorphic graphs
with similar structural roles and functions. For example, it is
confusing to compare the compound networks, which contain
different groups with homologous benzene rings [17]. In this
case, the graph entropy based on shallow features merely stands
for the structural similarity, which cannot capture the underlying
patterns and does not consider higher-order organizations.

Graphlets or induced subgraphs [18], [19], as basic building
blocks, represent the mesoscale structure of a network, which
play an important role in structural measurement, function in-
terpretation, and a wide range of network analysis applications.
It has been proved that graphlets are very effective in character-
izing networks [20]–[22]. For example, the graphlet kernel [23]
(defined as the dot product of two vectors of normalized graphlet
counts) and the euclidean distance between graphlet frequency
distribution (GFD) vectors [24], are used proverbially for many
network analysis tasks. Therefore, a question can be raised
naturally is that “what about defining graph entropy measures
by such structures?”, which has not been well studied in the
literature. Interestingly, as a special kind of subgraph, the main
obstacle in practicalpractice applications comes from the heavy
computational budget when counting the graphlets. As shown in
Table I, the number of graphlets increases exponentially with the
number of vertices, which makes conducting downstream tasks
highly inefficient. Furthermore, the existing algorithms [24]–
[27] such as the exact counting methods, are severely limited to
the network size. Hence, it is necessary to find an approximate
method with high accuracy and scalability that can be used for
calculating graph entropy efficiently.

In this paper, we present GREET1, a network representation

1GREET is an anagram of the bold letters in nEtwork characTerization with
GRaph Entropy.
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framework based on graph entropy measure. The motivation of
this work is to construct a feature vector, called graph infor-
mation entropy (GIE), which representsindicates the structural
complexity of a graph and can be used for distinguishing graphs.
In particular, this paper proposes unbiased graphlet estimators
for deriving both urelement and higher-order graphlet statistics.
The graphlet estimators provide fast and accurate approxima-
tions compared to the existing exact counting algorithms. Con-
cretely, we design an edge-centric neighborhood with predefined
settings., where tree and cyclic graphlets are treated as the initial
evolutionary state, indicating that the subsequent search process
of the higher-order graphlet is based on these basic structures
and makes the exploration process more efficient. Tree and
cyclic graphlets are treated as the evolutionary factors, which
make the exploration process of graphlets more efficient. With
the above designs, the proposed GREET achieves several orders
of magnitude faster than the traditional iteration methods.

Inspired by the entropy theory in [28], we propose a novel
family of information functionals based on the urelement and
higher-order graphlet statistics (e.g., the frequency of k-vertex
graphlets in an edge-centric neighborhood), which is then used
to compute the graph entropy in the transformed space. It is noted
that GREET only considers the graphlets that possess up to four
vertices for performance and computation trade-offs. It can be
easily inferred from Table I that the number of graphlets reaches
21 and 112 with five and six vertices, respectively, which are too
rare for real-world networks and are too vague for characterizing
a graph [16], [19], [20], [29]. Moreover, we justify the motivation
of jointly considering urelement and higher-order features from
the following aspects. First, it is obvious that only considering a
node, edge, or its reachable nodes at a fixed distance with little
less flexibilitychangeability provides less structural information
than higher-order closures. Second, taking both urelement and
higher-order graphlets properties into account can obtain richer
representation of the structural features of a graph.

In summary, thisour paper makes the following contributions:
• We propose a general network characterization framework

GREET, A general network characterization framework
GREET is proposed for graph comparison, which provides
a novel graph entropy-based measurement for graph com-
parison. This framework is shown to be accurate, efficient,
comprehensive, and scalable for various graph analysis
tasks.

• Within the GREET framework, we develop unbiased es-
timators with fast and accurate counting strategies for
estimating both urelement and higher-order statistics.We
propose unbiased estimators for GREET framework, which
provides fast and accurate counting strategies for both
urelement and higher-order statistics. Experimental results
on variousseveral networks show that our proposed algo-
rithmmethod reduces the computational time by several
orders of magnitude and achieves less than 1% relative
error for nearly all graphlets.

• Motivated by Shannon entropy theory, we define two
novel local and global information functionals based on
the urelement and higher-order statistics, respectively.
The resulting graph information entropy vector contains
comprehensive complexity featuresboth local and global

TABLE I
DISTINCT NOTATIONSNOTATION AND PROPERTIES FOR 2-, 3- AND

4-VERTEX GRAPHLETS. AMONG THEM, ∆ AND d̄ DENOTE THE MAX
AND AVERAGE DEGREE, RESPECTIVELY; ρ DENOTE THE DENSITY; r IS

THE ASSORTATIVITY COEFFICIENT; Tree AND Cyclic HOLD TRUE IF THE
GRAPHLET SATISFIES THE REQUIREMENT.

Graphlet Notation ∆ d̄ ρ r Tree Cyclic

g0 1 1.0 1.00 1.00 ! %

g1 2 1.33 0.67 -1.00 ! %

g2 2 2.0 1.00 1.00 % !

g3 2 1.5 0.50 -0.50 ! %

g4 3 1.5 0.50 -1.00 ! %

g5 2 2.0 0.67 1.00 % !

g6 3 2.0 0.67 -0.71 ! !

g7 3 2.5 0.83 -0.66 % !

g8 3 3.0 1.00 1.00 % !

topological properties of the graph while capturing the
underlying structural information.

• Extensive experiments are conducted over twenty real-
world networks from six domains to evaluate the proposed
GREET method in terms of graph classification and graph
clustering tasks. The experimental results demonstrate that
GREET the effectiveness of GREET that significantly out-
performs the baselines in terms of classification accuracy
and show that our proposed GIE can be used as a dis-
criminative metric to greatly improve the graph clustering
performance.

The remainder of this paper is organized as follows. Section
II introduces some necessary definitions and concepts that will
be used in this paper and explains the proposed framework.
Section III proposes a novel family of graph characterization
based on the graph entropy theory. Section IV presents extensive
experimental results on several graph analysis tasks over twenty
networks. Section V concludes this paper with discussions and
future works.

II. PRELIMINARIES

In this section, we introduce some definitions and necessary
notations that will be used in this paper. Besides, we formally
explain the goal of this paper is to obtain accurate representations
of networks with a graph entropy-based measure.

Let G (V,E) be a simple undirected graph with a finite non-
empty set of vertices V = {v1, v2, . . . , vN} and a finite set of
edges E = {e1, e2, . . . , eM}. The existence of a edge between
any two target vertices are determined by the neighborhoods
centered on them. Hence, given a vertex vi ∈ V , let Γh(vi) =
{v ∈ V |d(v, vi) ≤ h} be the set of vertices h-hop adjacent to
vi in G, where d(v, vi) is the distance between node v and vi
in hops. Similarly, given two vertices vi, vj ∈ V , let Γh(vi, vj)
denotes the h-hop neighborhood around them defined as

Γh(vi, vj) = Γh(vi) ∪ Γh(vj)\ {vi, vj} (1)
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TABLE II
FOUR PROPERTIES OF GRAPHLET TOPOLOGY IN GREET FROM THE

PERSPECTIVE OF HIERARCHY AND DIMENSION

HIERARCHY
DIMENSION

Single Real-Value Distribution

Urelement Statistics in local closures GFD of an node/edge
Higher-Order Global graphlet counting GFD of graphlets in G

For simplicity, the local neighborhood consists of the set of
vertices adjacent to vi or vj and all edges between that set are
denoted as Γ. Moreover, the degree of a vertex v is denoted as
dv =

∣∣Γ1 (v)
∣∣ and ∆ (G) denotes the maximum vertex degree.

