
A Graph Partitioning Problem for Multiple-Chip Design *

Yao-Ping Chen, Ting-Chi Wang and D. F. Wong
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712

Abstract
In this paper, we introduce a new graph partitioning problem
that stems from a multiple-chip design style in which there is
a chip library of chips containing predesigned circuit compo-
nents (e.g. adders, multipliers etc) which are frequently used.
Given an arbitrary circuit data flow graph, we have to realize
the circuit by appropriately choosing a set of chips from the
chip library. In selecting chips from the chip library to realize a
given circuit, both the number of chips used and the intercon-
nection cost are to be minimized. Our new graph partitioning
problem models this chip selection problem. We present an
efficient solution to this problem.

1 Introduction
The graph partitioning problem that we consider in this pa-
per stems from a multiple-chip design style at GE as described
in [6] . In this design environment, there is a chip library of
chips containing predesigned circuit components (e.g., adders,
multipliers etc) which are frequently used. Given an arbitrary
circuit data flow graph, we have to realize the circuit by appro-
priately choosing a set of chips from the chip library. The chips
selected will then be placed on a substrate and interconnected
together. In selecting chips from the chip library to realize a
given circuit, two goals are considered to reduce cost. First, the
number of chips to be used is as small as possible. Second, the
total length of interconnections across chip boundaries (i.e.,
the external interconnection cost) is minimized. This prob-
lem is similar to the multiple-way graph partitioning problem
[I, 2, 3, 4, 51 except that some constraints are added.

We now describe the new graph partitioning problem.
Given an undirected weighted graph G = (V, E), let W,,
be the weight of edge (Z L , T J) E E, and C be a finite set of
colors. The vertices of G are colored as given by a function
(Y : V -+ C where .(U) is the color of U. Let R = {M,I1 5

5 m} where each M , is a multiset with elements in C. Let
II = { P I , . . . ,PI<} be a partitioning of V, i.e., P,'s are dis-
joint subsets of V and Ufl, P, = V. Let the multiset C, be
{ C Y (U) ~ U E P,}. II is said to be a legal partitioning if for each
z , there exists such that C, E M J . In this case, we say P,
is of type M I . \Te define the interconnection cost x(II) of a
partitioning Il as the sum of W,, over all the edge (U, TJ) E E
such that U and TJ are in different PE's in II. The objective of
our graph partitioning problem is to find a legal partitioning
II of V such that both [Ill and x(D) are minimized.

The new graph partitioning problem models the chip se-
lection problem as follows. The graph G corresponds to the

'This work was partially supportedby the National Science Foun-
dation under grant MIP-8909586 by an IBM Faculty Development
Award and by an ACM SIGDA Design Automation Fellowship.

0-7803-1254-6/93$03.00 Q 1993 IEEE

Figure 1: A colored graph.

P Z

Figure 2: An illegal partitioning.

circuit. The set of colors C corresponds to circuit components.
Each multiset MJ = { c l , . . . , c i } corresponds to one type of
chip in the chip library, and the ci's are the components on
chip MJ. Thus s2 is the chip library. The color of (i.e.
CY(.)) is the component type (e.g., adder, multiplier). C, C MJ
means that the subcircuit P, can be implemented by a chip of

Figure 1 shows a colored graph G in which V =
{~i,~z,...,tJiz}, c = { r J g, b, Y}, MI = {r, r, gJ g } , Mz =
{g, gJ b, b) , M3 = (9, b, Y, Y}, and kf4 = {r, r, r). The parti-
tioning shown in Figure 2 is illegal (since, for example, CI =
{ r, r, g, b} e MJ, Vj), while the one shown in Figure 3 is legal
(since P, is of type M,, Vz). In Figure 3, II = {PI, Pz, P3, P4}
and x(II) = W,,,, + W,,,, + W,,,, + W,,,, + W,,,, + W,,,, +

We present in this paper an algorithm to solve the new
graph partitioning problem. The algorithm consists of three
phases. In phase 1, the linear programming technique is used
to minimize In((see section 2). In phase 2, we use a greedy
method to obtain a good initial partitioning based upon the re-
sult from phase 1, such that the iterative improvement task in
phase 3 can be alleviated as much as possible (see section 3). In
phase 3, two techniques are iteratively used to improve the in-

type MJ'

W%,,, +W,8,,2..

