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Abstract. In the last years, efforts in the pattern recognition field have been

especially focused on developing systems that use graph based representations.

To that aim, some graph repositories have been presented to test graph-matching

algorithms or to learn some parameters needed on such algorithms. The aim of

these tests has always been to increase the recognition ratio in a classification

framework. Nevertheless, some graph-matching applications are not solely

intended for classification purposes, but to detect similarities between the local

parts of the objects that they represent. Thus, current state of the art repositories

provide insufficient information. We present a graph repository structure such

that each register is not only composed of a graph and its class, but also of a pair

of graphs and a ground-truth correspondence between them, as well as their

class. This repository structure is useful to analyse and develop graph-matching

algorithms and to learn their parameters in a broadly manner. We present seven

different databases, which are publicly available, with these structure and

present some quality measures experimented on them.

Keywords: Graph database � Graph-matching algorithm � Graph-learning

algorithm

1 Introduction

In pattern recognition, benchmarking is the process of measuring the quality of the

representation of the objects, or the quality of the algorithms involved on comparing,

classifying or clustering these objects. The objective of benchmarking is to improve

performance of the involved object representations and pattern recognition algorithms.

Pattern recognition, through graph-based representations, has been developed through

the last forty years with great success and acknowledgement. Interesting surveys about

this subject are [1, 2] or [3]. The first error-tolerant graph matching algorithms were

published in 1983, [4, 5], and since then, several new algorithms have been presented.
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For this reason, in 2008, a specific database to perform benchmarking on graph

databases was published for the first time [6]. As authors reported, they presented such

database and published its paper with the aim of providing to the scientific community

a public and general framework to evaluate graph representations and graph algorithms

[7–9], such as error-tolerant graph matching, [10–15] learning the consensus of several

correspondences, [16–20], image registration based on graphs, [21, 22], learning

graph-matching parameters [23, 24], and so on. Note that a huge amount of methods

has been presented, and the previous list is simply a small sample of them. For a

detailed list of methods, we refer to the aforementioned surveys [1–3]. This database,

called IAM [25], has been largely cited and used to develop new algorithms. It is

composed of twelve datasets containing diverse attributed graphs, for instance, pro-

teins, fingerprints, hand written characters, among others.

With the same idea, another graph database had been previously published in 2001

[26, 27]. Nevertheless, the aim of this database [28] is to perform exact isomorphism

benchmarking and cannot be used to test error-tolerant graph matching since nodes and

edges are unattributed. It contains 166’000 graphs with very diverse graph sizes. Most

recently in 2015 [29], a new graph repository [30] was presented in order to compare

exact graph edit distance (GED) calculation methods, where data from [26, 31] was

collected and enhanced using low-level information.

Note that other papers have presented with new graph-based methodologies and,

with the aim of experimental reproducibility, reported their self-made databases and

made them public. This is the case of the one first presented in 2006 [32, 33]. It is

composed of attributed graphs extracted from image sequences taken from the CMU

repository [34]. Graph nodes represent salient points of some images and graph edges

have been generated through Delaunay triangulation or represent shape edges.

Registers of the aforementioned databases are composed of a graph and its class

(except for the one in [29] that incorporates some additional information). Thus, the

only quality measures that we can extract from the algorithms applied to these data-

bases are related on classification purposes. For instance, the usual measures are the

false positives, the false negatives and the recognition ratio.

In this paper, we present a new graph-database structure. Registers on this database

are composed of a pair of graphs, a ground-truth correspondence between them as well

as the class of these graphs. This ground-truth is independent of the graph-matching

algorithm and also on their specific parameters, since it has been imposed by a human

or an optimal automatic technique. Therefore, the quality measures that we can extract

not only are the ones related on classification, but also the ones related on the

ground-truth correspondence, such as the Hamming distance (HD) between the

obtained correspondence and the ground-truth correspondence. Moreover, some

graph-matching learning algorithms that need a given ground-truth correspondence

[19, 33, 35–37] could be applied and evaluated. We concretise this structure on seven

different databases, and we present some quality measures experimented on them.

