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1. Introduction

In this chapter, we look at the spectral null codes from another angle, using graph theory,
where we present a few properties that have been published. The graph theory will help us
to understand the structure of spectral null codes and analyze their properties differently.

Graph theory [1]–[2] is becoming increasingly important as it plays a growing role in electrical
engineering for example in communication networks and coding theory, and also in the
design, analysis and testing of computer programs.

Spectral null codes [3] are codes with nulls in the power spectral density function and they
have great importance in certain applications such as transmission systems employing pilot
tones for synchronization and track-following servos in digital recording [4]–[5].

Yeh and Parhami [6] introduced the concept of the index-permutation graph model, which
is an extension of the Cayley graph model and applied it to the systematic development
of communication-efficient interconnection networks. Inspiring the concept of building a
relationship between an index and a permutation symbol, we make use in this chapter of the
spectral null equations variables in each grouping by representing only their corresponding
indices in a permutation sequence form. In another way, these indices will be presented by a
permutation sequence, where the symbols refer to the position of the corresponding variables
in the spectral null equation.

Presenting a symmetric-permutation codebook graphically, Swart et al. [7] allocated states to
all symbols of a permutation sequence and presented all possible transpositions between these
symbols by links as depicted for a few examples in Fig. 1 [7].

The Chapter is organized as follows: Section II introduces definitions and notations to be
used for spectral null codes. Section III presents few graph theory definitions. Section IV
presents the index-graphic presentation of spectral null codes. Section V makes an approach
between graph theory and spectral null codes where we focus on the relationship between
the cardinalities of the spectral null codebooks and the concepts of distances in graph theory
and also we elaborate the concept of subgraph and its corresponding to the structure of the
spectral null codebooks. We conclude with some final remarks in Section VI.
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Fig. 1. Graph representation for permutation sequences

2. Spectral null codes

The technique of designing codes to have a spectrum with nulls occurring at certain
frequencies, i.e. having the power spectral density (PSD) function equal to zero at these
frequencies, started with Gorog [8], when he considered the vector X = (x1, x2, ..., xM),
xi ∈ {−1,+1} with 1 ≤ i ≤ M, to be an element of a set S, which is called a codebook of
codewords with elements in {−1,+1}. We investigate codewords of length, M, as an integer
multiple of N, thus let

M = Nz,

where N represents the number of groupings in the spectral null equation and z represents
the number of elements in each grouping. The values of f = r/N are frequencies at spectral
nulls (SN) at the rational submultiples r/N [9]. To ensure the presence of these nulls in the
continuous component at the spectrum, it is sufficient to satisfy the following spectral null
equation [10],

A1 = A2 = · · · = AN , (1)

where

Ai =
z−1

∑
λ=0

xi+λN , i = 1, 2, . . . , N, (2)

which can also be presented differently as,

A1 =
A2 =
A3 =
...

AN =

z
︷ ︸︸ ︷

x1 + x1+N + x1+2N + x1+3N + · · · + x1+(z−1)N

x2 + x2+N + x2+2N + x2+3N + · · · + x2+(z−1)N

x3 + x3+N + x3+2N + x3+3N + · · · + x3+(z−1)N

...
...

...
...

xN + x2N + x3N + x4N + · · · + xzN .

(3)

If all the codewords in a codebook satisfy these equations, the codebook will exhibit nulls at
the required frequencies. henceforth we present the channel symbol −1 with binary symbol
0.
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Definition 2.1. A spectral null binary block code of length M is a subset Cb(M, N) ⊆ {0, 1}M of
all binary M-tuples of length M which have spectral nulls at the rational submultiples of the symbol
frequency 1/N.

Definition 2.2. The spectral null binary codebook Cb(M, N) is a subset of the M dimensional vector

space (F2)
M of all binary M-tuples, where F2 is the finite field with two elements, whose arithmetic

rules are those of mod-2 arithmetic.

For codewords of length M consisting of N interleaved subwords of length z, the cardinality of
the codebook Cb(M, N) for the case where N is a prime number is presented by the following
formula [10],

|Cb(M, N)| =
M/N

∑
i=0

(
M/N

i

)N

, (4)

where

(
M/N

i

)

denotes the combinatorial coefficient
(M/N)!

i!(M/N−i)!
.

