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Abstract

Motivation: MicroRNAs (miRNAs) play crucial roles in post-transcriptional regulations and various

cellular processes. The identification of disease-related miRNAs provides great insights into the

underlying pathogenesis of diseases at a system level. However, most existing computational

approaches are biased towards known miRNA-disease associations, which is inappropriate for

those new diseases or miRNAs without any known association information.

Results: In this study, we propose a new method with graph regularized non-negative matrix

factorization in heterogeneous omics data, called GRNMF, to discover potential associations be-

tween miRNAs and diseases, especially for new diseases and miRNAs or those diseases and

miRNAs with sparse known associations. First, we integrate the disease semantic information and

miRNA functional information to estimate disease similarity and miRNA similarity, respectively.

Considering that there is no available interaction observed for new diseases or miRNAs, a prepro-

cessing step is developed to construct the interaction score profiles that will assist in prediction.

Next, a graph regularized non-negative matrix factorization framework is utilized to simultaneously

identify potential associations for all diseases. The results indicated that our proposed method can

effectively prioritize disease-associated miRNAs with higher accuracy compared with other recent

approaches. Moreover, case studies also demonstrated the effectiveness of GRNMF to infer un-

known miRNA-disease associations for those novel diseases and miRNAs.

Availability and implementation: The code of GRNMF is freely available at https://github.com/

XIAO-HN/GRNMF/.

Contact: luojiawei@hnu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

MicroRNAs (miRNAs) are a kind of important regulators that play

critical roles in post-transcriptional regulations and many important

biological processes (Jopling et al., 2005; Xu et al., 2011a,b).

Previous studies have shown that the aberrant expression of

miRNAs was related to human diseases (Chou et al., 2016; Li et al.,

2014a). Experimental determination of new miRNA-disease associ-

ations is tremendously expensive and laborious and has a high-

failure rate. Therefore, identifying disease-related miRNAs through

computational approaches will contribute to the exploration of mo-

lecular mechanisms and greatly facilitate disease diagnosis and treat-

ment (Zeng et al., 2016; Luo and Xiao, 2017).

With the development of high-throughput techniques, a vast

amount of omics data are publicly available, which create opportuni-

ties to decipher the underlying roles of miRNA-associated activities

in physiologic and pathologic conditions, such as miRNA-target
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interaction prediction (Liu et al., 2014b; Chen et al., 2013), transcrip-

tion factor (TF) and miRNA co-regulatory motif identification (Liang

et al., 2015) and miRNA-mRNA regulatory module discovery (Li

et al., 2014b; Liang et al., 2016). Undoubtedly, all these studies have

greatly expanded our understanding of miRNA functions and their

coordinated regulatory mechanisms.

In recent years, to elucidate the initiation and progression of

tumorigenesis, considerable efforts have also been made to prioritize

disease-associated miRNAs using in silico prediction models. Li

et al. (2011) developed an approach to identify the potential disease

miRNAs through calculation of the relevance between the known

disease genes and the target genes. Xu et al. (2011a) first constructed

a miRNA-target gene dysregulated network and then applied sup-

port vector machine classifier to distinguish positive disease

miRNAs from negative ones based on the topological properties.

Zhao et al. (2015) recently utilized gene expression data and

miRNA-gene regulations to discover disease miRNA candidates.

However, these models based on the miRNA targets encountered

difficulties in the achievement of a significant performance because

these target prediction databases have relatively high false-negative

and false-positive rates (Ritchie et al., 2009; Zhu et al., 2015).

Meanwhile, some other approaches have also been developed to dis-

cover miRNA-disease associations based on the hypothesis that

miRNAs with similarity functions are often associated with similar

diseases and vice versa (Ding et al., 2016; Zeng et al., 2016). Chen

et al. (2012) used the miRNA similarity network to present a new

method for identifying disease miRNAs by using random walk with

restart. Mørk et al. (2014) predicted the potential associations be-

tween diseases and miRNAs by combining the linkages among

miRNAs, proteins and diseases. Luo et al. (2016a) developed a

transduction learning-based algorithm to prioritize disease-related

miRNAs, especially for those diseases that are associated with sparse

known miRNAs. By fully exploiting the characteristic of miRNAs in

the constructed miRNA network, Xuan et al. (2015) presented a

framework called MIDP. Their framework assigned different

weights for the different categories of nodes and adopted random

walk to predict disease-related miRNAs. Later on, they extended

their method to identify candidate miRNAs for those novel diseases

(Xuan et al., 2015). In addition, Chen et al. (2016) proposed another

method based on the between-scores and within-scores of each

miRNA-disease pair to prioritize disease miRNAs. More recently, Luo

and Qiu (2017) developed a Kronecker regularized least squares-based

method by integrating heterogeneous omics data for identifying dis-

ease miRNAs. However, most of these approaches strongly rely on the

known association information, and only a handful of them could be

applied to uncover the potential associations involving novel diseases

or miRNAs. Moreover, due to the lack of sufficient experimentally

validated interactions, it still remains a challenge to achieve significant

performance for prioritization of disease miRNAs.