Similar to the case of the IAM graph database repository [25], we divide the

databases in three sets, viz. learning, test and validation. In machine learning appli-

cations, the learning set is used to learn the database knowledge that is usually

materialised on the algorithms’ input parameters. The validation set is used for regu-

larisation purposes, that is, to tune the over-fitting or under-fitting of the learned
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parameters. Finally, the test set is used to test the quality measures of the methods

learned through the learning and the validation sets.

The rest of the paper is structured in two other sections. In the first one, we present

the graph repository and its benchmarks. In the second one, we conclude the paper.

2 The Graph Repository

The “Tarragona Repository” (publicly available at [38]) is described in this section,

which is divided into three sub-sections. In the first one, the general structure of the

whole databases is described. In the second one, we describe the current databases in

the repository. Note the aim of this paper is to define a new method to structure graph

databases and therefore, other databases could be included by the authors or other

researches in a near future. In the third sub-section, we summarise the main features of

each database and we present some experimental results performed on them.

2.1 General Structure

Databases in the “Tarragona repository” are composed of registers with a format

Gi
;G0i

; f i;Cið Þ. Attributed graphs Gi and G0i need to be defined in the same attribute

domain, but may have different orders. The ground-truth correspondence f i between the

nodes of Gi and G0i may have some nodes of Gi mapped to nodes of G0i, and other ones

mapped to a null node. Nevertheless, two nodes of Gi cannot be mapped to the same

node of G0i. The null node is a mechanism to represent that a node of Gi do not have to

be mapped to any node of G0i [10]. Note some nodes of G0i may not have been mapped

to any node of Gi through f i. Moreover, we impose both graphs to belong to the same

class. This is because we consider it has no sense to map local parts of objects that

belong to different classes. For instance, if graphs represent hand-written characters,

there is no ground-truth correspondence between an “A” and a “J”.

Our databases are composed of five terms: Name, Description, Learning, Test and

Validation. Name and Description are obvious, and Learning, Test and Validation are

the three common datasets to perform benchmarking.

We present in [38], together with these databases, the following Matlab functions:

– Load Register Database; Set;Registerð Þ: Returns the register Register in the data-

base Database and the set Set that accepts three values: Learning, Test or

Validation. The output has the format Gi
;G0i

;Ci
; f i; I i; I 0ið Þ. Gi and G0i are both

graphs with their class Ci, f i is the ground-truth correspondence, and values I i and

I 0i are the indices of graphs Gi and G0i respectively. These indices are useful to

know which graphs have been mapped to other ones since any given graph can

appear in several registers although each time has to be mapped to a different graph.

– Load Graph Database; Set; Indexð Þ: it returns the graph in position Index. This

function is useful to test the classification ratio.

– Classification Database; Set1; Set2;Kv;Keð Þ: Returns the classification ratio and the

average Hamming distance given sets Set1 and Set2 in Database. The fast bipartite
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graph matching (FBP) [13] has been used to compute the GED [10] and the cor-

respondences. Parameter Kv is the insertion and deletion costs on the nodes, and

parameter Ke is the insertion and deletion cost on the edges.

– Plot Graph Graph; Imageð Þ: Plots the graph over the image where it was extracted

from, in the case that the graph represents an object on an image. This function

assumes that the first two node attributes are the image coordinates x; yð Þ.

With the aim of reducing the memory space, the Learning, Test and Validation sets

of each database have been logically structured as shown in Fig. 1. There is a main

vector, where each cell is composed of a structure of three elements. The first one

contains a graph, the second one assigns a class to this graph, and the third one

describes the correspondences from this graph to the rest of graphs. Considering the

graphs, the set of nodes and edges are defined as numerical matrices. The order of each

graph is N and nodes have A attributes. Graphs can have different orders N, but they

have the same number of attributes A given the whole database. Edges do not have

attributes. The existence of an edge is represented by a 1, and the non-existence is

represented by a 0. Classes are defined as string of characters. Each correspondence cell

f i;a maps the original graph Gi to another graph Ga and it is composed of a structure of

two elements that are the index of the input graph and the node-to-node mapping

vector. In the node-to-node mapping vector, there are natural numbers representing the

index node, and the value �1, which can appear in several positions of the corre-

spondence, represents a mapping to a null node.

