
A GRAPH-THEORETIC APPROACH TO NETWORK CODING

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Anna Blasiak

August 2013

c© 2013 Anna Blasiak

ALL RIGHTS RESERVED

A GRAPH-THEORETIC APPROACH TO NETWORK CODING

Anna Blasiak, Ph.D.

Cornell University 2013

The network coding problem is a generalization of the maximum flow problem in which

nodes can, in addition to forwarding messages, send encodings of combinations of incoming

packets. This problem addresses the transmission of information, rather than physical goods,

as information can be scrambled and unscrambled in ways that have no physical analogue.

Network coding has been extremely successful in the setting of multicast. In this setting,

network coding is an improvement over flow both because coding can send information at a

higher rate and also because it can be computed efficiently.

Much less is known about network coding in other settings, and this gap in knowledge

is the focus of our work. Most significantly, we consider a problem called broadcasting with

side information problem (BSIP): a problem that considers network coding on a restricted

network structure but with arbitrary sending and receiving requests. The network structure

is so simple that the problem is expressed only in terms of its senders and receivers. To go

into more detail, the BSIP begins with a sender and sets of receivers and messages. Each

receiver possesses a subset of the messages and desires an additional message from the set.

The sender wishes to broadcast a message so that on receipt of the broadcast each user can

compute her desired message. The objective is to find a minimum length broadcast that

accomplishes this goal. The fundamental parameter of interest is β, the average broadcast

length for sufficiently long source messages.

We obtain improved bounds on β by strengthening and extending previously known

bounds. Additionally, we introduce a new class of bounds based on an information-theoretic

linear program. We show that many of these bounds behave nicely under various product

and sum operations. Most notably, β is sub-multiplicative, and the linear programming

bounds are super-multiplicative under the same product operation.

We use these new bounds and our understanding of them under products to obtain a

multitude of results. We are the first to pinpoint β precisely in nontrivial instances. We

do this for many classes of symmetric instances including cycles and those derived from

representable matroids.

We find polynomial gaps between β and its bounds in cases in which the largest previously

known gaps were small constant factors or entirely unknown. We show a polynomial gap

between β and the linear coding rate and also between β and its trivial lower bound. We

construct a family of instances where β is constant while its upper bound derived from

the näıve encoding scheme grows polynomially in the instance size. Finally, we give the

first nontrivial approximation algorithm for computing β and we give a polynomial-time

algorithm for recognizing instances with β = 2.

Apart from the BSIP, we consider the network coding variant of the maximum multi-

commodity flow problem in directed networks. We identify a class of networks on which

the coding rate is equal to the size of the minimum multicut and show this class is closed

under the strong graph product. We apply our result to strengthen the multicut bound for a

famous construction of Saks et al.. We determine the exact value of the minimum multicut

for their construction and give an optimal network coding solution with a matching rate.

BIOGRAPHICAL SKETCH

Born to James and Miriam Blasiak, Anna began life in the greater Pittsburgh area and grew

up in the D.C. suburbs. Her education, though somewhat bogged down by the requisite

studying, was filled with a preponderance of extracurricular activities: competitive swim-

ming, orchestra oboe, oil painting, just to name a few. Academically, her interests from the

start leaned towards the hard sciences, but a grueling two years of rewardless labwork at the

end of high school pushed her toward her true passion, even if she didn’t know it yet.

Luckily for Middlebury College, Anna rebuffed her obvious Ivy League upbringing, and

turned to a more intimate liberal arts setting to study mathematics. Luckily for Computer

Science, that same intimate setting introduced her to professor Daniel Scharstein, who taught

her that CS wasn’t just programming, it was the study of doing things efficiently. Not

wanting to waste any time, she picked up a computer science major immediately. During a

math-centric semester in Budapest, her zeal for graph theory and future course of research

crystallized.

Anna graduated from Middlebury in 2007 and left the cozy confines of Vermont for the

precipices of Ithaca to pursue a Ph.D. in Computer Science. At Cornell, she took up an

interest in ultimate frisbee and network coding, the latter of which she studied under the

supervision of Bobby Kleinberg, and the former she tried to hide from him. Anna is a

recipient of the AT&T Labs fellowship and the NSF and NDSEG graduate fellowships. She

plans to defend her thesis in July 2013 and begin work at Akamai Technologies.

iii

ACKNOWLEDGEMENTS

There are so many people who have helped me along the way to my Ph.D. that I cannot

possibly credit them all here. I offer an overarching ”thank you” to all my friends, family,

professors, and colleagues. However, I would be remiss not to call out a special few.

None of this work would have been possible without my collaborators, Bobby Kleinberg

and Eyal Lubetzky. It has been a pleasure to work with and learn from both of them.

They have endless knowledge on a multitude of topics and are never without insight into

tackling any problem. Bobby Kleinberg has additionally served as an amazing adviser and

role model. He’s patiently worked with me to become a better researcher. He has taught me

to think and write more formally, speak more clearly, and ask the right questions. Bobby’s

excitement for new research ideas and results has been an inspiration and motivation.

Next, Aaron Archer, a constant source of advice and my mentor and collaborator on

work absent here. Aaron has not only been there to help me decide which internships to

apply to but also to inform me of all the best places to travel, the best music to listen to,

the best of everything.

Then, the people here since day one, my parents, constantly supporting me and providing

every opportunity and advantage. They have talked me through countless crises of confidence

and indecision. Their unconditional love has given me the security and strength to brave

this tough journey and every other.

My brothers, Jonah and Sam, inspire me to be a scientist, and continually assure me

it’s the best, nay, only life path. Jonah’s ability to listen to my research and sort out my

thoughts can only be attributed to divine patience.

Last, and accordingly the least, is Jesse Simons, my love and my rock here at Cornell.

He has helped me through every tear - ones he caused, ones he didn’t, and ones where we

couldn’t tell the difference. He is constantly driving me to be the best person I can be

and to take life a little less seriously. He has been an amazing editor, and it’s likely that

every well-written paragraph and subtle joke in this dissertation is due to him. For that, he

iv

definitely deserves a high five.

Aside from people, I owe gratitude to the organizations that financially supported my

Ph.D.. Thanks, AT&T Labs Research fellowship, the National Science Foundation (NSF)

graduate fellowship, and National Defense and Science Engineering Graduate (NDSEG)

fellowship.

v

TABLE OF CONTENTS

Biographical Sketch . iii
Acknowledgements . iv
Table of Contents . vi
List of Figures . viii
List of Symbols . ix

1 Introduction 2
1.1 Previous Work: Network Coding . 5

1.1.1 How much benefit does coding provide over classical flow? 5
1.1.2 What type of codes suffice to give the maximum rate? 6
1.1.3 Is there an efficient way to compute the coding rate? 6

1.2 Broadcasting with Side Information . 9
1.2.1 Applications . 10
1.2.2 The Formal Problem Definition . 12
1.2.3 Previous Work . 15
1.2.4 Our Contributions . 17

2 Bounds on the Broadcast Rate 24
2.1 Graph Theoretic Bounds . 24
2.2 Linear-Algebraic Bounds . 28
2.3 Linear Program Bounds . 29

2.3.1 Linear Programming Bounds on the Linear Rate 37

3 Structured Broadcasting with Side Information Instances 40
3.1 Matroids . 40
3.2 Regular Graphs . 45

3.2.1 The broadcast rate of cycles and their complements 45
3.2.2 The broadcast rate of cyclic Cayley Graphs 47
3.2.3 The broadcast rate of specific small graphs 51

4 Products and Sums of Broadcasting with Side Information Instances 53
4.1 Lexicographic Products . 53

4.1.1 β Under Lexicographic Products . 54
4.1.2 LP bounds under Lexicographic products 55

4.2 Strong Products . 65
4.3 Sums . 68

5 Separating Broadcast Rate Bounds 72
5.1 Insufficiency of the Shannon Bound . 72
5.2 Strong Insufficiency of Vector Linear Coding 75

5.2.1 Separation via Fractional Minrank 75
5.2.2 Separation via LPs BF and BN . 76

5.3 Separation between α and β . 81
5.4 Separating the broadcast rate from clique-cover bound 85

vi

5.5 Triangle-free Graphs . 88
5.6 Additive Separations . 90

6 Approximating the Broadcast Rate 91
6.1 Approximating the broadcast rate in general networks 91

6.1.1 Extending the algorithm to networks with variable source rates . . . 94
6.2 Determining whether the broadcast rate equals 2 97

7 Beyond Broadcasting: Graph Products and The Network Coding Rate 102
7.1 Preliminaries . 104
7.2 Codes and Cuts . 106
7.3 Preserving Properties in Products . 108
7.4 Open Questions . 116

A Fano and non-Fano Inequalities 117
A.1 Proof of Lemma A.0.1 . 120
A.2 Proofs of Conditional Inequalities . 122
A.3 Proofs of Unconditional Inequalities . 123
A.4 Tightening Modification . 131

Bibliography 134

vii

LIST OF FIGURES

1.1 BSIP instance as a network coding problem. 11

3.1 A 3-regular cyclic Cayley graph on 4k vertices. 49

4.1 LP BA and its dual. 59

5.1 A representation of the Vámos matroid. 73
5.2 A representation of the Fano and non-Fano matroids. 77

viii

LIST OF SYMBOLS

BSIP instance parameters
G a BSIP or BSIP-G instance Definition 1.2.1
V set of vertices that index the message set Definition 1.2.1
E set of edges that index the receiver set Definition 1.2.1
f(j) the index of the message wanted by receiver j Definition 1.2.1
N(j) the indices of the set of messages known to receiver j Definition 1.2.1
S(j) N(j) ∪ {f(j)} Definition 1.2.1
T (j) V \ S(j) Definition 1.2.1
 decodes Definition 2.3.1
cl closure Definition 2.3.1
Σ message alphabet Definition 1.2.2
ΣP broadcast alphabet Definition 1.2.2

Broadcast Rates
β The broadcast rate Definition1.2.3
βk The broadcast rate over alphabet {0, 1}k Definition 1.2.2
β∗ The limiting broadcast rate of disjoint unions of G over al-

phabet {0, 1}
Equation (1.8)

λF The vector linear broadcast rate over finite field F Definition 1.2.6
λ The vector linear broadcast rate Definition 1.2.6
λF

1 The scalar linear broadcast rate over finite field F Definition 1.2.5
λ1 The scalar linear broadcast rate Definition 1.2.5

Upper bounds on the broadcast rate
χ (hyper)clique-cover number -
χf Fractional (hyper)clique-cover number Definition 2.1.6
minrk Minrank Definition 1.2.7

minrkF Minrank over finite field F Definition 1.2.7
minrkf Fractional minrank Definition 2.2.1

minrkF

f Fractional minrank over finite field F Definition 2.2.1

Lower bounds on the broadcast rate
α Minimum expanding sequence (independent set) Definition 2.1.1
b The Shannon bound Definition 2.3.9
bZY The Zhang-Yeung Lower Bound Definition 2.3.13
bF The Fano bound Definition 2.3.17
bN The non-Fano bound Definition 2.3.18

Linear Programs
B The shannon bound LP Definition 2.3.9
BZY The Zhang-Yeung Lower Bound LP Definition 2.3.13
BF The Fano bound LP Definition 2.3.17
BN The non-Fano bound LP Definition 2.3.18

ix

Subsets of R2n

Γn The set of vectors satisfying Shannon inequalities Definition 3.1.1
Γ∗
n The set of entropic vectors Definition 3.1.1

Γ
∗
n The closure of the set of entropic vectors on n random vari-

ables
Definition 3.1.1

Υn The set of dimension vectors on n subspaces Definition 3.1.1
ΥF

n The set of dimension vectors on n subspaces in a vector space
over F

Definition 3.1.1

Products and Sums
• lexicographic product of BSIP instances Definition 4.1.1
+ disjoint union of BSIP instances Section 4.3
⊠ strong product of BSIP instances Definition 4.2.2
⊗ The kronecker product of two matrices -

Matroids
M =
(E, r)

matroid with groundset E and rank function r Definition 3.1.1

GM BSIP instance associated to matroid M Definition 3.1.2
~r matroid rank vector Definition 3.1.1
cl closure Equation (3.1)
F fano matroid Definition 5.2.2
N non-fano matroid Definition 5.2.2

Other
P(I) the powerset of an index set I -
rank(A) the rank of a matrix A -
[n] the subset {1, 2, 3, . . . n} -
F finite field -
GF (2) Galois field of order 2 -
Fp finite field of order p for p prime -
char(F) The characteristic of the field F -

1

CHAPTER 1

INTRODUCTION

The problem of network coding was first considered by Ahlswede, Cai, Li, and Yeung [4]

in their paper “Network Information Flow” in the setting of multicast : given one source

and many sinks, how many messages can be sent to all of the sinks simultaneously? If

there is only one sink then fundamental theorems of network flow dictate that the amount

of information that can be sent from the source to the sink is equal to the capacity of the

minimum cut separating the source and sink. Moreover, it is possible to compute an optimal

solution efficiently. But the addition of more sinks changes the problem significantly. From

the network flow perspective, the answer to this question amounts to computing a fractional

packing of Steiner trees as opposed to the fractional packing of paths needed for only one

sink. Not only is the Steiner tree packing problem NP-hard [42], but the optimal solution is

also far from the cut upper bound, the minimum of all minimum source-sink cuts. It can be

a multiplicative factor of Ω
(

(log n/ log log n)2
)

smaller than the cut in directed graphs and

at least 36/31 > 1.16 and at most 1.55 in undirected graphs [15, 3].

Ahlswede, Cai, Li, Yeung [4] consider the multicast problem from a new perspective.

They generalize the classic flow perspective in which nodes can only forward messages to

the setting of network coding in which nodes can send encodings of combinations of incom-

ing packets. This problem differs from classical routing by specifically addressing the rate

of transmission of information: information, unlike physical goods, can be scrambled and

unscrambled in ways that have no physical analogue. A simple, commonly-used code is to

have a node send the XOR of all the packets it receives.

Ahlswede et al. [4] prove that in the multicast setting the new perspective of network

coding can yield huge throughput gains. In particular, they show that the optimal coding

rate is equal to the cut upper bound. Li et al. [50] show that this optimality doesn’t depend

2

on any complicated codes, in particular, the optimal rate can be achieved using only linear

codes. Moreover, in contrast to the NP-hard packing problem needed to solve the multicast

problem in the classical setting, Jaggi et al. [41] show that an optimal linear coding solution

can be found in polynomial time. Even more impressively, with high probability, the solution

in which each node outputs a random linear combination of its input is optimal [39]. These

results have successfully carried over to practical applications. There are many examples

where network coding provides faster transmission rates compared to traditional routing,

e.g. [44] details a recent success in wireless networks.

Such successes began the study of network coding and motivated questions regarding

coding in other settings. For examples, given a network flow optimization problem, how

much benefit does coding provide over classical flow? What type of codes suffice to give the

maximum rate? Is there an efficient way to compute the coding rate?

Much research has been dedicated to answering all three of these questions for various op-

timization problems. Before recounting previous work, we provide a more formal description

of the problem. The definitions are modified from [48].

Definition 1.0.1. An instance of the general network coding problem is specified by a graph

G = (V,E), a non-negative integer capacity c(e) for each edge e, a set I consisting of k

commodities, and for each commodity i ∈ I, a set of sources Src(i) ⊆ V and a set of sinks

Snk(i) ⊆ V .

In the multicast problem |I| = |Src(i)| = 1.

To define a coding solution we need to have a notion of what it means for a sink to

receive all of the requested information and for each node to be able to send all the requested

information.

Definition 1.0.2. Given functions f0, f1, . . . , fk on the same domain Σ, we say that

3

f1, f2, . . . , fk determines f0, or f0 is computable from f1, . . . , fk if for all x, x′ ∈ Σ such

that fi(x) = fi(x
′) for all i = 1, . . . , k, we have that f0(x) = f0(x

′).

Definition 1.0.3. A network coding solution specifies a source alphabets Σi, edge alphabets

Σe for each edge e ∈ E, a function fe :
∏k

i=1 Σi 7→ Σe such that for every k-tuple of messages

x = (x1, x2, . . . , xk) ∈ Σk:

1. For every edge (u, v) ∈ E, the function f(u, v) is computable from the functions on

in-edges to u and messages for which u is a source. 1

2. For every sink v for commodity i, the functions on in-edges to v together with the

messages for which v is a source are sufficient to determine the value of xi.

The coding rate is the supremum of logb (mini(|Σi|)) over b such that logb |Σe| ≤ c(e) for

all e ∈ E. It captures the amount of information received at each sink when we insist that

|Σi| = |Σj| for all commodities i, j and scale down the message alphabet to obey capacity

constraints.

A variation of the general network coding problem that is intensively studied is called

multiple unicast, the coding analogue of the concurrent multicommodity flow problem, a

fundamental problem in network flow theory. This special case is obtained by requiring

|Src(i)| = |Snk(i)| = 1 in Definition 1.0.1.

We now give a short overview of the previous work addressing our three guiding questions

in relation to the general network coding problem and the multiple unicast problem.

1In graphs with cycles this is not a sufficient characterization. One sufficient, but not necessary, char-
acterization is to additionally define an ordering on the edges and require that each function f(u, v) is
computable form the functions on in-edges to u preceding (u, v) in the ordering. See [11, 43, 36, 38, 48] for
more discussion on how to define coding for graphs with cycles.

4

1.1 Previous Work: Network Coding

1.1.1 How much benefit does coding provide over classical flow?

The utility of network coding for the directed and undirected versions of the multiple unicast

problem differs drastically. In the latter, the network coding rate is sandwiched between the

multicommodity flow rate and the sparsest cut, the integral solution to the dual of the

multicommodity flow linear program. It is known that the worst-case gap between these two

parameters, the flow-cut gap, is Θ(min(log n, log k)) where n is the number of nodes and k is

the number of source-sink pairs. Further, on large classes of graphs the flow and cut values

are known to coincide. For example, they coincide for k = 2 and certain planar graphs.

Thus, the benefit of coding over flow is known to be limited.

But it may be even more limited; no example is known for which the coding rate is larger

than the flow rate. In fact, Li and Li [51] predict that the flow rate and coding rate coincide

in what they named the undirected k-pairs conjecture. Jain et al. [43] and Adler et al. [1]

provide additional evidence for the conjecture, but it remains one of the most important

open problems in network coding. The importance stems, in part, from the conjecture’s

complexity-theoretic implications: for example, if true, it implies an affirmative answer to a

25-year-old conjecture regarding the I/O complexity of matrix transposition [1].

The multiple unicast problem in directed graphs has a much different story. There are

simple examples in which the coding rate achieves a rate that is a factor k and a factor Ω(n)

larger than the flow rate [51, 35]. Moreover, the flow-cut gap does not pose a limit on the

coding-flow gap. Here, and always, the coding rate is at least the flow rate, as coding is

a generalization of the flow problem. But, the sparsest cut is not an upper bound on the

coding rate, and in a strong sense: the coding rate can be a factor k larger than the sparsest

cut [4]. Even in instances when the coding rate is upper bounded by the cut, the flow-cut

5

gap is still not a limitation to huge throughput gains: the cut upper bound can be an Ω(k)

[60] and Ω̃(n1/7) [20] factor larger than the best flow. It is unknown how much smaller the

coding rate can be than the cut, and this is something we investigate in Chapter 7.

1.1.2 What type of codes suffice to give the maximum rate?

Linear codes can achieve the optimal solution for multicast, and the hope is that this holds

true for other demand structures, at least in an approximate sense, since linear solutions

are more practical and better understood. The literature classifies two types of linear codes:

scalar linear codes, in which messages are required to be elements of a finite field, and vector

linear codes, in which the messages are finite-dimensional vectors. Scalar linear codes suffice

for multicast, but they’re known to be insufficient for multiple unicast: non-linear coding

can be a polynomial factor better than scalar linear [54]. At first, the more powerful vector

linear coding was falsely conjectured to be sufficient [58]; Dougherty et al. [24] construct an

example with a non-linear code that exceeds the vector linear code by a factor of 11/10. Yet

this example leaves the possibility that vector linear codes could be a good approximation

to the optimal code. We resolve this question in the negative in Section 5.2 and show an

Ω
(

n
1

2
−ε
)

multiplicative gap between vector linear and non-linear coding.

1.1.3 Is there an efficient way to compute the coding rate?

Though there has been a significant amount of work addressing this problem almost no

progress has been made. It is unknown whether the multiple unicast problem is recursively

decidable. The problem’s potential undecidability stems from the fact that the functions

used for encoding messages on the edges of the network may depend on an arbitrary number

of bits of the data streams, giving rise to an infinite search space of solutions. Further, we

6

have developed no non-trivial approximation algorithm.

Failures in finding algorithms have come hand-in-hand with failures in finding hardness

results. There are no hardness results for the most general version of the problem with

arbitrary coding functions and alphabets; that is, we have not even excluded linear time

solvability. But there are a number of hardness results for restricted coding functions and

fixed alphabet sizes. Lehman and Lehman [49] show that computing the scalar linear capacity

of the multiple unicast problem is NP-hard via a reduction from 3-SAT. Langberg and

Sprintson [47] show that for a fixed alphabet finding a constant approximation to the general

network coding problem is hard assuming the unique games conjecture.

There has been a significant body of work devoted to finding upper bounds on the general

network coding problem in directed graphs. Finding a good upper bound on the optimal

solution value is a first step to most approximation algorithms. The upper bound gives a

value to which you can compare the solution value of the algorithm. It is important that

the maximum gap between the upper bound and the optimal solution is small because this

gap is a limit on the approximation ratio one can prove using this upper bound.

Most work on determining an upper bound takes the following approach. Regard each

edge of the network as defining a random variable on a probability space and associate to

each set of edges the Shannon entropy of the joint distribution of their random variables.

This gives us a vector of non-negative numbers, one for each edge set, called the entropic

vector of the network code. The closure of the set of entropic vectors of network codes forms

a convex set, and network coding problems can be expressed as optimization problems over

this set [64]. This set is characterized by two types of constraints.

The first constraint type is derived from the combinatorial structure of the network. Ye-

ung and Zhang [65] characterize this type of constraint for directed acyclic graphs: it captures

requirements (1) and (2) in the definition of a network coding solution (Definition 1.0.1) by

7

imposing a constraint for each node enforcing that the entropy of the node’s incoming edge

set equals the entropy of all of its incoming and outgoing edges. In cyclic graphs this is much

more challenging and various constraints have been discovered over the years [43, 36, 38, 46]

but there is not yet a complete classification.

The second type of constraint is purely information-theoretic. These constraints are

referred to as entropy inequalities or information inequalities, and they hold universally for

all n-tuples of random variables, regardless of their interpretation as coding functions on

edges of a network. Just as we can consider the entropic vector of a network code, we can

consider the entropic vector of an arbitrary set of n random variables. The set of all such

vectors in 2n dimensional space is denoted by Γ∗
n. Its closure is denoted Γ

∗
n and characterizing

it is equivalent to finding all possible information inequalities [64]. A related set of interest Γ,

a superset of Γ∗, corresponds to a region bounded by the Shannon-type inequalities, the set of

inequalities that can be derived from the non-negativity of conditional mutual information:

H(AC) + H(BC) −H(ABC) −H(C) = I(A;B|C) ≥ 0. Alternatively, they can be written

as the combination of the polymatroidal axioms: monotonicity (H(A) ≤ H(AB)), non-

negativity (H(A) ≥ 0), and submodularity (H(A) + H(B) ≥ H(AB) + H(A ∩ B)). For

n ≤ 3 it is known Γn = Γ
∗
n [66], but, for n > 3, Γn ⊃ Γ∗

n [67], so additional inequalities are

needed to describe the set of entropic vectors in general. Numerous papers ([57, 67, 25, 16, 55]

to name just a few) are devoted to deriving such inequalities. These so-called non-Shannon

Inequalities are not implied by Shannon inequalities and are valid for all entropic vectors.

But coming up with a complete characterization of the region has been elusive. Even for

n = 4 it is known that there are infinitely many such inequalities [57].

Just as Shannon inequalities are insufficient to characterize entropic vectors, they are

also insufficient in characterizing the optimal network coding solution. Dougherty et al.

[22] show a network coding instance in which the combinatorial inequalities described above

together with the Shannon inequalities do not give a tight bound on the coding rate. Fur-

8

thermore, obtaining a complete characterization of the capacity of network coding will imply

a characterization of Γ
∗

[17].

Rather than compute the capacity region, researchers interesting in bounding the network

coding rate more commonly attempt to extend the cut perspective of the flow problem.

Though the sparsest cut, an upper bound on the flow rate in the multicommodity flow

problem, isn’t an upper bound on the coding rate in directed graphs, entropy inequalities

show that the capacity of a cut that disconnects all sinks from all sources is an upper

bound on the network coding rate. There is work devoted to expanding that idea with more

complicated information-theoretic arguments [11, 35, 37, 46, 61]. However, almost all of

these bounds are known to be to be bad; each can be a factor n larger than the coding rate.

The bound iMeagerness is introduced in [37] and they show it can be logarithmically larger

than the coding rate. In Section 5.3 we show a polynomial separation.

Considering all of this previous work, one thing is clear: outside the multicast setting,

network coding is hard. The difficulty of the general problem has motivated interest in

broadcasting with side information or index coding, a special case of the network coding

problem introduced by Birk and Kol [9] with the most general demand structure but a

restricted network structure. It is interesting as a problem on its own,for its implications to

network coding, and also for its nice connections to graph theory.

1.2 Broadcasting with Side Information

An instance of the broadcasting with side information problem (BSIP) consists of a sender

and sets of users and messages. Each user possesses a subset of the messages and desires an

additional message from the set. The sender wishes to broadcast a message over a noiseless

channel so that on receipt of the broadcast each user can compute her desired message. The

9

objective is to find a minimum length broadcast that accomplishes this goal.

1.2.1 Applications

One motivating application for the problem is satellite transmission of large files (e.g. video on

demand), where a slow uplink may be used to inform the server of the side-information map,

namely the identities of the files currently stored at each client due to past transmissions.

The goal of the server is then to issue the shortest possible broadcast that allows every

client to decode its target file while minimizing the overall latency. Another application is to

optimize the recovery phase after a multicast transmission. After sending an IP multicast,

acknowledgments are sent back to the server confirming which packets were received. The

server now has an index coding problem at hand - each receiver has some set of packets

they initially wanted but got lost, and a set of packets they received. The server needs to

determine a short message to multicast so that all receivers get their required packets.

The BSIP is a special case of the general network coding problem. Given a BSIP instance,

the corresponding network coding problem is given by a graph with one node, ui for each

message i, one node vj for each receiver j, and two additional nodes w,w′. There is one

edge of finite capacity, that we call the bottleneck edge going from w to w′. There is a

infinite capacity edge from ui to w for all messages i and from w′ to vj for all receivers

j. Additionally, there is an infinite capacity edge between ui and vj if receiver j has side

information containing source message i. There is a commodity for each message i , with

source ui and sink vj for each receiver j desires message i. See Figure 1.1 for an illustration

of the reduction. The only interesting part of any solution to this network coding instance is

deciding what to send over the bottleneck edge: finding the optimal network coding rate is

equivalent to finding the minimum length message to send over this edge. The requirements

of the coding function on this edge are exactly the requirements of the broadcast message

10

w

w’

...

...

Sources

Receivers

Figure 1.1: BSIP instance as a network coding problem.

The edge (w,w′) is the bottleneck edge and the only finite capacity edge in the network. In

addition to the edges shown, there is an edge directly from source node i to receiver node j

if the receiver j has source i as side information.

in the corresponding BSIP instance.

BSIP seems to capture the instances in which network coding is the most powerful relative

to flow. Any BSIP instance with k messages corresponds, according to our mapping described

above, to a network coding problem in which the maximum flow has value 1/k for each

receiver (assuming the bottleneck edge has capacity one), as the only path connecting all

source-receiver pairs includes the bottleneck edge. The best network coding solution can use

the bottleneck edge much more efficiently. For example, if all receivers know all the messages

but the one they desire, sending the XOR of all messages along the bottleneck gives coding

rate 1 for each receiver. The receiver can obtain its desired message by subtracting from the

XOR all the messages it obtains from the other sources over infinite capacity links (the side

information in the BSIP).

11

More surprisingly, BSIP actually captures the difficulty of all network coding problems.

Recently, Effros, Rouayheb, and Langberg [26] show that every network coding instance can

be reduced to an equivalent BSIP instance. Though this reduction is not approximation

preserving, it does give a manageable way to solve the general network coding problem by

solving the ostensibly simpler BSIP.

BSIP is related to other coding problems as well. The topological interference alignment

problem is a coding problem that consists of wireless transmitters which each hold a message,

and a set of receivers who can hear certain transmissions. The goal is to find a protocol so

that each receiver can distinguish their desired message from the interference. Maleki et

al. [56] show that this problem is equivalent to a certain BSIP instance on the same set of

messages and receivers.

1.2.2 The Formal Problem Definition

Before recounting previous work, we establish a formal definition of BSIP as well as some

related problems of interest.

Definition 1.2.1. A BSIP instance is given by a directed hypergraph G = (V,E) where

V = [n] is the set of vertices, and E = [m] is the set of directed hyperedges. Each vertex

i corresponds to a message xi ∈ Σ, where |Σ| > 1. Each hyperedge j specifies the values

f(j) and N(j) and corresponds to a receiver Rj that is interested in one message, xf(j), and

knows some subset, {xi|i ∈ N(j)}, of the other messages. We will also use S(j) to denote

{f(j)} ∪N(j) and T (j) to denote V \ S(j).

Definition 1.2.2. A BSIP solution specifies a finite message alphabet Σ, broadcast alphabet

ΣP to be used by the server, and an encoding scheme E : Σn → ΣP such that, for any possible

values of x1, . . . , xn, every receiver Rj is able to decode the message xf(j) from the value of

12

E(x1, . . . , xn) together with {xi|i ∈ N(j)}. The minimum encoding length ℓ = ⌈log2 |ΣP |⌉

for messages that are t bits long (i.e. |Σ| = 2t) is denoted by βt(G).

As noted in [54], due to the overhead associated with relaying the side-information map

to the server, the main focus is on the case t ≫ 1.

Definition 1.2.3. The broadcast rate of a BSIP instance G is

β(G) := inf
Σ,ΣP

log |ΣP |
log |Σ| s.t. Σ and ΣP are alphabets of a BSIP solution (1.1)

Alternatively, the broadcast rate can be defined using βt.

β(G) := lim
t→∞

βt(G)

t
= inf

t

βt(G)

t
(1.2)

Note that both of these limits always exist [7]. This is interpreted as the average asymptotic

number of broadcast bits needed per bit of input, that is, the asymptotic broadcast rate for

long messages.

An important special case of the problem arises when there is exactly one receiver for

each message, i.e. m = n and f(j) = j for all j. Here the instance can be viewed as a special

case of multiple unicast, rather than the general network coding problem. In this case, the

side-information map N(j) is equivalently described as the binary relation of pairs (i, j) such

that j ∈ N(i). These pairs can be thought of as the edges of a directed graph on the vertex

set [n] or, in case the relation is symmetric, as the edges of an undirected graph. This special

case of symmetry allows us the following definition:

Definition 1.2.4. A broadcasting with side information problem on graphs (BSIP-G) in-

stance is given by an undirected graph G = (V,E) where each vertex v ∈ V corresponds to

a message xv and a receiver Rv that is interested in xv and knows {xu|(u, v) ∈ E}.

BSIP-G corresponds to the index coding problem introduced by Birk and Kol [9]. It is

extensively studied due to its rich connections with graph theory and Ramsey theory. These

13

connections stem from simple relations between broadcast rates and other graph-theoretic

parameters. Letting α(G) and χ(G) denote the independence and clique-cover numbers of

G, respectively, one has

α(G) ≤ β(G) ≤ β1(G) ≤ χ(G) . (1.3)

The first inequality above is due to an independent set being identified with a set of receivers

with no mutual information, whereas the last one is obtained by broadcasting the bitwise

XOR of the vertices per clique in the optimal clique-cover of G ([8, 9]).