Here, we develop a novel framework called GRNMF to infer the

unknown miRNA-disease associations in heterogeneous omics data,

which could work for both new diseases and miRNAs. GRNMF

fully exploits the semantic associations between diseases, the

weighted gene network, and the experimentally validated miRNA-

target gene interactions to quantify the similarities for diseases and

miRNAs. Distinct from previous approaches, to extend our method

to new diseases and new miRNAs, the weighted nearest neighbor

interaction profiles are constructed based on prior information to

assist both novel diseases or miRNAs and those with sparse known

associations for prediction of potential miRNA-disease associations.

Accumulated studies (Luo et al., 2016b; Hernando et al., 2016)

have demonstrated that matrix factorization technique is an

effective tool that has been successfully applied to recommender sys-

tems. Motivated by these, we formulate approved miRNAs, dis-

eases, and miRNA-disease associations as a recommender system,

and transform the problem of disease-related miRNA identification

into a recommender task. Thus, we adopt a graph regularized non-

negative matrix factorization (GRNMF) framework for potential

miRNA-disease association inference. The experimental results indi-

cate that GRNMF achieves superior performance compared with

other methods and can be effectively applied in the discovery of

missing or potential associations for novel diseases and miRNAs.

2 Materials and methods

2.1 Methods overview
To detect miRNA-disease associations that remain undiscovered, we

propose a novel method called GRNMF, which consists of three steps

(Fig. 1). First, the similarities for miRNAs and diseases are calculated

based on the collected data sources. Second, to extend GRNMF to

new miRNAs and diseases, a preprocessing step is performed to re-

duce reliance on validated miRNA-disease associations through the

addition of edges with intermediate interaction probability values

based on the weighted K nearest neighbor profiles (WKNNP). Finally,

the framework of graph regularized non-negative matrix factorization

is used to infer the potential associations.

2.2 Similarity measures
2.2.1 Disease similarity measure

In this work, we use the hierarchical directed acyclic graphs (DAGs)

to calculate the similarities between disease pairs as the same way in

Wang et al. (2010). DAGd¼ (d, Td, Ed) is a hierarchical DAG graph

Fig. 1. Overall workflow of GRNMF for discovering potential miRNA-disease

associations
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of disease d, where Td denotes the set of diseases, and Ed denotes the

set of links in the graph. The disease DAGs are obtained from

MeSH database. Subsequently, we can calculate the semantic contri-

bution of disease t to disease d as follows:

Dd tð Þ ¼ maxfD �Dd t0ð Þjt0 2 childrenof tð Þg; (1)

where D denotes the semantic contribution factor (D¼0.5) (Wang et al.,

2010). If a disease pair share a large part of DAGs, they would likely ob-

tain a higher similarity between them. The following equation is used to

evaluate the semantic similarity between disease di and disease dj:

Sd di; dj

� �
¼

P
t2Tdi

\Tdj
Ddi

tð Þ þDdj
tð Þ

� �
P

t2Tdi
Ddi

tð Þ þ
P

t2Tdj
Ddj

tð Þ ; (2)

where Ddi(t) and Ddj(t) are the semantic values of disease t related to

diseases di and dj, respectively.

2.2.2 MiRNA similarity measure

As a matter of fact, most of the existing miRNAs similarity measure-

ments are based on the overlap of miRNA-related diseases. Besides,

they also strongly rely on the available association information between

miRNAs and diseases (Zeng et al., 2016), which is usually not applic-

able to novel miRNAs. To solve these limitations, we develop a new

measurement to quantify the miRNA similarity by effectively integrat-

ing the experimentally verified miRNA-gene interactions as well as the

weighted gene functional interaction network. The gene functional

interaction network is downloaded from HumanNet (Lee et al., 2011),

which uses the associated log-likelihood scores (LLS) of each edge to

measure the strength of interaction between any two genes. First, we

normalize LLS(gi, gj) based on min-max normalization and obtain the

normalized similarity LLSN(gi, gj) between genes gi and gj as follows:

LLSN gi; gj

� �
¼

LLS gi; gj

� �
� LLSmin

LLSmax � LLSmin
; (3)

where LLSmin and LLSmax represent the minimum and maximum

LLS in HumanNet, respectively. Consequently, the similarity be-

tween genes gi and gj is given as follows:

S gi; gj

� �
¼

1; gi ¼ gj

0; e gi; gj

� �
62 HumanNet

LLSN gi; gj

� �
; e gi; gj

� �
2 HumanNet

;

8>><
>>:

(4)

where e(gi, gj) denotes the linkage between genes gi and gj.

Subsequently, we obtain the similarity between gene gt and gene set

G¼ {gt1, gt2, . . ., gtk} as follows:

S gt;Gð Þ ¼ max
1� i�k

S gt; gtið Þð Þ: (5)

After that, the functional similarity between miRNAs mi and mj is

defined in accordance with the BMA method (Wang et al., 2007),

which is calculated as follows:

Sm mi;mj

� �
¼
P

g2Gi
S g;Gj

� �
þ
P

g2Gj
S g;Gið Þ

jGij þ jGjj
; (6)

where Gi and Gj represent the gene sets associated with mi and mj,

respectively; and jGj represents the number of genes in G.