Definition 1 (GRAPHLET). A graphlet of G, gi = (V ′, E′), is
a connected induced subgraph of G if V ′ ⊆ V and E′ ⊆ E
with constraints that {e = (u, v) |u, v ∈ V ′, e ∈ E, e /∈ E′} =
∅. In other words, graphlet is a subset of the vertices in graph
G as well as all edges whose endpoints are both in this subset.

In this paper, we define a graphlet with k vertices, as g(k) or
k-graphlet and g = g(1) ∪ · · · ∪ g(k). Besides, we also follow
the definition in [24] that a k-graphlet is called a tree graphlet
if it has k − 1 edges and the rest are named as cyclic graphlet.
Table I reports some graphlet notations and important attributes.

Definition 2 (GRAPHLET FREQUENCY DISTRIBUTION). Let
G be a graph, the value fGi = (Xi/

∑
iXi) for i = 1, . . . , |g|

is called GFD, where Xi is the frequency of graphlet gi. The
fG =

[
· · · fGi · · ·

]
is the GFD in vector form.

Definition 3 (SHANNON ENTROPY [30]). Let X be a discrete
random variable. The Shannon entropy of X is defined as

IX = −
∑
x

p(x) log p(x) (2)

IX = −
∑
x∈X p(x) log (p(x)) , where p(x) denotes the prob-

ability mass function that X is in the state x.where p(x) is
the probability distribution of X .

A. Graph Entropy and Information Functional

Combining the Shannon entropy [30] with graph theory [31],
Dehmer et al. [28] proposed a new complexity measure that
is graph entropy. One of the salient features for this graph
entropy is that we can capture the structural content through
parameterized representation.

Definition 4 (Dehmer [28]). Given an undirected simple graph
G, for a vertex vi ∈ V , its local information functional is
defined as

f(vi) = αβ1|S1(vi,G)|+β2|S2(vi,G)|+···+βρ|Sρ(vi,G)| (3)

where α is arbitrary real positive coefficient as well as βk for
k = 1, 2, . . . , ρ. |Sρ(vi, G)| denotes the number of vertices in
ρ-sphere, which acts as the set {v ∈ V |d(vi, v) = ρ, ρ ≥ 1}.

The local information functional exploitsexploit features over
vertices explicitly and establish a filter-bank specialized in
probability distribution bands for representation learning on

intricate graph topology. Consequently, the vertex probability
distribution based on information functional can be written as

p(vi) =
f(vi)∑

vj∈V f (vj)
(4)

Subsequently, the graph entropy can be calculated in the form
of Shannon entropy once a frequency distribution of the vertex
set is obtained, which motivates us to associate the frequency of
different structures with graph characterization.

B. Problem Formulation

The objective of this study is to explore a variety of graphlet
statistics so as to construct a more discriminative feature vector
for designing a practical graph representation learning frame-
work. Inspired by [32], we mainly focus on two pairs of statistics
with hierarchical and dimensional differences: urelement versus
higher-order graphlets and single real-value versus distribution.
Here, we provide an intuitive explanation for four properties
of graphlet topology that are keys for learning powerful graph
representations.
• Two notions of urelement are defined for local properties.

The first, Single real-value urelement statistics, refers to
the elementary structural features, e.g., the degree power
of vertices, the counts of triangle graphlet containing a
certain node or edge in the local neighborhood Γe. The
second, urelement distribution, measures an individual
graph element (an arbitrary node or edge) through GFD.

• There are two further properties related to global structural
information. Higher-order single real-value statistics can
be defined as the total number of arbitrary graphlets
in graph G. As the dimensional expansion, higher-order
distribution indicates the overall graphlet frequency distri-
bution (GFD) of G.

The proposed framework gives rise to graphlet feature ex-
ploration methods that are effective and efficient for various
network applications. Recent approaches are limited to unilat-
eral statistics [16], [20], [24], [33], whereas this paper instead
proposes a comprehensive characterization framework beyond
single counts that combines multidirectional graphlet statistics
with information entropies.

III. THE PROPOSED METHOD

In this section, we introduce a novel family of graph entropy
measures (GREET) by exploring urelement and higher-order
graphlet statistics. This gives rise to the graphlet-based entropy
measure that serves as a basis for deriving fast and accurate
graph representations which are also applicable and scalable for
networks in different domains. An illustration of the GREET
framework is depicted in Fig. 1 for intuition.

A. The Urelement Statistics Estimating Method

Given the sampled target set of edge-centric neighborhoods,
we illustrate the way to calculate the estimation of all distinct
graphlets containing a specific node or edge in Algorithm 1.
Specifically, the process of estimating the urelement statistics
for an individual node or edge mainly consists of two parts,
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Fig. 1. The overall architecture of the proposed GREET. Given a sampled edge, which is shown in red highlighted dash line (– –), the local neighborhood around
it is abstracted as an enclosing subgraph. Then, the urelement and higher-order graphlet statistics can be calculated from graphlet frequencies dimensionally.
Subsequently, the obtained properties are used to define information functionals and result in a set of feature vectors that can serve as the input of a neural
network for downstream tasks.

Fig. 2. Let D be the set of nodes completing a cyclic graphlet directly with a
centered edge e(u, v) ∈ E. Similarly, let Nu and Nv be the set of nodes that
form a 3-vertex tree graphlet with u and v, respectively. Moreover, P denotes
the set of potential edges that complete a cyclic graphlet indirectly with respect
to the edge e(u, v). Note that, the other vertices in Nu are not connected with
those in Nv .

namely the tree and cyclic graphlet enumeration. Table I lists
all graphlets used in this paper, referred as gi for i ranging from
0 to 8. Among them, g1, g3, and g4 are tree graphlets2, while the
remaining are cyclic graphlets. The task of urelement statistics
estimation is to calculate an accurate yet fast approximation of
graphlet distribution over a local neighborhood.

Definition 5 (URELEMENT ESTIMATION). Given an undi-
rected graph G = (V,E) and an edge-centric local neigh-
borhood Γe, the urelement estimation problem is to minimize
function L (ui; yi), where ui = [u1 u2 · · · u5 u6 · · · u8]

T

represents the approximation of the exact urelement statistics
denoted by yi for edge ei ∈ E. The element uk in ui for
k from 1 to 8 corresponding to the graphlet gi presented in
Table I.