We are also interested in the optimal rate when we require that the code is scalar linear

or vector linear.

Definition 1.2.5. The scalar linear broadcast rate of a BSIP instance over F, denoted λF

1(G),

is the infimum of all broadcasting solutions in which the message alphabet is the finite field

F and the encoding and decoding functions are linear.

The scalar linear broadcast rate is defined as

λ1(G) := inf
F

λF

1(G) (1.4)

Similarly, we can define the vector linear broadcast rate.

Definition 1.2.6. The vector linear broadcast rate over F of a BSIP instance, denoted

λF(G), is the infimum of all broadcasting solutions in which the message alphabet is a finite

dimensional vector space over a finite field F and the encoding and decoding functions are

linear.

The scalar linear broadcast rate is defined as

λ(G) := inf
F

λF(G) (1.5)

Observe that β ≤ λ ≤ λ1.

14

1.2.3 Previous Work

The early work focuses on the more restricted BSIP-G. The first protocols developed are

scalar linear codes hinging on a greedy clique-cover (related to the bound β ≤ χ) [9]. Scalar

linear coding schemes are expanded further by Bar-Yossef et al. [8] who proposed a new

class of codes based on a matrix rank minimization problem. The solution to this problem,

denoted minrk2(G), was shown to achieve the optimal linear scalar capacity over GF (2)

and, in particular, to be superior to the clique-cover method, i.e. β1 ≤ minrk2 ≤ χ. After

establishing β1(G) = minrk2(G) for various families of graphs, the authors of [8] conjecture

that the equality holds for all graphs; a claim that is refuted in [54] by defining an extension

of minrk2 to general fields, minrkF, whose optimal solution is exactly λF

1 .

Definition 1.2.7. Let A = (aij) be an n × n matrix over some field F. We say that A

represents the graph G over F if aii 6= 0 for all i, and aij = 0 whenever i 6= j and (i, j) /∈ E.

The minrank of a directed graph G with respect to the field F is defined by

minrkF(G) := min{rankF(A) : A represents G over F}. (1.6)

and

minrk(G) := min
F

{minrkF(G)}. (1.7)

Lubetzky and Stav [54] use minrkF along with arguments from Ramsey theory to show

that for any fixed ε > 0 there is a family of graphs on n vertices for which minrk ≤ nε while

minrk2 ≥ n1−ε. Additionally, they give a related family of graphs for which β ≤ nε while

λ1 = minrk ≥ n
1

2
−ε. Ergo, the upper bounds on β, namely, χ(G), minrk2(G), minrk(G) =

λ1(G) are not bounded above by any polynomial function of β(G).

Another focus of previous work is on the relationship between β and β1. The first proof of

a separation β < β1 for graphs is presented by Alon et al. in [7]. The proof introduces a new

capacity parameter β∗, which informally, is the minimum broadcast length if the network

15

topology is replicated t independent times. Let t ·G denote the disjoint union of t copies of

G. We define β∗
t (G) := β1(t ·G), and sub-additivity justifies

β∗(G) := lim
t→∞

β∗
t (G)

t
= inf

t

β∗
t (G)

t
(1.8)

The parameter satisfies β ≤ β∗ ≤ β1, and [7] shows that the second inequality can be strict

using a characterization of β∗ as the fractional chromatic number of a certain graph with

2|V (G)| vertices. In addition, the paper studies BSIP and constructs several hard instances

including ones where β = 2 while β∗ is unbounded and others where β∗ < 3 while β1 is

unbounded.

As with the general network coding problem, prior work on BSIP has been highly suc-

cessful in bounding the broadcast rate above and below by various parameters (all of which,

unfortunately, are either known or suspected to be NP-hard to compute) and in construct-

ing examples that exhibit separations between these parameters. However, it has been less

successful at providing general techniques that allow the determination, or even the approx-

imation, of the broadcast rate β for large classes of problem instances. The following two

facts, which held true prior to our work [13], starkly illustrate this limitation. (1) Excluding

graphs whose trivial lower and upper bounds, α(G) and χ(G), coincide, the exact value of

β(G) was unknown for every graph (and hypergraph) G. (2) It was unknown if the broadcast

rate β could be approximated by a polynomial-time algorithm whose approximation ratio

improves the trivial factor n by more than a constant factor.2

In this work we address both of the open questions stated in the preceding paragraph,

give new bounds on β, and study the relationships between the bounds.

2When G is a graph (rather than a hypergraph), it is not hard to derive a polynomial-time o(n)-
approximation from (1.3).

16

1.2.4 Our Contributions

Chapters 2 - 6 describe joint work with Robert Kleinberg and Eyal Lubetzky that appears in

[13, 12]. Our contributions to BSIP encompass five topics: proving bounds on β, determining

β exactly on structured instance classes, determining the behavior of bounds under products

and sums of BSIP instances, exhibiting gaps between bounds, and approximating β.

Chapter 7 describes work that appears in [10]. We study relationships between network

coding rates and cut bounds in a variant of the multiple unicast problem.

We now summarize all of our results and their locations in this work.

Bounds on the Broadcast Rate (Chapter 2)

Strong bounds on β are critical to proving approximations and exact computations. To this

end, we extend many previous bounds to their fractional variants and from the BSIP-G to the

more general BSIP setting. We also introduce new bounds derived via entropy inequalities.

In Section 2.1 we strengthen the clique-cover upper bound by showing that the fractional

clique-cover is also an upper bound, giving β ≤ χf ≤ χ. Similarly, in Section 2.2 we

strengthen the minrank upper bound by defining a fractional minrank, minrkf , whose optimal

solution is rate of the best vector linear solution, giving β ≤ minrkf ≤ minrk.

We extend the notions of independent set, clique-cover, and minrank to hypergraphs and

use this to extend the bounds α, χ, and minrk for BSIP-G to the more general BSIP.

In Section 2.3 we provide a class of information-theoretic linear programs whose solution

values bound the broadcast rate. The basic linear program includes inequalities derived

from the problem structure as well as the Shannon inequalities. Its solution, denoted b, gives

the best known lower bound on β. We extend the linear program by adding non-Shannon

17

inequalities and dimension inequalities. The solution value of the linear program with non-

Shannon inequalities gives even better lower bounds on β, and with dimension inequalities

it gives lower bounds on λ.

We use two dimension inequalities that are valid for linear functions over fields of odd

(resp., even) characteristic but not vice-versa that we derive in Appendix A. We obtain these

inequalities by considering the Fano and non-Fano matroids; the former is a matroid that

is only realizable in characteristic 2 while the latter is only realizable in odd characteristic

and in characteristic 0. For each of the two matroids, we are able to transform a proof of

its non-realizability into a much stronger quantitative statement about dimensions of vector

spaces over a finite field.

Structured Instances (Chapter 3)

We derive the exact value of β(G) for various families of hypergraphs and BSIP and BSIP-G

instances by providing matching lower and upper bounds. The lower bounds are obtained by

analyzing the LP solution, b(G). The upper bounds are obtained via χf (G) and minrk(G).

In Section 3.1 we consider a class of BSIP instances that are derived from matroids. This

builds on work of [27, 28, 22, 24] that established connections between matroids and network

coding. In particular, El Rouayheb et al. [28] define a correspondence between certain BSIP

instances and matroids and show that realizability of a matroid over a field F is equivalent

to linear solvability of the corresponding BSIP. We give a different, and much simpler,

correspondence between BSIP instances and matroids. We establish the broadcast rate for

BSIP instances that are derived from representable matroids, and we give lower bounds for

the broadcast rate of all matroidal BSIP instances.

In Section 3.2.1 we obtain the exact value of β(G) for all cycles and cycle-complements.

Precisely, β(Cn) = n/2 and β(Cn) = n/⌊n
2
⌋. This establishes the broadcast rate for the

18

5-cycle investigated in [7, 8]. In Section 3.2.2 we give the exact value of β for 3-regular

Cayley graphs of Zn and certain Circulant graphs.

Products and Sums (Chapter 4)

It is known that many graph parameters behave multiplicatively, sub-multiplicatively, or

super-multiplicatively on graph products, and additively, sub-additively, or super-additively

on graph sums. These insights allow for the analysis of graph parameters on large graphs and,

often, the analysis of constructions via graph products and sums. We consider two graph

products and a graph sum and extend them to be defined on general BSIP instances. We

apply all of these results in Chapter 5 to give constructions yielding gaps between parameters

of interest.

In Section 4.1 we consider the lexicographic product. We show that for this product

operation it is not hard to compose the codes of the multiplicands to create a code for the

product. Hence, β is sub-multiplicative. Further, we demonstrate that entropy based lower

bounds proven using linear programming behave super-multiplicatively under lexicographic

products. The proof analyzes the dual solutions of the two linear programs. We show

how to combine the dual solutions so that the combined dual yields a dual solution of the

linear program corresponding to the lexicographic product. Our technique not only applies

to the standard linear program that uses only Shannon inequalities but to any family of

linear programs constructed using what we call a tight constraint schema. In particular, the

technique applies to all of the linear programming bounds we consider.

In Section 4.2 we consider an extension of the strong product operation. It was already

known that the minrank parameter is sub-multiplicative on products of graphs. We extend

this to show that the fractional minrank of BSIP instances is sub-multiplicative on the strong

product.

19

In Section 4.3 we consider the sum, that is, the disjoint union of two BSIP instances. It

is known that β∗ is additive, but β1 is not. We show that β and λF are additive.

Separating Broadcast Rates and Bounds (Chapter 5)

We continue by investigating gaps between the broadcast rate, the linear broadcast rates,

and the upper and lower bounds. Our results improve upon several of the best previously

known separations. We rely heavily on the techniques developed in the previous two chapters,

starting with a small gap given by a structured instance and amplifying the separation via

products or sums.

Dougherty et al. [22] show that the Shannon bound is not tight for the network coding

rate on a multiple unicast problem. In Section 5.1 we use a matroidal BSIP instance and the

linear programming bound with the addition of the Zhang-Yeung non-Shannon inequality

[67] to demonstrate that Shannon inequalities are not sufficient for the BSIP. That is to say,

the lower bound b can be strictly less than β. After our work, Sun et al. [62] give a similar

example that shows even when restricted to BSIP-G instances b can be strictly less than β.

As mentioned earlier, Lubetzky and Stav [54] show that the scalar linear coding rate can

be Ω
(

n
1

2
−ε
)

factor larger than the non-linear rate. But, for the more powerful vector linear

coding no gap was known for BSIP and only a 11/10 gap was known for network coding.

In Section 5.2 we obtain a Ω
(

n
1

2
−ε
)

separation between the vector linear and non-linear

rates for BSIP-G by extending the technique of Lubetzky and Stav from standard minrank

to fractional minrank. This implies a separation for the multiple unicast network coding

problem. We provide another method for obtaining a polynomial gap between vector linear

and non-linear codes via matroids and lexicographic products. We use a matroidal BSIP

instance based on the Fano and non-Fano matroids and lower bound their linear coding rate

using the extensions of the linear program which adds in the Fano and non-Fano inequalities

20

(derived in Appendix A). Then we amplify it via lexicographic products to get a Ω(nε)

separation between vector linear and non-linear coding.

In Section 5.3 we again apply the technique of amplifying gaps via lexicographic products

to show that the ratio between α and β can be as large as n0.139. We amplify the separation

of β = 2.5 and α = 2 on the 5-cycle (shown in Section 3.2.1) using the super-multiplicativity

of b and sub-multiplicativity of β on lexicographic products. This boosts the ratio β/α

polynomially in n on a family of n-vertex graphs. Further, it implies a polynomial separation

between the strongest known cut-based bound on the network coding rate in the directed

multiple unicast problem, iMeagerness, and the network coding rate, thus improving the

previous logarithmic separation.

Lubetzky and Stav’s example [54] which gives a separation between scalar linear and

non-linear also shows that χ(G) is not bounded above by any polynomial function of β(G).

In Section 5.4 we strengthen this result by demonstrating χf (G) is not bounded above by

any function of β(G). To do so, we utilize a class of projective Hadamard graphs due to

Erdős and Rényi to prove that there is a family of graphs on n vertices with β(G) = 3 and

χf (G) = Θ(n1/4). An implication is that the natural heuristic approach based on clique-

covers is sometimes very bad.

In Section 5.5 we show that this heuristic can be bad even when χf = Θ(n) instead of

o(n). In particular, there is a family of triangle-free graphs on n vertices where χf ≥ n/2,

yet the broadcast rate satisfies β ≤ 3
8
n.

In Section 5.6 we use results on the 5-cycle and the additivity of certain parameters under

disjoint graph union (Section 4.3) to show additive separations of Ω(n) between many of the

parameters of interest on instances with n messages.

21

Polynomial Time Algorithms (Chapter 6)

We provide the first non-trivial approximation algorithm for BSIP. For BSIP-G the inequal-

ity α(G) ≤ β(G) ≤ χ(G) implies a o(n)-approximation to β using results of [63, 14, 5]. Using

the extensions of the bounds α and χ to hypergraphs together with ideas from [63, 14, 5],

Section 6.1 provides a o(n)-approximation to β for BSIP. In fact, the approximation holds in

greater generality for the weighted case, where different messages may have different rates;

in the motivating applications this can correspond to a server that holds messages of varying

size. The generalization is explained in Section 6.1.1.

For BSIP-G, the equation α(G) ≤ β(G) ≤ χ(G) also implies a number of simple facts

including β(G) = 1 ⇔ α(G) = 1 and β(G) = n ⇔ α(G) = n. These statements further

imply polynomial time decision procedures. In Section 6.2 we give a simple characterization

for β(G) = 2 and a polynomial time algorithm which determines if β(G) = 2 in BSIP.

Beyond Broadcasting (Chapter 7)

In Chapter 7 we analyze parameters of the products of the actual network, rather than a

graph representation of the demands of a BSIP instance. We consider the multiple unicast

problem in directed networks. We know that the maximum multicommodity flow rate can

be factor Ω(k) smaller than the minimum multicut, but we don’t know if the coding rate

can be, too 3. If yes, the construction of Saks et al. [60] that shows the Ω(k) flow-cut gap

is a prime candidate for such an instance. But, we show that the example of [60] is no such

instance, and, instead, is another example for which the coding rate is an Ω(k) factor larger

than the flow.

The Saks et al. construction is the k-fold strong product of a path. We analyze the

3Note we can ask this question even though the cut can be smaller than the coding rate in the directed
multicut setting

22

graph by analyzing the coding rate and cut capacity of products in general. In particular,

we identify a property of a linear network code that guarantees the code is equal to the

minimum cut. We also show that for the strong graph product of any two networks with

such codes, this property is preserved. The following describes one consequence of our main

result:

Given a network G in which the optimal multicommodity flow solution consists of

a set of disjoint paths, the optimal network coding rate is equal to the minimum

multicut in the k-fold strong product of G.

By applying this result to a directed path of length n with source and sink, we give the

exact value of the cut in the construction of Saks et al., thereby strengthening their result.

It provides an elegant network coding solution for the construction that is a k − o(k) factor

larger than the multicommodity flow rate.

23

CHAPTER 2

BOUNDS ON THE BROADCAST RATE

We introduce bounds on the broadcast rate that use tools from graph theory, linear algebra,

and information-theoretic linear programs.

2.1 Graph Theoretic Bounds

Recall that BSIP-G is a special case of the BSIP where the instance is given by an undirected

graph rather than a hypergraph (Definition 1.2.4). In this case, as outlined in Equation (1.3),

the clique cover number, χ, gives an upper bound on β and the independent set number,

α, gives a lower bound [8, 9]. In this section we extend the notions of independent set and

clique-cover to hypergraphs and we use this to extend the lower and upper bounds, α and

χ, for BSIP-G to the more general BSIP. We also further extend the clique-cover to the

fractional clique-cover.

First we give a lower bound for BSIP via an extension of the independent set. This is

critical for the approximation algorithm for general BSIP instances given in Section 6.1.

Definition 2.1.1. An expanding sequence of size k is a sequence of directed hyperedges

j1, . . . , jk such that

f(jℓ) 6∈
⋃

i<ℓ

S(ji)

for 1 ≤ ℓ ≤ k.

For graphs, an independent set I corresponds to an expanding sequence. In particular,

any sequence of the receivers Ri, i ∈ I is an expanding sequence because each desires one of

xi, i ∈ I and knows only messages xj, j /∈ I.

24

Definition 2.1.2. For a BSIP instance G, α(G) is the maximum size of an expanding

sequence.

Lemma 2.1.3. Every BSIP instance G satisfies the bound β(G) ≥ α(G).

Proof. The proof is by contradiction. Let j1, . . . , jk be an expanding sequence and suppose

that there is an index code that achieves rate r < k. Let J = {j1, . . . , jk}. For b = log2 |Σ|

we have

|Σ|k = 2bk > 2br ≥ |ΣP |.

Let us fix an element x∗
i ∈ Σ for every i 6∈ {f(j) : j ∈ J}, and define Ψ to be the set of all

~x ∈ Σn that satisfy xi = x∗
i for all i 6∈ {f(j) : j ∈ J}. The cardinality of Ψ is |Σ|k, so the

Pigeonhole Principle implies that the function E , restricted to Ψ, is not one-to-one. Suppose

that ~x and ~y are two distinct elements of Ψ such that E(~x) = E(~y). Let i be the smallest index

such that xf(ji) 6= yf(ji). Denoting ji by j, we have xk = yk for all k ∈ N(j), because N(j)

does not contain f(jℓ) for any ℓ ≥ i, and the components with indices ji, ji+1, . . . , jk are the

only components in which ~x and ~y differ. Consequently receiver j is unable to distinguish

between message vectors ~x, ~y even after observing the broadcast message, which violates the

condition that j must be able to decode message f(j).

Next, we consider an extension of the clique-cover to its fractional variant.

Definition 2.1.4. A fractional clique-cover of a graph G is a function that assigns a non-

negative weight to each clique such that for every node v the total weight assigned to cliques

containing v is at least 1. The size of the clique-cover is defined to be the sum of all weights.

The fractional clique-cover number is the minimum size of any fractional clique-cover of G

and is denoted χf (G).

Just like the clique-cover number, χf is NP-hard to compute, yet it has the advantage

that for vertex transitive graphs χf (G) = n
α(G)

, and is thus easy to compute for some classes

25

of graphs. Additionally, it is often easier to analyze and bound than the clique-cover number.

We make use of this bound to get a tight upper bound on the broadcast rate in Section 3.2

and for an approximation algorithm in Section 6.1.

Now, we consider its extension for hypergraphs and show it is an upper bound on the

broadcast rate.

Definition 2.1.5. A hyperclique of a BSIP instance G = (V,E) is a subset of hyperedges

J ⊆ E such that for every pair of distinct edges i, j ∈ J , f(i) ∈ S(j).

A fractional hyperclique-cover is a function that assigns a non-negative weight to each

hyperclique such that for every hyperedge j the total weight assigned to hypercliques con-

taining j is at least 1. The size of the hyperclique-cover is defined to be the sum of all

weights.

For graphs, a clique K corresponds to the hyperclique K: for u, v ∈ K we have that the

receivers Ru and Rv satisfy f(u) = u and u ∈ K ⊆ S(v).

Definition 2.1.6. For a BSIP instance G, χf (G) is the minimum size of a fractional

hyperclique-cover of G.

We show that the fractional hyperclique-cover number gives an upper bound on β for any

BSIP instance. This also implies that the fractional clique-cover number is an upper bound

for BSIP-G.

Lemma 2.1.7. Every BSIP instance G satisfies the bound β(G) ≤ χf (G).

The clique-cover number is an upper bound on β because a clique-cover gives a feasible

code - in particular a scalar linear code over F2. Correspondingly, the fractional clique-cover

number is an upper bound because a fractional clique-cover gives a feasible code, but a vector

linear code.

26

Proof. The linear program defining χf (G) has a variable wJ for every hyperclique J , and a

constraint for every receiver j (hyperedge) specifying
∑

J :j∈J wJ ≥ 1. This linear program

has integer coefficients, and thus G has a fractional hyperclique cover of weight w = χf (G)

in which the weight w(J) of every hyperclique J is a rational number. Assume we are given

such a fractional hyperclique-cover, and choose an integer d such that w(J) is an integer

multiple of 1/d for every J . Let C denote a multiset of hypercliques containing d · w(J)

copies of J for every hyperclique J . Note that the cardinality of C is d · w.

For any hyperclique J , let f(J) denote the set
⋃

j∈J {f(j)}. For each i ∈ [n], let Ci
denote the sub-multiset of C consisting of all hypercliques J ∈ C such that i ∈ f(J). Fix

a finite field F such that |F| > dw. Define Σ = F
d and ΣP = F

d·w. Let {ξJi }J∈Ci be a set of

vectors in Σ such that any d of these vectors constitute a basis for Σ. The existence of such

a set of vectors is guaranteed by our choice of F with |F| > dw ≥ d, |Ci| < dw. For example,

we can take the vectors to be the rows of a |Ci| × d Vandermonde matrix.

The encoding function E(x1, . . . , xn) outputs a |C|-tuple of elements of F, by evaluating

the following linear functions of the messages in V :

∑

ℓ∈f(J)

ξJℓ · xℓ ∀J ∈ C (2.1)

For each receiver j with i = f(j), the set of vectors ξJi with j ∈ J is a subset of {ξJi }J∈Ci

of size at least d, and thus contains a basis of Σ. To show that j can decode message xi ∈ F
d

it is sufficient to prove that j can determine the value of ξJi (xi) whenever j ∈ J . This holds

because the public channel contains the value of
∑

ℓ∈f(J) ξ
J
ℓ · xℓ, and receiver j knows xℓ for

every ℓ 6= i in f(J).

27

2.2 Linear-Algebraic Bounds

The minrank parameter of a graph G was originally defined by [33]. It was later shown

to relate to BSIP, and in particular, to coincide with the scalar linear broadcast rate of a

BSIP-G instance G [54, 8] (see Definition 1.2.7). We extend minrank to be defined for a

general BSIP instance. Additionally, we extend the idea fractionally. We define an extension

of minrank, fractional minrank, denoted minrkf , that corresponds exactly to the vector linear

capacity of G, λ(G) = minrkf (G), and is an upper bound on β strictly greater than minrank.

In Section 5.2 we use the fractional minrank to bound the vector linear broadcast rate and

obtain a large separation between vector linear and non-linear coding.

Definition 2.2.1. Let A = (aij) be an n×m matrix whose entries are k × k matrices over

some field F. We say that A fractionally represents the BSIP instance G = ([n], [m]) over

F
k if aij is the identity matrix of size k whenever i = f(j), and aij = 0 whenever i /∈ N(j).

The fractional minrank of G is defined by

minrkF
k

f (G) := min{rankF(A) : A fractionally represents G over F
k}, (2.2)

minrkF

f (G) := inf
k

minrkF
k

f (G)

k
, (2.3)

and

minrkf (G) := inf
F

{minrkF

f (G)}. (2.4)

We will prove that minrkf corresponds exactly to the vector linear capacity, thus implying

it is an upper bound on β.

Lemma 2.2.2. For all BSIP instances G, minrkF

f (G) = λF(G), and thus minrkf (G) = λ(G).

Proof. First, we show that given a matrix A that represents G over F
k and has rank r, we

have a vector linear broadcast of rate r
k
. Regarding A as a nk × mk matrix rather than a

n×m matrix with entries that are k× k matrices, let A = BC be a rank factorization of A

28

such that B is a nk × r matrix and C is an r ×mk matrix. Each message will be a k-tuple

of elements of F. Let x be a length nk row vector of messages. We claim that broadcasting

xB is a valid code. This code sends r symbols in F, and thus has the correct rate. To see

that it is valid, note that each receiver can decode using the linear functions given by the

corresponding columns in C precisely because A = BC represents G.

Showing the other direction consists of simply reversing this process. Given a vector

linear code of rate r
k

for G with messages that consist of k symbols in F, we can find a rank

r matrix A that fractionally represents G over Fk by taking the product of the encoding and

decoding matrices. The vector linear broadcast can be represented by a nk × r matrix E,

with entries in F and the row (i, z) corresponds to the encoding of the zth symbol of message

i. Moreover, the decoding matrix can be represented by a r×mk matrix, D, with entries in

F, and column (j, z) corresponds to the decoding function of the zth symbol for receiver j.

Consider the product ED. The fact that receiver j can decode its zth symbol implies that

column (j, z) in matrix ED is zero in rows (i,−) for i /∈ N(j), row (f(j), z) is non-zero, and

rows (f(z), z′), z′ 6= z are zero. Scaling column (j, z) by the entry in row (f(j), z) gives a

matrix that represents G.

2.3 Linear Program Bounds

We define a class of lower bounds on β similar to numerous results in network coding theory

that bound the network coding rate (e.g., [1, 24, 36, 38, 61]) by combining entropy inequalities

of two types (see Section 1.1.3). The first is derived from the graph structure. The second

is purely information-theoretic and holds for any set of random variables. These are the so-

called Shannon and non-Shannon type inequalities. The relevant inequality of the first type

for BSIP is the decoding constraint. It enforces that for any receiver R the set of messages

R knows together with the public channel determine the message R wants to know.

29

Definition 2.3.1. Let G = (V,E) be a BSIP instance and let S and T be subsets of V . We

say that S decodes T (denoted S T) if S ⊆ T ⊆ cl(S), where

cl(S) := {i ∈ V |∃ j ∈ E with f(j) = i and N(j) ⊆ S}

is the closure of S.

For BSIP-G instances, A B if A ⊆ B and for every v ∈ B \ A all the neighbors of v

are in A.

Using this definition, we derive an entropy inequality for BSIP based on the structure

of the problem as follows. For any BSIP instance G and broadcast solution P , sample each

message independently and uniformly at random to obtain a finite probability space on which

the messages and the public channel are random variables. If S is a subset of these random

variables, denote the Shannon entropy of the joint distribution of the variables in S by H(S).

Then for every S T we have H(S ∪ {P}) = H(T ∪ {P}) because for any valid solution P

any message in T \ S can be determined using S and P , and T, P clearly determines S, P .

We will consider lower bounds generated by the following class of linear programs based

on this probabilistic view of BSIP.

min z∅

s.t. zV = |V | (w) (initialize)

∀S ⊂ T ⊆ V zT − zS ≤ |T \ cl(S)| (x) (decode)

Az ≥ 0 (z)

(LP BA)

The class of linear programs (LP BA) has a variable for each subset of V . The first

constraint (initialize) expresses the fact that the the broadcast message is determined by the

30

values of the n messages, which are mutually independent. The next group of constraints

(decoding) correspond to entropy inequalities derived from the graph structure.

The final line of the LP represents a set of constraints, corresponding to the rows of

the matrix A, that are universally valid for any tuple of random variables indexed by the

message set V . Alternatively, in the context of restricted classes of encoding and decoding

functions (e.g. linear functions) there may be additional inequalities that are specific to that

class of functions. In this case the constraint matrix A may incorporate these inequalities

and we obtain a linear program with constraints that are valid for this restricted model of

index coding but not valid in general.

We will use the following technical definition to instantiate the constraint matrix A.

Definition 2.3.2. A constraint schema is given by an index set I and a vector ~α ∈ R
P(I).

To each index set J it associates a matrix A(J) with columns indexed by elements of P(J)

and rows indexed by elements of

Q(J) =
{

(S1, . . . , S|I|) ∈ P(J)|I| | ∃T ⊆ J s.t. Si ∩ Sj = T ∀i 6= j ∈ {1, . . . , |I|}
}

such that:

A(J)qS =
∑

T∈P(I):
S=∪i∈T qi

αT ∀q ∈ Q(J), S ∈ P(J),

where qi is the ith component of vector q.

We say that a subset Υ ⊆ R
P(J) satisfies a constraint schema if A(J)~d ≥ ~0, for all ~d ∈ Υ.

To make this more concrete, we consider the submodularity constraint schema. Submod-

ularity is typically expressed as

f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T) if S, T ⊆ J for an index set J . (2.5)

31

The constraint schema is providing a formalism to enumerate the constraints this implies

for a specific index set J . To write submodularity as a constraint schema we need to rewrite

the inequality to eliminate the intersection term. Here, and for the remainder of this work,

we will use the concatenation AB to denote the union of two sets A ∪ B. We now write

submodularity as

f(AB) + f(BC) ≥ f(ABC) + f(B) for A,B,C ⊆ J. (2.6)

The constraint schema lists all constraints in which A∩B = B ∩A = A∩C. This subset of

constraints implied by Equation (2.6) corresponds exactly to the set of constraints implied

by Equation (2.5). To see this notice that for any S, T ⊆ J if we set A = S,C = T and

B = S ∩ T then the pairwise intersections of A,B,C are all equal to S ∩ T and AB =

S,BC = T,ABC = ST, and B = S ∩ T . For the other direction, if all the intersections of

A,B,C are equal then the realization of Equation (2.5) with S = A ∪ B and T = C ∪ B is

a matching constraint. Now, we can formally define the submodular constraint schema:

Definition 2.3.3. The submodular constraint schema is given by index set I = {A,B,C}

and the vector ~α, whose entries are all zero except ~αAB = ~αBC = 1, and ~αABC = ~αB = −1.

The submodularity inequality is satisfied for many types of functions and subsets. It

holds if J indexes a set of random variables and f is entropy, if J indexes a set of vector

spaces and f is the dimension function, and if J indexes the ground set of a matroid and f is

the rank function. These facts are equivalently expressed by the fact that the submodularity

constraint schema is satisfied for the subsets of RP(J) of entropic vectors, dimension vectors

and rank vectors. The following definition of subsets of RP(J) will be useful.

Definition 2.3.4. We say a vector ~v ∈ R
2n , indexed by subsets of [n], is entropic if there

exist random variables X1, X2, . . . Xn sampled from the same probability space such that

~vS = H({Xi|i ∈ S}) for all S ⊆ [n].

32

We use Γ∗
n to denote the set of all entropic vectors in 2n dimensional space. Its closure

is denoted Γ
∗
n. See Section 1.1.3 for more background on the sets of entropic vectors.

Definition 2.3.5. We say a vector ~v ∈ R
2n , indexed by subsets of [n], is a dimension vector

if there exist vector spaces W1,W2, . . .Wn of an underlying vector space such that ~vS is equal

to the dimension of the span of {Wi|i ∈ S} for all S ⊆ [n].

We use Υn to denote the set of all dimension vectors in 2n dimensional space. Further,

we use ΥF

n to denote the subset of Υn when we restrict the vector spaces to be over the field

F.

Our earlier claims about submodularity can now be written: for all n ∈ N, Υn and Γ
∗
n

satisfy the submodularity constraint schema.

We can also instantiate constraint matrix A of LP BA with multiple constraint schemas.

Definition 2.3.6. A constraint schemata is given by a collection of constraint schemas

(I1, ~α1), (I2, ~α1), . . . , (Ik, ~αk). Let Ai(J) be the constraint matrix of (Ii, ~αi) parameterized by

J . To each index set J the constraint schemata associates a matrix

A(J) =

A1(J)

. . .

Ak(J)

.

Note that the dimensions match correctly as all matrices Ai(J) have columns indexed by

P(J). Also use Q(J) to denote the index set of the rows of A(J). Q(J) is the disjoint union

of Qi(J) over i ∈ {1, . . . , k}.

We are finally ready to state and prove that our LP is a lower bound on the broadcast

rate for certain instantiations of A.

Theorem 2.3.7. Every BSIP instance G satisfies OPT(BA(G)) ≤ β(G) for any matrix A

given by constraint schemata C1, . . . , Ck such that Γ
∗
n satisfies Ci for all n ∈ N, i ∈ [k].