2.3 Weighted K nearest neighbor profiles for miRNAs

and diseases
Let M¼ {m1, m2,. . ., mn} and D¼ {d1, d2,. . ., dm} denote the set of n

miRNAs and m diseases, respectively. Y2Rn�m represent the

adjacency matrix of the original association network, where Yij¼1 if

miRNA mi has a known association with disease dj; otherwise

Yij¼0. The ith row vector of matrix Y, Y(mi)¼ (Yi1, Yi2,. . ., Yim), de-

notes the interaction profile for miRNA mi. The jth column vector

of matrix Y, Y(dj)¼ (Y1j, Y2j,. . ., Ynj), indicates the interaction pro-

file for disease dj. It is obvious that the values in these interaction

profiles of the novel miRNAs or diseases are all zeros, which may

lead to unsatisfactory performance in the prediction of the potential

associations between miRNAs and diseases.

Here, we perform a procedure for the construction of new inter-

action profiles to address the above-mentioned problem. For each

miRNA mq, its similarity with other K nearest known miRNAs

(with at least one experimentally verified association) and their cor-

responding K interaction profiles are utilized to obtain the following

interaction profile:

Ym mq

� �
¼ 1

Qm

XK

i¼1
wiY mið Þ; (7)

where m1 to mK are the miRNAs sorted in descending order based

on their similarity to mq; wi is the weight coefficient, and wi¼ai-

1*Sm(mi, mq), which means that a higher weight is assigned if

mi is more similar to mq. a2[0, 1] is a decay term, and

Qm¼
P

1�i�KSm(mi, mq) is the normalization term. In the same man-

ner, the new interaction profile for each disease dp can be deter-

mined as follows:

Yd dp

� �
¼ 1

Qd

XK

j¼1
wjY dj

� �
; (8)

where d1 to dK are the diseases sorted in descending order based on

the their similarity to dp; wj is the weight coefficient, and wj¼aj-1

*Sd(dj, dp). Qd is a normalization term, and Qd¼
P

1�j�K Sd(dj, dp).

Thereafter, we combine the above two matrices, Ym and Yd, ob-

tained from different data spaces, replace Yij¼0 with an associated

likelihood score, and then update the original adjacency matrix Y as

follows:

Y ¼ max Y;Ymdð Þ; (9)

where

Ymd ¼ a1Ym þ a2Ydð Þ=
X

ai i ¼ 1; 2ð Þ;

and ai is the weight coefficient. For simplicity, we assign the same

weight to the two parts, namely a1¼ a2¼1.

2.4 Graph regularized non-negative matrix factorization

for prediction of disease-associated miRNAs
2.4.1 Standard NMF

Non-negative matrix factorization (NMF) is an effective technique

and has been widely used for data representation (Hosoda et al.,

2009; Zheng et al., 2009; Huang and Zheng, 2006). It aims to find

two non-negative matrices whose product provides an optimal

approximation to the original matrix. Given the miRNA-disease

matrix Y2Rn�m, NMF can be decomposed into two matrices, that

is, W2Rn�k and H2Rm�k (k�min(n, m)), and Y�WHT. Here, we

mathematically formulate the problem of disease-related miRNA

prediction as the following objective function:

min
W;H
jjY �WHT jj2F s:t: W � 0;H � 0 ; (10)

where k.kF represents the Frobenius norm. The above objective func-

tion can be minimized using the iterative update algorithm proposed

by Lee et al. (1999).
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2.4.2 GRNMF

The standard NMF in Eq. (10) performs the learning in the

Euclidean space, which fails to discover the intrinsic geometrical

and discriminating structure of the data space (Li et al., 2016; Wang

et al., 2012; Yuan et al., 2016). To prevent overfitting and signifi-

cantly enhance the learning performance, we present a new objective

function through incorporation of the Tikhonov (L2) and graph

Laplacian regularization terms into the standard NMF framework

for miRNA-disease association prediction. The Tikhonov regular-

ization is used to ensure the W and H smoothness (Guan et al.,

2011), and the graph regularization mainly aims to guarantee a

part-based representation by fully exploiting the data geometric

structure (Cai et al., 2011). The optimization problem of GRNMF

can be formularized as follows:

minW;H jjY �WHT jj2F þ klðjjWjj2F þ jjHjj
2
FÞ

þ km

Xn

i;p¼1

jjwi �wpjj2Sm�
ip ;

þ kd

Xm
j;q¼1

jjhj � hqjj2Sd�
jq

s:t: W � 0;H � 0

(11)

where kl, km and kd are the regularization coefficients; wi and hj are

the ith and jth rows of W and H, respectively. Sd* and Sm* are the

sparse weight matrices, which are established using the geometrical

information of disease and miRNA data spaces (Sd and Sm), and

could effectively avoid noisy information to achieve more accurate

results. Then, Eq. (11) can be transformed into:

minW;H jjY �WHT jj2F þ kl jjWjj2F þ jjHjj
2
F

� �

þ kmTr WTLmW
� �

þ kdTr HTLdH
� �

;

s:t: W � 0;H � 0

(12)

where Tr (.) represents the trace of a matrix; Lm¼Dm-Sm* and

Ld¼Dd-Sd* are the graph Laplacian matrices for Sm* and Sd*

(Liu et al., 2014a), respectively; Dm and Dd are the diagonal matri-

ces whose entries are row (or column) sums of Sm* and Sd*,

respectively.

Recent studies on spectral graph and manifold learning theories

have demonstrated that local geometric structure can be effectively

modeled through the nearest neighbor graph on a scatter of data

points (Cai et al., 2011; Li et al., 2016; You et al., 2010).