2Strictly speaking, g0 is also a tree graphlet. However, in this paper, we
exclude it due to the number of vertices. Besides, g6 also contains tree graphlet.

Here, L1-norm is adopted as the loss function in Definition 5.
Along the searching method proposed in [34], we commence
by classifying basic substructures into tree and cyclic. First
of all, we explain the searching of tree graphlet. Instead of
discovering all tree graphlets explicitly, we relax the above
problem through a general paradigm. Let us denote Γe as the
target 1-hop neighborhood with respect to e(u, v) ∈ E. We
construct two sets of nodes Nu = {s ∈ Γ (u) \ {v} |s /∈ Γ(v)}
andNv = {r ∈ Γ (v) \ {u} |r /∈ Γ(u)}within Γe that complete
simplest tree graphlet with node u and v, respectively. For
further intuition, please see Fig. 2. These defined structures are
enable us to easily count the quantities of g1. Furthermore, other
tree graphlet such as g3, g4 or trees with more vertices can be
found by the combinations of centered edge and Nu,v . As for
the enumeration of cyclic graphlet, we can utilize partial known
spanning trees to generate cyclic graphlets (e.g., g6, g7 can have
g1, g3, and g4 as their precursor tree graphlets).

We now discuss the urelement estimation problem in detail.
Let us set ψ (·) as a node label function for facilitating later
procedure. Thus, nodes in local neighborhoods are labeled as
θ1, θ2, and θ3. Specificially, the neighbors Γ(u) of u are marked
as θ1. Likewise, the neighbors Γ(v) of v and the nodes in De

are labeled as θ2 and θ3, respectively. First and foremost, sets
Nu, Nv , and De are investigated by following iterations.
• Start with an edge e = (u, v) ∈ E and let Nu, Nv , and
De = {}.

• for each node s ∈ Γ(u), if s 6= v then update Nu ←
Nu ∪ {s} and set ψ (s) = θ1.

• for each node s ∈ Γ(v) − u, if ψ (s) = θ1 then update
De ← De ∪ {s}, Nu ← Nu − {s} and set ψ (s) = θ3;
else update Nv ← Nv ∪ {s} and set ψ (s) = θ2.

• Repeat the steps until all nodes in Γe are investigated.
As shown in Algorithm 1, for simple 3-vertex graphlet g1 and

g2, their estimation can be obtained directly via Lines 17–18
(as observed in [35]). Then, we investigate each s ∈ Nv and
select a vertex r ∈ Γ(s) with predefined probability distribution
P. Apparently, g5, the 4-vertex cyclic graphlet can be checked
by judging the type of vertex r and the intermediate variables
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Algorithm 1 Estimation of Urelement Statistics
Input: An edge-centric neighborhood Γe and a sampling factor p
1: for each s ∈ Nv do
2: for k = 1 to [ds · p] do
3: Sample a vertex r ∈ Γ(s) with a given distribution P
4: if ψ (r) = θ1 then update u5 = u5 + (ds/[ds · p]) . g5
5: if ψ (r) = θ2 then update u6 = u6 + (ds/[ds · p]) . g6
6: Reset ψ (s) = 0
7: for each s ∈ Nu do
8: for k = 1 to [ds · p] do
9: Sample a vertex r ∈ Γ(s) with a given distribution P

10: if ψ (r) = θ1 then update u6 = u6 + (ds/[ds · p]) . g6
11: Reset ψ (s) = 0
12: for each s ∈ De do
13: for k = 1 to [ds · p] do
14: Sample a vertex r ∈ Γ(s) with a given distribution P
15: if ψ (r) = θ3 then update u8 = u8 + (ds/[ds · p]) . g8
16: Reset ψ (s) = 0
17: u1 = (du + dv − 2)− 2 |De| . g1
18: u2 = |De| . g2
19: u3 = |Nu| · |Nv| − u5 . g3
20: u4 = C2

|Nu| + C2
|Nv| − u6 . g4

21: u7 = C2
|De| − u8 . g7

22: return u, where ui is the estimate of graphlet gi in Γe

θ1, as an indication that whether there exists potential edges
between nodes in sets Nu and Nv . Lines 5, 7–11 also show the
detection of g6 under the similar condition as g5. In addition,
the 4-vertex fully connected cyclic graphlet g8 are estimated
by searching area De, in which a node participates a triangle
directly. Ultimately, the rest of graphlets are estimated in O(1)
time using previous knowledge (Lines 19–21). Among them, the
4-vertex lines g3 are calculated by subtracting those completing
a cyclic, while graphlets g4 and g7 are estimated leveraging the
combination number formula, where Cm

n = n!/m! (n−m)!.
Complexity Analysis: The strategy we adopted enables us

to estimate the urelement statistics efficiently, which utilizes
the obtained knowledge in each step adequately. By dividing
graphlet into two typical structures, namely the tree graphlet
and the cyclic graphlet, we are able to extrapolate other more
complex graphlets. Furthermore, compared to the existing meth-
ods [24], [25], [29], we specify three key sets Nu, Nv , and
De that makes it possible to count k-vertex graphlets without
unnecessary computation. Finally, to calculate the urelement
statistics from a given edge, the computational complexity is
O
(

∆̃ (|Nu|+ |Nv|+ |De|)
)

, where ∆̃ denote the maximum
degree of vertex within Nu, Nv , and De. It is evident that most
of the computational budget comes from the searching process
of neighbors in the above sets. To mitigate this problem, we
predefine sampling factor p (Lines 3, 9, and 14), which ensures
the acquisition of important network structure while leading to
an acceptable time cost.

B. The Higher-Order Statistics Estimating Method

This section discusses graphlet estimation in the context of
the entire graph. Note that, we retain some necessary notations
and illustrations from Section III-A for better understanding.
It is necessary to investigate the difference between urelement
and higher-order graphlet estimation strategies. Obviously, there
exist more diverse connection patterns among the whole graph

Fig. 3. Edge connection pattern diagram: Figure shows all possible edges
that satisified the requirements for building edge-centric neighborhoods Nu,
Nv , and De. Note that, all eligible edges are colored in red and highlighted.
The table in the bottom-right cornor provides the summarization of qualified
edges in each 2-, 3-, and 4-graphlet.

than local subgraphs, resulting in unavoidable counting errors.
On account of this, we adopt the Horvitz-Thompson estimator
[36] to obtain unbiased estimates. The iterative process is shown
in Algorithm 2. First, for each sampled edge e ∈ Es, we build
neighborhoods Nu, Nv , and De, as it was done in Section III-
A. The quantity of g1, g2, g3, g4, g6, and g7 are derived in
O(1) time utilizing knowledge from the centered edge and its
completed tree and cyclic structures with sets Nu, Nv , and De

(refer to Lines 4–7, and 9–10 in Algorithm 2, where ⊕ denotes
the addition assignment operator) [35]. Besides, the g5 and g8
are computed through Algorithm 3 and 4 using information from
the (k−1)-vertex tree and cyclic graphlets. Here, we useHi for
i from 1–8 to denote the graphlet counts in graphG and sampling
probability pi is defined as pi = |Es|/|E|, where |Es| and |E|
are the number of sampled edges and total edges in graph G,
respectively. Moreover, let the reciprocal of p be zi = 1/pi,
which is then used to correct the counting errors.