33

Proof of Theorem 2.3.7. Let G = (V,E). For all ε > 0 there is a solution to G specified by

finite alphabets Σ and ΣP and a valid encoding scheme E : Σn → ΣP such that log |ΣP |
log |Σ| = ℓ =

β(G) + ε. Sample each message independently and uniformly at random, and consider the

input messages and the broadcast message, E({xi|i ∈ V }), as random variables. Denote the

random variables by Xi, i ∈ V and P respectively. Let H be the entropy function using log

base |Σ|. This normalization, along with independence of the source messages, gives that

H({Xi|i ∈ S}) = |S| for any subset of V and H(P) = ℓ.

Now, let zS = H({Xi|i ∈ S}∪{P}) for S ⊆ V . We show that z satisfies all the constraints

of the LP BA.

The solution z satisfies the first constraint because H({Xi|i ∈ V }) = |V | and P is

determined by our message set.

The decoding constraints zT − zS ≤ |T \ cl(S)|, S ⊆ T hold using submodularity

together with the decoding equality we described above. We have that zS = zcl(S) because

in any valid encoding messages of cl(S) \ S must be determined by S and the broadcast

message. Submodularity, which is satisfied for the entropy of any random variables, gives

zcl(S)+H({Xi|i ∈ T \cl(S)}) ≥ zT +H(∅). Combining this with H({Xi|i ∈ S}) = |S| implies

the decoding constraint.

Finally, z satisfies the constraints in matrix A because z is a vector giving the joint

entropy of a set of |V | random variables and hence is in Γ∗
|V | which satisfies our constraint

schemata by assumption. Let random variable Yi be given by the joint distribution of Xi

and P for all i ∈ V . Recall that zS = H({Xi|i ∈ S} ∪ {P}) and notice that H({Xi|i ∈

S} ∪ {P}) = H({Yi|i ∈ S}).

This gives a feasible solution with value z∅ = H(P) = ℓ. Taking ε → 0 gives a sequence

of upper bounds on b(G) whose values tend to β(G), implying our result.

34

The simplest constraint matrix A we consider is the empty matrix, giving us LP B∅. It

turns out that the optimal solution value of B∅ is equal to the independent set number, and

thus provides an alternate proof that the independent set number is a lower bound on β.

Remark 2.3.8. For any BSIP instance G, OPT(B∅(G)) = α(G)

Proof. First we show z∅ ≥ α(G). Decoding implies that zV = zV \I for any independent set

I. Combining that constraint with zV = n and zV \I − z∅ ≤ |V \ I| gives that z∅ ≥ |I| for

any feasible z and independent set I.

To show z∅ ≤ α(G) we present a feasible solution to the primal attaining the value α(G),

zS = |S| + max{|I| : I is an independent set disjoint from S} , (2.7)

We verify that the solution is feasible by checking that it satisfies all the constraints of B∅.

There is no independent set disjoint from V , so zV = n as needed. To prove the decoding

constraint for S ⊆ T ⊆ V let I, J be maximum-cardinality independent sets disjoint from

S, T respectively. Note that J itself is disjoint from S, implying |J | ≤ |I|. Thus we have

zT = |T | + |J | = |S| + |T \ S| + |J | ≤ |S| + |T \ S| + |I| = zS + |T \ S|.

The primary linear program we consider is the one where constraint matrix A is instan-

tiated with the submodular constraint schema.

Definition 2.3.9. The LP-Shannon lower bound of a BSIP instance G = (V,E), denoted

b(G), is the optimal solution to LP BA, which we will denote simply as B, where A is given

by the submodular constraint schema.

Equivalently, we could write B as the following linear program.

35

min z∅

s.t. zV = |V | (initialize)

∀S ⊂ T ⊆ V zT − zS ≤ |T \ cl(S)| (decode)

∀S, T ⊆ V zS + zT ≥ zS∪T + zS∩T (submod)

(LP B)

The following is a Corollary of Theorem 2.3.7 because Γ
∗
n satisfies the submodular con-

straint schema.

Corollary 2.3.10. Every BSIP instance G satisfies b(G) ≤ β(G).

We can further strengthen this lower bound by adding additional constraint schema

coming from non-Shannon inequalities. For example, the following is a non-Shannon-type

inequality due to Zhang and Yeung [67]. This is the first non-Shannon inequality discovered,

i.e. an inequality not implied by non-negativity of conditional mutual information. The

Shannon-type inequalities are known to characterize entropic vectors induced by at most

three random variables, and so naturally, this inequality is parameterized by a index set of

size four.

Definition 2.3.11. The Zhang-Yeung constraint schema is given by index set I =

{A,B,C,D} and the vector ~α ∈ R
P(I) with values corresponding to the coefficients in the

following inequality:

3dBD+3dCD + 3dBC + dAB + dAC

− 2dB − 2dC − dAD − dD − dABC − 4dBCD ≥ 0

Theorem 2.3.12 ([67]). For all n ∈ N, Γ∗
n satisfies the Zhang-Yeung constraint schema.

Now, we can add the constraint schema of the Zhang-Yeung inequality to the linear

program B to get an even stronger lower bound.

36

Definition 2.3.13. The LP-Zhang-Yeung bound of a BSIP instance G = (V,E), denoted

bZY (G), is the optimal solution to LP BA, denoted as BZY , where A is given by the sub-

modular and Zhang-Yeung constraint schemata.

Theorem 2.3.14. Every BSIP instance G satisfies b(G) ≤ bZY (G) ≤ β(G).

This follows immediately from Theorems 2.3.12 and 2.3.7.

There are many instances when the lower bound b(G) is tight. We make use of this

extensively to obtain a diverse set of results. We use it to analyze specific structured graphs

(Chapter 3), obtain gaps between β and other parameters (Sections 5.2, 5.3), and determine

if β = 2 (Section 6.2). But, the lower bound b is not always tight, and in Section 5.1 we

use the stronger parameter bZY to show that b can be strictly less than β. It is likely that

bZY is also strictly less than β. There are an infinite number of non-Shannon inequalities,

and the addition of each one gives us a stronger lower bound, and perhaps strictly stronger

lower bound. If we add all such inequalities to the linear program then the optimal solution

is equal to β.

2.3.1 Linear Programming Bounds on the Linear Rate

There is a correspondence between vector spaces and linear codes, as seen in the minrank

parameter (Definition 1.2.7). Any vector linear code has source and broadcast alphabets

that are vector spaces over some finite field F and each message can be given by a linear

function on these vector spaces. If we sample each message independently and uniformly at

random, and consider the input messages and the broadcast message as random variables,

then the entropy (scaled by log |F|) of these random variables is given by the rank of the

linear transformation defined by the message. This is simply because if the transformation

has dimension d, then there are F
d distinct possible messages, each occurring with equal

37

probability.

Thus, an inequality that holds for dimensions of vector subspaces also holds for the

entopic vector of a linear code. That is, the entropic vector of a linear coding function is in

ΥF

n.

There are inequalities known to hold for all vectors in Υn. The most famous such in-

equality is the Ingleton Inequality [40] which, along with the Shannon inequalities, char-

acterizes Υ4. It is an active area of research to find more inequalities (e.g. [45, 23]). We

contribute to this effort by deriving two inequalities that bound the vector linear capac-

ity over certain fields. Like many similar inequalities, we derive our inequalities using the

non-representability of the Fano and non-Fano matroids over certain fields. We present the

inequalities using the constraint schema formalism.

Definition 2.3.15. The Fano constraint schema is given by index set I =

{A,B,C,D,E, F,G} and the vector ~α ∈ R
P(I) with values corresponding to the coefficients

in the following inequality:

2dAH + 2dBH + 3dCH + 11dGH + 3dABH + 2dACH + 2dBCH

+ dABDH + dACEH + dAFGH + dBCFH + dBEGH + dCDGH + dABCGH

+ dABCDEGH + dABCDFGH + dABCEFGH + 3dABCDEFH

− 15dH − dAGH − dBGH − dCGH − 4dABCH − 3dABGH − 3dACGH

− 3dBCGH − dDEFH − 6dABCDEFGH ≥ 0

Definition 2.3.16. The non-Fano constraint schema is given by index set I =

{A,B,C,D,E, F,G} and the vector ~α ∈ R
P(I) with values corresponding to the coefficients

38

in the following inequality:

3dAH + 3dBH + 9dCH + 6dGH + 6dABH + 3dABDH

+3dACEH + 3dBCFH + dDEFH + 3dABCGH

+4dABCDEGH + 4dABCDFGH + 4dABCEFGH

−13dH − 12dABCH − 3dABGH − 3dACGH − 3dBCGH

−12dABCDEFGH ≥ 0

In Appendix A we derive these inequalities and prove that for all n ∈ N, ΥF

n satisfies the

Fano inequality when char(F) is even and the non-Fano inequality when char(F) is odd. These

results, along with the proof of Theorem 2.3.7 immediately imply that the corresponding LP

bounds we get by using the submodular and Fano (non-Fano) constraint schemata to define

matrix A of LP BA give lower bounds on the linear coding rate over fields of even (resp.

odd) characteristic.

Definition 2.3.17. The Fano bound of a BSIP instance G = (V,E), denoted bF(G), is the

optimal solution to LP BA, denoted as BF , where A is given by the submodular and Fano

constraint schemata. We have that bF(G) ≤ λF(G) when char(F) is even.

Definition 2.3.18. The non-Fano bound of a BSIP instance G = (V,E), denoted bN (G), is

the optimal solution to LP BA, denoted as BN , where A is given by the submodular and

non-Fano constraint schemata. We have that bN (G) ≤ λF(G) when char(F) is odd.

In Section 5.2.2 we use these bounds to obtain large separations between the linear and

non-linear coding rates for a BSIP instance derived from the Fano and non-Fano matroid.

Neither the Fano nor non-Fano bound alone gives a lower bound on the linear rate, but the

minimum of the value of the two bounds does, as every linear code is either over a field of

odd or even characteristic.

39

CHAPTER 3

STRUCTURED BROADCASTING WITH SIDE INFORMATION

INSTANCES

3.1 Matroids

In this section we give a mapping from matroids to BSIP instances in which the dependencies

in the corresponding BSIP instance exactly capture the dependencies in the matroid. We

demonstrate connections between matroid properties and the broadcast rate of the corre-

sponding BSIP instance, allowing us to bound the broadcast rate of such instances, and for

representable matroids, determine it exactly.

There are many equivalent definitions of a matroid. The most useful definition in our

setting is given in terms of a rank function.

Definition 3.1.1. A matroid is a pair M = (E, r) where E is a ground set and r : 2E → N

is a rank function satisfying

(i) r(A) ≤ |A| for all A ⊆ E;

(ii) r(A) ≤ r(B) for all A ⊆ B ⊆ E (monotonicity);

(iii) r(A) + r(B) ≥ r(A ∪ B) + r(A ∩ B) for all A,B ⊆ E (submodularity).

The rank vector of a matroid, ~r(M), is a 2|E|-dimensional vector indexed by subsets of

S ⊆ E, such that its S-th coordinate is r(S). A subset S ⊆ E is called independent if

r(S) = |S| and it is called a basis of M if r(S) = |S| = r(E). A set S is called dependent if

it is not independent and S is a circuit if it is a minimal dependent set.

Now we describe our matroid to BSIP mapping.

40

Definition 3.1.2. Let M = (E, r) be a matroid. The BSIP instance associated to M ,

denoted by GM , has a message set E and a receiver jC,e for each e ∈ C and circuit C ⊆ E

with f(jC,e) = e and S(jC,e) = C.

Remark. A similar yet slightly more complicated construction was given in [28]. Our

construction is (essentially) a subset of the one appearing there. A construction that maps a

matroid to a network coding problem is given in [22, 24]. They prove an analog of Proposition

3.1.3.

It is useful to observe that for any S ⊆ E the closure of S in matroid theory is defined

to be

cl(S) = {x ∈ E | r(S) = r(S ∪ {x})} (3.1)

thus coinciding with our definition of cl(S) in the context of the index coding problem GM

(see Definition 2.3.1).

Proposition 3.1.3. For a matroid M = (E, r), b(GM) = |E| − r(E).

Proof. In what follows we will let n = |E| and r = r(E). To show that b(GM) ≤ n − r

it suffices to show zS = r(S) + n − r is a feasible primal solution to the LP B(GM). The

feasibility of initialization and submodular constraints follows trivially from the definition

of GM and properties of a matroid. The feasibility of the decoding constraint: zT − zS ≤

cST ∀S ⊂ T follows from repeated application of submodularity:

zT − zS = r(T) − r(S) ≤
∑

x∈T\S
r(S ∪ {x}) − r(S)

≤
∑

x∈cl(S)
(r(S ∪ {x}) − r(S)) +

∑

x∈T\cl(S)
r({x}) ≤ |T \ cl(S)| = cST .

To prove the reverse inequality, let S be any basis of M and note that z∅ = zE − (zE − zS)−

(zS − z∅) ≥ n− cSE − c∅S = n− r.

The following definition relaxes the notion of a representation for a matroid.

41

Definition 3.1.4. A matroid M = (E, r) with |E| = n is under-representable in d dimen-

sions over a finite field F if there exists a rank d matrix with entries in F and n columns

indexed by elements of E such that if r(x∪ S) = r(S) then the column indexed by x can be

written as a linear combination of the columns indexed by S.

If a matrix represents M then additionally any independent set S corresponds to a set of

independent columns. If there exists such a matrix it will have rank r(E), and we say that

M is representable.

We next show a relation between under-representations for M over F and the scalar linear

rate λF

1 . The following is the analogue of Theorem 8 in [28] for our version of the matroid

to index coding mapping.

Theorem 3.1.5. A matroid M = (E, r) with |E| = n is under-representable in d dimensions

over a finite field F if and only if λF

1(GM) ≤ n− d. In particular, if M is representable over

F then λF

1(GM) = β(GM) = n− r(E).

Proof. Let R be a matrix which under-represents M in d dimensions over F. Without loss of

generality, we can assume that R is a d×n matrix because we can apply row operations that

result in all but d rows being zero. These row operations do not effect the rank of sets of

columns because we could apply the same operations to a subset of columns independently.

Let Q be an (n − d) × n matrix whose rows span the kernel of R. We will show that Q

is a valid encoding matrix for GM . Let y ∈ F
E be some input message set and consider

a receiver (x, S), who wishes to decode yx from {yz : z ∈ S} and the broadcast message

Qy. Extend ker(Q) arbitrarily into a basis B for F
E and let y = y′ + y′′ be the unique

decomposition according to B such that y′ ∈ ker(Q). Clearly, Qy′′ = Qy since y′ ∈ ker(Q),

hence one can recover y′′ from the public channel by triangulating Q. It remains for the

receiver (x, S) to recover y′x. To this end, observe that the rows of R span ker(Q) and recall

that by Definitions 3.1.2 and 3.1.4, column x of R is a linear combination of the columns of

42

R indexed by S. Since y′ is in the row-space of R it follows that y′x is equal to the exact

same linear combination of the components of y′ indexed by S, all of which are known to

the receiver. Altogether, the receiver can recover both y′x and y′′x and obtain the message

x. As this holds for any receiver, we conclude that Q is a valid encoding matrix and thus

λF

1(GM) ≤ n− d. When d = r(E) the inequality is tight because this upper bound coincides

with the lower bound given by Proposition 3.1.3.

Conversely, suppose that there exists a scalar linear code for GM over F with rate n− d,

and let Q be a corresponding (n−d)×n encoding matrix of rank n−d. Let R be a d×n matrix

whose rows span the kernel of Q. We claim that R under-represents M . Indeed, consider a

receiver (x, S). It is easy to verify that this receiver has a linear decoding function1 of the

form uT · Qy + vT · yS for some vectors u, v, where yS is the vector formed by restricting y

to the indices of S. As Q is a valid encoding matrix for GM , this evaluates to yx for any

y ∈ F
E. In particular, if yT is a row of R then Qy = 0 and so vT · yS = yx, and applying

this argument to every row of R verifies that column x of R is a linear combination of the

columns of R indexed by S (with coefficients from v). Since this holds for any receiver we

have that R under-represents M , as required.

We conclude this section with a result that will be useful in establishing lower bounds on

the value of LP BA(GM) for alternate constraint matricies A.

Theorem 3.1.6. Suppose that M = (E, r) is a matroid and A is a matrix such that A1 = 0

and A~r(M) 6≥ 0. Then the value of LP BA is strictly greater than |E| − r(E).

Proof. We will give a dual solution (w, x, y) to the LP with value strictly greater than

|E| − r(E).

1This follows e.g. from decomposing y as above into y′ + y′′ where y′ ∈ ker(Q). By definition y′′
x
is a

linear combination of the Qy entries. Similarly, y′
x
must be a linear combination of {yz : z ∈ S}, otherwise

there would exist some y ∈ ker(Q) with yx 6= 0 and yz = 0 for all z ∈ S, making it indistinguishable to this
receiver from y = 0.

43

Recalling the hypothesis A~r(M) 6≥ 0, let q be a row of A such that
∑

S⊆E aqSr(S) < 0.

Let S+ = {S ⊆ E | aqS > 0, S 6= E, ∅} and S− = {S ⊆ E | aqS < 0, S 6= E, ∅}. Note that

the hypothesis that A1 = 0 implies that aq∅ +
∑

S∈S+ aqS = −
(

aqE +
∑

S∈S− aqS
)

. Assume

that A is scaled so aq∅+
∑

S∈S+ aqS = −
(

aqE +
∑

S∈S− aqS
)

= 1. This assumption is without

loss of generality since aqE +
∑

S∈S− aqS is strictly negative, as can be seen from the following

calculation:

r(E)

(

aqE +
∑

S∈S−

aqS

)

≤ aqEr(E) +
∑

S∈S−

aqSr(S) ≤ aqEr(E) +
∑

S∈S−

aqSr(S) +
∑

S∈S+

aqSr(S)

=
∑

S

aqSr(S) < 0 .

Define the dual vector y by setting yq = 1 and yq′ = 0 for rows q′ 6= q of A. To define

the dual vector x, let us first associate to every set S ⊆ E a matroid basis b(S) such that

the set m(S) = b(S) ∩ S is a maximal independent subset of S, i.e. |m(S)| = r(m(S)) =

r(S). Let u(S) = S ∪ b(S). For every S ∈ S+, let x∅m(S) = xm(S)S = aqS and for every

S ∈ S−, let xSu(S) = xu(S)E = −aqS. Set all other values of xST to zero. Finally, set

w = 1. By construction, (w, x, y) satisfies all of the dual constraints. Using the relations

c∅m(S) = r(S), cSu(S) = r(E) − r(S), cm(S)S = cu(S)E = 0, we find that the dual LP objective

value is

|E|w −
∑

S⊂T

cSTxST = |E| −
∑

S∈S+

(c∅m(S) + cm(S)S)aqS −
∑

S∈S−

(cSu(S) + cu(S)E)(−aqS)

= |E| −
∑

S∈S+

r(S)aqS +
∑

S∈S−

(r(E) − r(S))aqS

= |E| +
∑

S∈S−

aqSr(E) −
∑

S

aqSr(S) + aq∅r(∅) + aqEr(E)

= |E| − r(E) −
∑

S

aqSr(S).

By hypothesis
∑

S aqSr(S) < 0, and the proposition follows.

44

3.2 Regular Graphs

In this section we use the lower bound LP B and the upper bound χf to compute the exact

broadcast rate of some classes of BSIP-G instances. To avoid too many subscripts, we will

use z(S) to denote the variable zS in LP B.

3.2.1 The broadcast rate of cycles and their complements

The following theorem establishes the value of β for BSIP-G instances given by cycles and

their complements.

Theorem 3.2.1. For any integer n ≥ 4 the n-cycle satisfies β(Cn) = n/2 whereas its

complement satisfies β(Cn) = n/⌊n/2⌋. In both cases β1 = ⌈β⌉ while α = ⌊β⌋.

Proof. As the case of n even is trivial with all the inequalities in (1.3) collapsing into an

equality (which is the case for any perfect graph), assume henceforth that n is odd. We first

show that β(Cn) = n/2. Letting n = 2k+1 for k ≥ 2, we aim to prove that b(Cn) ≥ k+1/2.

This together with Lemma 2.1.7 will imply the required result because χf (Cn) = k + 1/2.

The main idea of this proof, as with the ones to follow, is that we sum together inequalities

of the LP B so that all the variables cancel out except for z(∅), leaving us with a bound on

z(∅).

45

Denote the vertices V of the cycle by 0, 1, . . . , 2k. Further define:

E = {i : i ≡ 0 mod 2, i 6= 2k} (Evens)

O = {i : i ≡ 1 mod 2} (Odds)

E+ = {i : 0 ≤ i ≤ 2k − 2} (Evens decoded)

O+ = {i : 1 ≤ i ≤ 2k − 1} (Odds decoded)

M = {i : 1 ≤ i ≤ 2k − 2} (Middle).

Next, consider the following constraints in the LP B:

z(∅) + k ≥ z(E) (decode)

z(∅) + k ≥ z(O) (decode)

z(∅) + 1 ≥ z({2k}) (decode)

z(E) ≥ z(E+) (decode)

z(O) ≥ z(O+) (decode)

z(E+) + z(O+) ≥ z(V) + z(M) (submod,decode)

z(M) + z({2k}) ≥ z(V) + z(∅) (submod,decode)

2z(V) ≥ 2(2k + 1) (initialize) .

Summing and canceling we obtain z(∅) ≥ k + 1/2 as desired.

It remains to treat complements of odd cycles and show β(Cn) = 2 + 1
k
. We use the

upper bound χf from Lemma 2.1.7: χf (Cn) = 2 + 1
k

because Cn is vertex transitive with

independent set number 1
k
. We use the lower bound b. We show b(Cn) ≥ 2 + 1

k
by using

results that we prove in Section 6.2. There we define a type of BSIP instance called an almost

alternating cycle of size k, AACk, see Definition 6.2.4, and show that β(AACk) ≥ 2+(k−1)−1

(Theorem 6.2.5). To give a lower bound on Cn, we interpret Cn as a BSIP instance and show

b(Cn) ≥ b(AACk+1), which is at least 2 + (k)−1 as desired.

46

Interpreting Cn as a BSIP gives an instance on a directed hypergraph with vertices

v1, . . . , vn, and edges j1, . . . , jn such that f(ji) = vi and T (ji) = {vi−1 mod n, vi+1 mod n}. It

is sufficient to show that this instance contains an almost alternating cycle of size k + 1.

We claim that vertices u1, . . . , uk+1 where ui = v2i−1, and edges e1, . . . , ek+1 where ei =

j2i, i ∈ {1, . . . , k}, ek+1 = j1 form an almost alternating cycle. To see this notice that for

i = 1, . . . , k, we have that T (ei) = T (j2i) = {v2i−1, v2i+1} = {ui, ui+1} and T (ek+1) = T (j1)

and therefore contains v2k+1 = uk+1, and f(j1) = v1 = u1.

3.2.2 The broadcast rate of cyclic Cayley Graphs

In this section we demonstrate how the same framework of the proof of Theorem 3.2.1 may

be applied with a considerably more involved sequence of entropy-inequalities to establish

the broadcast rate of two classes of Cayley graphs of the cyclic group Zn. Recall that a cyclic

Cayley graph on n vertices with a set of generators G ⊆ {1, 2, . . . , ⌊n/2⌋} is the graph on the

vertex set {0, 1, 2, . . . , n− 1} where (i, j) is an edge iff j − i ≡ g (mod n) for some g ∈ G.

Theorem 3.2.2. For any n ≥ 4, the 3-regular Cayley graph of Zn has broadcast rate β =

n/2.

Theorem 3.2.3 (Circulant graphs). For any integers n ≥ 4 and k ≤ n−1
2
, the Cayley graph

of Zn with generators {±1, . . . ,±k} has broadcast rate β = n/(k + 1).

To simplify the exposition of the proofs of these theorems we make use of the following

definition.

Definition 3.2.4. A slice of size i in Zn indexed by x is the subset of i contiguous vertices

on the cycle given by {x + j (mod n) : 0 ≤ j < i}.

47

Proof of Theorem 3.2.2. It is not hard to see that for a cyclic Cayley graph to be 3-

regular it must have two generators, 1 and n/2, and n must be even. If n is not divisible by

four, then it is easy to check that there is an independent set of size n/2 and χf is also n/2.

Thus, it immediately follows that β = n/2. For 3-regular cyclic Cayley graphs where n is

divisible by four, α is strictly less than n/2. So to prove that β = n/2 we use the LP B to

show b ≥ n/2.

Let 0, 1, 2, . . . , 4k − 1 be the vertex set of the graph. We assume that any solution z has

cyclic symmetry. That is, z(S) = z({s + i|s ∈ S}) for all i ∈ [0, 4k − 1]. This assumption

is without loss of generality because we can take any LP solution z and find a new one z′

that is symmetric and has the same value by setting z′(S) = 1
4k

∑4k−1
i=0 z({s+ i|s ∈ S}). The

solution z′ is feasible because it is simply the average of 4k feasible solutions.

In our proof we will be using the following subsets of vertices:

[i] = {0, 1, 2, . . . , i− 1} (a slice of size i)

D = {0, 2, . . . , 2k − 4, 2k − 2, 2k + 1, 2k + 3, . . . , 4k − 5, 4k − 3}

D+ = {0, 1, 2, . . . , 2k − 4, 2k − 3, 2k − 2, 2k + 1, 2k + 2, 2k + 3, . . . , 4k − 4, 4k − 3} .

Observe from Figure 3.1 that D D+. Also note that D+ is missing only four vertices,

two on each side almost directly across from each other, and |D| = 2k − 1.

We prove b ≥ n/2 by listing a sequence of constraints in the LP B that sum and cancel

to give us z(∅) ≥ n/2. The fact that any two slices of size i have the same z value is used

heavily in the sequence of inequalities that make up our proof.

First, we create 2k − 1 z(D+) terms on the right-hand-side:

(2k − 2) + z(∅) ≥ z(D \ {0}) (decode) (3.2)

z([1]) + z(D \ {0}) ≥ z(D+) + z(∅) (submod , decode) (3.3)

(2k − 2)((2k − 1) + z(∅) ≥ z(D+)) (decode) (3.4)

48

0

2

4

2k – 4

2k – 2
2k + 1

2k + 3

2k + 5

4k – 5

4k – 3

Figure 3.1: A 3-regular cyclic Cayley graph on 4k vertices.

Highlighted vertices mark the set D used in the proof of Theorem 3.2.2.

summing to

z([1]) + 2k(2k − 2) + (2k − 2)z(∅) ≥ (2k − 1)z(D+) (3.5)

Next we apply submodularity and decoding to slices of size i = 2 . . . 2k and an z(D+) term

— canceling all the z(D+) terms we created on the right-hand-side in the previous step. We

pick our slices so that the union decodes a slice missing only two vertices, and the intersection

is a slice of size i− 1. This gives us the following set of inequalities:

z(D+) + z([i]) ≥ z([4k − 2]) + z([i− 1]) for 2 ≤ i ≤ 2k (3.6)

Then we again use submodularity and decoding to combine all 2k − 1 of the z([4k − 2])

terms to get full cycles using this set of inequalities:

z([4k − 2]) + z([i]) ≥ z(V) + z([i− 1]) for 2k + 1 ≤ i ≤ 4k − 2 (3.7)

49

Now summing the inequalities (3.5), (3.6) and (3.7) we are left with:

2k(2k − 2) + (2k − 2)z(∅) ≥ (2k − 2)z(V)

Finally we use the initialization constraint z(V) ≥ n, yielding:

2k(2k − 2) + (2k − 2)z(∅) ≥ (2k − 2)4k

thus z(∅) ≥ 2k for any feasible solution, implying b ≥ 2k = n/2.

Proof of Theorem 3.2.3. It is easy to check that χf for these graphs is n/(k + 1), so it is

sufficient to prove that b ≥ n/(k+1). As we did in the proof of Theorem 3.2.2 we will assume

that our solution z has cyclic symmetry. Suppose that n mod (k + 1) ≡ j. Now, consider

dividing the cycle into sections of size k + 1 and let S be the set of vertices consisting of the

first k in each complete section (|S| = k(n−j)/(k+1)). If j = 0 then cl(S) = V and decoding

gives |S| + z(∅) ≥ z(V), and our result. If j > 0 then decoding implies cl(S) = [n− j − 1].

To complete the proof we will show how to combine inequalities to iteratively reduce to the

j = 0 case.

Lemma 3.2.5. (p + 1)z([q]) + z([p]) ≥ (p + 1)z([q + 1]) + z(∅) for p ≤ q ≤ n− 1 ∈ N
+.

Proof. Submodularity and the cyclic symmetry of z implies that the inequality z([q]) +

z([r]) ≥ z([q + 1])) + z([r − 1]) holds for all q ∈ {1, . . . , n − 1} and r ≤ q by considering

slices of size q and r with union of size q + 1 and intersection of size r− 1. Adding up these

inequalities for r = {q − p + 1, . . . , q} gives us

(p + 1)z([q]) ≥ pz([q + 1]) + z([q − p]). (3.8)

Submodularity together with decoding also implies the inequality

z([q − p]) + z([p]) ≥ z(∅) + z([q + 1]) (3.9)

by considering disjoint slices [q − p], and [p] separated by one vertex. Summing Equation

(3.8) and Equation (3.9) implies our result.

50

To complete the proof of Theorem 3.2.3 we start by considering k + 1 separate instances

of the graph and in each apply the decoding inequality to the set S (the set of the first k

vertices in each section of size k + 1):

k(n− j) + (k + 1)z(∅) ≥ (k + 1)z(S) ≥ (k + 1)z([n− j − 1]) (3.10)

where both inequalities are due to the decoding constraints.

By summing the inequality from Lemma 3.2.5 for p = k and q ∈ {n − j − 1, . . . , n − 2}

(Note the assumption k ≤ n−1
2

implies p = k ≤ n− k − 1 ≤ n− j − 1 ≤ q), we obtain:

(k + 1)z([n− j − 1]) + jz([k]) ≥ (k + 1)z([n− 1]) + jz(∅) (3.11)

Applying the decoding constraint z([n−1]) = z(V) and the initialize constraint z(V) = n

to Equation (3.11) and summing with Equation (3.10) gives

(k − j + 1)z(∅) + jz([k]) ≥ n + jk (3.12)

And summing that with j copies of the decoding constraint k + z(∅) ≥ z([k]) gives

z(∅) ≥ n
k+1

, as wanted.

3.2.3 The broadcast rate of specific small graphs

For any specific graph one can attempt to solve LP B to yield a possibly tight lower bound

β ≥ b. The following corollary lists a few examples obtained using an AMPL/CPLEX solver.

Fact 3.2.6. The following graphs satisfy b = β = χf :

(1) Petersen graph (Kneser graph on
(

5
2

)

vertices): n = 10, α = 4 and β = 5.

51

(2) Grötzsch graph (smallest triangle-free graph with χ = 4): n = 11, α = 5 and β = 11
2
.

(3) Chvátal graph (smallest triangle-free 4-regular graph with χ = 4): n = 12, α = 4 and

β = 6.

52

CHAPTER 4

PRODUCTS AND SUMS OF BROADCASTING WITH SIDE

INFORMATION INSTANCES

The power of our upper and lower bounds extends only so far as our ability to analyze them.

We know of no way to efficiently compute the linear programming bounds, and given that

the number of variables and constraints are exponential in the instance size, we expect it to

be intractable even for small instances. But, as we saw in the previous section, when our

instances are structured we can find structure in the linear program as well, and use that

structure to find its value.

The other setting in which we can analyze our bounds is when our instance is built

via a product operation. In particular, we show that under an extension of the lexico-

graphic graph product many parameters of a BSIP instance behave sub-multiplicatively

and/or super-multiplicatively. In Chapter 5 we use this extensively to amplify small gaps

between parameters into gaps that are polynomial in the instance size.

4.1 Lexicographic Products

We begin by defining the lexicographic product operation for BSIP instances.

Definition 4.1.1. The lexicographic product of BSIP instances G,F , denoted by G • F , is

a BSIP instance whose vertex set is the Cartesian product V (G) × V (F). The edge set of

G • F contains a directed hyperedge j for every pair of hyperedges (jG, jF) ∈ E(G) × E(F)

with f(j) = (f(jG), f(jF)) and N(j) = (N(jG) × V (F)) ∪ ({f(jG)} × N(jF)). Denote by

G•n the n-fold lexicographic power of G.