Meanwhile, the miRNAs or diseases located in the same cluster tend

to behave more similarly. Therefore, we construct the graphs (Sm*

and Sd*) for miRNA and disease spaces based on the p nearest

neighbors and clustering information. As a graph clustering method,

ClusterONE (Nepusz et al., 2012) is utilized to detect clusters. The

graph for miRNA space is constructed, and the weight matrix Xm is

generated based on the miRNA similarity matrix Sm as follows:

Xm
ij ¼

1

0

0:5

i 2 N mj

� �
&j 2 N mið Þ & mi;mj 2 C

i 62 N mj

� �
&j 62 N mið Þ & mi;mj 62 C

otherwise

;

8>>>><
>>>>:

(13)

where N(mi) and N(mj) are the sets of p nearest neighbors of mi and

mj, respectively; C represents any one of the clusters obtained

through ClusterONE. Subsequently, we determined the matrix

Sm�for miRNAs as follows:

8i; jSm�
ij ¼ Xm

ij Sm
ij : (14)

By applying the same procedure for diseases, the matrix Sd* can be

obtained based on the disease similarity matrix Sd.

2.4.3 Optimization

To solve the optimization problem in Eq. (12), let U¼ [uik] and W¼
[wjk] be the Lagrange multipliers for the constrains wik�0 and hjk

0, respectively. The corresponding Lagrange function Lf of Eq. (12)

is defined as:

Lf ¼ Tr YYT
� �

� 2Tr YHWT
� �

þ Tr WHTHWT
� �

þ klTr WWT
� �

þ klTr HHT
� �

þ kmTr WTLmW
� �

þ kdTr HTLdH
� �

:

þ Tr UWT
� �

þ Tr WHT
� �

(15)

The partial derivatives of the above function with respect to W and

H are:

@Lf

@W
¼ �2YH þ 2WHTH þ 2klW þ 2kmLmW þ U

@Lf

@H
¼ �2YTW þ 2HWTW þ 2klH þ 2kdLdH þW:

(16)

Using the Karush–Kuhn–Tucker (KKT) conditions (Facchinei et al.,

2014) uikwik¼0 and wjkhjk¼0, the following equations are obtained

for wik and hjk:

� YHð Þikwik þ WHTH
� �

ik
wik þ klWð Þikwik

þ km Dm � Sm�ð ÞW½ 	ikwik ¼ 0

� YTW
� �

jk
hjk þ HWTW

� �
jk

hjk þ klHð Þjkhjk

þ kd Dd � Sd�� �
H

� �
jk

hjk ¼ 0:

(17)

Therefore, we determine the updating rules as follows:

wik  wik
YH þ kmSm�Wð Þik

WHTH þ klW þ kmDmWð Þik

hjk  hjk

YTW þ kdSd�H
� �

jk

HWTW þ klH þ kdDdHð Þjk
:

(18)

The nonnegative matrices W and H are updated based on Eq. (18)

until convergence. Finally, we obtain the predicted miRNA-disease

association matrix as Y*¼WHT, and prioritize the disease-related

miRNAs based on the entities in matrix Y*. In principle, the top-

ranked miRNAs in each column of Y* are more likely to be related

to the corresponding disease.

Algorithm 1 summarizes the procedure of GRNMF for miRNA-

disease association prediction.

3 Results and discussion

3.1 Data collection and preprocessing
We downloaded the relationships among diseases from MeSH

(https://www.nlm.nih.gov/mesh/), which includes 4663 diseases and

are adopted to estimate the disease semantic similarity based on

their hierarchical structures. Due to the relatively high false negative

242 Q.Xiao et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/2/239/4101940 by guest on 20 August 2022

Deleted Text: 2.4.2 GRNMF
Deleted Text: -
Deleted Text: -
Deleted Text: &hx2013;
Deleted Text: D
https://www.nlm.nih.gov/mesh/
Deleted Text: , 


and false positive rates of some miRNA target prediction programs,

we acquired the miRNA-gene interactions from experimentally veri-

fied databases, including miRTarBase (version 4.5) (Chou et al.,

2016), TarBase (version 6.0) (Vergoulis et al., 2012) and miRecords

(version 4.0) (Xiao et al., 2009). After the removal of duplicate

interactions, a total of 38 089 interactions between 12 422 genes

and 477 miRNAs are retained. We obtained the weighted gene

network from HumanNet (Lee et al., 2011), including 476 399

interactions between 16 243 genes. The experimentally verified asso-

ciations between miRNAs and diseases are derived from the latest

version of HMDD v2.0 (Li et al., 2014a), where 5424 associations

involving 378 diseases and 495 miRNAs are obtained after combing

multiple miRNA transcripts with the same mature miRNA as done

in Xuan et al. (2015). With the elimination of several irregularly

named diseases according to MeSH database and removal of those

miRNAs absent from the aforementioned three miRNA target data-

bases, 327 diseases and 351 miRNAs are retained for prediction.

Finally, the disease similarity matrix Sd2R327�327, the miRNA simi-

larity matrix Sm2R351�351, and the adjacency matrix Y2R351�327

(including 4887 known miRNA-disease associations) are obtained

for GRNMF-based disease miRNA prediction.

3.2 Comparison with other methods
3.2.1 Experimental settings

To systematically evaluate GRNMF performance on the collected

datasets, we perform 5-fold cross validation (CV) experiments and

compare it with the following methods: RLSMDA (Chen and Yan,

2014), MIDP (Xuan et al., 2015), MIDPE (Xuan et al., 2015) and

RWRMDA (Chen et al., 2012). In each 5-fold CV repetition, for a

given disease d, the known d-related miRNAs are randomly divided

into five subsets of equal size; then one subset is used as the test set,

and the remaining four subsets are utilized as the training set.

