
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2007, Vol.36, No.1A

A GRAPH ORIENTED MODEL FOR ONTOLOGY TRANSFORMATION
INTO CONCEPTUAL DATA MODEL

Justas Trinkunas, Olegas Vasilecas
Information Systems Research Laboratory, Vilnius Gediminas Technical University

Saulėtekio al. 11, LT-2040 Vilnius, Lithuania

Abstract. The paper analyses graph oriented method for ontology transformation into conceptual data model. A
number of methods were proposed to develop conceptual data models, but only few deals with knowledge reuse. In
this paper we present an approach for knowledge represented by ontology automatic transformation into conceptual
data model. The graph transformation language is presented and adapted for formal transformation of ontology into
conceptual model. Details and examples of proposed ontology transformation into conceptual data model are presented
also.

1. Introduction

Conceptual data models of information systems
are used to capture the meaning of an application
domain as perceived by someone. The important re-
quirement for developing conceptual data models is to
reduce efforts, costs and time. This requirement can be
implemented by the explicit use of enterprise know-
ledge for automatic or semiautomatic generation of
conceptual data model. A number of methods were
proposed to develop conceptual data models, but only
few deals with knowledge reuse. In this paper we pre-
sent an approach for knowledge represented by onto-
logy automatic transformation into conceptual data
model, which can be transformed into executable
specification. The metamodels of ontology and con-
ceptual data model are analysed and the method of
automatic transformation is proposed. The developed
prototype OntEr, which realises proposed method, is
described in the case study section.

Why do we need ontology for conceptual data
modelling? We can use ontology for conceptual data
modelling at least for three different purposes. Firstly,
ontology is a source of the knowledge and unexpe-
rienced designer can use ontology to get initial domain
knowledge. Secondly, some parts of ontology can be
used for conceptual data model development. For
example we can adapt several concepts from the onto-
logy to our needs and transform them into conceptual
data model. And finally, all ontology after adaptation
can be used for the conceptual data model.

The advantage of using ontology for conceptual
data modelling is the reusability of domain know-
ledge. As a result of it the conceptual data model will

be made faster, easier and with fewer errors than
creating conceptual data model in usual way.

In earlier works we already demonstrated the
benefits knowledge reuse for conceptual modelling
[1]. Also we made ontology representation language
analysis and conceptual modelling language analysis
[2]. According this analysis we decided to use OWL
DL as an ontology representation language and ER for
data modelling. Consequently Protégé 3.3 tool was
chosen for ontology creation and Sybase Power De-
signer 12.0 tool was chosen was data modelling. In
this paper we continue our work.

The work is organised as follows. Firstly we give a
theoretical background and discus related works, later
we present transformation of ontology into conceptual
data model based on graph, and finally we describe
case study.

2. Theoretical background
2.1. Ontology

Many authors in their works propose different on-
tology definitions. We accept in [3] proposed ontology
definition. Ontology defines the common terms and
concepts (meaning) used to describe and represent an
area of knowledge. An ontology can range in expressi-
vity from a taxonomy (knowledge with minimal
hierarchy or a parent/child structure), to a thesaurus
(words and synonyms), to a conceptual model (with
more complex knowledge), to a logical theory (with
very rich, complex, consistent and meaningful know-
ledge).

The structure of ontology can be defined mathe-
matically. However different authors provide different

126

A Graph Oriented Model for Ontology Transformation into Conceptual Data Model

definitions which can vary from 3-tuple definition
where ontology is defined as O=(Concepts, Relations,
Axioms) to 10-tuple definition, where ontology is de-
fined in more details [4].

Mathematically we define ontology using graph
formalism. In work [5] authors define an ontology O
as a directed labelled graph G = (N, E) where N is a
finite set of labelled nodes and E is a finite set of
labelled edges. An edge e is written as a triplet (n1, α,
n2) where n1 and n2 are members of N and α is the
label of the edge. The structure of graph consisting
from [6]:
 1. a set of concepts (vertices in a graph);
 2. a set of relationships connecting concepts (direc-

ted edges in a graph);
 3. a set of instances assigned to a particular concepts

(data records assigned to concepts or relation).