Remark. In the special case where G and F are BSIP-G instances the above definition

53

coincides with the usual lexicographic graph product (where G•F has the vertex set V (G)×

V (F) and an edge from (u, v) to (u′, v′) iff either (u, u′) ∈ E(G) or u = u′ and (v, v′) ∈ E(F)).

It is well known that the independence number and fractional clique-cover number of

a graph G are multiplicative under the lexicographic product. Thus, both our lower and

upper bounds on β for BSIP-G instances are multiplicative, giving some indication that the

broadcast rate itself might behave nicely under this product operation.

4.1.1 β Under Lexicographic Products

Theorem 4.1.2. The broadcast rate is sub-multiplicative under the lexicographic product.

That is, β(G • F) ≤ β(G) β(F) for any two BSIP instances G and F .

Proof. Let ε > 0 and, recalling the definition of β in (1.2) as the limit of βt/t, let K be

a sufficiently large integer such that for all t ≥ K we have βt(G)/t ≤ β(G) + ε as well as

βt(F)/t ≤ β(F)+ε. Let Σ = {0, 1}K and consider the following scheme for the index coding

problem on G • F with input alphabet Σ, which will consist of an inner and an outer code.

Let EF denote an encoding function for F with input alphabet Σ achieving an optimal

rate, i.e. minimizing log(|ΣP |)/ log(|Σ|). For each v ∈ V (G), the inner code applies EF to

the |V (F)|-tuple of messages indexed by the set {v} × V (F), obtaining a message xv. Note

that our assumption on |Σ| implies that the length of xv is equal to K ′ for some integer K ′

such that K ≤ K ′ ≤ (β(F) + ε)K. Next, let EG denote an optimal encoding function for

G with input {0, 1}K′

. The outer code applies EG to {xv}v∈V (G) and the assumption on K

ensures its output is at most (β(G) + ε)K ′ bits long.

To verify that the scheme is a valid index code, consider a receiver j in G • F with

f(j) = (f(jG), f(jF)) and N(j) = (N(jG) × V (F)) ∪ ({f(jG)} × N(jF)). To decode f(j),

54

the receiver first computes xv for all v ∈ N(jG). Since EG is valid for G, receiver j can

compute xf(jG), and since EF is valid for F , this receiver can use the messages indexed by

{f(jG)} ×N(jF) along with xf(jG) to compute (f(jG), f(jF)).

Altogether, we have an encoding of K bits using at most (β(F) + ε)(β(G) + ε)K bits of

the public channel, and the required result follows from letting ε → 0.

4.1.2 LP bounds under Lexicographic products

We identify some axioms on constraint schemata that constitute a sufficient condition for

the LP value to be super-multiplicative.

Definition 4.1.3. Let 1 be the P(J)-indexed vector such that 1S = 1 for all S, and for all

i ∈ J let 1i be the vector where (1i)S = 1 for all S containing i and otherwise (1i)S = 0.

We say that a constraint schemata is tight if A(J)1 = A(J)1i = 0 for every index set J and

element i ∈ J .

It may be possible that all constraint schemas have an equivalent tight constraint schema.

In Theorem A.0.6 we show how to find an equivalent tight schema for any constraint schema

that is satisfied by ΥF

n. Chan et al. [18] took a similar approach to show that all inequalities

satisfied by Γ
∗
n are balanced, capturing the equality A(I)1i = 0, part of our notion of tight.

Lemma 4.1.4. Constraint schemata (I1, ~α1), (I2, ~α2), . . . , (Ik, ~αk) is tight if for all j ∈

{1, . . . k} we have that ~αT

j 1 = ~αT

j 1i = 0 for all i ∈ Ij.

All the constraint schemas defined in Section 2.3 satisfy this property. It is easy to verify

this for the submodularity and Zhang-Yeung constraint schemas. It is easy, but more tedious,

to verify this for the Fano and non-Fano constraint schemas, and it is additionally proven as

part of their derivations in Theorems A.0.7 and A.0.8.

55

Proof. Let (I, ~α) be an arbitrary constraint schema in our constraint schemata. It is sufficient

to prove that for any index set J and row q ∈ Q(J) of A(J) of constraint schema (I, ~α) that

A(J)1 = A(J)1i = 0 for all j ∈ J .

We begin by calculating row q of A(J)1. Let q(T) := ∪i∈TSi for q = (S1, . . . , S|I|).

∑

S∈P(J)

A(J)qS =
∑

S∈P(J)

∑

T∈P(I)
S=q(T)

αT =
∑

T∈P(I)

αT = ~αT1 = 0

Now we calculate row q A(J)1j for an arbitrary j ∈ J .

∑

S∈P(J)
j∈S

A(J)qS =
∑

S∈P(J)
j∈S

∑

T∈P(I)
q(T)=S

αT =
∑

T∈P(I)
j∈q(T)

αT

At this point the argument splits into three cases. Let q = (S1, . . . , S|I|). If j 6∈ Si for any

i ∈ I then the right side is an empty sum and clearly equals 0. If j ∈ Si for all i ∈ I then

the right side is ~αT1, which equals 0. Otherwise, there is a unique i ∈ I such that j ∈ Si

because by definition q ∈ Q(J) implies all pairwise intersections of Si and Sj are equal. The

right side of the equation above is thus equal to ~αT1i, which equals 0.

Definition 4.1.5. Let J,K be an index sets and let A(J), A(K) be the constraint matrices

parameterized by J and K of constraint schemata C. The rows of A(J) are indexed by

Q(J) and columns are indexed by P(J). Let h be any Boolean lattice homomorphism1

h : P(J) → P(K). Let Ph be a matrix representing the linear transformation h induces on

R
P(J) → R

P(K). More specifically, Ph has zeros everywhere except (Ph)h(S)S = 1.

We say that a constraint schemata C is homomorphic if there exists a Q(K) × Q(J)

non-negative matrix Qh such that

A(K)TQh = PhA(J)T

1A Boolean lattice homomorphism preserves unions and intersections, but does not necessarily map the
empty set to the empty set nor the universal set to the universal set, and does not necessarily preserve
complements.

56

for all Boolean lattice homomorphisms h.

Lemma 4.1.6. Every constraint schemata (I1, ~α1), (I2, ~α2), . . . , (Ik, ~αk) is homomorphic.

Proof. First, we show that every constraint schemata given by a single constraint schema

(I, ~α) with constraint matrix A is homomorphic. Let h : P(J) → P(K) be a Boolean lattice

homomorphism. We let Qh be a Q(K) ×Q(J) matrix that is zeros everywhere except

(Qh)h(q)q = 1 ∀q ∈ Q(J).

where h(q) =
(

h(S1), h(S2), . . . , h(S|I|)
)

for q = (S1, S2, . . . , S|I|) is the natural extension of

the homomorphism h to tuples. Notice that
(

h(S1), h(S2), . . . , h(S|I|)
)

∈ Q(K) because if

Si ∩ Sj = T for all distinct i, j ∈ I then h(Si) ∩ h(Sj) = h(Si ∩ Sj) = h(T) for all distinct

i, j ∈ I because Boolean lattice homomorphisms preserve intersections.

Let R = A(K)TQh, R
′ = PhA(J)T. Our goal is to show that R = R′. We verify the entry

S, q ∈ P(K) ×Q(J) of R and R′ are equal. Recalling the definitions of Ph, Qh we see that

RSq = A(K)h(q)S

R′
Sq =

∑

S′:h(S′)=S

A(J)qS′

Now, recall that entry q, S ∈ Q(J) × P(J) of A(J) is
∑

T∈P(I),
S=∪i∈T qi

αT , where qi is the ith

subset of tuple q. From this we see that

RSq =
∑

T∈P(I)
S=∪i∈T h(qi)

αT

R′
Sq =

∑

S′:h(S′)=S

∑

T∈P(I)
S′=∪i∈T qi

αT

Combining the sums in the second equality gives a sum over T ∈ P(I), h(∪i∈T qi) = S,

which is identical to the summation in the top sum because Boolean lattice homomorphisms

preserve unions, giving RSq = R′
Sq as needed.

57

Now, let A be the constraint matrix of the constraint schemata. For all index sets J and

vectors v ∈ R
P(J), the constraint matrix satisfies

A(J)v =

A1(J)

...

Ak(J)

v =

A1(J)v

...

Ak(J)v

From our argument above that a single constraint schema yields a homomorphic con-

straint matrix, we have Qih such that Ai(K)TQih = PhAi(J)T for all i ∈ [k]. Letting Qh

be

Q1h 0 . . . 0

0 Q2h . . . 0

...
. . .

...

0 0 . . . Qkh

,

we have

A(K)TQh =

(

A1(K)TQ1h . . . Ak(K)TQkh

)

=

(

PhA1(J)T . . . PhAk(J)T
)

= PhA(J)T,

which confirms that the constraint schemata is homomorphic.

We can now state our main result.

Theorem 4.1.7. Let A be given by a tight constraint schemata. For every BSIP instance

G let ρ(G) denote the optimum of the LP BA. Then for every two index coding problems G

and F , we have ρ(G •H) ≥ ρ(G) ρ(F).

Observe that this holds if we instantiate A with any constraint schemata containing

constraint schema defined in Section 2.3.

Corollary 4.1.8. The optimal solutions to LPs B,BZY ,BF , and BN given by b, bZY , bF ,

and bN are super-multiplicative.

58

min z∅

s.t. zI = |I| (w)

∀S ⊂ T zT − zS ≤ cST
∆
= |T \ cl(S)| (x)

Az ≥ 0 (y)

max |I| · w −∑S⊂T cSTxST

s.t.
∑

q aqSyq +
∑

T⊃S xST −∑T⊂S xTS = 0 ∀S 6= ∅, I
∑

q aq∅yq +
∑

T 6=∅ x∅T = 1
∑

q aqIyq −
∑

T 6=I xTI + w = 0

x, y ≥ 0

Figure 4.1: LP BA and its dual.

Proof of Theorem 4.1.7. Our analysis will depend on the dual linear program, as shown in

Figure 4.1.

It will be useful to rewrite the constraint set of the dual LP in a more succinct form.

First, if x is any vector indexed by pairs S, T such that S ⊂ T ⊆ I, let ∇x ∈ R
P(I) denote

the vector such that for all S, (∇x)S =
∑

T⊃S xST −
∑

T⊂S xTS. Next, for a set S ⊆ I, let eS

denote the standard basis vector vector in R
P(I) whose S component is 1. Then the entire

constraint set of the dual LP can be abbreviated to the following:

ATy + ∇x + weI = e∅ , x, y ≥ 0 . (4.1)

Some further simplifications of the dual can be obtained using the fact that the constraint

schemata is tight. For example, multiplying the left and right sides of (4.1) by the row vector

1T gives

1TATy + 1T∇x + w = 1 .

By the tightness of the constraint schemata 1TAT = 0. It is straightforward to verify that

1T∇x = 0 and after eliminating these two terms from the equation above, we find simply

59

that w = 1. Similarly, if we multiply the left and right sides of (4.1) by the row vector 1T

i

and substitute w = 1, we obtain 1T

i A
Ty + 1T

i ∇x + 1 = 0 and consequently (again by the

tightness) we arrive at 1 = −1T

i ∇x. At the same time, −1T

i ∇x =
∑

S⊂T
i∈T\S

xST by definition

of ∇x, hence summing over all i ∈ I yields

|I| =
∑

S⊂T

|T \ S| xST .

Plugging in this expression for |I| and w = 1, and letting cST := |T \ cl(S)|, the LP objective

of the dual can be rewritten as

|I| −
∑

S⊂T

cSTxST =
∑

S⊂T

(|T \ S| − cST) xST =
∑

S⊂T

|T ∩ (cl(S) \ S)| xST ,

where the last equation used the fact that cST = |T \ cl(S)|. We now define

d(S, T) = |T ∩ (cl(S) \ S)|

and altogether we arrive at the following reformulation of the dual LP.

max
∑

S⊂T d(S, T) xST

s.t. ATy + ∇x = e∅ − eI

x, y ≥ 0 .

(4.2)

Now suppose that (ξG, ηG), (ξF , ηF) are optimal solutions of the dual LP for G,F ,

achieving objective values ρ(G) and ρ(F), respectively. (Here ξ, η play the role of x, y

from (4.2), resp.) We will show how to construct a pair of vectors (ξG•F , ηG•F) that is

feasible for the dual LP of G • F and achieves an objective value of at least ρ(G) ρ(F).

The construction is as follows. Let g : P(V (G)) → P(V (G • F)) be the mapping

g(X) = X × V (F). For sets S ⊂ T ⊆ V (G), let hST : P(V (F)) → P(V (G • F)) be

the mapping hST (X) = (T × X) ∪ (S × V (F)). Observe that both mappings are Boolean

lattice homomorphisms.

60

To gain intuition about the mappings g, hST it is useful to think of obtaining the vertex

set of G •F by replacing every vertex of G with a copy of F . Here g({v}) maps the vertex v

in G to the copy of F that replaces v. The mapping hST ({u}) maps a vertex u in F to the

vertex u in the copies of F that replace vertices in T , and then adds the set {u} × V (F).

Recall that our constraint schemata is homomorphic by Lemma 4.1.6, and thus by Def-

inition 4.1.5, for every Boolean lattice homomorphism h : P(I) → P(J) we have matrices

Ph, Qh such that A(J)TQh = PhA(I)T. It is also useful to define a matrix Rh as follows: the

columns and rows of Rh are indexed by pairs S ⊂ T ⊆ I and X ⊂ Y ⊆ J , respectively, with

the entry in row XY and column ST being equal to 1 if X = h(S) and Y = h(T), otherwise

0. Under this definition,

∇(Rhx) = Ph∇x for any x ∈ R
P(I) . (4.3)

Indeed, if x = eS,T for some S ⊂ T ⊆ I then ∇eS,T = eS − eT and so Ph eS,T = eh(S) − eh(T),

whereas ∇(RheS,T) = ∇(eh(S),h(T)) = eh(S) − eh(T).

We may now define

ξG•F =
∑

S⊂T

(ξG)ST (RhST ξF) , (4.4)

ηG•F = Qg η
G +

∑

S⊂T

(ξG)ST (QhST ηF) . (4.5)

In words, the dual solution for G • F contains a copy of the dual solution for F lifted

according to hST for every pair S ⊂ T and one copy of the dual solution of G lifted according

to g. The feasibility of (ξG•F , ηG•F) will follow from multiple applications of the homomorphic

property of the constraint schemata and the feasibility of (ξF , ηF) and (ξG, ηG), achieved by

the following claim.

Claim 4.1.9. The pair (ξG•F , ηG•F) as defined in (4.4),(4.5) is a feasible dual solution.

Proof. The matrices Qg, RhST , QhST all have {0, 1}-valued entries thus clearly ξG•F , ηG•F ≥

61

0. Letting A = A(G • F), we must prove that ATηG•F + ∇ξG•F = e∅ − eV (G•F). Plugging in

the values of (ξG•F , ηG•F) we have

ATηG•F + ∇ξG•F = ATQgη
G +

∑

S⊂T

(ξG)ST (ATQhST ηF) +
∑

S⊂T

(ξG)ST ∇(RhST ξF) ,

= PgA(G)TηG +
∑

S⊂T

(ξG)ST
(

PhSTA(F)TηF + ∇(RhST ξF)
)

. (4.6)

where the second equality applied the homomorphic property of the constraint schemata.

To treat the summation in the last expression above, recall (4.3) which implies that

PhSTA(F)TηF + ∇(RhST ξF) = PhSTA(F)TηF + PhST∇ξF = PhST (e∅ − eV (F)) , (4.7)

with the last equality due to the fact that (ξF , ηF) achieves the optimum of the dual LP for F .

Recalling that PheS = eh(S) for any h and combining it with the facts hST (∅) = S×V (F) and

g(S) = S×V (F) gives PhST e∅ = eS×V (F) = PgeS. Similarly, since hST (V (F)) = T ×V (F) we

have PhST eV (F) = eT×V (F) = PgeT , and plugging these identities in (4.7) combined with (4.6)

gives:

ATηG•F + ∇ξG•F = Pg

[

A(G)TηG +
∑

S⊂T

(ξG)ST (eS − eT)

]

.

Collecting together all the terms involving eS for a given S ∈ P(I), we find that the coefficient

of eS is
∑

T⊃S(ξG)ST −∑T⊂S(ξG)ST = (∇ξG)S. Hence,

ATηG•F + ∇ξG•F = Pg

[

A(G)TηG + ∇ξG
]

= Pg

[

e∅ − eV (G)

]

= e∅ − eV (G•F) ,

where the second equality was due to (ξG, ηG) achieving the optimum of the dual LP for

G.

To finish the proof, we must evaluate the dual LP objective and show that it is at least

ρ(G) ρ(F), as the next claim establishes:

Claim 4.1.10. The LP objective for the dual solution given in Claim 4.1.9 has value at least

ρ(G) ρ(F).

62

Proof. To simplify the notation, throughout this proof we will use K,L to denote subsets of

V (G • F) while referring to subsets of V (G) as S, T and to subsets of V (F) as X, Y . We

have

∑

K⊂L

d(K,L)(ξG•F)KL =
∑

K⊂L

d(K,L)
∑

S⊂T

(ξG)ST (RhST ξF)KL

=
∑

S⊂T

(ξG)ST

(

∑

K⊂L

d(K,L) (RhST ξF)KL

)

=
∑

S⊂T

(ξG)ST

(

∑

X⊂Y

d
(

hST (X), hST (Y)
)

(ξF)XY

)

, (4.8)

where the last identity is by definition of Rh.

At this point we are interested in deriving a lower bound on d
(

hST (X), hST (Y)
)

, to

which end we first need to analyze clG•F (hST (X)). Recall that E(G•F) consists of hyperedge

j = (f(j), N(j)) with f(j) = (f(jG), f(jG)) and N(j) = (N(jG)×V (F))∪({f(jG)}×N(jF))

for each pair of edges jG ∈ E(G), jF ∈ E(F). We first claim that for any S ⊂ T and

X ⊂ V (F),

clG•F
(

hST (X)
)

\ hST (X) ⊇
(

(clG(S) \ S) ∩ T
)

×
(

clF (X) \X
)

. (4.9)

To show this, let L ⊆ V (G • F) denote the set on the right side of (4.9). Note that L

contains no ordered pairs whose first component is in S or whose second component is in X,

and therefore L is disjoint from hST (X) = (T ×X) ∪ (S × V (F)). Consequently, it suffices

to show that clG•F
(

hST (X)
)

⊇ L. Consider any message i = (iG, iF) belonging to L. As

iG ∈ clG(S) \ S, there must exist an edge jG ∈ E(G) such that f(jG) = iG and N(jG) ⊆ S.

Similarly, iF ∈ clF (X) \X implies there must exist an edge jF ∈ E(F) such that f(jF) = iF

and N(jF) ⊆ X. Recall from the definition of L that {iG} = {f(jG)} ⊆ T . Now letting

K = (N(jG)×V (F))∪({f(jG)}×N(jF)), we find that K ⊆ (S×V (F))∪(T ×X) = hST (X)

and that (i,K) ∈ E(G • F), implying that i ∈ clG•F
(

hST (X)
)

as desired.

Let X̂ = hST (X) and Ŷ = hST (Y), and recall that d(X̂, Ŷ) is defined as
∣

∣

(

clG•F (X̂) \

63

X̂
)

∩ Ŷ
∣

∣. Using (4.9) and noting that Ŷ ⊇ (T × Y) we find that

(

clG•F (X̂) \ X̂
)

∩ Ŷ ⊇
(

(clG(S) \ S) ∩ T
)

×
(

(clF (X) \X) ∩ Y
)

and hence

d(X̂, Ŷ) ≥ |(clG(S) \ S) ∩ T | · |(clF (X) \X) ∩ Y | = d(S, T) d(X, Y) .

Plugging this bound into (4.8) we find that

∑

K⊂L

d(K,L)(ξG•F)KL ≥
∑

S⊂T

(ξG)ST
∑

X⊂Y

d(S, T)d(X, Y)(ξF)XY

=

(

∑

S⊂T

d(S, T)(ξG)ST

)(

∑

X⊂Y

d(X, Y)(ξF)XY

)

= ρ(G) ρ(F) ,

as required.

Combining Claims 4.1.9 and 4.1.10 concludes the proof of the Theorem 4.1.7.

Remark. The two sides of (4.9) are in fact equal for any non-degenerate index coding

instances G and F , namely under the assumption that every jG ∈ E(G) has f(jG) /∈ N(jG)

(otherwise this receiver already knows the required f(jG) and may be disregarded) and

N(jG) 6= ∅ (otherwise the public channel must include f(jG) in plain form and we may

disregard this message), and similarly for F . To see this, by definition of clG•F (·) and the fact

that hST (X) = (T×X)∪(S×V (F)) it suffices to show that every edge (i,K) ∈ E(G•F) with

K ⊆ hST (X) satisfies i ∈
(

clG(S)∩T
)

× clF (X). Take (i,K) ∈ E(G •F) and let jG ∈ E(G)

and jF ∈ E(F) be the edges forming it as per Definition 4.1.1 of the lexicographic product.

A prerequisite for K ⊆ hST (X) is to have f(jG) ∈ T as otherwise {f(jG)}×N(jF) 6⊆ hST (X)

(recall that S ⊂ T and that N(jF) 6= ∅). Moreover, as X is strictly contained in V (F) we

must have N(jG) ⊆ S in order to allow N(jG) × V (F) ⊆ hST (X), thus (using the fact that

f(jG) /∈ N(jG) and so f(jG) /∈ S) we further require that N(jF) ⊆ X. Altogether we have

N(jG) ⊆ S, N(jF) ⊆ X and f(jG) ∈ T , hence (f(jG), f(jF)) ∈
(

clG(S) ∩ T
)

× clF (X) as

required.

64

Open Question 4.1.11. Is β super-multiplicative on lexicographic products?

It is tempting to hope that Theorem 4.1.7 can also be applied to show that β is super-

multiplicative. The linear programming lower bounds eventually converge to give β if one

includes constraint schemata given by all non-Shannon inequalities. This linear program has

infinitely many constraints and can never actually be written down, but if one can show

that it is possible to express all of the non-Shannon inequalities as tight constraints, then

this would imply that β is super-multiplicative using Theorem 4.1.7. As mentioned earlier,

the work of Chan et al. [18] even gets us half-way there. They show that all information

inequalities have a “balanced” counterpart, which captures part of our notion of tight.

Open Question 4.1.12. Is b sub-multiplicative on lexicographic products?

One way to show b is sub-multiplicative would be to give a way to compose primal

solutions to the LP. We already know how to compose a certain type of primal solution,

namely, if it corresponds to a code, then our proof that β is sub-multiplicative gives us this

composition. Can we determine a representation for all primal solutions and show that the

representative object composes under the product? What about a representation for LP BA

for an arbitrary constraint matrix A?

4.2 Strong Products

The next product we consider is an extension of the strong product, which we will denote

by ⊠. One motivation for considering the strong product is that it is used to define the

Shannon capacity of a graph, a parameter that has many similarities to the parameter β.

Shannon capacity is a coding-related graph parameter. If we take the vertices of the graph

to represent symbols of an alphabet and edges to represent confusion between symbols, then

65

the Shannon capacity is the limit, as the message size goes to infinity, of the maximum

(normalized) number of messages that can’t be confused. For messages of length one, a set

of messages that can’t be confused is just an independent set in G. For messages of length

k, it is an independent set in the k-fold strong product of G. Normalizing for the message

length gives us the Shannon capacity of G,

c(G) := lim
k→∞

k

√

α(G⊠k). (4.10)

Like β, this parameter is sandwiched between the independence number of G and the frac-

tional clique-cover number, and thus their values coincide for perfect graphs.

Remark 4.2.1. Any parameter f(G) for which f(G) ≥ α(G) and f(G) is sub-multiplicative

on strong products is an upper bound on the Shannon capacity.

Proof.

f(G)k ≥ f(G⊠k) ≥ α(G⊠k) =⇒ f(G) ≥ k

√

α(G⊠k).

Taking the limit as k goes to infinity gives f(G) ≥ c(G).

The minrank parameter that is equal to λ1 and an upper bound on β was introduced

by Haemers [34, 33]. He shows that minrank upper bounds α and is sub-multiplicative,

and thus an upper bound on the Shannon capacity. In [54] Lubetzky and Stav use the sub-

multiplicatively of the minrank parameter and its relation to c(G) to show a large separation

between scalar linear and non-linear rates. In Section 5.2, we do the same for vector linear

codes using the fractional minrank. As a first step, we show here that the fractional minrank

is also sub-multiplicative on the strong product.

The relationship between Shannon upper bounds and sub-multiplicatively show that

unlike the lexicographic product, β is not sub-multiplicative on the strong product. This

follows from β > α, and an instance in which c(G) > β(G). Lubetzky and Stav [54] give

66

such an instance that we describe in Section 5.2.1. Though note that c(G) is not an upper

bound on β because for the 5-cycle c(C5) =
√

5 [53] while β(C5) = 2.5.

We now define the strong product for BSIP instances and we show that fractional minrank

is sub-additive for this product.

Definition 4.2.2. Given two BSIP instances G = (V (G), E(G)), F = (V (F), E(F)), the

strong product, denoted G ⊠ F , is the BSIP instance with message set V = V (G) × V (F)

and edge set E = E(G) × E(H) where e = (eG, eF) ∈ E has f(e) = (f(eG), f(eF)) and

S(e) = S(eG) × S(eF).

When G and F are graphs (BSIP-G) instances, this is equivalent to the strong product

of graphs which is given by vertex set V (G) × V (F) and an edge between distinct vertices

(u, v) and (u′v′) if for the first coordinate u = u′ or (u, u′) ∈ E(G) and also for the second

coordinate v = v′ or (v, v′) ∈ E(F).

Theorem 4.2.3. For any BSIP instances G,F , minrkF

f (G⊠ F) ≤ minrkF

f (G) minrkF

f (F)

Proof. It is well-known that matrix rank is multiplicative under the Kronecker product, thus

it is sufficient to prove that given matrices AG and AF that fractionally represent G and F

over F, A = AG⊗AF fractionally represents G⊠F . Let kG (resp. kF) be such that AG (resp.

AF) fractionally represents G (resp. F) over F
kG(resp. F

kF). Then AG has rows indexed by

tuples in V (G) × [kG] and columns indexed by tuples in E(G) × [kG], and similarly for AF .

Thus, the rows of A are indexed by ordered tuples V (G) × [kG] × V (F) × [kF] and columns

indexed by ordered tuples in E(G) × [kG] × E(F) × [kF]. We need to show that for each

receiver (eG, eF) and message (vG, vF) the corresponding kGkF × kGkF block matrix is IkGkF

if vG = f(eG) and vF = f(eF) and all zeros if (vG, vF) /∈ S(eG)×S(eF). Let AG[vG, eG] be the

kG×kG sub-matrix of AG restricting to rows and columns indexed by vG and eG respectively.

Now, notice that the ((eG, eF), (vG, vF)) block of A is obtained by AG[vG, eG] ⊗ AF [vF , eF].

67

This gives us exactly what we need: for AG[f(eG), eG] ⊗ AF [f(eF), eF] = IkG ⊗ IkF = IkGkF .

And, if either vG /∈ S(eG) or vF /∈ S(eF), we have AG[vG, eG] ⊗ AF [vF , eF] = 0.

Remark 4.2.1 and Theorem 4.2.3 together give the following corollary.

Corollary 4.2.4. For any BSIP-G instance G, c(G) ≤ minrkF

f (G) for all finite fields F.

4.3 Sums

It will be useful to consider the sum or disjoint union of BSIP instances as well. Let G + H

denote the disjoint union of the BSIP instances G and H, and let t · G denote the disjoint

union of t copies of G. We show that β and β∗ are additive for the disjoint union. Though

this feels intuitive, it is not obvious. We must be careful, as βk(G) is not additive [7], nor is

λ1 [54].

Theorem 4.3.1. The parameters β and β∗ are additive with respect to disjoint unions, that

is for any two BSIP instances G,H we have β(G + H) = β(G) + β(H) and β∗(G + H) =

β∗(G) + β∗(H).

Proof. The fact that β∗ is additive w.r.t. disjoint unions follows immediately from the results

of [7]. Indeed, it was shown there that for any BSIP instance G on n vertices β∗(G) =

log2 χf (C(G)) where C = C(G) is an appropriate undirected Cayley graph on the group

Z
n
2 . Furthermore, it was shown that C(G + H) = C(G) ·∨C(H), where ·∨ denotes the OR-

graph-product. It is well-known (see, e.g., [52, 30]) that the fractional chromatic number is

multiplicative w.r.t. this product. Combining these statements we deduce that

2β∗(G+H) = χf (C(G + H)) = χf (C(G) ·∨C(H)) = χf (C(G))χf (C(H)) = 2β∗(G)+β∗(H) .

68

We shall now use this fact to show that β is additive. The inequality β(G + H) ≤

β(G) + β(H) follows from concatenating the codes for G and H and it remains to show a

matching lower bound.

As observed by [54], a BSIP instance G with n messages that are t bits long has an

equivalent formulation as a problem on a graph with tn messages that are 1-bit long; denote

this BSIP instance by Gt. Under this notation βt(G) = β1(Gt). Notice that (G + H)t =

Gt + Ht for any t and furthermore that for any s and t, s · Gt and Gst both have st copies

of each message and receiver in G. For a given receiver in G the copy in s · Gt knows

a subset of the messages that the corresponding receiver in Gst knows. This implies that

β1(s ·Gt) ≥ β1(Gst).

Fix ε > 0 and let t be a large enough integer such that β(G + H) ≥ βt(G + H)/t − ε.

Further choose some large s such that β∗(Gt) ≥ β1(s ·Gt)/s−ε and β∗(Ht) ≥ β1(s ·Ht)/s−ε.

We now get

β(G + H) + ε ≥ β1(Gt + Ht)/t ≥ β∗(Gt + Ht)/t = β∗(Gt)/t + β∗(Ht)/t ,

where the last inequality used the additivity of β∗. Since

β∗(Gt)/t ≥ β1(s ·Gt)/st− ε ≥ β1(Gst)/st− ε ≥ β(G) − ε

and an analogous statement holds for β∗(Ht)/t, altogether we have β(G + H) ≥ β(G) +

β(H) − 3ε. Taking ε → 0 completes the proof of the lemma.

Though the linear rate isn’t additive, the linear rate over a specific field is additive. This

fact was observed for scalar linear rate in [54] but we prove it rigorously here and for vector

linear rate as well.

Theorem 4.3.2. The parameters λF = minrkF

f and λF

1 = minrkF are additive with respect to

disjoint unions. Moreover, for an BSIP instance G, tλ(G) = λ(t ·G) and tλ1(G) = λ1(t ·G).

69

Proof. Let G,H be BSIP instances. Consider a matrix A that fractionally represents G+H

over F
k. Any entry corresponding to a receiver from G and message from H or vice versa

must be all zeros as a receiver in G has no side information about messages in H. Thus, A

is of the form

AG 0

0 AH

where AG fractionally represents G over F

k and AH fractionally

represents h over Fk. It is well-known that for such matrices, rank(A) = rank(AG)+rank(AH).

Thus minrkF
k

f (G + H) ≥ minrkF
k

f (G) + minrkF
k

f (H). If k = 1 and thus A,AG, AF represent

(not fractionally) G + H,G, and H this gives minrkF(G + H) ≥ minrkF(G) + minrkF(H).

Otherwise, applying this with k minimizing minrkF
k

f (G+H) and observing that minrkF
k

f (G) ≥

minrkF

f (G), gives minrkF

f (G + H) ≥ minrkF

f (G) + minrkF

f (H). Now, we show that this can

be achieved.