On the other hand, we implement other two types of CV experi-

ments under the following scenarios as in Pahikkala et al. (2015) to

investigate the prediction capability of our method in inferring po-

tential associations for those novel miRNAs and diseases with no

known association information: (1) CVd: CV on diseases, where all

disease interaction profiles (column vectors in matrix Y2Rn�m) are

divided into 5-folds, 20% of columns in Y are used as the test data,

while the remaining columns served as the training set in each

round; (2) CVm: CV on miRNAs, where all miRNA interaction pro-

files (row vectors in matrix Y2Rn�m) are divided into 5-folds, 20%

of rows in Y are used as the test data, while the remaining rows are

utilized as the training data. Note that CVd and CVm are mainly

focused on the predictions for novel diseases and miRNAs,

respectively.

In this paper, we perform CV experiments on the training dataset

to estimate the parameters. All parameter combinations are con-

sidered based on grid search. The optimal combination is deter-

mined from the following values: {50, 100} for k and {2�2, 2�1, 2
,

21} for kl. Subsequently, we set km¼kd and choose the two param-

eters from {0, 10�4, 10�3, 10�2, 10�1}. For WKNNP, the decay

value a is chosen from {0.1, . . ., 0.9, 1}, and the neighborhood size K

is selected from {1, 2, . . ., 5}. Meanwhile, we set p¼5 when the

graphs for miRNA and disease spaces are constructed based on Cai

et al. (2011) and Li et al. (2016). The Supplementary Material illus-

trates more detailed information about the parameters. To ensure a

fair comparison, the parameters in the compared methods are set to

their default values in accordance with the authors’ recommenda-

tions (gM¼gD¼1 and w¼0.9 for RLSMDA, rQ¼0.4 and rU¼0.1 for

MIDP, a¼0.9 and c¼0.8 for MIDPE and r¼0.9 for RWRMDA).

We utilize the latest version databases and recalculate the similarity

of any disease pairs or miRNA pairs considering that the compared

methods adopted different database versions.

3.2.2 Cross validation

To obtain a fair and convincing comparison, we test 13 common

diseases associated with at least 80 verified associations under CV

setting as done in Xuan et al. (2015). Here, the construction of new

interaction profiles as introduced in Section 2.3 is related to the

known miRNA-disease associations. Therefore, it is necessary to re-

calculate them and obtain different weighted matrix Ymd to update

original adjacency matrix Y in each repetition of CV experiment. As

shown in Figure 2A, the AUC values of GRNMF, RLSMDA, MIDP,

MIDPE and RWRMDA are 0.869, 0.762, 0.825, 0.813 and 0.802,

respectively. GRNMF achieves the best performance, and its average

AUC values are 10.7, 4.4, 5.6 and 6.7% higher compared with the

Algorithm 1 GRNMF Algorithm

Input: Matrices Y2Rn�m, Sm2Rn�n and Sd2Rm�m, decay term

a, sub-space dimensionality k, neighborhood sizes K and p,

regularization coefficients kl, km and kd.

Output: Predicted association matrix Y*.

1.randomly initialize two non-negative matrices W2Rn�k and

H2Rm�k.

2.M ¼ fm1; . . . ;mng;D ¼ fd1; d2; . . . ; dmg;
3. for each miRNAmq 2M do

4. V ¼ KNN mq;K; S
m

� �
; //KNN(mq, K, Sm) is the function to

obtain the K known nearest neighbors of mq in matrix Sm in

descending order

5. for i 1 to K do

6. wi ¼ ai�1Sm mq;mi

� �
; //mi 2 V

7. end for

8. Qm ¼
PK

i¼1 Sm mq;mi

� �
;

9. Ym mq

� �
¼
PK

i¼1 wiY mið Þ=Qm;

10. end for

11. for each disease dp 2 D do

12. U ¼ KNN dp;K; S
d

� �
;

13. for j 1 to K do

14. wj ¼ aj�1Sd dp; dj

� �
; // dj 2 U

15. end for

16. Qd ¼
PK

j¼1 Sd dp; dj

� �
;

17. Yd dp

� �
¼
PK

j¼1 wjY dj

� �
=Qd;

18. end for

19. Ymd ¼ a1Ym þ a2Ydð Þ=
P

ai i ¼ 1;2ð Þ;
20. Y ¼ maxðY;YmdÞ;
21. construct matrices Sm*, Sd* from Sd, Sm;

22.repeat

update W and H by the following rules:

wik  wik
YH þ kmSm�Wð Þik

WHTH þ klW þ kmDmWð Þik

hjk  hjk

YTW þ kdSd�H
� �

jk

HWTW þ klH þ kdDdHð Þjk
23.until convergence

24. Y� ¼WHT ;

25. return Y*.
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other four computational methods. Table 1 lists the AUC values of

the 13 diseases, and GRNMF outperforms other methods for all the

13 diseases. Meanwhile, Supplementary Figure S1 displays the re-

sults measured through AUC within the top k candidates, and the

performance of GRNMF is superior to other models. Moreover, we

estimate the performance using recall, which calculates the percent-

age of correctly discovered true associations at different top-ranked

thresholds under CV. Figure 2B and Supplementary Table S1 exhibit

the comparison results, which also obtained the same result. In add-

ition, we first check the AUC normality with regard to the selected

diseases using Shapiro-Wilk test, and the QQ (quantile-quantile)

plots were given in Supplementary Figure S2. We then measure the

statistical significance based on the paired t-tests. Table 2 displays

the P-values. The result demonstrates that GRNMF is significantly

better than other methods (P-value<0.05).