2.2. Ontology languages

In this chapter we briefly review ontology lan-
guages.

An RDF graph is a set of RDF triples [3]. The set
of nodes of an RDF graph is the set of subjects and
objects of triples in the graph. A subgraph of an RDF
graph is a subset of the triples in the graph. A triple is
identified with the singleton set containing it, so that
each triple in a graph is considered to be a subgraph. A
proper subgraph is a proper subset of the triples in the
graph. A ground RDF graph is one with no blank
nodes.

A name is a URI reference or a literal. These are
the expressions that need to be assigned a meaning by
an interpretation. A set of names is referred to as a
vocabulary. The vocabulary of a graph is the set of
names, which occur as the subject, predicate, or object

of any triple in the graph. The assertion of an RDF
triple says that some relationship, indicated by the
predicate, holds between the things denoted by subject
and object of the triple. The assertion of an RDF graph
amounts to asserting all the triples in it, so the mea-
ning of an RDF graph is the conjunction (logical
AND) of the statements corresponding to all the trip-
les it contains.

OWL graph is an RDF graph. Not all RDF graphs
are valid OWL graphs, however. The OWLGraph
class specifies the subset of RDF graphs that are valid
OWL graphs.

An OWL ontology contains a sequence of an-
notations, axioms, and facts. Annotations on OWL
ontologies can be used to record authorship and other
information associated with ontology, including im-
ports references to other ontologies. The main content
of OWLOntology is carried in its axioms and facts,
which provide information about classes, properties,
and individuals in the ontology. Names of ontologies
are used in the abstract syntax to carry the meaning
associated with publishing ontology on the Web. The
intent is that the name of ontology in the abstract
syntax is the URI where it can be found, although this
is not part of the formal meaning of OWL. Imports
annotations, in effect, are directives to retrieve a Web
document and treat it as OWL ontology.

[12] OWL ontologies may be categorised into
three species or sub-languages: OWL-Lite, OWL-DL
and OWL-Full. A defining feature of each sub-lan-
guage is its expressiveness. OWL-Lite is the least
expressive sub-language. OWL-Full is the most ex-
pressive sub-language. The expressiveness of OWL-
DL falls between that of OWL-Lite and OWL-Full.
OWL-DL may be considered as an extension of OWL-
Lite and OWL-Full an extension of OWL-DL.

Figure 1. The OWL Class Descriptions Diagram [3]

127

J. Trinkunas, O. Vasilecas

128

In the table below we list most important elements
of the ontology and define which element of graph
represents it. The ontology elements are depicted from
the OWL metamodel which is described in [3]. In
Figure 1 we provide the part of the OWL metamodel.

Table 1. OWL elements

Element name Type Graph
element

OWLOntology Class Node
OWLClass Class Node
ComplementClass Class Node
EnumeratedClass Class Node
DisjointClass Class Node
IntersectionClass Class Node
EquivalentClass Class Node
RestrictionClass Class Node
UnionClass Class Node
Property Property Node
OWLAnnotationProperty Property Node
OWLOntologyProperty Property Node
FunctionalProperty Property Node
OWLDatatypeProperty Property Node
OWLObjectProperty Property Vertex
InverseFunctionalProperty Property Node
SymmetricProperty Property Node
TransitiveProperty Property Node
OWLRestriction Restriction Node
HasValueRestriction Restriction Node
AllValuesFromRestriction Restriction Node
SomeValuesFromRestriction Restriction Node
CardinalityRestriction Restriction Node
MaxCardinalityRestriction Restriction Node
MinCardinalityRestriction Restriction Node
OWLDataRange DataType Node

2.3. Conceptual data model

Conceptual data model to model the overall logical
structure of a database, independent from any software
or data storage structure considerations [16].

A conceptual data model represents the overall
structure of an information system. It describes the
conceptual relationships of different types of informa-
tion rather than their physical structures. A conceptual
data model is independent of a particular database ma-
nagement system (DBMS).