Let AG and AH be matrices that achieve the optimal fractional minrank over F for G

and H respectively 2 . Let kG and kH be their respective block sizes. If kG = kH or if we

are consider the standard, rather than fractional, minrank, we see that the following matrix

has the required rank and represents G + H:

AG 0

0 AH

.

If kH 6= kG, then we set A′
G = AG⊗IkH and A′

H = AH⊗IkG . These new matrices represent

G and H over FkGkH and have ranks kHrank(AG) = kHkG minrkF

f (AG) and kGkH minrkF

f (AH).

Now the matrix

A′
G 0

0 A′
H

,

fractionally represents G + H and has the required rank.

We can apply the same argument to a k-fold sum as well. If all the summands are

identical then each can achieve the optimal minrank and fractional minrank over the same

2If the optimal minrank can only be achieved in the limit as the block size goes to infinity, then we can
take a representation with minrank ε-close to optimal and later take limits as ε → 0

70

field, implying tminrk(G) = minrk(t ·G) and tminrkf (G) = minrkf (t ·G).

71

CHAPTER 5

SEPARATING BROADCAST RATE BOUNDS

This chapter shows separations between the broadcast rate and the parameters that

bound it. These separations reveal information about the power of different encoding schemes

and the quality of lower and upper bounds.

5.1 Insufficiency of the Shannon Bound

In Chapter 3 we give many structured instances of BSIPs for which b(G) = β(G) including

cycles, complements of cycles, some cyclic Cayley graphs, and instances from representable

matroids. Later in this Chapter, in Sections 5.2 and 5.3, we will see instances when b = β

while α ≪ β or β ≪ λ. It is natural to ask if b is always equal or approximately equal to

β. In [22], the authors show that an entropy based LP bound on the network coding rate

— similar to b — is not always equal to the optimal coding rate. Here we use a similar

approach to show that β can be strictly smaller than b.

Theorem 5.1.1. There exists a BSIP instance G for which b(G) < β(G). In particular,

b(G) = 4 and β(G) ≥ 45
11
.

The proof relies on a BSIP instance associated to the Vámos matroid, which is the

smallest non-representable matroid.

Definition 5.1.2. The Vámos matroid is an eight-element rank-four matroid whose ground

set is V = {a, b, c, d, w, x, y, z} and whose dependent sets are all the subsets of cardinality at

least five as well as the four-element sets {b, c, x, y}, {a, c, w, y}, {a, b, w, x}, {c, d, y, z}, and

{b, d, x, z}. The eight elements can be thought of as the eight vertices of a cube and the

dependent four element sets can be viewed as five of the coplanar sets of the cube as depicted

in Figure 5.1.

72

a

b
y

x

w

c

d

z

Figure 5.1: A representation of the Vámos matroid.

The vertices correspond to the eight elements. The planes in gray show the 4-element

dependent sets.

Proof. Let GV be the BSIP instance associated to the Vámos matroid according to Definition

3.1.2. Proposition 3.1.3 gives that b(GV) = |E| − r(E) = 8 − 4 = 4, as needed.

We will next show that β ≥ 45
11

via LP BZY . Recall that the Zhang-Yeung inequality is

given by:

3dBD+3dCD + 3dBC + dAB + dAC

− 2dB − 2dC − dAD − dD − dABC − 4dBCD ≥ 0

We use the row of the Zhang-Yeung constraint schema corresponding to sets A = {a, w},

B = {b, x}, C = {c, y}, and D = {d, z}. Observe that the rank function of the Vamos

matroid does not satisfy this inequality since the sets with positive coefficients are each

73

dependent sets of size four, giving a rank of 33, yet the sets with negative coefficients include

six sets with rank 4 and five with rank 2, giving a total rank of 34. This implies by Theorem

3.1.6 that β > 4. But, we use specific constraints of the LP to get a tighter bound.

Summing and rearranging the following inequalities of LP BZY will produce the desired

result.

11z∅ + 33 ≥ 6zV + 2zbx + 2zcy + zdz (Yeung-Zhang, decode)

2 × [zbx + 2 ≥ zV] (decode)

2 × [zcy + 2 ≥ zV] (decode)

zdz + 2 ≥ zV (decode)

11 × [zV ≥ 8] (initialize) .

To see the validity of the decoding constraints let D be the set of four-element dependent

sets. Note that any subset of size three of D ∈ D decodes D, and any subset of four elements

of V that is not in D decodes all of V . Altogether, β ≥ z∅ ≥ 45
11

while b = 4, completing the

proof.

Open Question 5.1.3. Does there a family of BSIP instances on n messages such that

Ω(nε)b ≤ β?

If we take lexicographic powers of GV then using the super-multiplicativity of bZY and b

we get β ≥ 45
11

k
, and b ≥ 4k. To complete a polynomial separation we need an upper bound

on b. For GV this upper bound is achieved using the connection to matroids. If one could

find a connection between the product instance and a polymatroid then maybe this would

yield an upper bound on b for the product. Such a result would be a nice contribution to

the field of information theory for its implications to the relationship between Γn and Γ
∗
n.

74

5.2 Strong Insufficiency of Vector Linear Coding

This section is devoted to showing a separation between λ and β. We find polynomial

separations for two infinite families of graphs. This implies a polynomial separation between

vector linear and non-linear for general network coding as well. It improves upon the best

previously known separation of 11/10 by Dougherty et al. [24], and disproves the conjecture

of Medard et al. [58] that vector linear coding is sufficient for general network coding even

in an approximate sense.

5.2.1 Separation via Fractional Minrank

In [54], Lubetzky and Stav show that for any ε > 0 and any suciently large n, there is a

BSIP-G instance G on n vertices (messages) so that λ1(G) ≥
√
n

nε β(G). They consider a

graph H = G+G and give an efficient non-linear code for H via the concatenation of linear

codes over two different fields. They then show that λ1(H) = minrk(H) is large by showing

that Shannon capacity (Equation (4.10)), a lower bound on minrank, is large.

We follow the analogous approach using fractional minrank, thus getting a separation

between λ and β.

Theorem 5.2.1. For any ε > 0 and sufficiently large n, there exists a BSIP-G instance G

with n messages such that λ(G) ≥ Ω
(√

n
nε

)

β(G)

Proof of Theorem 5.2.1. We begin with a graph construction from [54]. Let ε > 0, and let

k denote a (large) integer satisfying

3l < 2k < (1 + ε)3l where l = ⌊k log3 2⌋.

Let H be the BSIP-G instance defined by the graph on n =
(

r
s

)

vertices each represented

by an s-element subset of [r]. Two vertices are adjacent iff their corresponding sets have

75

an intersection whose cardinality is congruent to 1 modulo 2k. Let F2 = GF (2),F3 =

GF (3). The proof of Proposition 2.2 in [54] shows that minrkF2

f (H) ≤ minrkF2(H) ≤ nε and

minrkF3

f (H) ≤ minrkF3(H) ≤ nε. We will consider the graph K = H+H. Applying Theorem

4.3.1, we have β(K) = β(H) + β(H) ≤ 2nε. It remains to show that λ(K) ≥ Ω(
√
n).

To show that the best scalar linear code for K is much larger, Lubetzky and Stav [54]

show that c(K) is large and use the fact that the Shannon capacity is a lower bound on

the minrank. We can do the same for fractional minrank because Corollary 4.2.4 gives that

c(G) ≤ minrkF

f (G) for all F, and thus c(G) ≤ minrkf (G) = λ(G).

We show that c(K) ≥
√

2n by giving an independent set of size 2n in K⊠2. Observe

K⊠2 = 2 · H ⊠ H + H ⊠ H + H ⊠ H. In [54], they observe that for any graph G the set

{(u, u)|u ∈ V (G)} is an independent set in G⊠G because for u 6= v the edge (u, v) is present

in exactly one of G and G, implying (u, u) is not adjacent to (v, v) in the product. The

graph K⊠2 contains two disjoint copies of H⊠H and thus an independent set of size 2n.

5.2.2 Separation via LPs BF and BN

We show a polynomial gap between vector linear and non-linear coding use a different ap-

proach. The proof shows the power of the linear programming bounds and their super-

multiplicativity under lexicographic products. Further, unlike the construction in Section

5.2.1, in this construction the best non-linear code we know is not just the concatenation of

two linear codes over different fields, but rather, involves a recursive, intricate combination

of linear codes.

For this construction we consider BSIP instances associated to the Fano and non-Fano

matroids.

Definition 5.2.2. The Fano matroid, denoted F , and the non-Fano matroid, denoted N ,

76

are 7 element, rank 3 matroids. The seven columns of the matrix

1 0 0 0 1 1 1

0 1 0 1 0 1 1

0 0 1 1 1 0 1

constitute a linear representation of the Fano matroid when char(F) = 2 and one for the

non-Fano matroid when char(F) 6= 2. We will use U = {100, 010, 001, 110, 101, 011, 111} to

index the elements of the two matroids. They are often shown visually via the images in

Figure 5.2.

100

001010

110 101

011

111

(a) Fano Matroid Representation

100

001010

110 101

011

111

(b) non-Fano Matroid Representation

Figure 5.2: A representation of the Fano and non-Fano matroids.

The vertices correspond to the seven elements. The lines show the dependent sets of size 3.

The Fano matroid has one more dependent set of size 3 than the non-Fano matroid

represented by the circle.

We consider the BSIP instances associated to the Fano and non-Fano matroids, denoted

GF and GN respectively, as defined in Definition 3.1.2. We show a polynomial gap for the

instance (GF •GN)•k. We will first show that the linear rate over a field of even characteristic

is strictly better than the linear rate over a field of odd characteristic for GF , and that the

reverse relation holds for the non-Fano matroid. We use this to show that the there is a gap

77

between the linear and non-linear coding rates of GF • GN , and then amplify that gap via

the k-fold lexicographic product.

Theorem 5.2.3. Let G = GF •GN . For all k ∈ N, β(G•k) = 16k whereas λ(G•k) ≥ (16.12)k.

Thus showing that λ(G•k) ≥ Ω(n0.002)β(G•k) where n is the number of messages in instance

G•k.

Proof. The fact that b(G•k) = 16k is a direct application of Theorems established in Sections

3.1 and 4.1. Theorem 3.1.5 and the representability of both F and N gives that β(GF) =

β(GN) = |E| − r(E) = 4. The sub-multiplicativity of β under the lexicographic product

(Theorem 4.1.2) then implies that G = GF • GN satisfies β(G•k) ≤ (4 · 4)k = 16k. A

lower bound of the form β(G•k) ≥ 16k is a consequence of Proposition 3.1.3 which implied

that b(GF) = b(GN) = 4, from which it follows by the super-multiplicativity of b under

lexicographic products (Theorem 4.1.7) that 16k ≤ b(G•k) ≤ β(G•k). Combining these

upper and lower bounds, we find that β(G•k) = 16k.

It is worth noting, incidentally, that although each of GF , GN individually has a linear

solution over the appropriate field, the index code for G = GF • GN implied by the proof

of Theorem 4.1.2 — which concatenates these two linear codes together by composing them

with an arbitrary one-to-one mapping from a mod-2 vector space to a mod-p vector space (p

odd) — is highly non-linear, and not merely a side-by-side application of two linear codes.

To establish the lower bound on λ(G•k), we distinguish two cases, char(F) = 2 and

char(F) 6= 2, and in both cases we prove λF(G•k) ≥ (16 + ε)k using the LPs BF and BN

respectively.

Theorems A.0.4 and A.0.5 show that there is a row of the Fano (resp. non-Fano) con-

straint matrices that are violated for the rank vector of N (resp. F) matroid. This implies

by Theorem 3.1.6 that bF and bN are strictly greater than four. Now we will show directly

that bF(GN) ≥ 4.043 and bN (GF) ≥ 4.03.

78

Let ~αF and ~αN denote the inequalities that describe the Fano and non-Fano constraint

schema.

First, observe that the rank function of N does indeed violate the inequality ~αF setting

A = 100, B = 010, C = 001, D = 110, E = 101, F = 011, G = 111, H = ∅. We write the

values of d = ~r(N) in square brackets next to each term. Notice that the dependent sets

of size three appear with a positive coefficient and the independent sets of size three appear

with a negative coefficient.

2dAH [1] + 2dBH [1] + 3dCH [1] + 11dGH [1] + 3dABH [2] + 2dACH [2] + 2dBCH [2]

+ dABDH [2] + dACEH [2] + dAFGH [2] + dBCFH [2] + dBEGH [2] + dCDGH [2] + dABCGH [3]

+ dABCDEGH [3] + dABCDFGH [3] + dABCEFGH [3] + 3dABCDEFH [3]

− 15dH [0] − dAGH [2] − dBGH [2] − dCGH [2] − 4dABCH [3] − 3dABGH [3] − 3dACGH [3]

− 3dBCGH [3] − dDEFH [3] − 6dABCDEFGH [3] ≥ 0

Summing we get 1 · (2 + 2 + 3 + 11) + 2 · (3 + 2 + 2 + 6 · 1) + 3 · (4 · 1 + 3) − 0 · 15 − 2 ·

(1 + 1 + 1) − 3 · (4 + 3 + 3 + 3 + 1 + 6) = −1. Note that if we plugged in the rank vector

of matroid F then the only thing that would change would be the term −dDEFH . It would

have a value of 2 rather than 3, and would give us a sum of zero.

Now, we use a sequence of constraints of LP BF to get a bound on bF(GN).

38z∅ + 65 ≥ 15z∅ + 20zV + z100,111 + z010,111 + z001,111 (decode, αF)

z100,111 + 1 ≥ zV (decode)

z010,111 + 1 ≥ zV (decode)

z010,111 + 1 ≥ zV (decode)

23zV ≥ 23 · 7 (initialize) .

79

Summing, we get that 23z∅ ≥ 23 · 7 − 68, and bF(GN) ≥ 4.043.

Now we do the corresponding thing to show bN (GF) > 4 via LP BN . We use the same

mapping from sets to elements of the matroid as before. To start, we again verify that the

rank function of GF violates ~αN . We write the rank of each term next to it in the inequality

in square brackets.

3dAH [1] + 3dBH [1] + 9dCH [1] + 6dGH [1] + 6dABH [2] + 3dABDH [2]

+3dACEH [2] + 3dBCFH [2] + dDEFH [2] + 3dABCGH [3]

+4dABCDEGH [3] + 4dABCDFGH [3] + 4dABCEFGH [3]

−13dH [0] − 12dABCH [3] − 3dABGH [3] − 3dACGH [3] − 3dBCGH [3]

−12dABCDEFGH [3] ≥ 0

Summing we get 1·(3+3+9+6)+2·(6+3+3+3+1)+3·(3+4+4+4)−0·(13)+3·(12+3·3+12) =

−1.

Now, we use a sequence of constraints of LP BN to get a bound on bN (GF).

52z∅ + 98 ≥ 13z∅ + 33zV (decode, ~αN)

33zV ≥ 33 · 7 (initialize) .

Summing, we get that 39z∅ ≥ 33 · 7 − 98, and bN (GF) ≥ 4.030.

Now, using that the lexicographic product of both LPs is super-multiplicative we know

bF(G•k) ≥ (4 · 4.043)k = 16.17k and bN (G•k) ≥ (4 · 4.030)k = 16.12k, implying together that

λ(G•k) ≥ 16.12k.

The graph G•k has 49k vertices, so writing this in terms of n, we have that β(G•k) =

16k = n0.712, and that λ(G•k) ≥ 16.12k = n0.714, giving a multiplicative gap of n0.002.

80

Open Question 5.2.4. Can one construct a family of BSIP instances in which the scalar

linear and vector linear rates are separated by a gap polynomial in the instance size?

It is generally assumed that vector linear coding is much more powerful than scalar

linear, but evidence for this remains to be found. The best multiplicative factor known

between vector and scalar linear coding is just a small constant: 1.2, achieved by the 5-cycle.

It is possible that one could show a separation similar to the technique used here — find

an inequality that is satisfied for scalar linear codes and not vector linear codes, use it to

find an instance with a small separation and then amplify it using lexicographic products.

Alternatively, one could take advantage of the relationship between linear coding and the

minrank parameters and amplification using the strong product operation.

5.3 Separation between α and β

In this section we show a class of graphs with a polynomial-sized gap between the trivial

lower bound α and the broadcast rate β. This is not only the first large separation between

α and β, but it gives the first instance of graphs for which we can show α < β.

Theorem 5.3.1. For all k ∈ N we have β(C•k
5) =

(

5
2

)k
while α(C•k

5) = 2k, implying that

β(C•k
5) ≤ Ω(nδ)α(C•k

5), where δ = 1 − 2 log5(2) ≈ 0.139 and n is the number of messages in

C•k
5 .

Proof. Theorem 3.2.1 gives b(C5) = β(C5) = 5
2
. Furthermore, α(C5) = 2, giving us a small

separation between α and β.

Now, we can amplify this gap using the super-multiplicativity of lexicographic products

(Theorem 4.1.7) just as we did for the gap in Section 5.2.2. In particular, we will transform

this small gap on C5 to a polynomial gap on C•k
5 .

81

Applying Theorem 4.1.7 we deduce that for any integer k ≥ 1 the k-th lexicographic power

of C5 satisfies β(Ck
5) ≥ b(Ck

5) ≥
(

5
2

)k
. The sub-multiplicativity of β (Theorem 4.1.2) gives

β(Ck
5) ≤ β(C5)

k =
(

5
2

)k
Furthermore, α(C5) = 2 and it is well known that the independence

number is multiplicative on lexicographic products and so α(Ck
5) = 2k. Altogether, Ck

5 is a

graph on n = 5k vertices with α = nlog5(2) and β = n1−log5(2), implying our result.

Theorem 5.3.1 also has interesting consequences for general network coding. We can

map the BSIP instances that give the large separation between α and β to network coding

instances that give a large separation between the network coding rate and iMeagerness, the

strongest known cut bound for directed multiple unicast problems. Harvey and Kleinberg

[37] show that cut bounds meagerness and vertex sparsity can be Ω(n) larger than the

coding rate. This motivates them to define iMeagerness, a stronger cut bound. They give

an example for which the cut is an Ω(log n) factor larger than the coding rate. See Section

1.1.3 for an overview of work on network coding cut bounds. We can apply Theorem 5.3.1 to

provide an n-vertex multiple unicast problem for which the cut is an Ω(n0.138) factor larger

than the network coding rate.

To this end, we show that there is a network coding instance N with n + m + 2 nodes

corresponding to every BSIP instance G with n messages and m receivers such that the

coding rate of N is equal to 1
β(G)

and the iMeagerness of N equal to 1
α(G)

.

We give a mapping from a BSIP instance to a network coding instance. This formalizes

the sketch given in the introduction.

Definition 5.3.2. Given a BSIP instance G = (V,E), the corresponding network coding

instance N is given by directed graph with vertex set V ′ = {ui|i ∈ V }∪{u′
j|i ∈ E}∪{w,w′}.

The edge set E ′ contains infinite capacity directed edges {(ui, u
′
j)|i ∈ N(j)} ∪ {(ui, w)|i ∈

V } ∪ {(w′, u′
i)|i ∈ V }. E ′ additionally contains the so-called bottleneck edge (w,w′) that

has capacity one. There are |V | commodities, and for each commodity a single source

82

Src(i) = {ui} and sinks Snk(i) = {u′
j|f(j) = i}. See Figure 1.1 for an illustration of the

network coding instance.

Observe that if G is a BSIP-G instance then there is only one sink for each commodity

and thus corresponds to a multiple unicast network coding instance.

The following theorem establishes that the coding rates of the two instances correspond.

Claim 5.3.3. Given a BSIP instance G = (V,E), the corresponding network coding instance

N has coding rate 1
β(G)

.

Proof. First we show that the coding rate of N is at least 1
β(G)

. Let ε > 0 and E : Σ → ΣP

be a broadcasting solution such that log |ΣP |
log |Σ| ≤ β(G) + ε. Now, our network coding solution

will use source alphabet Σ. Edges (w,w′), {(w′, u′
i)|i ∈ V } will have alphabet ΣP , and the

remainder of the edges will have alphabet Σ. The coding function on edges with alphabet

ΣP is E and the coding function on edges (ui,−) pulls out the ith source message from the

message vector. It is not hard to see that all edge functions can be computed. The sinks

receive their desired message because E is a valid coding function for BSIP. Taking the limit

as ε goes to zero, and letting b be such that logb |ΣP | = 1 gives 1
log |Σ| ≤ β(G). Noticing that

we chose b so that logb |Σe| ≤ c(e) for all Σe giving log |Σ| as a lower bound on the coding

rate of this solution.

Now we show the coding rate of N is at most 1
β(G)

. Let Σ be an any source alphabet.

Without loss of generality we can assume that the coding functions on edges (ui,−) pull out

the ith source message from the message vector because ui has no incoming edges, is only the

source of commodity i, and all of these edges have infinite capacity. For similar reasons, the

coding functions of edges (w,−) are equal to the coding function of (w,w′) without loss of

generality. What remains is to find a coding function on edge (w,w′) that exactly captures

the BSIP problem.

83

Now we show a correspondence between α and iMeagerness.

Definition 5.3.4. Let N be a network coding instance given by a directed acyclic graph

G = (V,E), commodities I, and source and sink sets Src(i) and Snk(i) for i ∈ I. The

informational Meagerness, or iMeagerness of a subset of edges A ⊆ E is:

iM(A) := min
P :A informationally isolates P

∑

e∈E′ c(e)

|P | (5.1)

where A informationally isolates P if A together with the source messages indexed by [k]\P

determine the source messages indexed by P for any network coding solution with a strictly

positive rate.

The iMeagerness of a network is the minimum iMeagerness of any subset.

iM(N) := min
A⊆E

iM(A). (5.2)

Claim 5.3.5. For a BSIP-G instance G, the corresponding network coding instance N has

iM(N) = 1
α(G)

.

Note that we prove this for BSIP-G rather than the more general BSIP. This is sufficient

because C⊠k5 is a BSIP-G instance. It is significantly simpler because α corresponds to the

independent set number and not the more complicated expanding sequence number.

Proof. To see that iM(N) ≤ 1
α(G)

we let A be the bottleneck edge and let P be a maximal

independent set in G. It is known that if every path between the {Src(i)|i ∈ P} and

{Snk(i)|i ∈ P} intersects A then A informationally isolates P (Lemma 7 in [36]). This holds

for our choice of A,P because the independence of P in G implies no direct edges between

sets {ui|i ∈ P} and {u′
i|i ∈ P}, and all paths go through the bottleneck edge.

To see that iM(N) ≤ 1
α(G)

we first observe that the set A that minimizes the expression of

iM(N) must be the singleton set containing the bottleneck edge. All other edges have infinite

84

capacity and cannot achieve the minimum. Now, we show that P must be an independent

set. Suppose not, then there is some i, j ∈ P such that (i, j) ∈ E(G) and thus there is are

edges (ui, u
′
j) and (uj, u

′
i) in N . Now we show that A does not informationally isolate P .

We give a feasible code in which the source messages not in P and the coding function on

A cannot determine the source messages of i, j ∈ P . Let x = (x1, . . . , xn) be the source

message tuple. Consider the code that sends xi + xj and xk, ∀k 6= i, j along the bottleneck

edge and all other edges (u, v) send a message containing all the information on in-edges

of u or sources at u. This code is feasible because all the sinks receive the bottleneck edge

message and sink i receives source message j and vice versa as (i, j) ∈ E. But, the messages

along edge A and source messages P do not determine xi or xj.

5.4 Separating the broadcast rate from clique-cover bound

In this section we show a strong form of separation between β and its upper bound χf . Not

only can we have a family of graphs where β = O(1) while χf is unbounded, but one can

construct such a family where χf grows polynomially fast with n.

Theorem 5.4.1. There exists an explicit family of graphs G on n vertices such that β(G) =

minrk(G) = 3 whereas the coding schemes based on clique-covers cost at least χf (G) =

Θ(n1/4) bits.

The following family of graphs (up to a small modification) was introduced by Erdős and

Rényi in [29]. Due to its close connection to the (Sylvester-)Hadamard matrices when the

chosen field has characteristic 2 we refer to it as the projective-Hadamard graph H(Fq):

1. Vertices are the non-self-orthogonal vectors in the 2-dimensional projective space over

Fq.
1

1vectors in the 2-dimensional projective space over Fq are equivalence classes of the set F
3

q
− {(0, 0, 0)}

85

2. Two vertices are adjacent iff their corresponding vectors are non-orthogonal.

Observation 5.4.2. The number of vertices in H(Fq) is at least q2(q−2)
(q−1)

.

Proof. We need to count the number of non-self orthogonal vectors 2-dimensional projective

space over Fq. There are at least q2(q − 2) non-self orthogonal vectors in Fq: pick the first

two elements of the vector to be any elements of Fq, then there are at least q − 2 elements

of Fq to use for the last element so that the vector is not self-orthogonal. At most q − 1

vectors in F
3
q map to a single element of 2-dimensional projective space over Fq, completing

the proof.

Proof of Theorem 5.4.1. Let q be prime. We claim that the BSIP-G instance described

by the projective-Hadamard graph H(Fq) on n vertices satisfies β = 3 while χf = Θ(n1/4).

The latter is a well-known fact which appears for instance in [6, 59]. Showing that χf ≥ (1−

o(1))n1/4 is straightforward and we include an argument establishing this for completeness.

The fact that β ≥ 3 follows from the fact that the standard basis vectors form an

independent set of size 3. A matching upper bound will follow from the minrkF parameter

(see Definition 1.2.7). Let F be some finite field and let ℓ = minrkF(G) be the length of

the optimal linear encoding over F for BSIP-G instance G and messages taking values in F.

Broadcasting ℓ⌈log2 |F|⌉ bits allows each receiver to recover his required message in F and

so β ≤ ℓ. It thus follows that ⌈β(G)⌉ ≤ minrkF(G) for any graph G and finite field F.

Here, dealing with the projective-Hadamard graph H, let B be the Gram matrix over

Fq of the vectors corresponding to the vertices of H. By definition the diagonal entries are

nonzero and whenever two vertices u, v are nonadjacent we have Buv = 0. In particular B is

a representation for H over Fq which clearly has rank 3 as the standard basis vectors span

its entire row space. Altogether we deduce that β(H) = 3.

modulo the equivalence relation x ∼ kx, for all k ∈ Fq, x ∈ F
3

q
.

86

The fractional clique-cover number is at least as big as the number of vertices divided by

the size of the largest clique. Thus, to show that χf (H) ≥ (1 − o(1))n1/4 it is sufficient to

show that the clique-number of H is at most (1 − o(1))q3/2 ≤ (1 + o(1))n3/4.

Consider the following multi-graph G which consists of the entire projective space:

1. Vertices are all vectors of the 2-dimensional projective space over Fq.

2. Two (possibly equal) vertices are adjacent iff their corresponding vectors are orthogo-

nal.

Clearly, G contains the complement of the Hadamard graph H(Fq) as an induced subgraph

and it suffices to show that α(G) ≤ (1 − o(1))q3/2.

It is well-known (and easy) that G has N = q2 + q + 1 vertices and that every vertex of

G is adjacent to precisely q + 1 others. Further observe that for any u, v ∈ V (G) precisely

one vertex of G belongs to {u, v}⊥ (as u, v are linearly independent vectors). In other

words, the codegree of any two vertices in G is 1. We conclude that G is a strongly-

regular graph (see e.g. [31] for more details on this special class of graphs) with codegree

parameters µ = ν = 1 (where µ is the codegree of adjacent pairs and ν is the codegree of non-

adjacent ones). There are thus precisely 2 nontrivial eigenvalues of G given by 1
2
((µ− ν) ±

√

(µ− ν)2 + 4(q + 1 − ν)) = ±√
q, and in particular the smallest eigenvalue is λN = −√

q.

Hoffman’s eigenvalue bound (stating that α ≤ −mλm

λ1−λm
for any regular m-vertex graph with

largest and smallest eigenvalues λ1, λm resp., see e.g. [31]) now shows

α(G) ≤ −NλN

(q + 1) + λN

=
(q2 + q + 1)

√
q

q +
√
q + 1

= q3/2 − q +
√
q ,

as required.

87

5.5 Triangle-free Graphs

In addition to demonstrating a large gap between χf and β on the projective-Hadamard

graphs, we show that even in the extreme cases where G is a triangle-free graph on n

vertices, in which case χf (G) ≥ n/2, one can construct coding schemes that significantly

outperform χf .

For triangle-free graphs, where the upper bound χf on β is at least n/2. The first question

in this respect is whether possibly β = χf in this regime, i.e. for graphs with χf = θ(n) one

cannot improve upon the fractional clique-cover approach for broadcasting. This is answered

by the following result.

Theorem 5.5.1. There exists an explicit family of triangle-free graphs on n vertices where

χf ≥ n/2 whereas the broadcast rate satisfies β ≤ 3
8
n.

The following lemma will be the main ingredient in the construction:

Lemma 5.5.2. For arbitrarily large integers k there exists a family F of subsets of [k] whose

size is at least 8k/3 and has the following two properties:

(i) Every A ∈ F has an odd cardinality.

(ii) There are no distinct A,B,C ∈ F that have pairwise odd cardinalities of intersections.

Remark 5.5.3. For k even, a simple family F of size 2k with the above properties is obtained

by taking all the singletons and all their complements. However, for our application here it

is crucial to obtain a family F of size strictly larger than 2k.

Remark 5.5.4. The above lemma may be viewed as a higher-dimensional analogue of the

Odd-Town theorem: If we consider a graph on the odd subsets with edges between those with

an odd cardinality of intersection, the original theorem looks for a maximum independent

set while the lemma above looks for a maximum triangle-free graph.

88

Proof of lemma. It suffices to prove the lemma for k = 6 by super-additivity (we can par-

tition a ground-set [N] with N = 6m into disjoint 6-tuples and from each take the original

family F).

Let U1 =
{

{x} : x ∈ [5]
}

be all singletons except the last, and U2 =
{

A ∪ {6} : A ⊂

[5] , |A| = 2
}

. Clearly all subsets given here are odd.

We first claim that there are no triangles on the graph induced on U2. Indeed, since all

subsets there contain the element 6, two vertices in U2 are adjacent iff their corresponding

2-element subsets A,A′ are disjoint, and there cannot be 3 disjoint 2-element subsets of [5].

The vertices of U1 form an independent set in the graph, hence the only remaining option

for a triangle in the induced subgraph on U1 ∪ U2 is of the form {x}, (A ∪ {6}), (A′ ∪ {6}).

However, to support edges from {x} to the two sets in U2 we must have that x belongs to

both sets, and since x 6= 6 by definition we must have x ∈ A ∩ A′. However, we must also

have A ∩ A′ = ∅ for the two vertices in U2 to be adjacent, contradiction.

To conclude the proof observe that adding the extra set [5] does not introduce any

triangles, since U1 is an independent set while [5] is not adjacent to any vertex in U2 (its

intersection with any set (A ∪ {6}) ∈ U2 contains precisely 2 elements). Altogether we have

|F| = 5 +
(

5
2

)

+ 1 = 8
3
k.

Proof of Theorem 5.5.1. Let F be the family provided by the above lemma and consider

the graph G whose n vertices are the elements of F with edges between A,B whose cardinality

of intersection is odd. By definition the graph G is triangle-free and we have χf (G) ≥ n/2.

Next, consider the binary matrix M indexed by the vertices of G where MA,B = |A ∩B|

(mod 2). All the diagonal entries of M equal 1 by the fact that F is comprised of odd

subsets only, and clearly M is a representation of G over GF (2). At the same time, M can

be written as FFT where F is the n× k incidence-matrix of the ground-set [k] and subsets

89

of F . In particular we have that rank(M) ≤ rank(F) ≤ k over GF (2). This implies that

minrk2(G) ≤ k and the proof is now concluded by the fact that β(G) ≤ minrk2(G).