1778

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 06:55 from IEEE Xplore. Restrictions apply.

Figure 3: A legal partitioning.

terconnection cost x@). One technique extends the 2-way par-
titioning approach in 111 (see section 4.1) , and the other tech-
nique determines a subset of II to be repartitioned such that,
without increasing IIIl, x(n) is decreased (see section 4.2).

2 Minimizing Ill(
This phase is based on the linear programming technique. Let
zJ be the number of subset (Pi's) of type M, in U. Our goal
is to minimize the following function:

h‘= X I + 2 2 +. . . + 2m

We now consider the constraints which c,’s are subjected to.
First, we have

(1)

z1 1 0 , 2 2 2 0 , ..., z m > O (2)

Let n = IC(be the total number of colors. Let b, be the
number of vertices in V with color c j . We represent each MI
by an n-tuple (all , a12, . . . , aln), where all denotes the number
of times c, appears in MI. The following constraints must be
also satisfied:

UiJxi + a2J22 +. . . + amj2m > bj v.i, 1 5 3 5 n (3)

Note that all aIJ’s, b , k , and zI’s are integers. So it is actu-
ally an integer linear programming problem. Since the inte-
ger linear programming problem is NP hard, we consider get-
ting an approximated solution by solving the linear relaxation
of the integer program. We first obtain an optimal solution
(XI, X2,. . . , X,) (with each X, being a positive real num-
ber) from the linear programming problem. After that, we let
zt = [X,l. We note that K = ZI + 22 + . . . + zm (i.e., Inl)
may not be optimal.

3 Initial Partitioning
In this phase we determine an initial legal partitioning n =
{ P I , . . . , PIC} of V with some consideration of interconnection
cost minimization. Based upon the values of all zI’s obtained
from phase 1, we let K , . . . , YK be a collection of multisets
defined as follows.

Y , = Mi, V : , 1 5 i 5 z i (4)

Yzl+, = M2, VI, 1 5 i 5 22 (5)

After this phase is finished, each P, in II will be of type k;.
We use a greedy approach (as described in Algorithm 1) to get
a good initial partitioning II. The idea is that, if two vertices
w1 and u2 are connected by the edge (w 1 , 9 ~ 2) with a very large
weight W,,,,, then we try to assign both VI and ~2 to some
subset Pi. To do this, we first sort the edges E E in descending
order into a list and then sequentially consider each edge in the
list (lines 2-31). When an edge e = (u l , w2) is considered, there
are 3 cases. (1) If both v l and w2 have not been assigned to
some Pi, we try to assign them to the same Pi (lines 9-20). (2)
If one of the vertices has been assigned, we try to assign the
other one to the same Pi(lin= 21-30). (3) If both are assigned,
no action is taken. If the two endpoints of the current edge
can not both be assigned to any Pi, we just leave it alone and
consider the next edge in the list. After considering all the
edges, for those vertices which have not been assigned to any
Pi, we just arbitrarily assign each of them to any available PI
(lines 33-42).

We now analyze the complexity of Algorithm 1. The sorting
in line 2 needs time O(lEl log IEI). In the worst case, the loop
from line 3 to 31 takes time O(lElK), and the loop from line
32 to 42 takes time (IVlK). Since E = O(lV12) and K = In1 5
IVl, the worst-cast complexity of Algorithm 1 is O(lV13).