In principle, the top-ranked prediction results are more import-

ant than those obtained from the other portions. We use all the

known associations as the training data, and count the number of

correctly retrieved known associations under various top-ranked

thresholds. Usually, the prediction model is more effective if most

true associations are obtained from the top portions. As shown in

Figure 3A, as expected, our proposed method is superior compared

with RLSMDA, MIDP, MIDPE and RWRMDA under different

thresholds. For example, among all of the 4887 known associations,

GRNMF correctly predicted 75.2% (or 3673) and 92.6% (or 4524)

of them at the top 50 and 100, whereas the values of the second best

method (MIDP) are 73.6 and 89.8%, respectively, suggesting that

GRNMF is more efficient in recovering experimentally validated as-

sociations with a lower false positive rate.

In summary, these results demonstrated the powerful ability of

GRNMF in prioritizing disease-related miRNAs. This finding is

reasonable because our method adopts the novel similarity measure-

ments, which are totally independent from these known miRNA-

disease associations and different from the measurements utilized by the

compared approaches. In addition, our method performs a preprocess-

ing step (WKNNP) to reconstruct the matrix Y before non-negative

matrix factorization, which could supply additional association infor-

mation and help to substantially improve the prediction results.

3.2.3 Performance on predicting miRNA-disease associations for

novel diseases and miRNAs

The cross validation experiments under CVd and CVm are per-

formed to further verify the prediction ability of GRNMF for novel

diseases and miRNAs. Given that RWRMDA and MIDP could not

predict miRNA candidates for those novel diseases, we only com-

pare GRNMF with RLSMDA and MIDPE under the CVd setting.

On the other hand, the miRNA similarity measurements of all the

compared methods invariably make use of the known miRNA-

disease associations, which result in those novel miRNAs becoming

isolated, and thus, they could not be used for prediction by the com-

pared methods. Meanwhile, our proposed method could work for

both new diseases and miRNAs. Therefore, the experiment under

the CVm setting for GRNMF is conducted to further investigate its

ability to discover potential associations for novel miRNAs.

Fig. 2. (A) ROC curves for GRNMF and other approaches in miRNA-disease

association prediction for 5-fold cross validation. (B) The average recalls of all

the selected diseases at different top k ranking lists

Table 1. AUC values of GRNMF and other four compared methods for the 13 diseases

Disease name AUC

GRNMF RLSMDA MIDP MIDPE RWRMDA

Breast Neoplasms 0.885 0.791 0.831 0.815 0.816

Hepatocellular Carcinoma 0.844 0.722 0.769 0.751 0.753

Non-Small-Cell Lung Carcinoma 0.839 0.806 0.798 0.837 0.832

Renal Cell Carcinoma 0.826 0.716 0.809 0.780 0.787

Colorectal Neoplasms 0.866 0.765 0.824 0.824 0.813

Glioblastoma 0.868 0.775 0.814 0.773 0.772

Heart Failure 0.803 0.671 0.780 0.762 0.765

Lung Neoplasms 0.905 0.843 0.879 0.879 0.800

Melanoma 0.885 0.799 0.845 0.809 0.814

Ovarian Neoplasms 0.909 0.742 0.870 0.879 0.876

Pancreatic Neoplasms 0.936 0.786 0.877 0.876 0.832

Prostatic Neoplasms 0.898 0.730 0.827 0.814 0.810

Stomach Neoplasms 0.837 0.762 0.804 0.767 0.757

Table 2. P-values obtained through paired t-test of the AUCs of

GRNMF and other compared methods for the 13 diseases

RLSMDA MIDP MIDPE RWRMDA

P-values 5.49e-07 9.41e-07 9.92e-06 6.24e-06

Fig. 3. (A) Percentage of correctly retrieved known associations between

miRNAs and diseases for various ranking thresholds. (B) Performance com-

parison of selected diseases in terms of AUC values
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Supplementary Figure S3 displays the results obtained under

CVd for novel diseases and under CVm for novel miRNAs. As shown

in Supplementary Figure S3A, the average AUC values of GRNMF

and MIDPE are 0.802 and 0.809, respectively. MIDPE achieves

slightly better performance than GRNMF, and RLSMDA obtains

the worst AUC value of 0.674. In this case, all the three methods are

not as good as their own prediction performances under the CV set-

ting. In addition, GRNMF achieves higher recall values than

RLSMDA and MIDPE from the top 20 to the top 80 (Table 3),

which imply that our method can identify more known associations

in the top-ranked prediction portions. On the other hand, our

method still achieves good performance with an average AUC value

of 0.863 for those novel miRNAs under CVm, as displayed in

Supplementary Figure S3B. This could be attributed to the fact that

our proposed method fully exploits the interaction profile informa-

tion of other diseases with known related miRNAs to discover can-

didate miRNAs for a new disease, and the interaction profile

information of other miRNAs with known associated diseases is

integrated to predict potential associations for a new miRNA as

well. The above results imply that GRNMF has a powerful ability in

uncovering miRNA-disease associations for both new diseases and

miRNAs.