Example 2.3. If we consider the case of M = 6, we can predict two types of spectral with different
nulls since N can take the value of N = 2 or N = 3. Their corresponding spectral null equations are
presented respectively as follows:

x1 + x3 + x5 = x2 + x4 + x6 (5)

x1 + x4 = x2 + x5 = x3 + x6 (6)

The corresponding codebooks for (5) and (6) are respectively as follows:

Cb(6, 2) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 1 0
0 0 1 0 0 1
0 0 1 1 0 0
0 0 1 1 1 1
0 1 0 0 1 0
0 1 1 0 0 0
0 1 1 0 1 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 0 1 0 0
1 0 0 1 1 1
1 0 1 1 0 1
1 1 0 0 0 0
1 1 0 0 1 1
1 1 0 1 1 0
1 1 1 0 0 1
1 1 1 1 0 0
1 1 1 1 1 1

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
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Fig. 2. Power spectral density of codebook N = 2, M = 6.
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Fig. 3. Power spectral density of codebook N = 3, M = 6.

and

Cb(6, 3) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 0 0 0 0
0 0 0 1 1 1
0 0 1 1 1 0
0 1 0 1 0 1
0 1 1 1 0 0
1 0 0 0 1 1
1 0 1 0 1 0
1 1 0 0 0 1
1 1 1 0 0 0
1 1 1 1 1 1

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The cardinalities of Cb(6, 2) and Cb(6, 3) are respectively equal to 20 and 10. This also can be easily
verified from (4).

We can see clearly the power spectral density Cb(6, 2) and Cb(6, 3) respectively presented in Figures 2
and 3 where the nulls appear to be multiple of 1/N as presented in Definition 2.1.

3. Graph theory: Preliminary

We present a brief overview of related definitions for certain graph theory fundamentals
which will be used in the following sections.

Definition 3.1. [1]–[2]

(a) A graph G = (V, E) is a mathematical structure consisting of two finite sets V and E. The elements
of V are called vertices, and the elements of E are called edges. Each edge has a set of one or two
vertices associated with it.

(b) A graph G
′
= (V

′
, E

′
) is a subgraph of another graph G = (V, E) iff V

′
⊆ V and E

′
⊆ E.
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Definition 3.2. [1]–[2] The graph distance denoted by Gd(u, v) between two vertices u and v of a
finite graph is the minimum length of the paths connecting them.

Definition 3.3. [1]–[2] The adjacency matrix of a graph is an M × M matrix Ad = [ai,j] in which
the entry ai,j = 1 if there is an edge from vertex i to vertex j and is 0 if there is no edge from vertex i to
vertex j.

4. Index-graphic presentation of spectral null codes

The idea of the index-graphic presentation of the spectral null codes is actually based on the
presentation of the indices of the variables in each grouping of the spectral null equation (1).

Definition 4.1. We denote by Ip(i, λ) the permutation symbol of the corresponding index of the
variable xi+λN in (2).

Ip(i, λ) = i + λN where

{

i = 1, 2, . . . , N,

λ = 0, 1, . . . , z − 1.
(7)

Definition 4.2. We denote by PIp
(M, N) the index-permutation sequence from a spectral null

equation for variables of length M = Nz as presented.

PIp
(M, N) =

N

∏
i=1

z−1

∏
λ=0

Ip(i, λ). (8)

The product sign in (8) is not used in its traditional way, but just to give an idea about the
sequence and the order of the permutation symbols.

Example 4.3. To explain the relationship between the spectral nulls equation, the index-permutation
sequences and their graph presentation, we take the case of M = 4 where we have only two groupings
since N = 2.

A1 = A2 → x1 + x3 = x2 + x4 (9)

We can see from (9), that the indices of the variables xi, using (8), are represented by the symbols
Ip(1, 0) = 1, Ip(1, 1) = 3, Ip(2, 0) = 2 and Ip(2, 1) = 4. The index-permutation sequence is then
PIp

(4, 2) = (13)(24).