Intuitively, the sampling bias can be easily associated with
the edge role in each graphlet. As shown in Fig. 3, we highlight
all qualified edges in red color and list a table in the bottom-
right corner, which concludes the number of suitable edges per
graphlet. For example, consider the fully-connected 4-cyclic
g8 graphlet, in which each edge is involved in precisely two

Algorithm 2 Estimation of Higher-Order Statistics
Input: A graph G(V,E) with sampled edge set Es

1: for each e = (u, v) ∈ Es do
2: Set De, Nu, and Nv = ∅
3: Construct local neighborhoods as in Alg. 1
4: H1 ⊕H1 (e) = |Nu|+ |Nv|
5: H2 ⊕H2 (e) = |De|
6: H3 ⊕H3 (e) = |Nu| · |Nv|
7: H4 ⊕H4 (e) = C2

|Nu| + C2
|Nv|

8: H5 ⊕H5 (e) = S4-CYCLIC(ψ, Nv)
9: H6 ⊕H6 (e) = (|Nu|+ |Nv|) · |De|

10: H7 ⊕H7 (e) = C2
|De|

11: H8 ⊕H8 (e) = F4-CYCLIC(ψ, De)
12: return H, where Hi is the count for graphlet gi
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triangles. Therefore, the role of each edge in g8 is exactly the
same and all of them satisfy the definition of the central edge.
Similarly, consider the simplest 4-cyclic g5, where each edge
is equivalent. Combined with the above views and algorithms,
we can deduce that each F4-cyclic g8 and S4-cyclic g5 will be
counted 6 and 4 times, respectively. As a result, the correction
coefficients are given as 1/6 and 1/4. Formally, the correction
factor of gi account for the edge multiplicities in G is defined
as

C (gi, G) =
1

qi
(5)

where qi is the number of edges that qualified for the definition
of the local neighborhood in graphlet gi. Afterward, the higher-
order graphlet counts are estimated via the following equations:

Xi = ziCiZi , Zi =


Hi i = 1, 2, 5, 6, 8

Hi −H5 i = 3

Hi −H6 i = 4

Hi −H8 i = 7

(6)

whereXi is the estimated counts of the graphlet gi. Specifically,
the calculation of graphlets g3, g4, and g7 are different from the
others. This is due to the fact that such graphlets are structurally
evolved from basic tree and cyclic graphlets.

Error Analysis: For a graphlet gi, assume Yi(e) is its ground
truth in the G(V,E). In the process of estimation, we construct
edge-centric neighborhood over the sampled edges of the given
graph G, such that an edge e accounts for the existence of gi.
Thus, the total count of gi are obtained as Yi =

∑
e∈E Yi (e).

The approximation counting method of GREET estimate Yi by
sampling a set of edges Es ⊂ E using a certain probability τ ,
then

Xi '
1

τ

∑
e∈Es

Yi (e) (7)

is an estimator for gi.

Lemma 1. Xi is an unbiased estimator of Yi.

Proof.

E[Xi] = E
[1

τ

∑
e∈Es

Yi (e)
]

=
1

τ

∑
e∈Es

E[Yi (e)] (8)

Since each of the edges are sampled randomly, E[Yi (e)] =
E[Be] · Yi (e), where Be denotes a Bernoulli random variable
indicating whether e and its local neighborhood are selected.
Plugging in Eq. 8, we obtain:

E[Xi] =
1

τ

∑
e∈E

E[Be] · Yi (e) =
1

τ

∑
e∈E

τ · Yi(e) = Yi (9)

Hence, the lemma is proved.

Moreover, the mean squared error (MSE) of Xi is obtained
as E[(Xi − Yi)2]. Since, E[Xi] = Yi and we have

MSE (Xi) = E[(Xi − E[Xi])
2︸ ︷︷ ︸

Variance

+ (E[Xi]− Yi)2︸ ︷︷ ︸
Bias

(10)

where the first term on the right side of the equation is variance
and the second term is the bias generated by the estimator Xi.
As a result, since Xi is an unbiased estimator, MSE (Xi) =

Algorithm 3 Simplest 4-Cyclic Counting
1: procedure S4-CYCLIC(ψ, Nv)
2: Set variable Cs = 0
3: for each s ∈ Nv do
4: for each r ∈ Γ(s) do
5: if ψ (r) = θ1 then set Cs ⊕ 1
6: Reset ψ (s) = 0
7: return Cs

Algorithm 4 Fully-Connected 4-Cyclic Counting
1: procedure F4-CYCLIC(ψ, De)
2: Set variable Cf = 0
3: for each s ∈ De do
4: for each r ∈ Γ(s) do
5: if ψ (r) = θ3 then set Cf ⊕ 1
6: Reset ψ (s) = 0
7: return Cf

E[(Xi−E[Xi])
2. In this paper, we also argue that all the edges

are sampled independently.
Complexity Analysis: Here, the computational complexity of

counting higher-order graphlets is investigated. The maximum
number of simplest cyclic and tree graphlets occurring to a sam-
pled edge e ∈ Es are denoted byDmax andNmax, respectively,
where Nmax = max (|Nu|, |Nv|). For a local neighborhood
Γe, the simplest and fully-connected 4-cyclic are estimated
based on the Algorithm 2 in O(∆Nmax) and O(∆Dmax),
respectively. Subsequently, we can derive the rest of graphlets
inO(1) using the combinational structure of the tree and cyclic
graphlets. Therefore, the time complexity in counting graphlets
for [Γe1 ,Γe2 , . . . ,ΓeM ] is up toO(M∆(Dmax+Nmax)), where
∆ is the maximum degree in G. Besides, each counting on the
target edge can be conducted independently. Therefore, we can
also use parallelized processing unit to further reduce the time
complexity.

C. Quantifying Structural Information with Entropy

Given the hierarchical graphlet statistics, a straightforward
way is to directly transform these counts into heuristic features,
which turns out to be suboptimal in [37], probably due to the lack
of generality. To address this, we present two novel information
functionals based on a fixed size of induced subgraphs, which
can be utilized to estimate the entire graph entropy. Then, such
graph entropies are combined with other topological information
content metrics to construct discriminative and general graph
representations that can be computed efficiently.

Different from Dehmer’s work [28], we cast sight on defining
the probability distribution of edges for a graph. In this paper,
we introduce an edge-centric neighborhood Γe with abundant
properties, which allows us to define graph entropy based on the
obtained urelement and higher-order graphlet statistics (Table
II). As mentioned in [28], such graph entropies can capture the
underlying structural information of G effectively.

Definition 6 (EDGE PROBABILITY DISTRIBUTION). Let G =
(V,E) with iterable edge labels. For an edge ei ∈ E, we define

p (ei) :=
f (ei)∑|E|
j=1 f (ej)

(11)
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Fig. 4. Information functionals for two undirected graphs G1 and G2 with 6
edges and 5 edges, respectively.

where f(·) represents an information functional, which satis-
fied the equation p (e1) + p (e2) + · · ·+ p(e|E|) = 1.