For detail conceptual data model analysis we
choose entity-relationship (ER) language.

An ER diagram is a graphical modelling notation
that illustrates the interrelationships between entities
in a domain. ER diagrams often use symbols to
represent three different types of information.
Basic components of the ER language are [7]:

Entities. An entity is a phenomenon that can be
distinctly identified. Entities can be classified into
entity classes.

Relationships. A relationship is an association
among entities. Relationships can be classified into
relationship classes.
Attributes and data values. A value is used to give
value to a property of an entity or relationship.
Values are grouped into value classes by their ty-
pes. An attribute is a function, which maps from an
entity class or relationship class to a value class;
thus the property of an entity or a relationship can
be expressed by an attribute-value pair.
Additionally, we include domains and data types

elements. And finally, ER model can be defined as
quintuple:

ER = (E, A, D, R, DT), (1)

 where E is a set of entities, A – set of attributes, D –
set of domains, R – set of relationships, DT – set of
data types.

ER model can be represented as a graph. We de-
fine ER model using graph formalism. ER model is a
directed labelled graph GER = (N, E) where N is a
finite set of labelled nodes and E is a finite set of
labelled edges. An edge e is written as a triplet (n1, α,
n2) where n1 and n2 are members of N and α is the
label of the edge.

In the table below we list most important elements
of the ER model according to ER metamodel [8].

Table 2. ER elements

Element name Type Graph
element

Model Model Node
Entity Entities Node
Attribute Attributes Node
AlternateKey Attributes Node
ForeignKey Attributes Node
InversionEntry Attributes Node
Key Attributes Node
PrimaryKey Attributes Node
Domain Domain Node
AtomicDomain Domain Node
DomainConstraint Domain Node
ListDomain Domain Node
UnionDomain Domain Node
EntityConstraint Constraint Node
Relationship Relations Vetex
Inheritance
(Generalization)

Relations Vetex

Association Relations Vetex
Association Link Relations Vetex
Link/Extended
Dependency

Relations Vetex

2.4. Metamodel based transformations

In the works [10, 18] authors describe metamodel
based transformations. Authors argue that metamodel
based transformations permit descriptions of

A Graph Oriented Model for Ontology Transformation into Conceptual Data Model

mappings between models created using different con-
cepts from possibly overlapping domains and the
transformation process facilitates the reuse of models
specified in one domain-specific modelling language
in another context: another domain-specific modelling
language. Without the ability to perform model trans-
formations, every existing model must be developed
and understood separately, and/or has to be converted
manually between the various modelling formalisms.
This often requires as much effort as recreating the
models from scratch, in another modelling language.
However, when automatic model transformations are
used, the mapping between the different concepts has
to be developed only once for a pair of meta-models,
not for each model instance.

Metamodel of ontology and conceptual data model
should be based on meta-meta-model, defining all
necessary constructs.

Model Driven Architecture (MDA) [11] defines
three viewpoints (levels of abstraction) from which
some system can be seen. From a chosen viewpoint, a
representation of a given system (viewpoint model)
can be defined. These models are (each corresponding
to the viewpoint with the same name): Computation
Independent Model (CIM), Platform Independent
Model (PIM) and Platform Specific Model (PSM).
MDA is based on the four-layer metamodeling archi-
tecture, and several OMG’s complementary standards.
Layers are: meta-metamodel (M3) layer, metamodel
(M2) layer, model (M1) layer and instance (M0) layer.

The mapping from OWL to ER was described in
[17] document. However this document was just a
proposal and in final version of the document [3]
OMG group did not left the OWL mapping to ER.
However, this mapping is incomplete and it is not
clear which elements from the OWL ontology are not
transformed into ER model. As a result of it some
information from OWL ontology can not be used in
ER model.

2.4. The Graph Transformation Language

We have adopted graph transformation language
used in [5, 9] works. The language consists of the five
basic operations: node addition, edge addition, node
deletion, edge deletion, and abstraction. Currently we
need only two operations (node addition and edge
addition).