An index-permutation symbol is presented graphically by just being lying on a circle, which it is called
a state. The state design follow the order of appearance of the indices in (9). The symbols are connected
in respect of the addition property of their corresponding variables in (9) as depicted in Fig. 4.

Spectral null codebooks have the all-zeros and all-ones codewords [10], where all the variables yi are
equal. We call the corresponding spectral null equation, which is x1 = x2 = x3 = x4 as the all-zeros
spectral null equation, which still satisfying (9) since it is a special case of it. If we substitute the
variables in (9) by using the all-zeros spectral null equation, we obtain the following relationships:

{
x1 + x3 = x2 + x4,
x1 = x2 = x3 = x4,

⇒

{
x2 + x3 = x1 + x4,
x1 + x2 = x3 + x4.

(10)

Equation (10) shows the resultant equations derived from (9) and the all-zeros spectral null equation.
Fig. 5 shows that the same graph G1 in Fig. 4 is actually a special case of the graph G2 when we take
into consideration the all-zeros spectral null equation.
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Since the obtained relationship between the variables x1 = x2 = x3 = x4 is a special case of the
equation representing the graph G2 in Fig. 4, we limit our studies to (1) and to its corresponding graph
to study the cardinality and other properties of the code.

Fig. 4 shows that the graph G, which is the general form of all possible permutations is the combinations
or the union, G = G1 ∪ G2, of other subgraphs related to the spectral null equation.

5. Graph theory and spectral null codes

In this section we will present certain concepts and properties for spectral null codes and try
to confirm and very them from a graph theoretical approach.

1

2

3

4 1
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3

4

1

2

34+⇔

x2 + x3 = x1 + x4 x1 + x2 = x3 + x4

⎧

⎨

⎩

x1 + x3 = x2 + x4

x1 = x2 = x3 = x4

⎫

⎬

⎭

Fig. 5. All-zero equation representation for Graph M = 4
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1

35

⇒

135

315

swap(1,3)swap(1,5)

531

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

135
315
531

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

Fig. 6. Index-permutation sequences

5.1 Cardinalities approach

5.1.1 Hamming distance approach

The use of the Hamming distance [11] in this section is just to refer to the number of places that
two permutation sequences representing the index-permutation symbols of each grouping Ai
of the spectral null equation differ, and not in the study of the error correction properties of
the spectral null codes.

To generate the permutation sequences, we start with any state representing an
index-permutation symbol in each grouping as appearing in (1). A permutation sequence
used as a starting point, contains the symbol from the start state followed by the rest of
symbols from the other states taking into consideration the order of the symbols as appearing
in (1). Fig. 6 shows the starting permutation sequence as 135. We swap the state-symbol with
the following state-symbol in the permutation sequence based on the k-cube construction [12].
We end the swapping process at the last state in the graph. We do not swap symbols between
the last state and the starting state for the reason to not disturb the obtained sequences at
each state. As an example, for M = 6, Fig. 6 depicts the swaps and shows the resultant
index-permutation codebooks for one grouping.

Definition 5.1. The Hamming distance dH(Yi, Yj) is defined as the number of positions in which the

two sequences Yi and Yj differ. We denote by Hd(M, N) the distance matrix, whose entries are the
distances between index-permutation sequences from a spectral null code of length M = Nz defined as
follows:

Hd(M, N) = [hi,j] with hi,j = dH(Yi, Yj). (11)

Definition 5.2. The Hamming distance between the same sequences or between sequences with non
connected symbols is always equal to zero.

Definition 5.3. The sum on the Hamming distances in the Hd(M, N) distance matrix is

|Hd(M, N)| =
M

∑
i=1

M

∑
j=1

hi,j. (12)
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In the following examples we consider different cases of number of groupings and number of
elements in each grouping and we discuss their impact on the resultant Hamming distance
and its relationship with the cardinalities of the spectral null codebooks.

Example 5.4. We consider the case of M = 6 where the number of groupings is N = 2 and the
number of variables in each grouping is z = 3. The corresponding spectral null equation is

A1
︷ ︸︸ ︷

x1 + x3 + x5 =

A2
︷ ︸︸ ︷

x2 + x4 + x6 (13)

The equation (13) is presented by the graph in Fig. 7, where the index-permutation symbols are
presented with their corresponding Hamming distances.