Fig. 1. Scheme representing the distribution of the information contained in each set (learning,

validation or test) of a database.
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2.2 Databases

The databases that are currently available are:

2.2.1 Rotation Zoom

This database contains graphs that have been extracted from 5 classes that have 10

images of outdoors scenes. Per each class, images were taken from different angles and

positions. We were able to generate a correspondence between all the generated graphs

by using the image homography, which was provided on the original image database

[39]. Each node represents a salient point of the image. It is attributed with the position

of the salient point in the image x; yð Þ and also a 64-size feature vector obtained by the

SIFT extractor [40]. Edges are conformed using the Delaunay triangulation and do not

have attributes. An example with a graph of each class is shown in Fig. 2.

2.2.2 Palmprint

In order to construct this database, we used palmprint images contained in the Tsinghua

500 DPI Database [41], which currently has more than 150 subjects whose right and

left palm has been scanned a total of 8 times each. Using the first 20 palms of the

original database (10 right hands and 10 left hands), this database is constituted by a

total of 20 classes of 8 graphs each. Minutiae were extracted using the algorithm

proposed in [42] and graphs were constructed with each node representing a minutia.

Node attributes contain information such as the minutiae position, angle, type (ter-

mination or bifurcation) and quality (good or poor). Edges are conformed using the

Delaunay triangulation and do not have attributes. Finally, a correspondence between

all graphs of the same class is generated using a greedy matching algorithm based on

the Hough transform [43]. An example of a palmprint image and its graph is provided

in Fig. 3.

Fig. 2. The first image of each of the 5 classes and their graphs.
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2.2.3 Letters

The Letters graph database originally presented in [6] consists on a set of graphs that

represent artificially distorted letters of the Latin alphabet. For each class, a prototype

line drawing was manually constructed. These prototype drawings are then converted

into prototype graphs by representing the lines through undirected edges, and the

ending points of such lines through nodes. Attributes on nodes are only the

bi-dimensional position of the junctions and edges do not have attributes. Figure 4

shows four samples of letter A.

There are three variants of the database depending on the degree of distortion with

respect to the original prototype (adding, deleting and moving nodes and edges), viz.

low, medium and high. The ground-truth correspondence between the nodes is

well-known, because graphs of each class are generated from an original prototype.

Fig. 3. A palmprint and its graph.

Fig. 4. Different instances of letter A.
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2.2.4 Sagrada Familia 3D

The Sagrada Familia 3D database consist of a set of graphs, where each one represents

a cloud of 3D points with structural relations between them. Nodes represent 3D points

and their attributes are the 3D position. Edges represent proximity and do not have

attributes. These points have been extracted as follows. First, a sequence of 473 photos

were taken from different positions around the Sagrada Familia church in Barcelona

(Catalonia, Spain), pointing the camera at the centre of it. Using the whole sequence of

2D images, a 3D model of the monument was built through the Bundler method

[44, 45]. This method deducts a global cloud of 3D points of a central object using the

salient points of the set of 2D images. Moreover, it also returns the correspondence

between the 3D points of the resultant model and the salient points of the 2D images.

Each graph in the database represents the 3D information of the salient points that

appear in each image. Figure 5 shows the process to generate the graphs. Red points

are the 3D model of Sagrada Familia, blue points are the different poses of the camera

that has captured the images of the model and black points represent the salient points

of images.

2.2.5 House-Hotel

The original CMU “house” and “hotel” databases consist of 111 graphs corresponding

to a toy house and 101 graphs corresponding to a hotel [46]. Each frame of these

sequences has the same 30 hand-marked salient points identified and labelled with

some attributes. Therefore, nodes in the graphs represent the salient points, with their

position in the image plus a 60-size feature vector using Context Shape (CS) as

attributes. Edges are unattributed and were constructed using the Delaunay triangula-

tion. In this database there are three sets of pairs of frames, considering as baseline the

number of frames of separation in the video sequence (Fig. 6).