Remark 5.5.5. The construction of the family of subsets F in Lemma 5.5.2 relied on a

triangle-free 15-vertex base graph H which is equivalent to the Petersen graph with 5 extra

vertices added to it, each one adjacent to one of the independent sets of size 4 in the Petersen

graph.

5.6 Additive Separations

Though in [7] Alon et al. show that for BSIP there are instances in which β = 2 while

β∗ is unbounded, in the constrained setting of BSIP-G the largest known values of β1 − β

and β∗ − β were less than one. They are attained by the 5-cycle, where it was known that

β1 = 3, β∗ ≈ 2.68, and β = 2.5. These gaps could potentially be attributed to integer-

rounding, and we might conjecture that for graphs β1 = ⌈β⌉ and β∗ < ⌈β⌉.

The following theorem refutes these suggestions by amplifying both of these gaps to be

linear in n. Moreover the construction gives additive separations that are linear in n between

most broadcast rates.

Theorem 5.6.1. There exists a family of graphs G on n vertices for which β(G) = λ(G) =

1
2
n, α(G) = 2

5
n, λ1(G) ≥ 3

5
n, and β1 ≥ β∗(G) = (1 − 1

5
log2 5)n ≈ 0.54n.

Proof of Theorem 5.6.1. Consider the family of graphs on n = 5k vertices given by G =

k · C5. It was shown in [7] that β∗(C5) = 5 − log2 5, and Theorem 3.2.1 gives β(C5) =

λ(C5) = 5
2
. It is easy to see that λ1(C5) = minrk(C5) = 3. The additivity of β and β∗

(Theorem 4.3.1) and the additivity of α gives β∗(G) = (5− log2 5)k, β(G) = 5
2
k, α(G) = 2k.

Additionally, Theorem 4.3.2 gives that λ(G) = kλ(C5) = 2
5
k and λ1(G) = kλ1(C5) = 3k.

Moreover, β1(G) ≥ β∗(G) = (5 − log2 5)k, as required.

90

CHAPTER 6

APPROXIMATING THE BROADCAST RATE

This section is devoted to polynomial-time algorithms for approximating β and deciding

whether β = 2 for BSIP. Working in the setting of a general broadcast network is somewhat

delicate and we begin by sketching the arguments that will follow.

6.1 Approximating the broadcast rate in general networks

In the simpler case of undirected graphs, a o(n)-approximation to β is implied by results

of [63, 5, 14] that together give a polynomial time procedure that finds either a small clique-

cover or a large independent set (see Remark 6.1.2). To get an approximation for BSIP we

will apply a similar technique using analogues of independent sets and clique-covers that give

lower and upper bounds respectively on the BSIP broadcasting rate. The analogue of an

independent set is an expanding sequence — a sequence of receivers where the ith receiver’s

desired message is unknown to receivers 1, . . . , i− 1 (see Definition 2.1.1). The clique-cover

analogue is a fractional hyperclique-cover (see Definition 2.1.5).

We will prove that there is a polynomial time algorithm that outputs an expanding se-

quence of size k or reports a fractional hyperclique-cover of size O
(

kn1−1/k
)

; the approxima-

tion follows by setting k appropriately. We will argue that either we can partition the graph

and apply induction or else the side-information map is dense enough to deduce existence of

a small fractional hyperclique-cover. The proof of the latter step deviates significantly from

the techniques used for graphs, and seems interesting in its own right. We will give a simple

procedure to randomly sample hypercliques and use it to produce a valid weight function

for the hyperclique-cover by defining the weight of a hyperclique to be proportional to the

probability it is sampled by the procedure.

Theorem 6.1.1. Let G be a broadcasting with side information problem, having n messages

91

and m receivers. Then there is a polynomial time algorithm which computes a parameter

τ = τ(G) such that 1 ≤ τ(G)
β(G)

≤ O
(

n log logn
logn

)

.

Remark 6.1.2. In the setting of undirected graphs a slightly better approximation algorithm

for β is a consequence of a result of Boppana and Halldorsson [14], following the work of

Wigderson [63]. In [14] the authors showed an algorithm that finds either a “large” clique or

a “large” independent set in a graph (where the size guarantee involves the Ramsey number

estimate). A simple adaptation of this result (Proposition 2.1 in the Alon-Kahale [5] work

on approximating α via the ϑ-function) gives a polynomial-time algorithm for finding an

independent set of size tk(m) = max
{

s :
(

k+s−2
k−1

)

≤ m
}

in any graph satisfying χ(G) ≥

n/k + m. In particular, taking m = n/k with k = 1
2

log n we have that either χ(G) < 4n
log(n)

or we find an independent set of size tk(n/k) = max
{

s :
(

.5 log(n)+s−2
.5 log(n)−1

)

≤ 2n
log(n)

} ≥ .5 log(n)

for sufficiently large n in polynomial-time.

We now turn our attention to bounding the ratio χf (G)/α(G) for a BSIP instance G.

Our goal is to show that this ratio is bounded by a function in o(n). To begin with, we need

an analogue of the lemma that undirected graphs with small maximum degree have small

fractional chromatic number.

Lemma 6.1.3. If G is a BSIP instance with n vertices, and d is a natural number such that

for every receiver j, |S(j)| + d ≥ n, then χf (G) ≤ 4d + 2.

Proof. Let us define a procedure for sampling a random subset T ⊆ [n] and a random

hyperclique J as follows. Let π be a uniformly random permutation of [n + d], let i be the

least index such that π(i + 1) > n, and let T be the set {π(1), π(2), . . . , π(i)}. (If π(1) > n

then i = 0 and T is the empty set.) Now let J be the set of all j such that f(j) ∈ T ⊆ S(j).

(Note that J is indeed a hyperclique.)

For any hyperclique J let p(J) denote the probability that J is sampled by this pro-

cedure and let w(J) = (4d + 2) · p(J). We claim that the weights w(·) define a fractional

92

hyperclique-cover of G, or equivalently, that for every receiver j, P(f(j) ∈ T ⊆ S(j)) ≥ 1
4d+2

.

Let U(j) denote the set [n + d] \ N(j). The event E = {f(j) ∈ T ⊆ S(j)} occurs if and

only if, in the ordering of U(j) induced by π, the first element of U(j) is f(j) and the next

element belongs to [n + d] \ [n]. Thus,

P(E) =
1

|U(j)| ·
d

|U(j)| − 1
.

The bound P(E) ≥ 1
4d+2

now follows from our assumption |S(j)| + d ≥ n which implies that

|U(j)| ≤ 2d + 1.

Lemma 6.1.4. If G is a BSIP instance and α(G) ≤ k, then χf (G) ≤ 6kn1−1/k. Moreover,

there is a polynomial-time algorithm, whose input is a hypergraph G and a natural number

k, that either outputs an expanding sequence of size k+1 or reports (correctly) that χf (G) ≤

6kn1−1/k.

Proof. The proof is by induction on k. In the base case k = 1, either G itself is a hyperclique

or there is some pair of receivers j, j′ such that f(j) is not in S(j′). In that case, the sequence

j1 = j′, j2 = j is an expanding sequence of size 2.

For the induction step, for each hyperedge j define the set D(j) = [n] \ N(j) and let

j1 be a hyperedge such that |D(j)| is maximum. If |D(j1)| ≤ n1−1/k + 1, then the bound

|S(j)|+n1−1/k ≥ n is satisfied for every j and Lemma 6.1.3 implies that χf (G) < 4n1−1/k+2 ≤

6n1−1/k. Otherwise, partition the vertex set of G into V1 = [n] \ S(j1) and V2 = S(j1), and

for i = 1, 2 define Gi to be the hypergraph with vertex set Vi and edge set Ei consisting

of all pairs (N(j) ∩ Vi, f(j)) such that (N(j), f(j)) is a hyperedge of G with f(j) ∈ Vi.

(We will call such a structure the induced sub-hypergraph of G on vertex set Vi.) If G1

contains an expanding sequence j2, j3, . . . , jk+1 of size k, then the sequence j1, j2, . . . , jk+1

is an expanding sequence of size k + 1 in G. (Moreover, if an algorithm efficiently finds

the sequence j2, j3, . . . , jk+1 then it is easy to efficiently construct the sequence j1, . . . , jk+1.)

Otherwise, by the induction hypothesis, G1 has a fractional hyperclique-cover of weight at

93

most 6(k − 1)|V1|1−1/(k−1) ≤ 6(k − 1)|V1|n−1/k. Continuing to process the induced sub-

hypergraph on vertex set V2 in the same way, we arrive at a partition of [n] into disjoint

vertex sets W1,W2, . . . ,Wℓ of cardinalities n1, . . . , nℓ, respectively, such that for 1 ≤ i < ℓ, the

induced sub-hypergraph on Wi has a fractional clique-cover of weight at most 6(k−1)nin
−1/k,

and for i = ℓ the induced sub-hypergraph on Wi satisfies the hypothesis of Lemma 6.1.3 with

d = n1−1/k and consequently has a fractional hyperclique-cover of weight at most 6n1−1/k.

The lemma follows by summing the weights of these hyperclique-covers.

Proof of Theorem 6.1.1. We combine Lemmas 2.1.3, 2.1.7, 6.1.4. Run the algorithm de-

scribed in Lemma 6.1.4 with k = logn
2 log logn

. If the algorithm outputs an expanding sequence

of size k+ 1 then we output τ = n, otherwise, we output τ = 6kn(1−1/k). In both cases there

is a coding scheme of size at most τ (sending all messages for the former and sending the

code given by the fractional hyperclique-cover in the latter) and thus τ/β ≥ 1. If we output

τ = n then we know β ≥ α ≥ k giving τ/β ≤ 2n log logn
logn

. In the latter case, we use β ≥ 1

giving τ/β ≤ 6kn(1−(1/k)) = 3n
logn log logn

= O(n log logn
logn

) gives our result.

6.1.1 Extending the algorithm to networks with variable source

rates

The aforementioned approximation algorithm for β naturally extends to the setting where

each source in the broadcast network has its own individual rate. Namely, the n message

streams are identified with the elements of [n] = V , where message stream i has a rate ri,

and the problem input consists of the vector (r1, . . . , rn) and the pairs {(N(j), f(j))}mj=1.

Thus the input is a weighted directed hypergraph instance. An index code for a weighted

hypergraph consists of the following:

• Alphabets ΣP and Σi for 1 ≤ i ≤ n,

94

• An encoding function E :
∏n

i=1 Σi → ΣP ,

• Decoding functions Dj : ΣP ×∏i∈N(j) Σi → Σf(j).

The encoding and decoding functions are required to satisfy

Dj(E(σ1, . . . , σn), σN(j)) = σf(j)

for all j = 1, . . . ,m and all (σ1, . . . , σn) ∈∏n
i=1 Σi. Here the notation σN(j) denotes the tuple

obtained from a complete n-tuple (σ1, . . . , σn) by retaining only the components indexed by

elements of N(j). An index code achieves rate r ≥ 0 if there exists a constant b > 0 such

that |Σi| ≥ 2b·ri for 1 ≤ i ≤ n and |ΣP | ≤ 2b·r. If so, we say that rate r is achievable. If G is

a weighted hypergraph, we define β(G) to be the infimum of the set of achievable rates.

The first step in generalizing the proof given in the previous subsection to the case where

the ri’s are non-uniform is to properly extend the notions of hypercliques and expanding

sequences. A weak fractional hyperclique-cover of a weighted hypergraph will now assign a

weight w(J) to every weak hyperclique J such that for every receiver j,
∑

J∋j w(J) ≥ rf(j)

(cf. Definition 2.1.5 corresponding to rf(j) = 1). As before, the weight of a fractional weak

hyperclique-cover is given by
∑

J w(J) and for a weighted hypergraph G we let χf (G)

denote the minimum weight of a fractional weak hyperclique-cover. An expanding sequence

j1, . . . , jk is defined as before (see Eq. 2.1.1) except now we associate such a sequence with the

weight
∑k

ℓ=1 rf(jℓ) and the quantity α(G) will denote the maximum weight of an expanding

sequence (rather than the maximum cardinality).

With these extended defintions, the proofs in the previous subsection carry unmodified

to the weighted hypergraph setting with the single exception of Lemma 6.1.4, where the

assumption that the hypergraph is unweighted was essential to the proof. In what follows

we will qualify an application of that lemma via a dyadic partition of the vertices of our

weighted hypergraph according to their weights ri.

95

Assume without loss of generality that 0 ≤ ri ≤ 1 for every vertex i ∈ [n], and partition

the vertex set of G into subsets V1, V2, . . . such that Vs contains all vertices i such that

2−s < ri ≤ 21−s. Let Gs denote the induced hypergraph on vertex set Vs. For each of the

nonempty hypergraphs Gs, run the algorithm in Lemma 6.1.4 for k = 1, 2, . . . until the

smallest value of k(s) for which an expanding sequence of size k(s) + 1 is not found. If G◦
s

denotes the unweighted version of Gs, then we know that

α(Gs) ≥ 2−sα(G◦
s) ≥ 2−sk(s)

χf (Gs) ≤ 21−sχf (G◦
s) ≤ 2−s · 12k(s)n1−1/k(s).

In addition, for each i ∈ Vs the set of hyperedges containing i constitutes a hyperclique,

which implies the trivial bound

χf (Gs) ≤
∑

i∈Vs

ri ≤ 21−s|Vs|.

Combining these two upper bounds for χf (Gs), we obtain an upper bound for χf (G):

χf (G) ≤
∞
∑

s=1

χf (Gs) ≤
∞
∑

s=1

2−s · min
{

12k(s)n1−1/k(s), 2|Vs|
}

. (6.1)

We define τ(G) to be the right side of (6.1). We have described a polynomial-time algorithm

to compute τ(G) and have justified the relation χf (G) ≤ τ(G), so it remains to show that

τ(G)/α(G) ≤ cn
(

log logn
logn

)

for some constant c.

The bound τ(G) ≤ n follows immediately from the definition of τ , so if α(G) ≥ logn
log logn

there is nothing to prove. Assume henceforth that α(G) < logn
log logn

, and define w to be the

smallest integer such that 2w · α(G) > logn
2 log logn

. We have

τ(G) ≤
w
∑

s=1

2−s · 12k(s)n1−1/k(s) +
∞
∑

s=w+1

21−s · |Vs|

≤ 12n
w
∑

s=1

2−sk(s)n−1/k(s) + 2−w · n

< 12nα(G)
w
∑

s=1

n−1/k(s) + 2nα(G)

(

log log n

log n

)

, (6.2)

96

with the last line derived using the relations 2−sk(s) ≤ α(Gs) ≤ α(G) and 2−w <

α(G)
(

2 log logn
logn

)

. Applying once more the fact that 2−sk(s) ≤ α(G), we find that n−1/k(s) ≤

n−1/(2s·α(G)). Substituting this bound into (6.2) and letting α denote α(G), we have

τ(G)

α(G)
≤ 2n

(

log log n

log n

)

+ 12n
(

n−1/2α + n−1/4α + · · · + n−1/2wα
)

.

In the sum appearing on the right side, each term is the square of the one following it. It now

easily follows that the final term in the sum is less than 1/2, so the entire sum is bounded

above by twice its final term. Thus

τ(G)

α(G)
≤ 2n

(

log log n

log n

)

+ 24n · n−1/2wα. (6.3)

Our choice of w ensures that 2wα ≤ logn
log logn

hence n−2−wa ≤ n− log logn/ logn = (log n)−1. By

substituting this bound into (6.3) we obtain

τ(G)

α(G)
≤ n

(

2 log log n

log n
+

24

log n

)

,

as desired.

Open Question 6.1.5. Can this algorithm be extended to give an approximation algorithm

for general network coding?

There is no nontrivial approximation known for general network coding. Recently, it was

shown that every network coding instance can be reduced to an equivalent BSIP instance

[26]. This reduction is not approximation preserving, but perhaps there is a way to use it

along with the approximation for the more general weighted case to show an approximation

for network coding.

6.2 Determining whether the broadcast rate equals 2

This section is devoted to proving the following theorem.

97

Theorem 6.2.1. There is a polynomial time algorithm to decide whether β(G) = 2.

We will prove that a structure called an almost alternating cycle (AAC) constitutes a

minimal obstruction to obtaining a broadcast rate of 2. The proof makes crucial use of the

Shannon lower bound, LP B, calculating the parameter b for AAC’s to prove that their

broadcast rate is strictly greater than 2. Furthermore, the proof reduces finding an AAC to

finding the transitive closure of a particular relation, which is polynomial time computable.

Let G be an undirected graph with independence number α = 2. Clearly, if G is bipartite

then χ(G) = 2 and so β(G) = 2 as well. Conversely, if G is not bipartite then it contains an

odd cycle, the smallest of which is induced and has at least five vertices since the maximum

clique in G is α(G) = 2. In particular, Theorem 3.2.1 implies that β(G) ≥ β(Cn) = n
⌊n/2⌋ > 2.

We thus conclude the following:

Corollary 6.2.2. Let G be an undirected graph on n vertices whose complement G is

nonempty. Then β(G) = 2 if and only if G is bipartite.

A polynomial time algorithm for determining whether β = 2 in BSIP-G follows as an

immediate consequence of Corollary 6.2.2. However, for BSIP — or even for the special case

of directed graphs (the main setting of [8, 9]) — it is unclear whether such an algorithm

exists. In this section we provide such an algorithm, accompanied by a characterization

theorem that generalizes the above characterization for undirected graphs. Recall that S(j)

denotes the set N(j) ∪ {f(j)} and T (j) denotes the complement of S(j) in V . We will

assume, without loss of generality, that for every i ∈ V there is an edge j with f(j) = i.

Definition 6.2.3. If G = (V,E) is a directed hypergraph and S is a set, a function F : V →

S is said to be G-compatible if for every edge j ∈ E, there are two distinct elements t, u ∈ S

such that F maps every element of T (j) to t, and it maps f(j) to u.

Definition 6.2.4. If G = (V,E) is a directed hypergraph, an almost alternating k-cycle in

G is a sequence of k distinct edges j1, . . . , jk and k distinct vertices v1, v2, . . . , vk, such that

98

for i = 1, . . . , k − 1 the set T (ji) contains vi and vi+1, and the set T (jk) contains vk while

f(jk) = v1.

Theorem 6.2.5. For a directed hypergraph G the following are equivalent:

(i) β(G) = 2

(ii) There exists a set S and a G-compatible function F : V → S.

(iii) G contains no almost alternating cycles.

Furthermore there is a polynomial-time algorithm to decide if these equivalent conditions

hold.

Proof. (i)⇒(iii): The contrapositive statement says that if G contains an almost alternating

cycle then β(G) > 2. Let j1, . . . , jk be the edges of an almost alternating k-cycle with vertices

v1, . . . , vk. We will use LP B to show that b(G) > 2. As we did in Section 3.2, we will bring

the subscript up from the LP variables and for S ⊆ V we use z(S) in place of zS. Additionally,

we let z(S) denote z(S) and let Si:l denote the set {vi, vi+1, . . . , vl}.

For 0 < i < k, we have

z(∅) + |V | − 3 ≥ z({f(ji), vi, vi+1}) = z({vi, vi+1}) = z(Si:i+1) , (6.4)

which hold by decoding (vi, vi+1 /∈ N(ji)).

Summing up (6.4) for i = 1, . . . , k − 1 gives

(k − 1)z(∅) + (k − 1)(|V | − 3) ≥
k−1
∑

i=1

z(Si:i+1) (6.5)

Using submodularity we have that for 1 < i < k,

z(S1:i) + z(Si:i+1) ≥ z(S1:i+1) + z({vi}) = z(S1:i+1) + z(V) = z(S1:i+1) + |V | . (6.6)

99

Summing up (6.6) for i = 2, . . . , k − 1 and canceling terms that appear on both sides, we

obtain
k−1
∑

i=1

z(Si:i+1) ≥ z(S1:k) + (k − 2)|V | . (6.7)

Combining (6.5) with (6.7) we obtain

(k − 1)z(∅) + (k − 1)(|V | − 3) ≥ z(S1:k) + (k − 2)|V | . (6.8)

Now, observe that

z(S1:k) + k − 2 ≥ z({v1, vk}) ≥ z({vk}) ≥ z(V) = |V | , (6.9)

where all the inequalities are due to decoding. The second because f(jk) = v1 and vk ∈ T (jk),

and the third by our assumption that all messages are desired by at least one receiver.

Summing (6.8) and (6.9), we obtain

(k − 1)z(∅) + (k − 1)(|V | − 3) + k − 2 ≥ (k − 1)|V |

and rearranging we get z(∅) ≥ 2 + (k − 1)−1, from which it follows that β(G) ≥ b(G) ≥

2 + (k − 1)−1.

(iii)⇒(ii): Define a binary relation ♯ on the vertex set V by specifying that v♯w if there

exists an edge j such that {v, w} ⊆ T (j). Let ∼ denote the transitive closure of ♯. Define

F to be the quotient map from V to the set S of equivalence classes of ∼. We need to

check that F is G-compatible. For every edge j ∈ E, the definition of relation ♯ trivially

implies that F maps all of T (j) to a single element of S. The fact that it maps f(j) to a

different element of S is a consequence of the non-existence of almost alternating cycles. A

relation f(j) ∼ v for some v ∈ T (j) would imply the existence of a sequence v1, . . . , vk such

that v1 = f(j), vk = v, and vi♯vi+1 for i = 1, ..., k − 1. Let v1, . . . , vk be the shortest such

sequence. If we choose ji for 0 < i < k to be an edge such that T (ji) contains vi, vi+1 (such

an edge exists because vi♯vi+1) and we set jk = j, then the vertex sequence v1, . . . , vk and

edge sequence j1, . . . , jk constitute an almost alternating cycle in G. It remains to verify that

100

j1, . . . , jk are distinct. If ji = jl for i < l < k, then vi, vl+1 ∈ T (ji) and we have a shorter

sequence after removing ji+1, . . . , jl, and if ji = jk we have a shorter sequence ending at ji,

both a contradiction to choosing the shortest sequence v1, . . . vk.

Computing the relation ∼ and the function F , as well as testing that F is G-compatible,

can easily be done in polynomial time, implying the final sentence of the theorem statement.

(ii)⇒(i): If F : V → S is G-compatible, we may compose F with a one-to-one mapping

from S into a finite field F, to obtain a function φ : V → F that is G-compatible. The public

channel broadcasts two elements of F, namely:

y =
∑

v

xv

z =
∑

v

φ(v)xv, xv ∈ F

Receiver Rj now decodes message x(j) as follows. Let c denote the unique element of F

such that φ(v) = c for every v in T (j). Using the pair (y, z) from the public channel, Rj can

form the linear combination

cy − z =
∑

v

[c− φ(v)]xv.

We know that every v ∈ T (j) appears with coefficient zero in this sum. For every v ∈ N(j),

receiver Rj knows the value of xv and can consequently subtract off the term [c − φ(v)]xv

from the sum. The only remaining term is [c − φ(x(j))]x(j). The coefficient c − φ(x(j)) is

nonzero, because φ is G-compatible. Therefore Rj can decode x(j).

101

CHAPTER 7

BEYOND BROADCASTING: GRAPH PRODUCTS AND THE NETWORK

CODING RATE

We consider the coding analogue of the maximum multicommodity flow problem. The

maximum multicommodity flow problem is closely related to the concurrent multicommodity

flow problem; it differs only in its objective function. In the maximum multicommodity flow

problem there is no notion of fairness between commodities. The objective is simply to

maximize the total flow sent between source-sink pairs. Though maximum and concurrent

versions of the multicommodity flow problem are different from a practical perspective, the

flow-cut and flow-coding gap results discussed in Section 1.1.3 for the concurrent variant still

hold in the maximization variant with the correct notion of cut.

For the concurrent variant, the cut bound we use is the integral solution to the dual of

the concurrent multicommodity flow linear program. We use the corresponding cut bound

here and obtain what we call the multicut. The minimum multicut is the minimum size edge

set that, when removed, disconnects all source-sink pairs. Just like the concurrent variant,

the multicut is not an upper bound on the coding rate in directed networks and can even be

a factor k smaller [4].

We study the relationship between multicuts and coding solutions for a special class of

networks.

This study has implications not only for network coding, but also for the multicut prob-

lem itself. The multicut problem is a fundamental graph partitioning problem and has

applications in network robustness where we may want guarantees that the multicut is large

implying our network will still be connected even after the failure of many edges. Alterna-

tively, we may want to compute a small multicut in order to determine an efficient way to

stop the spread of a contagion in a network.

102

The multicut problem is known to be NP-hard to compute and even NP-hard to approx-

imate [21, 20]. The best approximation algorithm known for directed graphs is Õ(n11/23)

[2]. All of the approximation algorithms [32, 2, 19] to date bound the solution value via

the solution to the maximum multicommodity flow problem. This technique is limited by

the flow-cut gap, and the gap is known to be Ω(k) [60] and Ω̃(n1/7) [20]. Thus, the lower

bound given by the maximum multicommodity flow problem isn’t strong enough to allow

for improved approximation algorithms when parameterized by k.

This chapter considers the possibility of a stronger lower bound via network coding.

We introduce a technique to certify when the network coding rate is a lower bound on the

multicut, or in other words, when the multicut is an upper bound on the network coding rate.

We identify a property of a linear network code that guarantees the code is a lower bound

on the multicut. We also show that for the strong graph product of any two networks with

such codes, this property is preserved. The following theorem describes one consequence of

our main result:

Theorem 7.0.1. Given a network G in which the optimal multicommodity flow solution

consists of a set of node-disjoint paths, there is a product operation in which the optimal

network coding rate is equal to the minimum multicut in the k-fold product of G.

By applying this theorem to a directed path of length n with source and sink at the ends,

we give a new lower bound on the multicut in the construction of Saks et al. Our proof

strengthens Saks’s result and provides a tight lower bound on the multicut (see Corollary

7.3.1). Further, it constructs an elegant network coding solution for the construction that

has rate equal to the multicut and a k − o(k) factor larger than the multicommodity flow

rate. This implies that the construction of Saks et al. does not give even give an example

where the coding rate can strictly less than the multicut, let alone a factor Ω(k) smaller.

103

7.1 Preliminaries

We begin by defining the class of networks for which we analyze the multicut and network

coding rates. The definition is tailor-made for taking graph products. All of the definitions

in this chapter are self-contained. In particular, we give variations of the definition of a

network code, a network coding solution, and the strong graph product. Though essentially

the same, these definitions are better adapted for the class of networks we consider.

Definition 7.1.1. A node-capacitated multicommodity instance is given by a tuple N =

(G,S, T , f) where G = (V,E) is an undirected graph, S and T are an ordered list of sources

and sinks (separate from G) such that the ith source and sink are paired, and f : S∪T 7→ 2V

is a function that maps each source and sink to a subset of nodes. The instance network

can be formed by adding nodes for each element in S and T to G and adding directed edges

(s, v) for all s ∈ S, v ∈ f(s) and (u, t) for all t ∈ T , u ∈ f(t). We reserve n to denote |V |.

It is easier for us to work with node-capacitated networks, but any node-capacitated

network can be transformed into an equivalent edge-capacitated network by replacing each

node with two nodes with a single directed edge between them. For this reason, even though

the graph G is undirected, the network we are considering is far from undirected.

We will show that under certain conditions linear network codes and multicuts in these

network instances can be composed under the following product operation.

Definition 7.1.2. The strong product of two instances N1 = (G1,S1, T1, f1) and N2 =

(G2,S2, T2, f2) is the instance N1 ⊠ N2 = (G1 ⊠ G2,S, T , f) where G1 ⊠ G2 is the strong

104

graph product of G1 = (V1, E1) and G2 = (V2, E2):

V (G1 ⊠G2) = V1 × V2

E(G1 ⊠G2) = {((u, v), (u′, v′))|(u, v) 6= (u′, v′)

u = u′or (u, u′) ∈ E1,

v = v′or (v, v′) ∈ E2}.

The set of sources S = S1 ∪ S2. The function f is defined by

f(s) =

f1(s) × V2 if s ∈ S1

V1 × f2(s) if s ∈ S2

The sinks T and function f(T) are defined in the corresponding manner.

Our analysis relies heavily on matrices and we now define the notation and important

definitions. Let A[i, j] denote the (i, j)th entry of A, A[i,−] the ith row, and A[−, j] the jth

column. Correspondingly, for a vector v, let a[i] denote the ith entry of a.

Definition 7.1.3. The Kronecker product of a p × q matrix A and p′ × q′ matrix B is a

pp′ × qq′ matrix

A⊗ B =

a[1, 1]B · · · a[1, q]B

...
. . .

...

a[p, 1]B · · · a[p, q]B

.

Definition 7.1.4. The support of a vector v ∈ F
|A|, denoted supp(v), with entries indexed

by the set A is the subset A′ ⊆ A such that v[a] 6= 0 iff a ∈ A′. In other words, supp(v) is

the support of the function f : A 7→ F such that f(a) = v[a].

We will overload functions defined on elements of sets to also be defined on subsets. For

a function f : 2A 7→ 2B and a subset A′ ⊆ A, we define f(A′) :=
⋃

a∈A′ f(a). For a function

f : 2A 7→ R, we define f(A′) :=
∑

a∈A′ f(a). Often we will use the additional shorthand of

denoting f(A) by f .

105

7.2 Codes and Cuts

There are some subtleties to defining network coding solutions in graphs with cycles [48].

To avoid these issues we restrict our definition of a network code to include an ordering on

nodes that specifies possible dependencies between message vectors.

Definition 7.2.1. A linear network code (F, r, π, L) of a node-capacitated multicommod-

ity instance ((V,E),S, T , f) specifies a finite field F, a function r(s) : S 7→ N, an or-

dering π : V 7→ [n] on nodes in V , and a n × r(S) coding matrix L. The rows of

L are labeled with vertices V and the columns by messages M :=
⋃

s∈S M(s), where

M(s) := {(s, 1), . . . , (s, r(s))}. Defining N(v) to be {v} ∪ {u ∈ V |π(u) < π(v), (u, v) ∈ E},

we have that:

For v ∈ V , ∃av ∈ F
1×n such that

1. {v} ⊆ supp(av) ⊆ N(v),

2. supp(avL) ⊆ M(f−1(v)).

The vth row of the matrix L describes the linear combination over F of messages that

are sent by node v to all its neighbors in the code. The existence of vector av guar-

antees that v can compute this linear combination using the messages of adjacent nodes

that come earlier in the ordering π. In particular, node v can determine its message using

1
av [v]

∑

v′∈N(v)\{v} av[v
′]L[v′,−] and the information from the sources entering node v.

Definition 7.2.2. A linear network code (F, r, π, L) of a node-capacitated multicommodity

instance ((V,E),S, T , f) is decodable with rate p if there is a subset D of messages M of L

with |M| − |D| = p such that:

For each message m = (si, j) ∈ M \D, ∃dm ∈ F
1×n such that

106

1. supp(dm) ⊆ f(ti)

2. {m} ⊆ supp(dmL) ⊆ {m} ∪D.

Definition 7.2.2 guarantees that for a message m ∈ M(si), the sink ti can decode m

assuming that the messages in D are fixed and known to all the receivers. The idea that

we can set some messages as fixed is an unusual, but natural, generalization of the standard

way to describe a linear code. It will allow us to write the coding matrices in a much nicer

form.

Observation 7.2.3. A network code that sends source messages along p node-disjoint paths

is a linear network code that is decodable with rate p.

Proof. The matrix L has a column for each path that is an indicator vector for the path,

and the set D = ∅.

Definition 7.2.4. A multicut of a node-capacitated multicommodity instance N =

((V,E),S, T , f) is a subset of nodes M ⊆ V such that removing the vertices of M from

N disconnects all paths between all si − ti pairs.

It will be convenient for us to represent subsets of the vertices of a network in terms of

an indicator matrix. For a subset A ⊆ V , the matrix IA will be a n× |A| matrix with rows

indexed by nodes v ∈ V and columns indexed by nodes w ∈ A where entry [v, w] = 1 if

v = w and zero otherwise.