Definition 7 (GRAPH ENTROPY). Given a undirected graph
G = (V,E) and let f be an arbitrary information functional.
We define the entropy of G by

If (G) = −
|E|∑
i=1

f (ei)∑|E|
j=1 f (ej)

log

(
f (ei)∑|E|
j=1 f (ej)

)
(12)

Definition 8 (LOCAL INFORMATION FUNCTIONAL). Given a
simple undirected graph G, the local information functional
for an edge ei ∈ E is given as

fU (ei) := eα1|u1(ei,G)|+α2|u2(ei,G)|+···+αk|uk(ei,G)| (13)

where αk is the real positive coefficient. |uk (ei, G) | indicates
the estimated urelement statistics of neighborhood Γei regard-
ing G.

Definition 9 (GLOBAL INFORMATION FUNCTIONAL). For a
given graph G = (V,E), let hj(G) be the number of graphlet
gj . We define the global information functional by

fH(G) := hj(G) (14)

where j is the ordinal number of graphlet.

Apparently, according to the above definition, we can obtain
hj(G) directly from the estimation of higher-order graphlets.
Let θ(G) =

∑T
j=1 hj (G) be the total number of graphlets in

G, T is the number of types of graphlets. The obtained graph
entropy IfH is stated as

IfH (G) = −
T∑
j=1

fH(G)

θ (G)
log

(
fH(G)

θ (G)

)
(15)

Similarly, the graph entropy IfU is stated as

IfU (G) = −
|E|∑
i=1

fU (ei)∑|E|
j=1 f

U (ej)
log

(
fU (ei)∑|E|
j=1 f

U (ej)

)
(16)

In particular, the general idea in computing the information
functional fU (ei) and fH(G) is that we build a bridge between
the simple counts of graphlets and the measurement of graphs
from the perspective of micro and macro. One prominent advan-
tage of this method is that it quantifies the structural information
of a graph with meaningful complexity measurement.

Numerical Analysis: We numerically investigate the entropies
of the example graphs of Fig. 4 by using the proposed informa-
tion functional fU (ei) and fH(G). Based on the obtained esti-
mation results of urelement and higher-order graphlet statistics,
we are able to explore the discernibility of the resulting graph
entropies. For G1, by applying the Algorithm 1, we obtain:

fU (e2) = fU (e5) = eα1+α3+α4+α5 (17)

fU (e3) = fU (e4) = eα3+α5 (18)

fU (e1) = e2α1+α4 (19)

Here, we set α1 = α2 = · · · = αk = 1 and plug fU (ei) into
Eq. 16. Thus, the structural content of G1 becomes to

IfU (G1) = −2
e4

2e4 + 2e2 + e3
log

(
e4

2e4 + 2e2 + e3

)
− 2

e2

2e4 + 2e2 + e3
log

(
e2

2e4 + 2e2 + e3

)
− e3

2e4 + 2e2 + e3
log

(
e3

2e4 + 2e2 + e3

)
.

(20)

To compute the entropy ofG1 regarding fH , we directly apply
Definition 9 to the Eq. 15, and obtain:

IfH (G1) = −
8∑
j=1

hj(G1)

θ (G1)
log

(
hj(G1)

θ (G1)

)
= −

[
2

3
log

1

3
+

1

3
log

1

6

] (21)

By applying the same steps as stated above, the calculation
for the structural information of IfU (G2) and IfH (G2) is the
same. Hence,

IfU (G2) = −
5∑
i=1

fU (ei)∑5
j=1 f

U (ej)
log

(
fU (ei)∑5
j=1 f

U (ej)

)

= −
[
4

e3

4e3 + e10
+

e10

4e3 + e10

] (22)

IfH (G2) = −
8∑
j=1

hj(G2)

θ (G2)
log

(
hj(G2)

θ (G2)

)
= −

[
1

2
log

1

2
+

1

3
log

1

3
+

1

6
log

1

6

] (23)

Obviously, the computation of If (G) is able to generalize to
more complicated structures. As mentioned earlier, we mainly
consider 3- and 4-graphlets due to the computational cost. To
guarantee the independence and the discrimination of features,
we combine some variants of IfU and IfH with other classical
graph entropy metrics to construct the graph information entropy
(GIE) vector for a richer graph representation. Specifically,
we add the graph entropy Iα and Id proposed in [38], [39],
which are defined by the vertex orbits and the degree sequence
of all vertices in G, respectively. Motivation of this setting is
straightforward. Firstly, the metrics Iα and Id are nearly the
simplest version of the graph entropy, which can be utilized to
improve the discrimination ability in distinguishing networks
with significant structural differences. Secondly, incorporating
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TABLE III
PROPERTIES OF UNDIRECTED GRAPH IN REAL-WORLD DATASETS.
|V |, |E|, ∆, d̄, ρ, r ARE THE NUMBER OF NODES, NUMBER OF EDGES,

MAXIMUM DEGREE, AVERAGE DEGREE, DENSITY OF GRAPH, AND
ASSORTATIVITY COEFFICIENT, RESPECTIVELY

Graph |V | |E| ∆ d̄ ρ r

bio-CE-LC 1,387 1,648 131 2.48 0.002 -0.17
bio-HS-HT 2,570 13,691 149 9.75 0.004 0.29
bio-dmela 7,393 25,569 190 6.23 <0.001 -0.05
bio-yeast 1,458 1,948 56 2.67 0.002 -0.21
bio-celegans 453 2,025 237 8.94 0.02 -0.23

soc-pg-tvshow 3,892 17,239 126 8.85 0.002 0.56
soc-wiki-vote 889 2,914 102 6.34 0.007 -0.03

ia-corecipient 906 11,197 442 28.38 0.04 -0.05
ia-fb-messages 1,266 6,451 112 10.19 0.008 -0.08
ia-reality 6,809 7,680 261 2.26 <0.001 -0.68

ca-GrQc 4,158 13,422 81 6.45 0.001 0.66
ca-CSphd 1,881 1,739 46 1.85 0.001 -0.20
ca-AstroPh 17,903 196,972 504 22 0.001 0.21

email-EU 32,430 54,397 623 3.36 <0.001 -0.38
email-enron-only 143 623 42 8.71 0.06 -0.02
email-univ 1,133 5,451 71 9.62 0.01 0.08

econ-wm1 258 2,744 110 21.27 0.08 0.04
econ-poli 3,915 4,180 66 2.14 0.001 -0.29
econ-mahindas 1,258 7,576 206 12.04 0.01 -0.06
econ-mbeaflw 487 49920 679 139.04 0.41 -0.27

various graph entropy can receive better generalization capa-
bility. As a result, the complete form of the feature vector
is ~vGIE = [IfU , IfH , IfU + IfH , |IfU ||IfH |, Iα, Id], which
measures both local and global structure information of a graph
and can be fed into a neural network or machine learning model
for downstream tasks.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the performance of GREET on over twenty networks from six
domains with different structural properties. All datasets are
obtained from the Network Repository3 [40] and an open source
dataset website4. To make a fair comparison, our experiments
are performed on a Windows (64-bit) PC with a Quad-Core Intel
i5-9300HF CPU 2.4GHz processor, 16GB RAM, and NVIDIA
GeForce GTX 1660Ti 6G GPU.