Hd(6, 2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

135 315 513 246 426 624

135 0 2 3 0 0 0

315 2 0 2 0 0 0

513 3 2 0 0 0 0

246 0 0 0 0 2 3

426 0 0 0 2 0 2

624 0 0 0 3 2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(14)

Each grouping in (13) is represented by a subgraph as depicted in Fig. 7. The Hamming distance matrix
for all possible index-permutation sequences is presented in (14), where “0” represents the Hamming
distance between same sequences or sequences with non connected symbols as defined in Definition 5.2.
From Definition 5.3, we have,

|Hd(6, 2)| = 28.

Example 5.5. For the case of M = 6 where N = 3 and z = 2, the corresponding spectral null equation
is

A1
︷ ︸︸ ︷

x1 + x4 =

A2
︷ ︸︸ ︷

x2 + x5 =

A3
︷ ︸︸ ︷

x3 + x6 . (15)

The equation (15) is presented by the graph in Fig. 8. Using the concept of graph distance and the
permutation sequences, we can have the distance values as depicted in Fig. 8.
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The corresponding subgraphs for each grouping A1, A2 and A3 are presented in Fig. 8.

Hd(6, 3) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

14 41 25 52 36 63

14 0 2 0 0 0 0
41 2 0 0 0 0 0
25 0 0 0 2 0 0
52 0 0 2 0 0 0
36 0 0 0 0 0 2
63 0 0 0 0 2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(16)

The Hamming distance matrix for all possible index-permutation sequences is presented in (16). From
Definition 5.3, we have,

|Hd(6, 3)| = 12.

Comparing the two results we have,

|Hd(6, 2)| > |Hd(6, 3)|.

Example 5.6. In this example we take the case of N not a prime number, where we have to suppose
that N = cd, where c and d are integer factors of N. The equation, which leads to nulls, is

Au = Au+vc,

u = 0, 1, 2, . . . , c − 1,

v = 1, 2, . . . , d − 1,

N = cd,

(17)

We consider the case of M = 8, where N can be whether N = 2 or N = 4. The corresponding graph of
each case is respectively depicted depicted in Fig. 9 as G1 and G2. From Definition 5.3, we have,

|Hd(8, 2)| = 40.

and

|Hd(8, 4)| = 16.

9A Graph Theoretic Approach for Certain Properties of Spectral Null Codes
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Comparing the two results we have,

|Hd(8, 2)| > |Hd(8, 4)|.
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Example 5.7. In the case of M = 12, we have four combinations where the value of N could be N = 4,
N = 3, N = 2 or N = 6 as depicted in (17). In each case we have a graph representing the spectral
null equation as depicted in Fig. 10.

From Definition 5.3, we have,
|Hd(12, 2)| = 64,

|Hd(12, 6)| = 24,

|Hd(12, 3)| = 60,

and
|Hd(12, 4)| = 56.

Comparing all the results we have,

|Hd(12, 2)| > |Hd(12, 6)|,

and |Hd(12, 3)| > |Hd(12, 4)|.

Theorem 5.8. The sum on the Hamming distances for all index-permutation sequences is

|Hd(M, N)| =

⎧

⎨

⎩

4N, for z = 2,

2N(3z − 2), for z ≥ 3.

Proof. Since the matrix Hd(M, N) is clearly symmetric, we can just prove half of the results
of the theorem and then the final will be the double. For the case of z = 2 the proof is trivial
since we swap only two symbols in each index-permutation sequence. Thus the sum on the
distances is 4 × N. For the case of z ≥ 3 we have a cycle graph [1]-[2], where the number
of edges is equal to the number of vertices. Since we swap two symbols each time we move
from one state to another, the distance at each edge is equal to two, except for the last edge
connecting the first state to the last state where all symbols are swapped and the distance is
equal to the length of the index-permutation sequences, which is z. The sum on the Hamming
distances for a cycle graph for each grouping is 2 × (z − 1) + z = 3 × z − 2. Thus the result on
the sum of the Hamming distances in the matrix is 2 × N × (3 × z − 2).