Algorithm 1 : Initial Assignment
1. Pi c {}, 1 5 i, 5 K
2. Sort all edges In E into decreasing order and store them in Q1.
3 . L1:
4 . if 8 1 = {} then
5. got0 L2
6. en> if
7. Get the biggest e = (I, y) in 9 1 .
8. 81 + 81 - { e }
9. if neither I nor y is assigned then
10. c a(.)
11. cy + a(y)
12. for i - 1 to K do
13.
14. Pi + p s IJ{I,YI
15.
16.
17. g o t o L1
18. end if
19. e n d for
20. end if
21. e lse if one of I, y is unassigned, say I then
22. Determine y E Pi.
23. c, c a (z)
24.
2 5 . P. + P, U!.)
26. Mark z as assigned”

28. goto L~

if e, E Y, and cy E Y, then

Mark I and y as “assigned”
Yi + yi - {c=, C Y }

if e , E Yi then

27. Y, + Y, - { e=}

29. end if
30. e n d if
31. goto L1
32. L2:
33. Get an unassigned vertex U in V
34. c. c a(.)
35. for i - 1 to K do
36. if e, E Y, then
37. ps + pi IJCu}
38.
39. Mark U as “assigned”
40. goto L2
41. end if
42.end for

yi + Y, - {e.}

4 Interconnection Cost Reduction
After phase 2, we use two techniques to iteratively reduce the
interconnection cost x(n) of the partitioning II. One technique

1779

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 06:55 from IEEE Xplore. Restrictions apply.

, ’ Dvk
P 1 - P i

Figure 4: Pi = Pi and f‘k # Pj.

n

= e j

Figure 5 : Pk = Pj and Pi # Pi.

which extends the idea of [l] is presented in section 4.1, and
the other is presented in section 4.2.

4.1 Constrained Multiple- Way Partitioning
In [l], an efficient heuristic method for partitioning waa pre-
sented. This algorithm will be referred to as the K-L algorithm.
We develop a constrained K-way partitioning based on this. In
our application not all pairs of vertices in V are interchange-
able, but only vertices with the same colors are. Similar to [I],
we compute the internal cost I,(scalar value), external cost E,
(vector) , and the difference D , (vector) for each vertex v E V.
We let E,, and D,, denote the external cost and difference of
vertex w with respect to each subset PI where v e PI. Algo-
rithm 2 is our constrained K-way partitioning algorithm. Lines
1-11 compute the initial D , values for each pass. A set Q of
interchangeable pairs is constructed in Lines 15-16. Line 31-40
update the D , values. Basically, there are 4 cases need to be
considered when updating D,k after x and a, are picked to be
swapped. x is in subset P, and y is in subset P,. A vertex v
is in Pi, and we want to recalculate D,k with respect to pk.
The first 2 cases (lines 32 and 34) are the same as in the 2-
way partitioning. The third case is explained by Figure 4 and
Figure 5. Figure 4 shows the case when Pi = P, but p k # P,,
while Figure 5 shows the case when Pk = P, but Pt # PI.
Line 36 consider both cases. In Figure 4, after exchanging x
and y, since D,k = E,k - I,, E,k remains unchanged and
I, should become I, - W,, + Wwy, so D,,k is recalculated by
D,,k + w,, - w,, as shown in line 37. Similarly in Figure 5, 1,
remains unchanged, but E,k should become E,k + w,, - wuy.
Thus D,,k is also recalculated using the formula in line 37. The
fourth case expressed in line 38 is similar. I t is obvious that
the time complexity of each outermost pass of our algorithm
is O(lV13), since the ordinary K-L algorithm is a O(lV13) pro-
cedure, and the constraint needed by our application does not
affect the complexity.

Algorithm 2 Constrained K-way Partitioning
0 loop forever
1 Clear the “locked” flag on all vertices
2 for each vertex U E V do

9.
4.
5.
6.
7.
0.
9.
10.
11.
12.