3.3 The effects of WKNNP on performance
We also investigate the effectiveness of the preprocessing step

(WKNNP) of GRNMF. The performances of the two methods

(GRNMF and GRNMF*) are evaluated for the 13 diseases (as men-

tioned in Section 3.2) under CV. For GRNMF, we use WKNNP to

update the original association matrix Y before implementing the

graph regularized non-negative matrix factorization, which aims to

add more interaction information to assist in the prediction of novel

miRNAs or diseases and those miRNAs or diseases with sparse

known associations. For GRNMF*, we directly perform the matrix

factorization for prioritizing disease miRNAs and ignore the prepro-

cessing step of WKNNP. The average AUC obtained by GRNMF

and GRNMF* are 0.869 and 0.821 (Supplementary Fig. S4), re-

spectively. Figure 3B illustrates the comparison of the 13 diseases,

and we can find that the performance of GRNMF is superior com-

pared with GRNMF*. For example, the AUC values achieved by

GRNMF for stomach neoplasms and prostatic neoplasms are 0.837

and 0.898, respectively, whereas the AUC values obtained by

GRNMF* for those diseases are 0.780 and 0.852, respectively. The

comparison results indicate that the WKNNP based on the nearest

neighbor information exhibits high influence on the prediction

performance.

3.4 Parameter sensitivity analysis
In terms of the machine learning algorithm, the optimal parameters

combination may differ from one experiment scenario to another,

which makes the sensitivity analysis for parameters more

complicated. In this section, we mainly focus on the subspace

dimensionality k and the neighborhood size K for GRNMF and per-

form the experiment under the CV setting. Supplementary Table

S2A and Supplementary Figure S5A show the impact of the sub-

space dimensionality k on the performance. We find that a better

prediction result will be achieved when the value of k is larger.

Furthermore, the average AUC value rapidly improves until k¼60

and then becomes almost stable with the increase of the dimension-

ality k. As for K, we vary its value from 1 to 10, and the results are

shown in Supplementary Table S2B and Supplementary Figure S5B.

The average AUC of GRNMF is 0.841 when K is set as 1, and the

best performance (AUC¼0.869) is obtained when K¼5. This result

further confirms the effectiveness of WKNNP in improving the

performance.

In addition, we explore the effect of the maximum number of it-

erations on performance. As shown in Supplementary Table S3, the

results indicate that GRNMF tends to converge within a few rounds

of iterations, and very limited improvement will be achieved if the it-

erations are further increased. Similarly, the percentage of correctly

retrieved known associations with different number of iterations for

various rank thresholds also demonstrated a similar outcome

(Supplementary Fig. S6).

3.5 Case studies
Case studies are conducted to further verify the capability of

GRNMF to detect novel miRNA–disease associations. Here, all the

known association information is used to make predictions, and the

unknown associations are treated as candidate set for validation.

Subsequently, the optimal parameters under the CV setting are

adopted to perform the experiment for GRNMF. For each disease,

the candidate miRNAs are ranked based on the prediction scores.

The potential miRNAs of all diseases predicted by our method are

provided in Supplementary Table S4. We use two public databases,

namely, dbDEMC (Yang et al., 2017) and miRCancer (Xie et al.,

2013), to confirm the predicted potential miRNAs for the selected

disease. Supplementary Table S5 lists the top 10 predicted miRNA

candidates for the three selected diseases. There are 8, 9 and 7 of 10

candidate miRNAs are confirmed to be associated with breast neo-

plasms, lung neoplasms and prostatic neoplasms by dbDEMC and

miRCancer, respectively. In addition, some candidates also had high

rankings in other methods. For instance, 7, 4 and 1 miRNAs have

also been identified through MIDP within the top 10 for the three

diseases, respectively (Supplementary Table S6). This finding sug-

gests that these miRNAs are expected to be associated with the dis-

eases. Meanwhile, some potential miRNAs are validated by the

literature. For example, hsa-mir-138 overexpression affected cell

proliferation in breast cancer (Denis et al., 2016), and the hsa-mir-

122 expression was shown to be dysregulated in lung neoplasms

(Keller et al., 2011). The association network of the top 20 predicted

miRNA candidates for the three diseases is shown in Figure 4, in

which some top-ranked candidates are observed to be related to one

or more diseases.

Moreover, we divided the candidate miRNAs of each disease

into two groups (‘top-ranked group’ vs. ‘bottom-ranked group’) ac-

cording to their rankings, and we then use the Fisher‘s exact test to

evaluate the statistical significance of the differences between the

two groups. As shown in Figure 5, we found that 77.6% and 47.1%

of miRNAs in the top-ranked group and bottom-ranked group were

reported to be involved in breast neoplasms by the two aforemen-

tioned public databases, respectively. Additionally, the number of

confirmed miRNAs in the top-ranked predictions was significant

Table 3. The average recalls for various methods under different

top k thresholds

Method Ranking threshold

Top20 Top40 Top60 Top80 Top100

CVd GRNMF 22.96% 45.03% 55.83% 68.03% 71.05%

RLSMDA 18.60% 26.14% 34.28% 40.35% 47.12%

MIDPE 21.19% 43.60% 51.86% 60.30% 72.56%

CVm GRNMF 50.06% 65.47% 75.51% 80.25% 83.75%
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than those from the bottom-ranked predictions (P-value¼6.46e-

05). Last but not least, the results shown that the number of con-

firmed predictions in the top-ranked groups of lung neoplasms

(P-value¼2.88e-08) and prostatic neoplasms (P-value¼1.45e-12)

were also significantly higher than the number of confirmed predic-

tions in the bottom-ranked groups. In summary, the prediction in-

stances further indicated that the effectiveness of GRNMF in

discovering potential miRNA-disease associations.