5.1.2 Graph-swap distance approach

The length of each grouping Ai, which is equal to the value of z plays an important role in
cardinalities of the corresponding codebooks. We make use of the graph distance theory to
see how z also plays an important role in the value of the graph distance.

Definition 5.9. The graph-swap distance denoted by Gd between two index-permutation symbols
represented by the vertices u and v of a finite graph is the minimum number of times of swaps that
symbol u can take the position of symbol v in the graph.

Definition 5.10. The graph-swap distance between the same index-permutation symbol or between
non connected symbols is always equal to zero.

Definition 5.11. We denote by MGd
(M, N) the graph-swap distance matrix, whose entries mi,j are

the graph distances between two index-permutation symbols from a spectral null code of length M =
Nz.

11A Graph Theoretic Approach for Certain Properties of Spectral Null Codes
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Definition 5.12. The sum on the graph-swap distances in the MGd
(M, N) distance matrix is

|MGd
(M, N)| =

M

∑
i=1

M

∑
j=1

mi,j. (18)

Example 5.13. We consider the case of M = 8 with N = 2 or N = 4, the corresponding graph-swap
distance matrices are respectively as

MGd
(8, 2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 3 4 5 6 7 8

1 0 0 1 0 2 0 1 0

2 0 0 0 1 0 2 0 1

3 1 0 0 0 1 0 2 0

4 0 1 0 0 0 1 0 2

5 2 0 1 0 0 0 1 0

6 0 2 0 1 0 0 0 1

7 1 0 2 0 1 0 0 0

8 0 1 0 2 0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, and MGd
(8, 4) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 3 4 5 6 7 8

1 0 0 0 0 1 0 0 0

2 0 0 0 0 0 1 0 0

3 0 0 0 0 0 0 1 0

4 0 0 0 0 0 0 0 1

5 1 0 0 0 0 0 0 0

6 0 1 0 0 0 0 0 0

7 0 0 1 0 0 0 0 0

8 0 0 0 1 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

From Definition 5.12, we have |MGd
(8, 2)| = 32 and |MGd

(8, 4)| = 8. where we can see clearly that

|MGd
(8, 2)| > |MGd

(8, 4)|.

Theorem 5.14. The sum on the graph distances for all index-permutation symbols is

|MGd
(M, N)| =

⎧

⎨

⎩

(
z
2

)2
M, for z even,

z2−1
4 M, for z odd.

Proof. The graphs that we are using are cycle graphs. As long as we go through the edges
of a graph the graph distance is incremented by one. When z is even, the first state has the
farthest state to it located at z

2 . So the graph distances from the first state to the z
2 state are in

a numerical series of ratio one from one to z
2 . From the state at the position z

2 − 1 till the first
state, the graph distances are in a numerical series of ratio one from one to z

2 − 1. Adding the

two series we get the final sum equal to
(

z
2

)2
M. Same analogy for the case of z as odd with a

numerical series from one till z−1
2 .

5.1.3 Adjacency-swap matrix approach

We introduce the adjacency-swap matrix inspired by graph theory as follows.

Definition 5.15. The adjacency-swap matrix of index-permutation symbols is an M × M matrix
NAd

(M, N) = (ni,j) in which the entry ni,j = 1 if there is a swap between an index symbol i and an
index symbol j and is 0 if there is no swap between index symbol i and index symbol j as presented in
each grouping of a spectral null equation.

12 New Frontiers in Graph Theory
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Example 5.16. For the case of M = 6 with N = 2 or N = 3, the corresponding adjacency-swap
matrices are

NAd
(6, 2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 2 3 4 5 6

1 0 0 1 0 1 0
2 0 0 0 1 0 1
3 1 0 0 0 1 0
4 0 1 0 0 0 1
5 1 0 1 0 0 0
6 0 1 0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, and NAd
(6, 3) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 2 3 4 5 6

1 0 0 0 1 0 0
2 0 0 0 0 1 0
3 0 0 0 0 0 1
4 1 0 0 0 0 0
5 0 1 0 0 0 0
6 0 0 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

We can see that |NAd
(6, 2)| = 12 > |NAd

(6, 3)| = 6.