Find the clurter fi containing U

for i + 1 t o y d o
I . + ’*” W”,’

If i # I then
E v i + CutEP, w W v ~
Dui + Ewi - I ,

end if
end for

end for
t c l

13. loop forever
14. sz + I1
15. Q + { (r , y) l ~ (r) = a(y) and I E P, and y E P,I

Get (v i , u z) from 8. Q + Q - { (~ 1 ~ ~ 2) 1
Find P, and Pj containing u1 and uz resp.

16.
17. repeat
18.
19.
20.
21. sz 1 vz 1
22. Q U l t uz)}

and U # U‘ and I and y are not “locked” }

9viu1 + Dwlj + D q i - 2Wv1q

23. until Q = {}
24.
2 5 .

27.
28.
29.
30. Find 4 containing U

31.
32.

34.
35.
36.
37. D,r Dwr + Wwr - ww,
38.
39. Dvr + Dur + Wvv - Wvr
40. end if
41. end for
42. end for
43. end loop
44. L1:
45. 0 t m a x { C L 1 Gi(1)ll 5 k 5 t }
46. if G 5 0 then goto La end if
47. for i c 1 to k do
48.
49. Interchange ul and u2
60. end for
51. end loop
52. Lz: exit.

Find the biggest element gru E S 2 .
if Sz = {} or gru 5 0 then goto L1 end if

Mark I and y as “locked
Find P, and Pj containing I and y resp.
for each unlocked vertex U E V do

for k + 1 to K (k # 1) do
if1 = i and k = j then

else if 1 = j and k = i then

else if 1 = i or k = j then

else if 1 = j or k = i then

26. Gt + (g = u , I l y) . i + t + l

33. D v k - Dvk + 2W.z - 2Wvu

Dvk - Dvk + 2W.u - 2W.s

(9 , VI, V Z) + Gi

4.2 Subset Replacement
In this section we consider a technique for replacing some Pi’s
in II such that, without increasing In!, x(II) can be further
reduced. For example, Figure 6 shows a portion of a colored
graph in which, PI is of type MI = { r, g, b}, PZ is of type MZ =
{g , b, b}, and P3 is of type M3 = {r, g , g } . Note that there are
only 2 vertices in P2. Therefore, one of the components 6 in
M2 is unused. Assume M4 = {g, g, g, g} and M5 = { r, r, b, b}
are also available (M, E 52 and M5 E 52) , It is obvious that
the vertices in the subgraph can be partitioned into two new
subsets Pi of type A44 and Pi of type M5. This is shown
in Figure 7 in which In1 is reduced by 1. Also it is possible
that the interconnection cost in the new partitioning II can be
reduced. Since it is observed that after the first pass of the
method in the previous section, the gain of successive passes
is small, we can perform subset replacement before repeating
each pass.

To make this approach efficient, we restrict that the size
of the subset of 52 (as { M 4 , M 5 } in the example) which re-
places the original set (as { M i , M 2 , M 3 }) is at most 2. In
order to find the candidate Pi’s to be replaced, we chose a sub-

1780

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 06:55 from IEEE Xplore. Restrictions apply.

P

0

density
0.05
0.10

Figure 6: Old n.

p’1 ’

0.936 1.041 0.000498
0.974 0.998 0.000974

Figure 7: New II.

set II’ of II having large interconnection. Assume III’I = s.
We then sum up each color in 11’ and represent it as a com-
ponent of vector ?. In our example, let 1st (2nd, 3rd re-
spectively) vector component represents the sum of number
of color r (g, b respectively). The vector ? obtained by
(I , 1, 1) + (0, 1, 1) + (1, 2, 0) is (2, 4, 2). We also represent
each Mi as vector ?M~ in the same way. If IC1 = n and In1 = m,
then let ? = (b r , b2,. . . , bn), and ?M~ = (a i l , a i l , . ..,U;”), 1 5
a 5 m . We iteratively consider a pair - ? M ~ and VM, (there
are (m - l)m/2 possibilities) to see if it is possible to do re-
placement. It is equivalent to solving the following system of
linear inequalities.

x + Y l s (8)

x and Y are nonnegative integers denoting the number of M k ’ s
and Mi’s respectively. Equation 8 implies that the new size
can’t exceed the original size, and equation 9 implies that the
components provided by X Mk’s and Y Mi’s are enough in the
sense that all the vertices in II’ can be assigned. If there is a
solution, we locally reassign those components using Algorithm
1 and then again iteratively apply Algorithm 2 to improve the
result. Otherwise we consider another pair of multisets in n.