Definition 7.2.5. We call a linear network code C = (F, r, π, L) of a node-capacitated

multicommodity instance N ρ-certifiable if

1. There are cliques K(v) ⊆ N(v), ∀ v ∈ V such that C continues to satisfy all of the

properties prescribed in the definition of a linear network code (Definition 7.2.1) if we

replace all occurrences of N(v) in that definition with K(v) for all v ∈ V .

107

2. For any multicut M of N , rank(LT IM) ≥ ρ.

The certifiable property implies that ρ is a lower bound on the size of the multicut:

|M | = rank(IM) ≥ rank(LT IM) ≥ ρ. The restriction on the coding matrix given by property

1 will allow us to compose together certifiable coding matricies to get a coding matrix that

is certifiable for N1⊠N2 as well. Notice that we don’t need the matrix to be decodable with

any rate for it to be certifiable.

Observation 7.2.6. Any coding solution consisting of r disjoint paths is r-certifiable.

Proof. Let (F, r, π, L) be the linear code describing the disjoint path solution.

Observe that (LT IM)[i, j] 6= 0 iff path i intersects node j of M . M is a multicut, so no

row (LT IM)[i,−] can be the zero vector. Further, the paths are disjoint, so each column

(LT IM)[−, j] can have at most one non-zero entry. Thus, rank(LT IM) = r, the number of

rows in LT . Further, if v belongs to a disjoint path P then v can compute its message using

only its predecessor in P , thus Definition 7.2.1 will still hold if we use the subset of N(v)

consisting of v and its predecessor in P , a 2-clique.

7.3 Preserving Properties in Products

Our main theorem shows how to combine linear network codes in two networks to obtain a

linear network code in their product, preserving both decodability and certifiability.

Theorem 7.3.1. Let

N1 = (G1 = (V1, E1),S1, T1, f1) and

N2 = (G2 = (V2, E2),S2, T2, f2)

108

be node-capacitated multicommodity instances with linear coding solutions C1 = (F, r1, π1, L1)

and C2 = (F, r2, π2, L2).

There is a linear network coding solution C for N1 ⊠ N2 with coding matrix

[In1
⊗ L2, L1 ⊗ In2

] such that:

1. If C1 and C2 are decodable with rates p1, p2 respectively then and C is decodable with

rate p := n1p2 + n2p1 − p1|f2(T2)|.

2. If C1 and C2 are ρ1 and ρ2 certifiable respectively, then C is ρ-certifiable, ρ :=

(n1ρ2 + n2ρ1 − ρ1|f2(S2)|), for N1 ⊠N2.

Before proving the main theorem we show how it applies to give an improvement to the

Saks et al. construction. The network in the construction of Saks et al. is the k-fold strong

product of the network Pn = (Pn,S = {s}, T = {t}, f) where Pn = p1p2 . . . pn is a path of

length n and f(s) = p1, f(t) = pn. Let P⊠kn denote the Saks et al. graph parameterized by

k and n.

Corollary 7.3.1. The size of the minimum multicut and the rate of the optimal network

coding solution of P⊠kn is nk − (n− 1)k.

This bound on the multicut is tight and an improvement over the lower bound of k(n−

1)k−1 given in Saks et al. [60].

Proof. From Observations 7.2.3 and 7.2.6 we know that Pn has a linear network code

C = (F2, r : r(s) = 1, π : π(pi) = i,1n)

that is decodable with rate 1 and 1-certifiable.

109

We will fix n and apply Theorem 7.3.1 inductively on k to show that there is a code Ck

for P⊠kn is ρk-certifiable and decodable with rate pk, where ρk = pk = nk − (n − 1)k. The

preceding paragraph establishes that C1 = C satisfies the base case. Now, assuming true for

k, we show for k + 1:

We apply Theorem 7.3.1 to N1 = Pn and N2 = P⊠kn . By our inductive hypotheis, we

have codes C1 and C2 with the required conditions, and now the theorem implies that

ρk+1 = ρkn + ρnk − ρk|f(S)|

= ρk(n− 1) + nk by ρ = 1, |f(S)| = 1

= nk+1 − (n− 1)k+1

The same proof applies to the coding rate because p = 1, |f(T)| = 1.

Further, note that |f(TP⊠k
n

)| = nk − (n − 1)k as well, because for A ⊂ V1 and B ⊂ V2,

the set A × B has cardinality |A|n2 + |B|n1 − |A||B|, and again the same inductive proof

holds because |f(T)| = 1. This gives us that f(TP⊠k
n

) is an optimal multicut. Additionally,

f(TP⊠k
n

) cuts all sources from all sinks and therefore gives a tight upper bound on the coding

rate.

The same proof also implies the following more general corollary, giving us a large set

of graphs where the coding rate is a lower bound on the multicut and better than the flow

bound.

Corollary 7.3.2. If a node-capacitated multicommodity instance N = (G,S, T , f) has a flow

solution consisting of r disjoint paths, and |f(S)| = |f(T)| = r, then N⊠k has an optimal

coding rate equal to the size of the optimal multicut equal to nk − (n− r)k.

The proof of Theorem 7.3.1 mostly falls out of manipulation of the Kronecker product, in

particular, we repeatedly use of the mixed-product property which states that (A⊗B)(C ⊗

D) = AC ⊗ BD if the dimensions match correctly.

110

To aid in the proof of the second part of Theorem 7.3.1, we begin with some definitions

and lemmas whose proofs will come later.

Definition 7.3.3. A lower block triangular matrix is a block matrix such that the blocks

above the main diagonal blocks are identically zero.

Lemma 7.3.4. If the main diagonal blocks of a lower block triangular matrix have ranks

r1, r2, . . . , rl respectively, then the lower block triangular matrix has rank at least
∑l

i=1 ri.

The following lemma is the generalization of a critical Lemma from the Saks et al. proof.

Lemma 7.3.5. For every multicut M of N1⊠N2 and every vertex u ∈ V1 there is a multicut

Mu of N2 such that K1(u) ×Mu ⊆ M .

Note that by the symmetry of the product operation, Lemma 7.3.5 also implies that the

result holds when we switch the roles of N1 and N2.

Now we come to proving our main theorem. To avoid confusion, we will reserve u to

denote nodes in V1 and v for V2.

Proof of Theorem 7.3.1. We define a linear network code C = (F, r, π, L) on N1 ⊠ N2 =

(G1 ⊠G2,S, T , f). It has

r(s) =

r1(s)n2 if s ∈ S1

r2(s)n1 if s ∈ S2

The ordering π will be given by π((u, v)) = n2(π1(u) − 1) + π2(v), which corresponds to a

lexicographic ordering of (π1(u), π2(v)), and L = [In1
⊗ L2, L1 ⊗ In2

] .

In L, the rows are labeled by vertices (u, v) ∈ V1 × V2 and the columns are labeled with

messages M = (M1 × V2) ∪ (V1 ×M2).

C is a linear network code for N1 ⊠N2

111

We show that C satisfies Definition 7.2.1. Let au and av be the vectors that satisfy

Definition 7.2.1 for u ∈ V1 and v ∈ V2 for C1 and C2 respectively. Now, set a = au ⊗ av. We

claim that a satisfies Definition 7.2.1 for (u, v) ∈ V1 × V2 for N1 ⊠N2.

First, note that supp(a) = supp(au) × supp(av), giving us that supp(a) ⊆ N(u) ×N(v) ⊆

N((u, v)) as wanted. Additionally, au[u] 6= 0, av[v] 6= 0 implies that a[(u, v)] 6= 0, and

{(u, v)} ⊆ supp(a).

The fact that supp(aL) ⊆ M(f−1((u, v))) follows from the mixed-product property:

supp(aL) = supp(au ⊗ avL2) ∪ supp(auL1 ⊗ av)

⊆ (V1 ×M2(f
−1
2 (v))) ∪ (M1(f

−1
1 (u)) × V2)

= M(f−1((u, v)))

C is decodable with rate p

Let D1 ⊂ M1, D2 ⊂ M2, and d1c , d
2
c′ for c ∈ M1 \D1, c

′ ∈ M2 \D2 be the subsets and

vectors showing that C1 and C2 satisfy Definition 7.2.2.

We will show that C is p-decodable with

D = (D1 × V2) ∪ (V1 ×D2) ∪ (M1 × f2(T2)).

Note that |D| = |D1|n2 + |D2|n1 + (p1 − |D1|)|f2(T2)|, and thus |M| − |D| = p as needed.

We first consider message m = (u,m2) = (u, (s′i, j)) ∈ (V1×M2)\D. Let dm = 1u⊗d2m2
.

We have that supp(dm) ⊆ {u} × f2(t
′
i) ⊆ f(t′i).

Additionally,

supp(dmL) = supp
([

1u ⊗ d2m2
L2,1uL1 ⊗ d2m2

])

⊆ ({u} × ({m2} ∪D2)) ∪ (M1 × f2(ti))

⊆ {m} ∪D

112

Finally, because {m2} ⊆ supp(d2m2
L2), we also have {m} ⊆ supp(dmL), as needed.

Now we consider message m = (m1, v) = ((si, j), v) ∈ M1 × V2. Similar to the previous

case, we define dm = d1m1
⊗ 1v and by parallel arguments, we have that supp(dm) ⊆ f(ti)

and {m} ⊆ supp(dmL).

To determine the set that contains the support of dmL we can write down the same set

as before, but because D is not symmetric, we can’t come to our desired conclusion.

supp(dmL) = supp
([

d1m1
⊗ 1vL2, d

1
m1

L1 ⊗ 1v

])

⊆ (f1(ti) ×M2) ∪ ((m1 ×D1) × {v}) .

Instead, we will need to modify dm to eliminate the component of the support in f1(ti)×M2.

In the previous case we showed that the vector d(u,m2) has {(u,m2)} ⊆ supp(d(u,m2)L) ⊆

{(u,m2)} ∪ D. Thus, we can set d′m to be dm minus an appropriate linear combination of

vectors in Q = {d(u,m2)|u ∈ f1(ti),m2 ∈ M2} to obtain the desired support for d′mL. Vectors

in Q have support in f1(ti) ×M2 = f(ti), as needed.

C is ρ-certifiable

First, showing that Definition 7.2.1 goes through if N(u) is replaced with clique K(u) is

identical to the proof above along with the observation that if K1 and K2 are cliques in N1

and N2 then K1 ×K2 is a clique in N1 ⊠N2.

It remains to show that rank(LT IM) ≥ ρ for all multicuts M of N1 ⊠N2.

Notice that we can view the matrix LT as having a block of rows for each w ∈ V1 ∪ V2;

the block of rows associated to u ∈ V1 is 1u ⊗LT
2 , and to v ∈ V2 is LT

1 ⊗ 1v (where 1u is the

indicator row vector of u).

We will show that rank(LTB) ≥ ρ for a matrix B that is in the column space of IM . This

is sufficient because there is some linear transformation T such that IMT = B, implying

rank(LT IM) ≥ rank(LT IMT) = rank(LTB) ≥ ρ.

113

The matrix B will have r1 columns for each v ∈ V2 and r2 columns for each u ∈ V1.

Let Mu, u ∈ V1 be the multicut of {u} × V2 satisfying the conditions of Lemma 7.3.5 using

the clique K1(u) that shows certifiability, and similarly for Mv, v ∈ V2. The matrix B has a

block of columns equal to aTu ⊗IMu
for each u ∈ V1, and IMv

⊗aTv for v ∈ V2 \f2(S2) where au

and av are the vectors satisfying Definition 7.2.1 with cliques K1(u) and K2(v). The matrix

B lies in the column space of IM because au and av have support within their corresponding

cliques and K1(u) ×Mu ⊆ M , Mv ×K2(v) ⊆ M .

We will show that the matrix LTB is lower block triangular with n1 diagonal blocks of

rank at least ρ2 and n2 − |f2(S2)| diagonal blocks of rank at least ρ1. Row blocks of LTB

are indexed by w ∈ V1 ∪ V2 and column blocks are indexed by w ∈ V1 ∪ V2 \ f2(S2). We

will assume that the blocks are ordered according to −π1 and −π2 and blocks associated to

elements of V1 precede those of V2.

The analysis of the blocks in the product matrix can be split into four cases. We only

need to analyze three of the cases for purposes of showing the matrix is lower block triangular

because the blocks that fall into the last case only appear in the lower right of the product

matrix.

Block [u, u′], u, u′ ∈ V1:

LTB[u, u′] = (1u ⊗ LT
2)(aTu′ ⊗ IM

u′
)

= 1ua
T
u′ ⊗ LT

2 IMu′

Thus, block [u′, u] has rank at least ρ2 if u ∈ supp(au′) ⊆ K1(u
′) and is identically zero

otherwise. In particular, it is zero whenever π1(u) > π1(u
′) because u ∈ K1(u

′) =⇒

π1(u) ≤ π1(u
′).

Block [v, v′], v, v′ ∈ V2 \ f2(S2):

114

LTB[v, v′] = (LT
1 ⊗ 1v)(IM

v′
⊗ aTv′)

= LT
1 IMv′

⊗ 1va
T
v′

Just as for block [u, u′], block [v, v′] has rank at least ρ1 if v ∈ supp(av′) and is zero otherwise.

Block [u, v], u ∈ V1, v ∈ V2 \ f2(S2):

LTB[u, v] = (1u ⊗ LT
2)(IMv

⊗ aTv)

= 1uIMv
⊗ LT

2 a
T
v = 0

The last equality holds because v /∈ f2(S2) implies f−1
2 (v) = ∅ and thus M(f−1

2 (v)) = ∅,

giving LT
2 av = 0.

The first two cases above, along with the ordering of blocks so that larger π values are

on the top left, implies that the top left and lower right quadrants of the matrix LTB are

lower block triangular with the required ranks on the diagonal blocks. The final case implies

that the top right quadrant is all zero, as wanted.

Proof of Lemma 7.3.4. Let D1, . . . , Dl be the diagonal blocks of the matrix with ranks

r1, . . . , rl respectively. We can convert the matrix to the identity matrix starting with the

top left diagonal block D1. First we apply steps of Gaussian elimination that convert D1 to

the identity of size r1, possibly with additional rows or columns of all zeros. We delete the

zero rows and columns of D1 from the entire matrix. Then we subtract rows of D1 = Ir1 from

the rest of the matrix so that the only non-zero terms in the first r1 columns are contained

in D1. Notice that the lower block triangular property implies that all of the preceding row

operations only change the first r1 columns. We continue in this fashion for D2, . . . , Dl. At

the end we are left with an identity matrix of size
∑l

i=1 ri, implying that our original matrix

has a submatrix of rank at least
∑l

i=1 ri.

Proof of Lemma 7.3.5. Suppose for contradiction that there is a multicut M of N1 ⊠ N2

115

and some u ∈ V1 such that for any multicut M2 of N2 there is at least one vertex (a, b) ∈

K1(u) × M2, (a, b) /∈ M . Let C = {v ∈ V2|K1(u) × v ⊆ M}. By assumption, C is not

a multicut of N2, and there exists a source-sink path in N2 that does not intersect with

C. Let p1 . . . pl be such a path. For each vertex v ∈ V2 \ C, let g(v) = (a, v) such that

a ∈ K1(u), (a, v) /∈ M . Such a vertex must exist by definition of C. The path g(p1) . . . g(pl)

is a source-sink path in N1 ⊠N2 that does not intersect M , a contradiction.

7.4 Open Questions

In this work we give a class of network codes that provide lower bounds on the multicut.

There are many potential directions to expand this class. For example, it may be possible

to allow for edge-capacitated graphs or arbitrary capacities, or relax the condition of certi-

fiability by strengthening Lemma 7.3.5. In networks of Saks et al. we show the coding rate

exactly matches the multicut, despite the flow being a factor k smaller. We know a simple

example where the network coding rate is less than the multicut, but we have no example

eliminating the possibility that just two times the network coding rate is always at least the

multicut. In general, does there exist some parameter κ that is o(k) such that the coding

rate scaled up by κ is always at least the size of the minimum multicut? This work focused

on the multicut problem and maximum multicommodity flow variant of network coding but

did not touch upon the related sparsest cut and concurrent multicommodity flow. Do similar

results hold in that regime?

116

APPENDIX A

FANO AND NON-FANO INEQUALITIES

This appendix is devoted to deriving the Fano inequality that holds for any subspaces of a

vector space over F such that char(F) = 2, specified in Definition 2.3.15 and the non-Fano

inequality that holds for any subspaces of a vector space over F such that char(F) 6= 2,

specified in Definition 2.3.16.

We derive the inequalities using the Fano matroid, F , and non-Fano matorid as defined

in Definition 5.2.2. We index the elements with U = {100, 010, 001, 110, 101, 011, 111} to

index the elements of the two matroids. Further let O ⊂ U be the vectors with odd Hamming

weight, let B be the vectors with Hamming weight one and let i+j for i, j ∈ U be the bitwise

addition of i, j.

Before explaining how we derive these constraints, we introduce a bit of notation. If

{Vi}i∈I are subspaces of a vector space V , let the span of Vi and Vj be denoted Vi + Vj

and let dim({Vi}i∈I) be the dimension of the span of {Vi}i∈I . Also, let ~d({Vi}i∈I) be a 2|I|

dimensional vector indexed by the subsets of I such that the coordinate indexed by S is

dim({Vi}i∈S). We let V1 ⊕ · · · ⊕ Vk denote the sum of mutually complementary subspaces

V1, . . . , Vk. If V = V1 ⊕ · · · ⊕ Vk then V is isomorphic to the vector space
∏k

i=1 Vi via the

mapping (v1, . . . , vk) 7→ v1 + · · · + vk. In this case, for an index set S ⊆ {1, . . . , k}, we will

use πS to denote the projection function V → ⊕i∈SVi, i.e. the function that maps an element

v =
∑k

i=1 vi to the element πS(v) =
∑

i∈S vi.

Now, we derive our inequalities in a sequence of four steps. We will go through the steps

by giving a series of lemmas and theorems. The proofs of these results are in the sections

that follow.

117

The fact that the Fano matroid can be represented over F2 and the non-Fano matroid

cannot tells us something about dimension dependencies that can occur in F2. In the first

step we extract the critical dimension relations that distinguish vector spaces over F with

char(F) = 2, as described in the following lemma.

Lemma A.0.1. Let V = V1 ⊕ V2 ⊕ V3 be a vector space over a field F, and suppose W ⊂ V

is a linear subspace that is complementary to each of V1 ⊕ V2, V1 ⊕ V3, V2 ⊕ V3. Then

dim (π12(W), π13(W), π23(W)) =

2 dim(W) if char(F) = 2

3 dim(W) if char(F) 6= 2.

(A.1)

Next, using Lemma A.0.1 we derive two dimension inequalities, one for even characteristic

that will become our Fano inequality, and one for odd characteristic that will become our

non-Fano inequality. But rather than being universally valid for any dimension vector over a

certain field, these inequalities only hold if some conditions hold on the dimensions of certain

subsets.

Lemma A.0.2 (Conditional Even Characteristic Inequality). Suppose {Vi}i∈U are 7 sub-

spaces of a vector space over F such that char(F) = 2 and

(i) dim({Vi}i∈O) = dim({Vi}i∈B)

(ii) dim(Vi, Vj, Vk) = dim(Vi) + dim(Vj) + dim(Vk) ∀i, j, k ∈ O

(iii) dim(Vi, Vj, Vi+j) = dim(Vi, Vj) ∀i, j ∈ O

Then dim(V110, V101, V011) ≤ 2 dim(V111).

Lemma A.0.3 (Conditional Odd Characteristic Inequality). Suppose {Vi}i∈U are 7 sub-

spaces of a vector space over F such that char(F) 6= 2 and

(i) dim({Vi}i∈O) = dim({Vi}i∈B)

118

(ii) dim(Vi, Vj, Vk) = dim(Vi) + dim(Vj) + dim(Vk) ∀i, j, k ∈ O

(iii) dim(Vi, Vj, Vi+j) = dim(Vi, Vj) ∀i, j ∈ B

(iv) dim(Vi, Vj, V111) = dim(Vi, Vj) ∀i, j : i + j = 111

Then dim(V110, V101, V011) ≥ 3 dim(V111).

The third step is to transform the conditional inequalities given in the lemmas above to

general inequalities that apply to any 7 subspaces of a vector space over a field of even (resp.

odd) characteristic by using the following approach. We will start with arbitrary subspaces

and then repeatedly modify them until they satisfy the conditions of Lemma A.0.2. At that

point the result in the conditional lemma will imply an inequality involving the dimensions

of the modified subspaces, which we will express in terms of the dimensions of the original

subspaces.

Theorem A.0.4 (Even Characteristic Inequality). There exists a 27-dimensional vector

Λeven such that for any 7 subspaces {Vi}i∈U of a vector space over F with char(F) = 2,

Λeven · ~d({Vi}i∈U) ≥ 0 and Λeven ·~r(N) < 0.

Theorem A.0.5 (Odd Characteristic Inequality). There exists a 27-dimensional vector Λodd

such that for any 7 subspaces {Vi}i∈U of a vector space over F with char(F) 6= 2,

Λodd · ~d({Vi}i∈U) ≥ 0 and Λodd ·~r(F) < 0 .

Finally, we convert the inequalities so that the corresponding constraint schema are tight

and thus can be part of a LP that is super-multiplicative. The following lemma shows how

to take a single linear dimension inequality, such as one of those whose existence is asserted

by Theorems A.0.4 and A.0.5, and transform it into a tight inequality. Recall that ΥF

n ⊂ R
2n

for any index set K of size n and field F, is the set of all vectors ~d({Vk}k∈K), where {Vk}k∈K
runs through all K-indexed tuples of finite-dimensional vector spaces over F.

119

Lemma A.0.6 (Tightening Modification). Suppose I is any index set, e is an element not

in I, and J = I ∪ {e}. There exists an explicit linear transformation from R
P(J) to R

P(I),

represented by a matrix B, such that:

(i) B · ΥF

|J | ⊆ ΥF

|I| for every field F.

(ii) B1 = B1j = 0 for all j ∈ J .

(iii) If M is a matroid with ground set I and the intersection of all matroid bases of M is

the empty set, then B~r(M + e) = ~r(M), where M + e denotes the matroid obtained by

adjoining a rank-zero element to M .

Now, applying the tightening modification lemma to the inequalities Λodd and Λeven gives

our final theorem the Fano and non-Fano inequalities we use to get LP bounds.

Theorem A.0.7. Let ~αF be the Fano inequality given in Definition 2.3.15. For F such that

char(F) = 2, ~αF · ~d ≥ 0 for d ∈ ΥF

8 . Moreover, ~αT
F1 = ~αT

F1j = 0 for all i ∈ {1, . . . , 8} and

the rank vector of the matroid N violates the inequality: ~αF ·~r(N + e) < 0, where N + e is

the non-Fano matroid adjoined to the rank zero element e.

Theorem A.0.8. Let ~αN be the non-Fano inequality given in Definition 2.3.16. For F such

that char(F) 6= 2, ~αT
N · ~d ≥ 0 for d ∈ ΥF

8 . Moreover, ~αT
N1 = ~αF1j = 0 for all i ∈ {1, . . . , 8}

and the rank vector of the matroid F violates the inequality: ~αN ·~r(F + e) < 0, where F + e

is the non-Fano matroid adjoined to the rank zero element e.

A.1 Proof of Lemma A.0.1

Proof of Lemma A.0.1. Recalling that V is isomorphic to
∏3

i=1 Vi, we will write elements of

V as ordered triples. Our assumption that W is complementary to each of V1 ⊕ V2, V1 ⊕

120

V3, V2 ⊕ V3 implies that a nonzero element of W has three nonzero coordinates, a fact that

we will use in both cases of the lemma.

If char(F) = 2, then every vector (x, y, z) ∈ V satisfies

π12(x, y, z) + π13(x, y, z) = (x, y, 0) + (x, 0, z) = (0, y, z) = π23(x, y, z)

hence π12(W) + π13(W) = π23(W). Consequently

dim (π12(W), π13(W), π23(W)) = dim (π12(W), π13(W)) ≤ 2 dim(W).

To prove the reverse inequality we observe that π12(W) and π13(W) are complementary, since

every nonzero element of π12(W) is of the form (x, y, 0) with x, y 6= 0, whereas every nonzero

element of π13(W) is of the form (x, 0, z) with x, z 6= 0, and hence π12(W) ∩ π13(W) = {0}.

When char(F) 6= 2, we prove Equation (A.1) by showing that π12(W), π13(W), π23(W)

are mutually complementary. Consider any three vectors w1 = (x1, y1, z1), w2 = (x2, y2, z2),

and w3 = (x3, y3, z3), all belonging to W , such that

0 = π23(x1, y1, z1) + π13(x2, y2, z2) + π12(x3, y3, z3) = (x2 + x3, y1 + y3, z1 + z2) .

This implies that x2 + x3 = 0, so the first coordinate of w2 + w3 is zero. However, the zero

vector is the only vector in W whose first coordinate is zero, hence w2 + w3 = 0. Similarly,

w1 + w3 = 0 and w1 + w2 = 0. Now using the fact that 2 is invertible in F, we deduce that

w1 = 1
2
[(w1 + w2) + (w1 + w3) − (w2 + w3)] = 0, and similarly w2 = 0 and w3 = 0. Thus,

the only way to express the zero vector as a sum of vectors in π12(W), π13(W), π23(W) is

if all three summands are zero, i.e. those three subspaces are mutually complementary as

claimed.

121

A.2 Proofs of Conditional Inequalities

Proof of Lemma A.0.2. Hypotheses (i) and (iii) of the lemma imply that all 7 subspaces are

contained in the span of V100, V010, V001. Moreover, hypothesis (ii) implies that V100, V010, V001

are mutually complementary and that V111 is complementary to each of V100 + V010, V100 +

V001, V010+V001. Thus, we can apply Lemma A.0.1 with V = V100⊕V010⊕V001 and W = V111,

yielding the equation dim(π12(V111), π23(V111), π13(V111)) = 2 dim(V111).

We claim that π12(V111) = (V001 + V111) ∩ (V100 + V010). To see this, take an arbitrary

element w ∈ V111 having a unique representation of the form x + y + z with x ∈ V100, y ∈

V010, z ∈ V001. By definition π12(w) = x + y = w − z, from which it can be seen at

once that π12(w) belongs to both V100 + V010 and V001 + V111. Conversely, any element

v ∈ (V001 + V111) ∩ (V100 + V010) can be expressed as v = w − z where w ∈ V111, z ∈ V001 but

it can also be expressed as v = x + y where x ∈ V100, y ∈ V010. Consequently, w = x + y + z

and v = π12(w).

Hypothesis (iii) implies that V110 is contained in both V001 + V111 and V100 + V010,

hence V110 ⊆ π12(V111). Similarly V101 ⊆ π13(V111) and V011 ⊆ π23(V111). Hence

dim(V110, V101, V011) ≤ dim(π12(V111), π23(V111), π13(V111)) = 2 dim(V111), as desired.

Proof of Lemma A.0.3. Just as in the proof of Lemma A.0.2 we apply the result of

Lemma A.0.1, but now with char(F) 6= 2. Hypotheses (i) and (iii) imply that all 7 subspaces

are contained in the span of V100, V010, V001, and hypothesis (ii) implies that those three sub-

spaces are mutually complementary, and that V111 is complementary to the sum of any two of

them. Thus, Lemma A.0.1 implies that dim(π12(W), π23(W), π13(W)) = 3 dim(W). Now we

aim to show that hypotheses (iii) and (iv) imply that V110 contains π12(V111), and similarly

for V101, V011. This will imply that dim(V110, V101, V011) ≥ dim(π12(W), π23(W), π13(W)) =

3 dim(W) as desired.

122

It remains for us to justify the claim that V110 contains π12(V111). Suppose (x, y, z) belongs

to V111, where we use (x, y, z) as an alternate notation for x + y + z such that x belongs

to V100, y belongs to V010, z belongs to V001. We know from hypothesis (iv) that V111 is

contained in V001 + V110. So write x + y + z = a + b where a is in V001 and b is in V110. We

know from hypothesis (iii) that V110 is contained in V100+V010, so write b = c+d where c is in

V100 and d is in V010. Then x+y+z = c+d+a, and both sides are a sum of three vectors, the

first belonging to V100, the second to V010, the third to V001. Since those three vector spaces

are mutually complementary, the representation of another vector as a sum of vectors from

each of them is unique. So x = c, y = d, z = a. This means that x+ y = c+ d = π12(x, y, z).

Recall that c+d is in V110. As (x, y, z) was an arbitrary element of V111, we have shown that

V110 contains π12(V111).

A.3 Proofs of Unconditional Inequalities

Proof of Theorem A.0.4. As mentioned above, the proof will proceed by repeatedly modify-

ing the input subspaces until they satisfy the requirements of Lemma A.0.2. The modifica-

tions we make to a vector space are of one type: we delete a vector w from a subspace V

that contains w, by letting B be a basis of V containing w and then replacing V with the

span of B \ w.

Let {Vi}i∈U be seven subspaces of a vector space V over F such that char(F) = 2. We

will modify the subspaces {Vi}i∈U into {V ′
i }i∈U that satisfy the conditions of Lemma A.0.2.

To start, we set {V ′
i }i∈U = {Vi}i∈U . We then update {V ′

i }i∈U in three steps, each of which

deletes vectors of a certain type in an iterative fashion. The order of the deletions within

each step is arbitrary.

Step 1: Vectors in V ′
111 but not in

∑

i∈B V
′
i from V ′

111.

123

Step 2: (a) Vectors in V ′
100 ∩ V ′

010 from V ′
010.

(b) Vectors in V ′
001 ∩ (V ′

100 + V ′
010) from V ′

001.

(c) Vectors in V ′
111 ∩ (V ′

100 + V ′
010) from V ′

111.

(d) Vectors in V ′
111 ∩ (V ′

010 + V ′
001) from V ′

111.

(e) Vectors in V ′
111 ∩ (V ′

100 + V ′
001) from V ′

111.

Step 3: Vectors in V ′
i+j but not in V ′

i + V ′
j for i, j ∈ O from V ′

i+j.

First, we argue that {V ′
i }i∈U satisfy the conditions of Lemma A.0.2. The deletions in step

(1) ensure that V ′
111 is contained in

∑

i∈B V
′
i , thus satisfying condition (i). The deletions in

steps (2a)–(2b) ensure that V ′
100, V

′
010, V

′
001 are mutually complementary, and steps (2c)–(2d)

ensure that V ′
111 is complementary to the sum of any two of them, thus satisfying condition

(ii). Furthermore, step (2) does not change
∑

i∈B V
′
i because we only delete a vector from one

of {V ′
i }i∈B when it belongs to the span of the other two. Thus condition (i) is still satisfied

at the end of step (2). Step (3) ensures that V ′
i+j is contained in V ′

i + V ′
j , thus satisfying

condition (iii). Furthermore, it does not modify V ′
i , i ∈ O, and thus conditions (i) and (ii)

remain satisfied after step (3).

Now, by Lemma A.0.2 we have that

dim(V ′
110, V

′
101, V

′
011) ≤ 2 dim(V ′

111). (A.2)

Let

δ = dim(V111, {Vi}i∈B) − dim({Vi}i∈B)

δ[i|j, k] = dim(Vi, Vj, Vk) − dim(Vj, Vk)

δ[i; j] = dim(Vi ∩ Vj) = dim(Vi) + dim(Vj) − dim(Vi, Vj)

δ[i; j, k] = dim(Vi ∩ (Vj + Vk)) = dim(Vi) + dim(Vj, Vk) − dim(Vi, Vj, Vk)

124

Observe that after step (1) dim(V ′
111) = dim(V111)−δ, and steps (2) and (3) only delete more

vectors from V ′
111, so we have dim(V ′

111) ≤ dim(V111) − δ.