A. Performance on the Higher-Order Graphlet Estimation

The first class of experiments investigates the performance
of GREET on higher-order graphlet estimation problems. We
select twenty undirected graphs as testbeds including biolog-
ical, social, interaction, collaboration, email, and economic
networks. Table III reports the statistical information of each
network. Here, the state-of-the-art approach PGD [35] is utilized
to compute the exact graphlet counts for comparison. In our
experiments, we define |Xi−Yi|Yi

as the relative error of Xi,
1 ≤ i ≤ 8, where Xi denotes the unbiased estimator of the
genuine statistic Yi. For better performance, the indicator is
expected to be as small as possible. Note that all estimated values
are calculated over 100 independent runs.

3https://networkrepository.com
4https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

1) Estimating the Graphlet Statistics: We first test GREET
for estimating the frequency of graphlets with size k = 3 and
k = 4. Table IV lists the GFD results for a variety of real-
world networks at the sampling factor of 0.1. It can be observed
that tree graphlets g3 and g4 make up the majority of graphlets
in most networks, while the proportion of cyclic graphlets g2,
g5, and g8 remain at the bottom on most graphs. Such results
enable us to better analyze the network patterns and structural
information. Besides, the L1-norm between exact counts and
the estimated results are given to illustrate the high accuracy of
the estimator among all graphs and graphlets.

2) Sampling Factor versus Counting Error: To fully evalu-
ate our methods, we further explore the effect of the sampling
probability on counting error. Fig. 5 reports the relative errors
of GREET with sampling factor p = 1%, 10%, 100%. We can
observe that the counting errors are proportional to 1/p, which
is consistent with the analysis in Section IV-C. Besides, no
significant differences are found between the estimated and the
exact counts in all cases. For most graphs, the counting errors
of the graphlets are lower than 0.01 when p = 1%, except for
those graphlets with relatively small counts. The overall trend of
the results indicates that graphlets with large proportions exhibit
less error than those with small proportions.

3) Speed-Up Comparison with Previous Work: In addition,
we also study the computational time of GREET on eight
typical networks from six domains that are shown in Table V.
Three existing graphlet counting methods, including brute force
[27], GUISE [25], and GRAFT [24], are used for comparison.
However, as the graph grows larger, it is difficult to obtain
accurate counting for GUISE and GRAFT. Thus, we only report
the time cost until the relative error reaches below 0.01. For
large graphs, traditional brute force is clearly not suitable due
to its high computational costs. The hyphen “−” in Table V
means that there is out of memory and the calculation can
not be accomplished within 3 hours. Take the large graph “ca-
AstroPh” as an example, which has nearly 200k edges and is not
able to be completed in a short period of time by brute force,
GUISE takes over 1 minute to compute and GRAFT returns in 18
seconds. Strikingly, our proposed GREET only takes less than
2 seconds to return the results. Benefitting from the proposed
sampling strategy, for other graphs, GREET further reduces the
computational time to less than 1 second. In summary, our
approach is about 2 to 3 orders of magnitude faster than the
traditional iteration methods, GUISE, and GRAFT, which makes
GREET a better option among various estimation methods and
thus leads to higher efficiency in other tasks.

B. Comparison with Existing Works on Graph Classification

In this experiment, we evaluate the performance of GREET
on graph classification tasks using eight datasets from bioinfor-
matics and social networks. Those are PROTEINS, MUTAG,
ENZYMES, COX2, IMDB-B, IMDB-MULTI, PTC-FR, and
REDDIT-B datasets. Several state-of-the-art methods are used
as baselines including:
• Graph kernel-based methods: Weisfeiler-Lehman kernels

(WL) [41] serves as one of the most prominent graph kernel
methods for graph representation learning, which maps the
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TABLE IV
GFD ESTIMATES OF NINE GRAPHLETS FOR VARIOUS REAL-WORLD NETWORKS. ALL GFD ESTIMATES HAVE LESS THAN 10−4 ARE UNDERLINED

AND THE LARGEST PROPORTION OF GRAPHLET ARE HIGHLIGHTED

Graph L1-norm

bio-CE-LC 0.0369 0.0005 0.0257 0.9331 0.0010 0.0022 0.0005 0.0002 0.0362
bio-HS-HT 0.0213 0.0033 0.4243 0.3127 0.0130 0.1625 0.0394 0.0235 0.0026
bio-dmela 0.0266 0.0001 0.5258 0.4274 0.0050 0.0145 0.0006 <0.0001 0.0108
bio-yeast 0.0965 0.0018 0.2636 0.6132 0.0012 0.0217 0.0017 0.0003 0.0546
bio-celegans 0.0179 0.0008 0.1277 0.7486 0.0012 0.0935 0.0095 0.0008 0.0150

soc-pg-tvshow 0.0277 0.0133 0.2454 0.2502 0.0055 0.2652 0.0711 0.1216 0.0056
soc-wiki-vote 0.0373 0.0018 0.3996 0.4398 0.0059 0.1058 0.0091 0.0007 0.0145

ia-corecipient 0.0085 0.0027 0.2423 0.3393 0.0073 0.3151 0.0582 0.0267 0.0074
ia-fb-messages 0.0260 0.0004 0.5441 0.3794 0.0087 0.0396 0.0017 <0.0001 0.0120
ia-reality 0.0179 <0.0001 0.0571 0.9215 0.0001 0.0033 0.0001 <0.0001 0.0072

ca-GrQc 0.0400 0.0226 0.2616 0.1918 0.0005 0.2969 0.0310 0.1556 0.0061
ca-CSphd 0.1359 0.0002 0.1939 0.6678 0.0002 0.0019 0.0001 <0.0001 0.0030
ca-AstroPh 0.0704 0.0356 0.3631 0.3231 0.0009 0.1831 0.0151 0.0087 0.0062

email-EU 0.0075 <0.0001 0.0513 0.9325 0.0001 0.0084 0.0003 <0.0001 0.0060
email-enron-only 0.0686 0.0128 0.4122 0.2430 0.0093 0.2034 0.0394 0.0112 0.0148
email-univ 0.0404 0.0027 0.5554 0.2742 0.0063 0.1089 0.0104 0.0017 0.0063

econ-wm1 0.0182 0.0074 0.2507 0.2089 0.0136 0.3342 0.1253 0.0418 0.0055
econ-poli 0.1035 0.0008 0.1677 0.7135 0.0013 0.0128 0.0004 <0.0001 0.0144
econ-mahindas 0.0255 0.0003 0.2978 0.5275 0.1191 0.0255 0.0043 <0.0001 0.0041
econ-mbeaflw 0.0105 0.0013 0.3427 0.3332 0.1047 0.1428 0.0581 0.0067 0.0145