Node Addition. Given the graph G, a node N and
its adjacent edges {(N, αi, mj)} to add, the node
addition results in a graph G’=(M’, E’) where
M’=M∪ N and E’ = E ∪ {(N, αi, mj)}.

Edge Addition. Given a graph G and a set of edges
SE = {(mi, αj, mk)} to add the edge addition operation
EA [G, SE] results in a graph G’=(M,E’) where
E’=E∪SE.

The node addition operation can be used to intro-
duce new objects into ER model from the ontology.

The edge addition operation is needed to build rela-
tionships between the ER objects.

3. Proposed approach

In this chapter we describe how ontology can be
transformed into conceptual data model using graph
formalism based on metamodelling.

Many authors work in the field of transformation
of ontology [13, 14, 15]. However proposed transfor-
mation methods are informal and used for different
purposes.

We adapted the schema of models transformation
from [10] for the ontology transformation into con-
ceptual data model.

Transformation from ontology GO into conceptual
data model GER can be presented as:

GO → GER, (2)

where GO is an ontology represented as graph which is
based on OWL metamodel, GER is ER model
represented as graph based on ER metamodel, → is
transformation of the elements of graph.

Ontology GO transformation into ER model GER
consists of set of elementary transformations which
can be presented as:

GO(OWLElement) → GER (ERElement), (3)

where OWLElement is an element from OWL meta-
model, ERElement is an element from ER metamodel
and → is simple graph transformation which consists
of Node Addition and Edge Addition operations
defined above.

Elementary transformations are defined as follows:
1. OWLOntology element is transformed into Model

element. A Model in ER consists of the various
modelling elements (entities, relationships and do-
mains) that can be used to describe and represent
things of interest to an enterprise. Entities repre-
sent things within a subject area or across areas,
and relationships represent the associations bet-
ween them. Domains represent logical data types.
OWL ontology contains a sequence of annotations,
axioms, and facts. Annotations on OWL ontologies
can be used to record authorship and other infor-
mation associated with ontology, including imports
references to other ontologies. The main content of
OWLOntology is carried in its axioms and facts,
which provide information about classes,
properties, and individuals in the ontology. The
transformation is as follows:

GO(OWLOntology) → GER (Model). (4)

2. OWLClass element is transformed into Entity
element. All classes in OWL are identified by uri.
An entity in ER is identified by name. OWLClass
and Entity are nodes in the graph:

GO(OWLClass) → GER (Entity). (5)

129

J. Trinkunas, O. Vasilecas

3. OWLDataTypeProperty element is transformed
into Attribute element. An attribute in ER repre-
sents a common characteristic of some entity ins-
tances. OWL data type properties are used to link
individuals to data values. A data type property is
defined as an instance of the built-in OWL class
owl:DatatypeProperty. OWLDataTypeProperty
and Attribute are nodes in the graph:

GO(OWLDatatypeProperty) → GER (Attribute). (6)

4. OWLObjectProperty element is transformed into
Relatinoship element. An object property in OWL
relates an individual to other individuals. An object
property is defined as an instance of the builtin
OWL class owl:ObjectProperty. Relationships re-
present connections, links, or associations between
two or more entities. OWLObjectProperty and Re-
latinoship are vertexes in the graph:

GO(OWLObjectProperty) → GER (Relationship). (7)

5. OWLDataRange element is transformed into
AtomicDomain element. A data range in OWL is
either a literal type or an enumeration of literals.
Atomic domains in ER are those having values,
which are regarded as being indivisible. Atomic
domains in ER restrict, in a manner described by
their constraints, the value space of the datatype
identified via the baseType attribute. OWLData-
Range and AtomicDomain are nodes in the graph:

GO(OWLDataRange) → GER (AtomicDomain). (8).

The other elements of the ontology can not be
transformed straight forward into the ER model but
can be used for different purposes which are not dis-
cussed in this paper.