5 Experimental Results
We have implemented our algorithms in C programming lan-
guage. The linear programming codes were obtained from [7].
We ran our program on SUN SPARC station 1. The data we
used are as follows. All graphs had 100 vertices. There were
5 colors. The weight of the edges were integers ranged from 1
to 30. We assumed the number of different multisets (In[) was
10. Each Mi had 2 colors and each color appeared 4 times, i.e.
a total of 8 elements. We had one multiset for every pair of

Table 1: Comparison of our algorithm to S.A. algorithm
I Edge 1 cl/c2 I wl/w2 I t l / t2 1

colors. For the purpose of comparison, we also implemented a
method based on simulated annealing to solve the same prob-
lem. Similar to [6], the cost function used by the simulated
annealing method considered factors such as inter-chip wiring
cost, number of chips, and how far the current partitioning is
from the closest legal partitioning. Table 1 shows the re-
sults of running our program on graphs with 100 vertices and
edge density (the ratio of the number of edges to the number
of edges of a complete 100-vertex graph) ranged from 0.05 to
0.30. We experimented on 5 graphs for each edge density. In
the table the term t l / t2 represents the ratio of the average
CPU time consumed by our algorithm to that consumed by the
simulated annealing (S.A.) algorithm. cl/c2 represents the ra-
tio of the average number of chips of our algorithm to that
of S.A. algorithm. wl/w2 is the ratio of the average wiring
cost of our algorithm to that of S.A. algorithm. The second
and third columns indicate that the final results obtained by
running our method and simulated annealing method are of
comparable quantities. However, our algorithm runs signifi-
cantly faster as indicated by the fourth column. The average
CPU time used by our algorithm is of the order of 10 seconds
regardless of the edge density, since the number of passes of
K-Way partitioning algorithm and the edge density of graphs
are independent.

References
[l] B. W. Kernighan and S. Lin, “ An efficient heuristic pro-

cedure for partitioning graphs”, Bell Syst. Tech. J., vol.
49. pp. 291-307, Feb. 1970.

[2] L. A. Sanchis, “Multiple-way network partitioning”, IEEE
Trans. Comput., vol. 38, no. 1, pp. 62-81, Jan. 1989.

[3] Ching-Wei Yeh and Chung-Kuan Cheng, “A general pur-
pose multiple way partitioning algorithm”, Proc. 28th
ACM/IEEE Design Automation Conf., pp.421-426, 1991.

[4] B. Krishnamurthy, “An improved min-cut algorithm for
partitioning VLSI networks”, IEEE Trans. Comput., vol.
c-33, no. 5, pp. 438-446, May 1984.

[5] T. Bui, C. Heigham, C. Jones and T. Leighton, “Im-
proving the performance of the Kernighan-Lin and sim-
ulated annealing graph bisection algorithms”, Proc. 26th
A CM/IEEE Design Automation Conf., pp. 775-778, 1989.

[6] A. Chatterjee and R. Hartley, “A new simultaneous cir-
cuit partitioning and chip placement approach based on
simulated annealing”, Proc. 27th A CM/IEEE Design Au-
tomation Conf., pp.36-39, 1990.

[7] W. H. Press, Numerical recipes in C: the art of scientific
computing, Cambridge Camb#, pp. 329-343, 1988.

1781

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 06:55 from IEEE Xplore. Restrictions apply.