(a) bio-CE-LC (b) bio-HS-HT (c) bio-dmela (d) bio-yeast (e) bio-celegans

(f) soc-pg-tvshow (g) soc-wiki-vote (h) ia-corecipient (i) ia-fb-messages (j) ia-reality

(k) ca-GrQc (l) ca-CSphd (m) ca-AstroPh (n) email-EU (o) email-enron-only

(p) email-univ (q) econ-wm1 (r) econ-poli (s) econ-mahindas (t) econ-mbeaflw

Fig. 5. Relative error of estimates for graphlet gi, 1 ≤ i ≤ 8, given by algorithms in Section IV-C with sampling factor p = 1%, 10%, 100%.
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TABLE V
COMPUTATIONAL TIME OF GREET IN COMPARISON WITH EXISTING

GRAPHLET COUNTING METHODS. THE BEST TIME FOR EACH PROBLEM
INSTANCE IS IN BOLD

Graph Brute Force GUISE GRAFT GREET

bio-HS-HT 317.41 s 8.34 s 1.35 s 0.21 s
bio-dmela 60.98 s 7.66 s 1.12 s 0.08 s
soc-pg-tvshow 203.75 s 6.24 s 0.98 s 0.08 s
ia-fb-messages 34.33 s 2.21 s 0.32 s <0.01 s
ca-GrQc 54.08 s 4.71 s 0.55 s 0.03 s
ca-AstroPh − 83.43 s 18.33 s 1.71 s
email-EU − 21.44 s 2.67 s 0.35 s
econ-mbeaflw − 27.68 s 3.01 s 0.36 s

original graph to graph sequences with topological and
label information. Shortest Path kernel [42] tackles the NP-
hard problem that computes all paths and longest paths in a
graph and offers a computable solution in polynomial time.
Graphlet kernel [23] compare graphs by simply counting
graphlets.

• Graph neural network-based methods: Graph
convolutional networks (GCN) is a variant of convolutional
neural networks that operate directly on graphs. DGCNN
[43] applies a localized graph convolution model and
designs a novel SortPooling layer to achieve ordered
training. Graph-U-Nets [44] proposes a novel pooling
strategy that employs a projection vector to measure the
rank of each node. StructPool [45] models graph pooling
as a node clustering problem and leverages conditional
random fields (CRF) to capture the relationships among
the assignments of different nodes.

• Graph entropy-based methods: The classical topological
information content Ivd = −

∑n
i=1 di log di, proposed by

Bonchev et al. [46], is calculated based on the degree of
vertex. Dehmer [28] introduced a graph entropy measure
based on the cardinalities of vertex spheres. Aziz et al.
[16] defined an information functional based on the degree
statistics of the graphlet, which are used to estimate the
entropy of networks in a transformed space.

For this experiment, the graph entropy-based feature vector
introduced in Section III-C is utilized as the input to train the
classifier. Considering its simplicity and strong discriminative
ability, an easily constructed three-layer fully-connected neural
network is adopted as the classifier. The width of hidden layers
are set to 32, 32, 16. Dropout with a rate of 0.5 is used to prevent
overfitting. Besides, we adopt rectified linear unit (ReLU) and
softmax function for the active function in all hidden layers and
output layer, respectively. To compare the graph classification
accuracies of GREET and the alternate approaches, we perform
10-fold cross-validation with 9 folds for training and the rest for
testing the model, as described in [16], [23], [41], [43], [44].
We also employ the Adam optimizer [47] with a learning rate
of 0.001 and a batch size of 64 for training. An early stopping
mechanism is utilized for better efficiency. Specifically, for the
graph entropy-based method proposed in [28], [46], we use the
Euclidean distance of two metrics Ivd and If (G) between two
graphs for classification. For other baselines, we use the original
implementations and parameter settings released by the authors

Fig. 6. Accuracy comparison on PROTEINS dataset using different training
ratios. The results of simply considering GFD and GIE are indicated by green
and red histograms, respectively. The concatenation of GFD and GIE is marked
with blue histogram.

to ensure fair comparisons. All the experiments are conducted
five times independently. Table VI summarizes the comparison
results.

It is observed that our proposed GREET remains on the
top for most datasets. Concretely, our method outperforms the
previous best approach by margins of 1.94, 3.06, 3.04, 0.99,
2.33, and 4.38 percent on MUTAG, ENZYMES, COX2, IMDB-
MULTI, PTC-FR, and REDDIT-B, respectively1.04, 1.94, 3.06,
3.04, 2.28, 2.93, and 5.02 percent on PROTEINS, MUTAG,
ENZYMES, COX2, IMDB-MULTI, PTC-FR, and REDDIT-B,
respectively. The competitive performances, particularly on
REDDIT-B, which has a larger number of nodes, demonstrate
the effectiveness of our method in handling large graphs. It is not
surprising since most graph kernel approaches are designed for
capturing the shallowexplicit structural information, while our
GREET takes both urelement statistics and higher-order graphlet
features into consideration. From an overall perspective, our
proposed method also performs well on other small datasets,
demonstrating its generalizability. Besides, during the imple-
mentation of GNN-based methods, a severe over-fitting issue in
training deep graph neural networks has been discovered to yield
inferior results. It is worth mentioning that our proposed GREET
gains insight into a novel measurement for graph representation,
which introduces the graphlet-based entropy to address the prob-
lem of the prohibitively high training burden and thus overcome
the obstacles for the subsequent tasks. Furthermore, in terms of
standard deviation, the fluctuation of GREET is less than most
baselines, especially compared to those GNN-based models,
which also indicates the stability of our method. Moreover,
we find that compared with other datasets, the experiments on
ENZYMES have achieved unsatisfactory performance, i.e., the
accuracy results on ENZYMES are lower than other datasets.
We reckon that it is related to the design of the neural networks,
which is not conducive to handling multi-classification tasks.
Here, we leave it to future works.