M N z |Cb(M, N)| |Hd(M, N)| |MGd
(M, N)| |NAd

(M, N)|
6 3 2 10 12 4 6
6 2 3 20 28 12 12

8 4 2 36 16 8 8
8 2 4 70 40 32 24

10 5 2 34 20 10 10
10 2 5 252 52 60 40

12 6 2 250 24 12 12
12 4 3 300 56 24 24
12 3 4 346 60 48 36
12 2 6 924 64 108 60

15 5 3 488 70 30 30
15 3 5 2252 78 90 60

Table 1. Graph Distances and Cardinalities of Different Codebooks

Theorem 5.17. The total number of swaps in an adjacency-swap matrix is

|NAd
(M, N)| = (z − 1)M

Proof. The proof is trivial as per grouping we have z index-permutation symbols. Thus we
have z − 1 ones in each row of the matrix NAd

(M, N) which refer to the possible swaps of
each symbol with others in the same grouping. The total number of swaps is (z − 1)× M.

Table 1 presents few examples of the relationship between the cardinalities of spectral null
codes denoted by Cb(M, N) and their correspondences of graph distances. It is clear from
Table 1 that the cardinalities of different codebooks with the same length of codewords,
increase when the number of swaps increases. This results is also verified in Table 1 based
on the concept of distances from graph theory perspective.

5.2 Subsets approach

5.2.1 Subgraph theory

In this section we make use of one of the properties in graph theory related to the design of
subgraphs as presented in Definition 3.1.

13A Graph Theoretic Approach for Certain Properties of Spectral Null Codes
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The elimination of states from any graph corresponding to the index-permutation symbols is
in fact the same as eliminating the corresponding variables from the spectral null equation (1).
The elimination of the variables is performed in such a way that the spectral null equation is
always satisfied. This leads to the basic idea of eliminating an equivalent number of variable
equal to N as a total number from different groupings in the spectral null equation. This is
true when we eliminate only one variable from each grouping. In the case when we eliminate
t variables with 1 < t < z from each grouping, we have a total number of eliminated variables
of tN.

1

2
Cb(8, 2) =

N bits N bits
0 0 0 0 0 0 0 0

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Cb(4, 2)

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Cb(6, 2)

0 0 0 0 0 0 1 1
0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 1
0 0 0 0 1 1 0 0
0 0 0 0 1 1 1 1
0 0 0 1 0 0 1 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 1 1
0 0 0 1 1 1 1 0
0 0 1 0 0 0 0 1
0 0 1 0 0 1 0 0
0 0 1 0 0 1 1 1
0 0 1 0 1 1 0 1
0 0 1 1 0 0 0 0

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Cb(4, 2)

0 0 1 1 0 0 1 1
0 0 1 1 0 1 1 0
0 0 1 1 1 0 0 1
0 0 1 1 1 1 0 0
0 0 1 1 1 1 1 1
0 1 0 0 0 0 1 0
0 1 0 0 1 0 0 0
0 1 0 0 1 0 1 1
0 1 0 0 1 1 1 0
0 1 0 1 1 0 1 0
0 1 1 0 0 0 0 0
0 1 1 0 0 0 1 1
0 1 1 0 0 1 1 0
0 1 1 0 1 0 0 1
0 1 1 0 1 1 0 0
0 1 1 0 1 1 1 1
0 1 1 1 0 0 1 0
0 1 1 1 1 0 0 0
0 1 1 1 1 0 1 1
0 1 1 1 1 1 1 0

(19)

Example 5.18. We construct the code for the case of M = 8, with N = 2 and z = 4, which is
represented by the codebook Cb(8, 2) in (19) (we present only the half of the codebook because of space

14 New Frontiers in Graph Theory

www.intechopen.com



A Graph Theoretic Approach for Certain Properties of Spectral Null Codes 15

1

2

3

4

5

6

1

2

3

4

5

6

7

8

1

2

3

4

5

6

G8 G6

M = 8 M = 6

Fig. 11. Subgraph design from M = 8 to M = 6 with N = 2

limitation in the page) and which is designed from the spectral null equation presented as follows:

N=2
︷ ︸︸ ︷

z=4
︷ ︸︸ ︷

y1 + y3 + y5 + y7 =

z=4
︷ ︸︸ ︷

y2 + y4 + y6 + y8
. (20)

The corresponding graph for Cb(8, 2) is G8 as presented in Fig. 11.