3.6 Predicting novel miRNA-disease associations
To further demonstrate the actual potential for miRNA-disease dis-

covery of GRNMF, we performed an additional experiment based

on the older version databases, and then adopted the latest version

of HMDD v2.0 as mentioned in Section 3.1 to validate those pre-

dicted potential miRNA-disease associations. We downloaded the

older version of HMDD (September-2009 Version) from the supple

mentary material of Wang et al. (2010), and obtained MeSH

(version 2009) from its online website. After preprocessing, 1326

known associations between 228 miRNAs and 137 diseases are re-

tained for prediction. All the predicted candidate miRNAs for 137

diseases are provided in Supplementary Table S7. Intriguingly, as

shown in Supplementary Figure S7, we found that most of the top-

ranked disease miRNA candidates could be directly confirmed by

the latest associations in HMDD. For example, 7 out of the top 10

predicted miRNAs of breast neoplasms have been validated by

HMDD (Table 4). The above observations imply that the proposed

method could effectively discover those experimentally validated

miRNA-disease associations in the latest version database.

4 Conclusions

Identifying disease-associated miRNAs contributes to decipher the

underlying pathogenesis of human diseases. In this study, we have

proposed a computational method, called GRNMF, for miRNA-

disease association prediction. Unlike other conventional computa-

tional approaches, GRNMF could effectively discover potential

associations for new diseases (or miRNAs) without any known

related miRNAs (or diseases). The main contribution of our work is

the development of novel similarity metrics through effective incorp-

oration of multiple heterogeneous information and the implementa-

tion of a preprocessing step, WKNNP, to replace the elements

(Yij¼0) in the original miRNA–disease matrix with likelihood

scores. Meanwhile, a novel integrative framework based on the

graph regularized matrix factorization has been proposed to predict

Fig. 5. Percentage of candidate miRNAs in the top-ranked groups and bot-

tom-ranked groups that have been experimentally confirmed to be involved

in the selected diseases

Table 4. The top 10 potential miRNA candidates detected by GRNMF based on the older version (2009) databases for the three selected

diseases

Cancer No. of miRNAs confirmed

by the latest HMDD

Top 10 ranked predictions

Rank miRNAs Evidences Rank miRNAs Evidences

Breast Neoplasms 7 1 hsa-mir-126 HMDD* 6 hsa-mir-7b HMDD*

2 hsa-mir-223 HMDD* 7 hsa-mir-150 miRCancer, dbDEMC

3 hsa-mir-130a miRCancer, dbDEMC 8 hsa-mir-181a HMDD*

4 hsa-mir-16 HMDD* 9 hsa-mir-106a miRCancer, dbDEMC

5 hsa-mir-7e HMDD* 10 hsa-mir-101 HMDD*

Lung Neoplasms 5 1 hsa-mir-195 miRCancer 6 hsa-mir-200b HMDD*

2 hsa-mir-106a dbDEMC 7 hsa-mir-107 HMDD*

3 hsa-mir-221 HMDD* 8 hsa-mir-16 miRCancer, dbDEMC

4 hsa-mir-92b dbDEMC 9 hsa-mir-15b miRCancer, dbDEMC

5 hsa-mir-127 HMDD* 10 hsa-mir-222 HMDD*

Prostatic Neoplasms 5 1 hsa-mir-155 miRCancer, dbDEMC 6 hsa-mir-24 miRCancer, dbDEMC

2 hsa-mir-34a HMDD* 7 hsa-mir-29a HMDD*

3 hsa-mir-372 miRCancer, dbDEMC 8 hsa-mir-18a miRCancer

4 hsa-mir-143 HMDD* 9 hsa-mir-150 miRCancer, dbDEMC

5 hsa-mir-15b HMDD* 10 hsa-mir-200b HMDD*

Note: HMDD* represent the newest version of HMDD (http://www.cuilab.cn/hmdd).

Fig. 4. Network of the top 20 predicted associations for breast neoplasms,

lung neoplasms and prostatic neoplasms via GRNMF
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disease-associated miRNAs, which also can be easily reused and

adapted in other relevant prediction problems (e.g. miRNA-gene

and disease–gene relationships).

The performance of our method is validated through cross valid-

ations and case studies on the collected datasets. The experiment re-

sults indicate that GRNMF can effectively improve performance

compared with other methods. Moreover, the findings of the experi-

ments under CVd and CVm also demonstrate that our method is a

powerful tool in uncovering potential associations for these novel

diseases and miRNAs. However, there are still some limitations that

require further research. First, it is a non-trivial work to determine

the optimal parameter combination for different biological datasets.

Second, our similarity measurement for GRNMF might not be opti-

mal in certain circumstances. Finally, the process on how to more

reasonably integrate different biological information to improve pre-

diction performance deserves further research.
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