It remains to get a lower bound on dim(V ′
110, V

′
101, V

′
011) in terms of dimensions of subsets

of {Vi}i∈U . We do this by giving an upper bound on the total number of vectors deleted

from E = V ′
110 +V ′

101 +V ′
011 in terms of the δ terms we defined above. In steps (1) and (2) we

delete nothing from E, but we delete some vectors from V ′
i , i ∈ O. Specifically, δ[100; 010]

vectors are deleted from V ′
010, δ[001; 100, 010] vectors are deleted from V ′

001, and no vectors

are deleted from V100. As already noted, step (1) deletes δ vectors from V ′
111, while step

(2) deletes at most
∑

i,j∈B δ[111; i, j] vectors from V ′
111. To summarize, the dimensions of

V ′
i , i ∈ O, after steps (1) and (2), satisfy:

dim(V ′
100) = dim(V100) (A.3)

dim(V ′
010) = dim(V010) − δ[100; 010] (A.4)

dim(V ′
001) = dim(V001) − δ[001; 100, 010] (A.5)

dim(V ′
111) ≥ dim(V111) − δ −

∑

i,j∈B
δ[111; i, j]. (A.6)

In step (3), when we delete vectors in V ′
i+j but not in V ′

i + V ′
j ; if no deletions had taken

place in prior steps then the number of vectors deleted from V ′
i+j would be δ[i + j|i, j].

However, the deletions that took place in steps (1) and (2) have the effect of reducing the

dimension of V ′
i +V ′

j , and we must adjust our upper bound on the number of vectors deleted

from V ′
i+j to account for the potential difference in dimension between Vi + Vj and V ′

i + V ′
j .

When i = 100, j = 010, there is no difference between Vi + Vj and V ′
i + V ′

j , because the only

time vectors are deleted from either one of these subspaces is in step (2a), when vectors in

V ′
100∩V ′

010 are deleted from V ′
010 without changing the dimension of V ′

100 +V ′
010. For all other

pairs i, j ∈ O, we use the upper bound

dim(Vi + Vj) − dim(V ′
i + V ′

j) ≤ [dim(Vi) − dim(V ′
i)] +

[

dim(Vj) − dim(V ′
j)
]

,

which is valid for any four subspaces Vi, Vj, V
′
i , V

′
j satisfying V ′

i ⊆ Vi, V
′
j ⊆ Vj. Let ∆dim(Vi)

125

denote the difference dim(Vi) − dim(V ′
i). Combining these upper bounds, we find that the

number of extra vectors deleted from E in step (3) because of differences in dimension

between V ′
i + V ′

j and Vi + Vj is at most

(

∑

i,j∈O
∆dim(Vi) + ∆dim(Vj)

)

− ∆dim(V100) − ∆dim(V010)

= 2

(

∑

i∈{100,010}
∆dim(Vi)

)

+ 3

(

∑

i∈{001,111}
∆dim(Vi)

)

≤ 2δ[100; 010] + 3δ[001; 100, 010] + 3δ + 3
∑

i,j∈B
δ[111; i, j]

where the last inequality follows by combining equations (A.3)–(A.6).

We now sum up our upper bounds on the number of vectors deleted from E in step (3),

to find that

dim(E) ≥ dim(V110, V101, V011)−
∑

i,j∈O
δ[i+j|i, j]−2δ[100; 010]−3δ[001; 100, 010]−3δ−3

∑

i,j∈B
δ[111; i, j].

(A.7)

Expanding out all the δ terms, combining with the upper bound dim(V ′
111) ≤ dim(V111)− δ,

and plugging these into Equation (A.2) gives us Λeven·~d({Vi}i∈U) ≥ 0 for some 27-dimensional

vector Λeven, as desired; after applying these steps one obtains Equation (A.8) below. When

{Vi}i∈U are one-dimensional subspaces constituting a representation of the non-Fano matroid

over a field of characteristic 6= 2, it is easy to check that all of the δ terms appearing

in (A.7) are zero. So, the inequality states that dim(V110, V101, V011) ≤ 2 dim(V111), whereas

we know that dim(V110, V101, V011) = 3 dim(V111) for the non-Fano matroid. Consequently

Λodd ·~r(F) < 0.

126

For completeness, the inequality Λeven · ~d({Vi}i∈U) ≥ 0 is written explicitly as follows.

2 dim(V100) + 2 dim(V010) + 3 dim(V001) + 11 dim(V111)

+3 dim(V100, V010) + 2 dim(V100, V001) + 2 dim(V010, V001)

− dim(V100, V111) − dim(V010, V111) − dim(V001, V111) − 4 dim(V100, V010, V001)

−3 dim(V111, V100, V010) − 3 dim(V111, V100, V001) − 3 dim(V111, V010, V001)

+ dim(V110, V100, V010) + dim(V101, V100, V001) + dim(V011, V010, V001)

+ dim(V110, V111, V001) + dim(V101, V111, V010) + dim(V011, V111, V100)

− dim(V110, V101, V011) + dim(V111, V100, V010, V001) ≥ 0 . (A.8)

This concludes the proof of the theorem.

Proof of Theorem A.0.5. Let {Vi}i∈U be seven subspaces of a vector space V over F such

that char(F) 6= 2. Just as in the proof Theorem A.0.4, we will modify the subspaces {Vi}i∈U
into {V ′

i }i∈U that satisfy the conditions of Lemma A.0.3, starting with {V ′
i }i∈U = {Vi}i∈U .

We again delete vectors of a certain type in an iterative fashion. The order of the deletions

within each step is arbitrary.

Step 1: Vectors in V ′
111 but not in

∑

i∈B V
′
i from V ′

111.

Step 2: (a) Vectors in V ′
100 ∩ V ′

010 from V ′
010.

(b) Vectors in V ′
001 ∩ (V ′

100 + V ′
010) from V ′

001.

(c) Vectors in V ′
111 ∩ (V ′

100 + V ′
010) from V ′

111.

(d) Vectors in V ′
111 ∩ (V ′

010 + V ′
001) from V ′

111.

(e) Vectors in V ′
111 ∩ (V ′

100 + V ′
001) from V ′

111.

Step 3: Vectors in V ′
i+j but not in V ′

i + V ′
j for i, j ∈ B from V ′

i+j.

Step 4: Vectors in V ′
111 but not in V ′

i + V ′
j for i, j : i + j = 111 from V ′

111.

127

The first two steps in this sequence of deletions, along with the first two conditions in

Lemma A.0.3 are identical to those in the even characteristic case. Thus, by arguments from

the proof Theorem A.0.4 we have that by the end of step (2) conditions (i), (ii) are satisfied.

Step (3) is almost identical to the same step in the even characteristic case; the difference is

that now we only perform the step for pairs i, j ∈ B rather than all pairs i, j ∈ O. As before,

at the end of step (3) condition (iii) is satisfied, and since the step does not modify V ′
i for

any i ∈ O, it does not cause either of conditions (i), (ii) to become violated. Step (4) ensures

condition (iv), so it remains to show that step (4) preserves conditions (i)–(iii). Step (4) only

modifies V ′
111 so it doesn’t change

∑

i∈B V
′
i , therefore preserving (i). It preserves (ii) because

if three subspaces are mutually complementary, they remain mutually complementary after

deleting a vector from one of them. It preserves (iii) because (iii) does not involve V ′
111,

which is the only subspace that changes during step (4).

Now, by Lemma A.0.2 we have that

3 dim(V ′
111) ≤ dim(V ′

110, V
′
101, V

′
011). (A.9)

As in the proof of Theorem A.0.4, let

δ = dim(V111, {Vi}i∈B) − dim({Vi}i∈B)

δ[i|j, k] = dim(Vi, Vj, Vk) − dim(Vj, Vk)

δ[i; j] = dim(Vi ∩ Vj) = dim(Vi) + dim(Vj) − dim(Vi, Vj)

δ[i; j, k] = dim(Vi ∩ (Vj + Vk)) = dim(Vi) + dim(Vj, Vk) − dim(Vi, Vj, Vk)

Observe that we only reduce the size of subspaces, so dim(V ′
110, V

′
101, V

′
011) ≤

dim(V110, V101, V011).

It remains to get a lower bound on dim(V ′
111) in terms of dimensions of subsets of {Vi}i∈U .

We do this by giving an upper bound on the number of vectors we delete from V ′
111 in terms

128

of the δ terms we defined above. Step (1) deletes δ vectors. Steps (2a) and (2b) delete

nothing from V ′
111, and at the end of (2a)–(2b) we have

dim(V ′
100) = dim(V100) (A.10)

dim(V ′
010) = dim(V010) − δ[100; 010] (A.11)

dim(V ′
001) = dim(V001) − δ[001; 100, 010] (A.12)

Steps (2c)–(2e) delete at most
∑

i,j∈B δ[111; i, j] vectors from V ′
111, and they do not change

any of the other subspaces.

In step (3) no vectors are deleted from V ′
111, but we will still need an upper bound on

the number of vectors deleted in this step since it will influence our upper bound on the

number of vectors deleted from V ′
111 in step (4). If no deletions took place prior to step (3),

then for all i, j ∈ B exactly δ[i + j|i, j] vectors would be deleted from V ′
i+j during step (3).

However, if dim(V ′
i , V

′
j) < dim(Vi, Vj), then we must adjust our estimate of the number of

deleted vectors to account for this difference. Steps (1) and (2a) cannot change dim(V ′
i , V

′
j)

for any i, j ∈ B, but step (2b) reduces each of dim(V ′
001, V

′
100) and dim(V ′

001, V
′
010) by at most

δ[001; 100, 010]. Therefore, at the end of step (3) we have

dim(V ′
110) = dim(V110) − δ[110|100, 010] (A.13)

dim(V ′
101) ≥ dim(V101) − δ[101|100, 001] − δ[001; 100, 010] (A.14)

dim(V ′
011) ≥ dim(V011) − δ[011|010, 001] − δ[001; 100, 010] (A.15)

If no deletions took place prior to step (4), then the number of vectors we would need to

delete from V ′
111, to make it a subspace of V ′

i + V ′
j , would be at most δ[111|i, j]. As before,

we need to adjust this bound to account for the potential difference in dimension between

Vi + Vj and V ′
i + V ′

j . Using the upper bound

dim(Vi + Vj) − dim(V ′
i + V ′

j) ≤ [dim(Vi) − dim(V ′
i)] +

[

dim(Vj) − dim(V ′
j)
]

,

129

which is valid for any four subspaces Vi, Vj, V
′
i , V

′
j satisfying V ′

i ⊆ Vi, V
′
j ⊆ Vj, we find that

the number of extra vectors deleted from V ′
111 in step (4) because of differences in dimension

between V ′
i + V ′

j and Vi + Vj (for some i, j ∈ U , i + j = 111), is at most

∑

i∈U\{111}
dim(Vi) − dim(V ′

i) ≤ δ[100; 010] + 3δ[001; 100, 010] +
∑

i,j∈B
δ[i + j|i, j],

where the first inequality follows by combining equations (A.10)–(A.15).

We now sum up our upper bounds on the number of vectors deleted from V ′
111 in steps

(1)–(4) combined, to find that

dim(V ′
111) ≥ dim(V111)− δ−

∑

i,j∈B
δ[111; i, j]− δ[100; 010]−3δ[001; 100, 010]−

∑

i,j∈B
δ[i+ j|i, j].

(A.16)

Expanding out all of the δ terms, combining with the upper bound on dim(V ′
111), and

plugging these into Equation (A.9) gives us Λodd · ~d({Vi}i∈U) ≥ 0 for some 27-dimensional

vector Λodd, as desired; after applying these steps one obtains Equation (A.17) below. When

{Vi}i∈U are one-dimensional subspaces constituting a representation of the Fano matroid

over a field of characteristic 2, it is easy to check that all of the δ terms appearing in (A.16)

are zero. So, the inequality states that dim(V110, V101, V011) ≥ 3 dim(V111), whereas we know

that dim(V110, V101, V011) = 2 dim(V111) for the Fano matroid. Consequently Λodd ·~r(F) < 0.

For completeness, the inequality Λodd · ~d({Vi}i∈U) ≥ 0 is written explicitly as follows.

3 dim(V100) + 3 dim(V010) + 9 dim(V001) + 6 dim(V111) + 6 dim(V100, V010) − 12 dim(V100, V010, V001)

+3 dim(V110, V100, V010) + 3 dim(V101, V100, V001) + 3 dim(V011, V010, V001)

−3 dim(V111, V100, V010) − 3 dim(V111, V100, V001) − 3 dim(V111, V010, V001)

+3 dim(V111, V100, V010, V001) + dim(V110, V101, V011) ≥ 0 . (A.17)

This completes the proof of the theorem.

130

A.4 Tightening Modification

Proof of Lemma A.0.6. If U is any vector space with a J-tuple of subspaces {Uj}j∈J , then

there is a quotient map π from U to V = U/Ue, and we can form an I-tuple of subspaces

{Vi}i∈I by specifying that Vi = π(Ui) for all i ∈ I. The dimension vectors ~u = ~d({Uj}) and

~v = ~d({Vi}) are related by an explicit linear transformation. In fact, for any subset S ⊆ I,

if we let US, VS denote the subspaces of U, V spanned by {Ui}i∈S and {Vi}i∈S, respectively,

then π maps US + Ue onto VS with kernel Ue, and this justifies the formula

vS = uS∪{e} − u{e}.

Thus, v = B0u, where B0 is the matrix

(B0)ST =

1 if T = S ∪ {e}

−1 if T = {e}

0 otherwise,

(A.18)

and therefore B0 · ΥF

|J | ⊆ ΥF

|I|.

Similarly, if U is any vector space with an I-tuple of subspaces {Ui}i∈I and k is any

element of I, we can define U−k ⊆ U to be the linear subspace spanned by {Ui}i 6=k, and we

can let π : U → U−k be any linear transformation whose restriction to U−k is the identity

and π(Uk) = Uk ∩ U−k. The restriction of π to Uk has kernel Wk of dimension dim(Wk) =

dim({Ui}i∈I) − dim({Ui}i∈I,i 6=k). As before, let Vi = π(Ui) for all i ∈ I, let US, VS denote

the subspaces of U, V spanned by {Ui}i∈S and {Vi}i∈S, and let ~u = ~d({Ui}), ~v = ~d({Vi}).

If k 6∈ S then VS = US and vS = uS, while if k ∈ S then US contains Wk, the linear

transformation π maps US onto VS with kernel Wk, and vS = uS−dim(Wk) = uS−uI+uI\{k}.

131

Thus, v = Bku, where Bk is the matrix

(Bk)ST =

1 if T = S

1 if k ∈ S and T = I \ {k}

−1 if k ∈ S and T = I

0 otherwise.

(A.19)

and therefore Bk · ΥF

|I| ⊆ ΥF

|I|.

Now assume without loss of generality that I = {1, 2, . . . , n} and let B =

BnBn−1 · · ·B1B0. We have seen that B · ΥF

|J | ⊆ ΥF

|I|. From (A.18) one can see that

B01 = B01e = 0 and that for every k ∈ I, B01k = 1k. (Here, it is important to note

that 1k on the left side refers to a vector in R
P(J) and on the right side it refers to a vector

in R
P(I).) Furthermore, from (A.19) one can see that Bk1k = 0 and that Bk1i = 1i for all

i 6= k. Thus, when we left-multiply a vector ~w ∈ {1} ∪ {1j}j∈J by the matrix B, one of the

following things happens. If ~w is equal to 1 or 1e then B0~w = 0 hence B~w = 0. Otherwise,

~w = 1k ∈ R
P(J) for some k ∈ I, B0~w = 1k ∈ R

P(I), and as we proceed to left-multiply 1k

by B1, B2, . . . , it is fixed by Bi (i < k) and annihilated by Bk, so once again B~w = 0. This

confirms assertion (ii) of the lemma.

Finally, if M,M + e are matroids satisfying the hypotheses of assertion (iii), then for

every set S ⊆ I we have r(S ∪{e})− r({e}) = r(S) and hence B0~r(M + e) = ~r(M). For any

k ∈ I our assumption on M implies that it has a matroid basis disjoint from {k}, and hence

that r(I \ {k}) = r(I). Inspecting (A.19), we see that this implies Bk~r(M) = ~r(M) for all

k ∈ I, and hence B~r(M + e) = ~r(M) as desired.

Proof of Theorems A.0.7 and A.0.8. Let F be a finite field. When char(F) = 2 our proof

applies to Theorem A.0.7 and when char(F) 6= 2 it applies to A.0.8. Let M denote the

matroid N if char(F) = 2, and let M = F if char(F) 6= 2. In both cases, we will let M + e

132

denote the matroid obtained by adjoining a rank-zero element to M , and we will denote the

ground sets of M, M + e by I, J , respectively. Recall the vectors Λeven,Λodd ∈ R
P(I) from

Theorems A.0.4 and A.0.5. Let Λ = Λeven if char(F) = 2, Λ = Λodd if char(F) 6= 2. By

Theorems A.0.4 and A.0.5, Λ ·~r(M) < 0, a fact that we will be using later.

Recall the linear transformation B : RP(J) → R
P(I) from Lemma A.0.6, and let

~α = BTΛ.

Observe that this transformation gives us the desired inequalities defined in Definitions 2.3.15

and 2.3.16.

For any ~d ∈ ΥF

|J | we have ~αT~d = ΛTB~d ≥ 0, since B~d ∈ ΥF

|I| and Λ · ~v ≥ 0 for all

~v ∈ ΥF

|I|. The equations B1 = B1j = 0 for all j ∈ J imply that ~αT1 = ~αT1j = 0.

Finally, we also have that ~αT~r(M + e) = ΛTB~r(M + e) = ΛT~r(M) < 0, as needed.

133

BIBLIOGRAPHY

[1] Micah Adler, Nicholas J.A. Harvey, Kamal Jain, Robert Kleinberg, and April Rasala
Lehman. On the capacity of information networks. In Proceedings of the Seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 241–250. ACM, 2006.

[2] Amit Agarwal, Noga Alon, and Moses S. Charikar. Improved approximation for di-
rected cut problems. In Proceedings of the 39th Annual ACM Symposium on Theory of
Computing, STOC 2007, pages 671–680, New York, NY, USA, 2007. ACM.

[3] Amit Agarwal and Moses Charikar. On the advantage of network coding for improving
network throughput. In Information Theory Workshop, 2004. IEEE, pages 247–249.
IEEE, 2004.

[4] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Raymond W. Yeung. Network
information flow. IEEE Transactions on Information Theory, 46(4):1204–1216, 000.

[5] Noga Alon and Nabil Kahale. Approximating the independence number via theϑ-
function. Mathematical Programming, 80(3):253–264, 1998.

[6] Noga Alon and Michael Krivelevich. Constructive bounds for a ramsey-type problem.
Graphs and Combinatorics-an Asian Journal, 13(3):217–226, 1997.

[7] Noga Alon, Eyal Lubetzky, Uri Stav, Amit Weinstein, and Avinatan Hassidim. Broad-
casting with side information. In 49th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2008), pages 823–832, 2008.

[8] Ziv Bar-Yossef, Yitzhak Birk, T. S. Jayram, and Tomer Kol. Index coding with side
information. In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), pages 197–206, 2006.

[9] Yitzhak Birk and Tomer Kol. Coding on demand by an informed source (iscod) for
efficient broadcast of different supplemental data to caching clients. IEEE/ACM Trans-
actions on Networking (TON), 14(SI):2825–2830, 2006.

[10] Anna Blasiak. Multicut lower bounds via network coding. In 2013 International Sym-
posium on Network Coding (NetCod). IEEE, 2013.

[11] Anna Blasiak and Robert Kleinberg. The serializability of network codes. In Automata,
Languages and Programming, pages 100–114. Springer, 2010.

134

[12] Anna Blasiak, Robert Kleinberg, and Eyal Lubetzky. Lexicographic products and the
power of non-linear network coding. In 52nd Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2011), pages 609–618. IEEE, 2011.

[13] Anna Blasiak, Robert Kleinberg, and Eyal Lubetzky. Broadcasting with side informa-
tion: Bounding and approximating the broadcast rate. IEEE Transactions on Informa-
tion Theory, 2013. To Appear.

[14] Ravi Boppana and Magnús M Halldórsson. Approximating maximum independent sets
by excluding subgraphs. BIT Numerical Mathematics, 32(2):180–196, 1992.

[15] Jaros law Byrka, Fabrizio Grandoni, Thomas Rothvoss, and Laura Sanità. Steiner tree
approximation via iterative randomized rounding. Journal of the ACM (JACM), 60(1):6,
2013.

[16] T. H. Chan and Raymond W. Yeung. On a relation between information inequalities
and group theory. IEEE Transactions on Information Theory, 48:1992–1995, 2002.

[17] Terence Chan and Alex Grant. Dualities between entropy functions and network codes.
IEEE Transactions on Information Theory, 54(10):4470–4487, 2008.

[18] Terence H Chan. Balanced information inequalities. IEEE Transactions on Information
Theory, 49(12):3261–3267, 2003.

[19] Joseph Cheriyan, Howard Karloff, and Yuval Rabani. Approximating directed multicuts.
In 42nd IEEE Symposium on Foundations of Computer Science (FOCS 2001), pages
320–328. IEEE, 2001.

[20] Julia Chuzhoy and Sanjeev Khanna. Polynomial flow-cut gaps and hardness of directed
cut problems. Journal of the ACM (JACM), 56(2):6, 2009.

[21] Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and
Mihalis Yannakakis. The complexity of multiterminal cuts. SIAM Journal on Comput-
ing, 23(4):864–894, 1994.

[22] Randall Dougherty, Chris Freiling, and Kenneth Zeger. Networks, matroids, and
non-Shannon information inequalities. IEEE Transactions on Information Theory,
53(6):1949–1969, 2007.

[23] Randall Dougherty, Chris Freiling, and Kenneth Zeger. Linear rank inequalities on five
or more variables. arXiv preprint arXiv:0910.0284, 2009.

135

[24] Randall Dougherty, Christopher Freiling, and Kenneth Zeger. Insufficiency of linear cod-
ing in network information flow. IEEE Transactions on Information Theory, 51(8):2745–
2759, 2005.

[25] Randall Dougherty, Christopher Freiling, and Kenneth Zeger. Six new non-Shannon in-
formation inequalities. In 2006 IEEE International Symposium on Information Theory,
pages 233–236. IEEE, 2006.

[26] Michelle Effros, Salim El Rouayheb, and Michael Langberg. An equivalence between
network coding and index coding. In IEEE International Symposium on Information
Theory (ISIT 2013), 2013. To appear.

[27] Salim El Rouayheb, Alex Sprintson, and Costas Georghiades. On the relation between
the index coding and the network coding problems. In IEEE International Symposium
on Information Theory (ISIT 2008), pages 1823–1827. IEEE, 2008.

[28] Salim El Rouayheb, Alex Sprintson, and Costas Georghiades. A new construction
method for networks from matroids. In IEEE International Symposium on Information
Theory (ISIT 2009), pages 2872–2876, 2009.

[29] P. Erdős and A. Rényi. On a problem in the theory of graphs. Magyar Tud. Akad. Mat.
Kutató Int. Közl., 7:623–641 (1963), 1962.

[30] Uriel Feige. Randomized graph products, chromatic numbers, and the Lovász ϑ-
function. Combinatorica, 17(1):79–90, 1997. An earlier version appeared in Proc. of
the 27th Annual ACM Symposium on Theory of computing (STOC 1995), pp. 635–640.

[31] Chris Godsil and Gordon Royle. Algebraic graph theory, volume 207 of Graduate Texts
in Mathematics. Springer-Verlag, 2001.

[32] Anupam Gupta. Improved results for directed multicut. In Proceedings of the four-
teenth annual ACM-SIAM symposium on Discrete algorithms, pages 454–455. Society
for Industrial and Applied Mathematics, 2003.

[33] Willem Haemers. An upper bound for the Shannon capacity of a graph. In Colloq.
Math. Soc. János Bolyai, volume 25, pages 267–272, 1978.

[34] Willem Haemers. On some problems of Lovász concerning the Shannon capacity of a
graph. IEEE Transactions on Information Theory, 25(2):231–232, 1979.

[35] Nicholas J Harvey, Robert D Kleinberg, and April Rasala Lehman. Comparing network
coding with multicommodity flow for the k-pairs communication problem. 2004.

136

[36] Nicholas J. A. Harvey, Robert Kleinberg, and April Rasala Lehman. On the capacity
of information networks. IEEE Transactions on Information Theory, 52(6):2345–2364,
2006.

[37] Nicholas J.A. Harvey and Robert Kleinberg. Tighter cut-based bounds for k-pairs
communication problems. In Proceedings of the Annual Allerton Conference on Com-
munication Control and Computing, 2005.

[38] Nicholas J.A. Harvey, Robert Kleinberg, Chandra Nair, and Yunnan Wu. A “chicken
& egg” network coding problem. In IEEE International Symposium on Information
Theory (ISIT 2007), pages 131–135, 2007.

[39] Tracey Ho, Muriel Médard, Ralf Koetter, David R Karger, Michelle Effros, Jun Shi, and
Ben Leong. A random linear network coding approach to multicast. IEEE Transactions
on Information Theory, 52(10):4413–4430, 2006.

[40] AW Ingleton. Representation of matroids. Combinatorial mathematics and its applica-
tions, 23, 1971.

[41] Sidharth Jaggi, Peter Sanders, Philip A Chou, Michelle Effros, Sebastian Egner, Kamal
Jain, and Ludo MGM Tolhuizen. Polynomial time algorithms for multicast network
code construction. IEEE Transactions on Information Theory, 51(6):1973–1982, 2005.

[42] Kamal Jain, Mohammad Mahdian, and Mohammad R Salavatipour. Packing Steiner
trees. In Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 266–274. Society for Industrial and Applied Mathematics, 2003.

[43] Kamal Jain, Vijay V Vazirani, Raymond Yeung, and Gideon Yuval. On the capacity of
multiple unicast sessions in undirected graphs. In IEEE International Symposium on
Information Theory (ISIT 2005), pages 563–567. IEEE, 2005.

[44] Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina Katabi, Muriel Médard, and Jon
Crowcroft. XORs in the air: practical wireless network coding. In ACM SIGCOMM
Computer Communication Review, volume 36, pages 243–254. ACM, 2006.

[45] Ryan Kinser. New inequalities for subspace arrangements. Journal of Combinatorial
Theory, Series A, 118(1):152–161, 2011.

[46] Gerhard Kramer and Serap Savari. Edge-cut bounds on network coding rates. Journal
of Network and Systems Management, 14(1):49–67, 2006.

[47] Michael Langberg and Alexander Sprintson. On the hardness of approximating the

137

network coding capacity. IEEE Transactions on Information Theory, 57(2):1008–1014,
2011.

[48] April Rasala Lehman. Network Coding. PhD thesis, MIT, 2005.

[49] April Rasala Lehman and Eric Lehman. Complexity classification of network informa-
tion flow problems. In Proceedings of the fifteenth annual ACM-SIAM symposium on
Discrete algorithms (SODA 2004), pages 142–150, Philadelphia, PA, USA, 2004. Society
for Industrial and Applied Mathematics.

[50] S-YR Li, Raymond W. Yeung, and Ning Cai. Linear network coding. IEEE Transactions
on Information Theory, 49(2):371–381, 2003.

[51] Zongpeng Li and Baochun Li. Network coding: the case of multiple unicast sessions. In
Proceedings of the Annual Allerton Conference on Communication Control and Com-
puting, 2004.

[52] Nati Linial and Umesh Vazirani. Graph products and chromatic numbers. In 30th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 1989), pages
124–128. IEEE, 1989.

[53] László Lovász. On the Shannon capacity of a graph. IEEE Transactions on Information
Theory, 25(1):1–7, 1979.

[54] Eyal Lubetzky and Uri Stav. Nonlinear index coding outperforming the linear optimum.
IEEE Trans. Inf. Theor., 55(8):3544–3551, August 2009. An earlier version appeared in
Proc. of the 48th Annual IEEE Symposium of Foundations of Computer Science (FOCS
2007), pp.161-167.

[55] Konstantin Makarychev, Yuri Makarychev, Andrei Romashchenko, and Nikolai
Vereshchagin. A new class of non Shannon type inequalities for entropies. Commu-
nications in Information and Systems, 2(2):147–166, 2002.

[56] Hamed Maleki, Viveck Cadambe, and Syed Jafar. Index coding: An interference align-
ment perspective. In IEEE International Symposium on Information Theory (ISIT
2012), pages 2236–2240. IEEE, 2012.

[57] Frantisek Matus. Infinitely many information inequalities. In IEEE International Sym-
posium on Information Theory (ISIT 2007), pages 41–44. IEEE, 2007.

[58] Muriel Médard, Michelle Effros, David Karger, and Tracey Ho. On coding for non-
multicast networks. In Proceedings of the Annual Allerton Conference on Communica-
tion Control and Computing, volume 41, pages 21–29. The University; 1998, 2003.

138

[59] Dhruv Mubayi and Jason Williford. On the independence number of the erdos-rényi
and projective norm graphs and a related hypergraph. J. Graph Theory, 56(2):113–127,
2007.

[60] Michael Saks, Alex Samorodnitsky, and Leonid Zosin. A lower bound on the integrality
gap for minimum multicut in directed networks. Combinatorica, 24:525–530, 2004.

[61] Lihua Song, Richard W. Yeung, and Ning Cai. Zero-error network coding for acyclic
networks. IEEE Transactions on Information Theory, 49(12):3129–3139, 2003.

[62] Hua Sun and Syed A Jafar. Index coding capacity: How far can one go with only
Shannon inequalities? arXiv preprint arXiv:1303.7000, 2013.

[63] Avi Wigderson. Improving the performance guarantee for approximate graph coloring.
J. Assoc. Comput. Mach., 30(4):729–735, 1983.

[64] Raymond W. Yeung. A First Course in Information Theory. Springer, 2002.

[65] Raymond W. Yeung and Zhen Zhang. Distributed source coding for satellite communi-
cation. IEEE Transactions on Information Theory, 45(4):1111–1120, 1999.

[66] Zhen Zhang and Raymond W Yeung. A non-Shannon-type conditional inequality of
information quantities. IEEE Transactions on Information Theory, 43(6):1982–1986,
1997.

[67] Zhen Zhang and Raymond W. Yeung. On characterization of entropy function via
information inequalities. IEEE Transactions on Information Theory, 44(4):1440–1452,
1998.

139

	Biographical Sketch
	Acknowledgements
	Table of Contents
	List of Figures
	List of Symbols
	Introduction
	Previous Work: Network Coding
	How much benefit does coding provide over classical flow?
	What type of codes suffice to give the maximum rate?
	Is there an efficient way to compute the coding rate?

	Broadcasting with Side Information
	Applications
	The Formal Problem Definition
	Previous Work
	Our Contributions

	Bounds on the Broadcast Rate
	Graph Theoretic Bounds
	Linear-Algebraic Bounds
	Linear Program Bounds
	Linear Programming Bounds on the Linear Rate

	Structured Broadcasting with Side Information Instances
	Matroids
	Regular Graphs
	The broadcast rate of cycles and their complements
	The broadcast rate of cyclic Cayley Graphs
	The broadcast rate of specific small graphs

	Products and Sums of Broadcasting with Side Information Instances
	Lexicographic Products
	 Under Lexicographic Products
	LP bounds under Lexicographic products

	Strong Products
	Sums

	Separating Broadcast Rate Bounds
	Insufficiency of the Shannon Bound
	Strong Insufficiency of Vector Linear Coding
	Separation via Fractional Minrank
	Separation via LPs BF and BN

	Separation between and
	Separating the broadcast rate from clique-cover bound
	Triangle-free Graphs
	Additive Separations

	Approximating the Broadcast Rate
	Approximating the broadcast rate in general networks
	Extending the algorithm to networks with variable source rates

	Determining whether the broadcast rate equals 2

	Beyond Broadcasting: Graph Products and The Network Coding Rate
	Preliminaries
	Codes and Cuts
	Preserving Properties in Products
	Open Questions

	Fano and non-Fano Inequalities
	Proof of Lemma A.0.1
	Proofs of Conditional Inequalities
	Proofs of Unconditional Inequalities
	Tightening Modification

	Bibliography