From the spectral null equation (20) we eliminate the variables y7 and y8 using the addition property.
Thus we get,

N=2
︷ ︸︸ ︷

z=3
︷ ︸︸ ︷

y1 + y3 + y5 =

z=3
︷ ︸︸ ︷

y2 + y4 + y6 .
(21)

This resultant equation is the spectral null equation for the case of M = 6 with N = 2 and the
corresponding codebook is denoted by Cb(6, 2). Fig. 11 depicts the elimination of the states from a
graph theory perspective.

Based on the same approach, we eliminate the variables y5 and y6 from the equation (21). The resultant
spectral equation for the case of M = 4, with N = 2 and z = 2 is presented as follows:

N=2
︷ ︸︸ ︷

z=2
︷ ︸︸ ︷

y1 + y3 =

z=2
︷ ︸︸ ︷

y2 + y4
. (22)

The code generated from the spectral null equation (22) is denoted by the codebook Cb(4, 2) as depicted
in (19). The corresponding graph for Cb(4, 2) is G4 as presented in Fig. 12.

It is clear that from the codebook presented in (19), we have Cb(4, 2) ⊂ Cb(6, 2) ⊂ Cb(8, 2) in terms
of the existence of elements from the codebooks Cb(4, 2) and Cb(6, 2) in the codebook Cb(8, 2), which is
the same as for the subgraps where we have G4 ⊂ G6 ⊂ G8.

15A Graph Theoretic Approach for Certain Properties of Spectral Null Codes
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Fig. 12. Subgraph design from M = 6 to M = 4 with N = 2
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x1 + x3 + x5 = x2 + x4 + x6x1 + x3 + . . . = x2 + x4 + . . .

x5 x6
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Fig. 13. Supergraph design: From M = 4 to M = 6 with N = 2

5.2.2 Supergraph theory

The concept of supergraphs is totally opposite to what was introduced with the subgraphs.
Although this concept is not treated in graph theory because of its complexity and the
conditions that we should have to add vertices to any graph. This problem is already solved
in the design of spectral null codes since we are dealing with spectral null equations where it
is easy to add variables in all groupings in such a way the spectral null equations are satisfied.
Thus it results in the addition of the corresponding states of the symbols in the corresponding
permutation equation.

Definition 5.19. A spectral null preserving supergraph is an extension of a graph with a multiple of
N states, which always keeps the spectral null equation satisfied.

Fig. 13 presents the mechanism of the addition of states to an existing graph. The example of a
graph of six states, which is related to the case of M = 6, is actually an extension of the graph
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of four states which corresponds to the case of M = 4. An addition of a state corresponds to
the addition of its corresponding variable in a way to keep the equation (1) satisfied.

6. Conclusion

Spectral shaping technique that design codes with certain power spectral density properties
is used to construct codes called spectral null codes that can generate nulls at rational
submultiples of the symbol frequency. These codes have great importance in certain
applications like in the case of transmission systems employing pilot tones for synchronization
and that of track-following servos in digital recording. these codes are not confined to
magnetic recorders but they ware taken further to their utilization in write-once recording
systems.

In this investigation we have shown how the use of graphs can give a new insight into
the analysis and understanding the structure of the spectral null codes, where with incisive
observations to spectral null codebooks, we could derive important properties that can be
useful in the field of digital communications.

The relationship between the spectral null equations for our designed codes and the
permutation sequences corresponding to the indices of the variables in those equations have
lead to a very important derivation of certain properties based on graph theory approach.

The properties that we have presented could potentially lead to the discovery of other
interesting properties for specific applications like those that we have investigated in [13].

The use of certain graph theory properties helped in understanding certain properties of
spectral null codes. The introduction of the index-permutation sequences and the use of the
concept of distances gave us an idea about the structure and the design conditions of spectral
null codes.
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