4. Case study

We have chosen Protégé 3.3 for the development
of the ontology. A free version of the software
provides all features and capabilities required for the
present research. Protégé 3.3 can be downloaded from
the site http://protege.stanford.edu. With Protégé 3.3
tool we built Salary ontology showed in Figure 3. In
this ontology we describe main concepts and
relationships which describe domain area of salaries.

Here we briefly describe proposed method of
building conceptual model from the OWL DL
ontology. The method consists of four main steps:
1. The first step is knowledge acquisition from the

word, documents, people, conceptual data models,
ontologies and other sources. All extracted know-
ledge is written in the domain ontology in OWL
DL format. We use Protégé 3.3 tool, however other
tool could be chosen for ontology development.
Domain ontology is created manually. But we are
expanding our work and in near future we will pro-
pose semiautomatic method for ontology develop-

ment from existing conceptual models, ontologies
and other sources.

2. The second step is the transformation of domain
ontology into conceptual data model with our
plug-in OntER. Created conceptual data model can
be opened with Sybase Power Designer 12.0 tool
and adapted for your needs.

3. The third step is verification of conceptual data
model. If we made changes with Power Designer
12.0 we need to verify if conceptual data model is
valid. The conceptual data model is compared with
the domain ontology. This step is not implemented
yet, however. Good thing, this step is not obliga-
tory, too.

4. The last step is the generation of physical data
model with Power Designer 12.0 for a particular
DBMS. This feature is already implemented in the
original version of Power Designer 12.0.
[16] Through a simple generation procedure, you

can transfer the solid design framework of the
conceptual data model to the physical data model. The
physical data model adapts your design to the
specifics of a DBMS and puts you well on the way to
complete physical implementation.

All steps are showed in Figure 3.

Figure 3. Main processes

4.1. Payroll system ontology

The ontology was created with Protégé 3.3 tool.
The knowledge was extracted from Lithuanian Work
Codex and other documents.

The main concepts described in Salary ontology
are: wage, taxes, employment contract. The employ-
ment contract type can be terminable, not terminable
or other. Terminable contracts are those contracts,
which have validity date. Terminable contracts can be
seasonal contract, temporary contract, and terminal
contract. Other concepts are showed in the Figure 4.

130

A Graph Oriented Model for Ontology Transformation into Conceptual Data Model

Figure 4. Payroll system ontology

5. Conclusions and future work 4.2. Developed plug-in OntER

OntER is the plug-in written in Java. Conceptual
data model is build from the set of patterns which are
filed with the needed data. Below we give the example
of the attribute pattern. To build conceptual data
model using patterns is very convenient. In case the
conceptual data model of Power Designer will be
changed in the future, we can change the patterns and
update the plug-in.

We presented graph-oriented model for ontology
transformation into conceptual data model based on
metamodels. The advantage of proposed method is
formally defined transformation of ontology trans-
formation into conceptual model. However, it is not
possible to transform all elements from OWL DL
ontology into conceptual data model straight forward
because OWL DL is semantically richer when data
conceptual model. <c:Attributes>

The next our future step is to evaluate the effecti-
veness of our proposed method for creating conceptual
data models from the ontology.

<o:EntityAttribute Id=Value>
<a:ObjectID>Value</a:ObjectID>
<a:CreationDate>Value</a:CreationDate>
<a:Creator>Value</a:Creator>
<a:ModificationDate> Value
</a:ModificationDate>

References
 [1] O. Vasilecas, D. Bugaite, J. Trinkunas. On Ap-

proach for Enterprise Ontology Transformation into
Conceptual Model. B. Rachev, A. Smirkarov (eds.),
Proc. of the International Conference on Computer
Systems and Technologies "CompSysTech'06", Varna,
Bulgaria, 2006, IIIA.23-1- IIIA.23-6.