Fig. 6 gives a further comparison of the graph classification
performances on dataset PROTEINS with three different fea-
tures concerned. The first uses only GFD as the input feature,
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TABLE VI
COMPARISONS BETWEEN GREET AND OTHER APPROACHES IN TERMS OF GRAPH CLASSIFICATION ACCURACY (%) ON EIGHT DATASETS INCLUDING

BIOINFORMATICS AND SOCIAL DOMAINS. THE BEST AND THE SUBOPTIMAL RESULTS ALONG EACH COLUMN ARE
BOLDFACED AND UNDERLINED, RESPECTIVELY

PROTEINS MUTAG ENZYMES COX2 IMDB-B IMDB-MULTI PTC-FR REDDIT-B

#graphs 1,113 188 600 467 1,000 1,500 351 2,000
#avg.nodes 39.1 17.9 32.6 41.2 19.8 13.0 26.7 429.6
#classes 2 2 6 2 2 3 2 2

WL [41] 74.32±3.13 87.62±5.35 51.30±1.67 76.41±6.07 72.89±3.93 50.87±3.95 67.64±1.74 81.03±3.17
Shortest-Path [42] 73.14±3.05 86.05±2.14 41.53±1.97 76.58±0.71 71.53±3.63 48.23±2.57 66.39±1.73 77.44±3.15
Graphlet [23] 72.58±2.46 85.06±2.76 32.55±2.78 78.16±1.03 72.63±5.49 47.30±3.56 68.57±1.04 80.27±4.51

DGCNN [43] 75.35±2.48 85.83±2.34 65.51±5.32 81.13±5.67 71.91±5.86 46.26±2.84 65.09±5.66 82.56±2.38
Graph-U-Nets [44] 77.54±2.35 87.21±5.57 64.98±4.88 78.17±5.81 75.48±3.31 51.18±3.88 66.11±6.55 84.37±1.57
StructPool [45] 79.13±2.67 87.51±3.46 63.85±2.91 81.53±4.66 74.08±3.35 52.47±2.58 69.17±3.35 85.97±2.52

BONCHEV. et al. [46] 67.35±0.17 82.56±0.97 47.31±0.88 73.45±1.17 68.77±2.02 48.35±1.88 64.73±2.12 80.65±2.34
DEHMER [28] 70.21±0.56 83.18±0.78 48.67±0.59 75.36±1.93 70.31±2.26 50.16±1.91 66.84±2.03 82.24±2.44
AZIZ. et al. [16] 77.22±2.38 86.58±2.36 53.77±4.34 78.59±0.83 72.89±4.45 50.41±2.53 68.43±1.83 85.31±2.42
GREET (ours) 78.58±1.71 89.56±3.42 67.57±3.60 84.57±2.63 74.33±3.51 53.46±2.98 71.50±3.42 90.35±2.23

TABLE VII
QUANTITATIVE RESULTS OF AGGLOMERATIVE HIERARCHICAL

GRAPH CLUSTERING USING GFD

CLUSTERS
REAL GROUPS

Bio. Soc. Inter. Collab. Email Econ.

Bio. ® ¬ − ¬ − ¬
Soc. − ¬ − ¬ − ¬

Inter. − − ® − ¬ −
Collab. ­ − − ¬ − ¬
Email − − − − ­ −
Econ. − − − − − ¬

1 The circled numbers indicate the amount of graphs assigned to each
cluster.

2 Purity = 3+1+3+1+2+1
20

= 0.55

TABLE VIII
QUANTITATIVE RESULTS OF AGGLOMERATIVE HIERARCHICAL

GRAPH CLUSTERING USING GIE

CLUSTERS
REAL GROUPS

Bio. Soc. Inter. Collab. Email Econ.

Bio. ° − − − ¬ −
Soc. − ¬ − − − −

Inter. − ¬ ® − ¬ −
Collab. − − − ® − −
Email − − − − ¬ −
Econ. − − − − − ¯

1 Purity = 5+1+3+3+1+4
20

= 0.85

the second merely utilizes GIE as the input, and the third takes
both GFD and GIE into consideration. We can observe that the
concatenate feature vectors always achieve better performance
than only GFD or GIE. In addition, we test the sensitivity of
these variations with different training ratios. From Fig. 6, we
can observe that the classification accuracy improves by 5.43,
4.13, 4.74, 4.96, and 4.51 percent with 50%, 60%, 70%, 80%,
and 90% training ratio, respectively, when GIE is considered
as complement term. These experiments further prove that
our proposed graph entropy features can greatly promote the
performance of graph classification tasks.

C. GIE as a Property for Graph-Clustering

In this section, we also conduct experiments to demonstrate
the usability of GIE for clustering graphs into their functional
domains. To achieve this, we compare the performance of only
GIE or GFD considered methods on twenty datasets using the
mainstream agglomerative clustering technique. The Euclidean
distance is utilized as the distance metric. Here, we consider a
total of twenty graphs from six domains (Table III). Six graphs
from the gene functional associations of biological networks,
two graphs from the user social information networks, three
graphs from the interaction networks, three graphs from the
collaboration networks, three graphs from the email networks,
and four graphs built from the economic networks.

To assign original graphs into six clusters, we first calculate
the GFD and GIE vectors of all graphs using the proposed
estimation method. Obviously, graphs with the same category
have GFD and GIE features that are likely to be comparable.
In this experiment, Purity is chosen as the evaluation criteria,
which is a primary validation measure to determine the cluster
quality. It is defined as

∑K
i=1

mi
m max (pij), where K and m

are the number of clusters and the total number of members
involved in the whole clustering, respectively. pij denotes the
probability that network j is assigned to cluster i.

In Table VII and Table VIII, we report the quantitive results of
agglomerative hierarchical graph clustering using GFD and GIE,
respectively. It can be observed that the purity increases from
0.55 to 0.85 when we take the GIE as the input. From a numerical
point of view, the estimated GFD patterns of graphs vary even if
they belong to the same category. As the commonality of GFD
between two networks decreases, the clustering results become
unreliable, and consequently cannot be applied to cluster a
graph into its functional domain. The advantage of our proposed
GIE lies in the exploration of both urelement and high-order
properties that provide multiple perspectives for us to obtain the
underlying structural information. To sum up, this experiment
demonstrates that GIE can also be used in unsupervised graph
clustering tasks with acceptable performance.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3216803

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: British Telecommunications via the BT Library. Downloaded on January 19,2023 at 21:09:14 UTC from IEEE Xplore.  Restrictions apply. 



12

V. CONCLUSION

This paper proposed GREET, a general entropy-based frame-
work with efficient graphlet estimation algorithms for graph
characterization. Firstly, an enclosing edge-centric neighbor-
hood is constructed for exploring basic 3-, 4-vertex tree and
cyclic graphlets, which leads to the high efficiency for further
graphlet counting. Secondly, we propose two novel informa-
tion functionals with both urelement and higher-order features
considered, which are shown to be effective in understanding
the structural information of networks. Then the resulting graph
information entropy vector is the combination of its local and
global graph entropy, which has proven its superiority in gener-
ating comprehensive network representation. Moreover, GREET
also has many interchangeable parts, which enable its general-
ization to other applications. For example, the procedure of esti-
mating graphlets can be replaced by alternative approaches, thus
improving its flexibility and scalability. Experimental results on
over twenty datasets demonstrate that our proposed method is
able to calculate graphlets with high efficiency and low error,
and the experiments on the graph classification task show that
GREET outperforms current approaches with higher accuracy.
In particular, the existing graph representation methods can also
benefit from the proposed GIE in other domains.

The findings of this work give rise to many important future
research directions. For instance, it would be valuable to extend
the definition of local and global information functionals for
directed or attribute networks. Besides, it is of great significance
to measure the similarity between graph entropy and structural
information so as to approximate entropies with less entropy
gap. Moreover, we also intend to investigate the upper and lower
bounds for the entropy measure in future work, which is still in
its infancy.
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