Fig. 5. The process to generate Sagrada Familia 3D database. (Color figure online)
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2.3 Repository Summary

Table 1 summarises the main characteristics of the repository. The databases contained

have been selected due to the variability on their characteristics, such as the number of

nodes and edges, the number of classes, the type of attributes or the number of nodes

that the ground-truth correspondences maps to the null node. These differences directly

influence on the behaviour of the implemented algorithms and therefore, these data-

bases can be used to analyse different situations and arrive to interesting conclusions,

such as whether the functionality of certain methodology could be better than another,

given a determined situation.

Fig. 6. Different images of each of the two classes and their graphs.

Table 1. Summary of the characteristics of each database.

Database Rotation

zoom

Palmprint Letter Sagrada

Familia

House-
HotelLow Med High

Number of graphs Train 20 80 750 750 750 136 71

Validation 10 0 750 750 750 136 71

Test 20 80 750 750 750 135 70

Number of
correspondences

Train 80 320 37500 37500 37500 18496 2627

Validation 40 0 37500 37500 37500 18255 2627

Test 80 320 37500 37500 37500 18255 2590

Number of classes 5 20 15 15 15 1 2

Number of node attributes 66 5 2 2 2 3 62

Attributes’ description (x,y)

64 SIFT
(x,y)

1 Angle
1 Type
1 Quality

(x,y) (x,y,z) (x,y)

60 CS

Avg. nodes 50 836.3 4.6 4.6 4.6 39.3 30

Avg. edges 277.4 4971.2 6.2 6.4 9 456.5 154.4

Avg. null correspondences 31.6 152.1 0.4 0.4 0.4 30.1 0

Max. nodes 50 1505 8 9 9 141 30

Max. edges 284 8962 12 14 18 1918 158

Max. null correspondences 50 619 4 5 5 139 0
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Table 2 shows the classification ratio and the average Hamming distance between

the computed correspondences and the ground-truth correspondences. It is the result of

running the Matlab function Classification Database; Test;Reference;Kv;Keð Þ available
in [36] (explained in Sect. 2.1). As commented, the FBP [13] has been used to compute

the GEDs [10] and the correspondences. Insertion and deletion cost on nodes, Kv, and

insertion and deletion cost on edges, Ke, have been deducted through the learning

algorithm presented in [37]. The aim of this table is not to report the best achieved

results but simply to show an example of a specific graph-matching algorithm and

learning algorithm. We encourage other researches to share their results, while showing

these ones as a starting point.

3 Conclusions

We have presented a publicly available graph repository to perform benchmarking on

graph algorithms such as graph matching, graph clustering, leaning consensus corre-

spondence or parameter learning. The main feature of this repository is that registers of

these databases do not have the classical structure composed of a graph and its class,

but are composed of a pair of graphs, their class and the ground-truth correspondence.

We want this repository not to be seen as a concluded project, but a dynamic one, in

which other researches contribute with more graph databases. Moreover, we have

presented some classification ratios and Hamming distance on these databases, given

some specific algorithms and parameterisations. For this aspect as well, we invite other

researches to contribute with more results and therefore, to extend and disseminate the

results obtained so far.

Table 2. Classification ratio and HD obtained with the FBP [13] given edit costs Kv and Ke,

which have been learned by a correspondence-based learning algorithm [37].

Database Edit costs Classification

ratio

Hamming

distanceKv Ke

Rotation

zoom

0.0325 −0.0027 1 0.8598

Palmprint 210 5 0.85 0.4763

Letter Low 1 1 0.9453 0.9096

Med 1 1 0.8667 0.8382

High 1 1 0.8080 0.8303

Sagrada

Familia

0.05 0.05 – 0.7439

House-

Hotel

1000 1 1 0.8598
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