<a:Modifier>Value</a:Modifier>
<c:DataItem>
<o:DataItem Ref=Value/>
</c:DataItem>
</o:EntityAttribute> [2] J. Trinkūnas, O. Vasilecas. Ontologijos vaizdavimui

ir koncepciniam modeliavimui skirtų kalbų analizė
(Analysis of Ontology and Conceptual Modeling Lan-
guages). Informacinės technologijos 2007, Kaunas:
Technologija, 2007, 217-221.

</c:Attributes>

131

J. Trinkunas, O. Vasilecas

 [3] OMG. Ontology Definition Metamodel Specification.
Adopted Specification 2006-10-11. http://www.omg.
org/docs/ptc/06-10-11.pdf (2007-03-20).

 [4] B. Motik, A. Maedche, R. Volz. A Conceptual Mo-
deling Approach for Building Semantics-Driven
Enterprise Applications. Proc. of 1st Int’l Conf.
Ontologies, Databases, and Application of Semantics
(ODBASE-2002), Springer-Verlag, 2002, 1082–1099.

 [5] P. Mitra, G. Wiederhold, M. Kersten. A graph
oriented model for articulation of ontology interde-
pendencies. Proc. Extending DataBase Technologies,
Springer, Berlin Heidelberg, 2000, LNCS 1777, 86–
100.

 [6] J. Davies, R. Studer, P. Warren. Semantic Web
Technologies Trends and Research in Ontology-based
Systems. John Wiley & Sons Ltd, 2006.

 [7] P.P. Chen. The entity-relationship model: Towards a
unified view of data. ACM Transactions on Database
Systems, 1(1), 1976, 471-522.

 [8] OMG. Ontology Definition Metamodel. Preliminary
Revised Submission to OMG RFP ad/2003-03-04.
http://www.omg.org/docs/ptc/03-03-04.pdf (2007-03-
20).

 [9] M. Gyssens, J. Paredaens, J.V. d. Bussche, D.V.
Gucht. A Graph-Oriented Object Database Model.
IEEE Transactions on knowledge and Data
Engineering, 1994, Vol.6, No.4, 572-576.

[10] T. Levendovszky et al. Model Reuse with Meta-
model-Based Transformations. C. Gacek (ed.): Proc.
of ICSR-7. Springer, 2002, LNCS 2319, 166-178.

[11] J. Miller, J. Mukerji (eds.). MDA Guide Version 1.0.
OMG Document: omg/2003-05-01. http://www.omg.
org/docs/omg/03-05-01.pdf (2007-03-20).

[12] S. Brockmans et al. A Model Driven Approach for
Building OWL DL and OWL Full Ontologies. 5th
International Semantic Web Conference, Athens, GA,
USA, 2006, LNCS 4273, 187-200.

[13] E. Vysniauskas, L. Nemuraite. Transforming Onto-
logy Representation from OWL to Relational Data-
base. Information Technology And Control, Kaunas,
Technologija, Vol.35A, No.3, 2006, 333 - 343.

[14] V. Sugumaran, V. C. Storey. The role of domain on-
tologies in database design: An ontology management
and conceptual modeling environment. ACM
Transactions on Database Systems (TODS), ACM
Press, Vol.31, No.3, 2006, 1064 – 1094.

[15] J. Conesa, X. de Palol, A. Olive. Building Concep-
tual Schemas by Refining General Ontologies. 14th
International Conference on Database and Expert
Systems Applications - DEXA '03. 2003, LNCS 2736,
693-702.

[16] Sybase PowerDesigner. Conceptual Data Model
Version 9.5, 2002. http://download.sybase.com/
pdfdocs/pdd0950e/cdgs.pdf (2007-03-20).

[17] OMG. Ontology Definition Metamodel Preliminary
Revised Submission, 2005. http://www.omg.org/
docs/ptc/05-08-01.pdf (2007-03-20).

[18] M. Gogolla, A. Lindow, M. Richters, P. Ziemann.
Metamodel Transformation of Data Models. In
Bezivin, J., France, R. (eds.): Proc. UML'2002., 2002,
http://citeseer.ist.psu.edu/gogolla02metamodel.html
(2007-03-20)

Received March 2007.

