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Abstract

Fast and accurate side-chain conformation prediction is important for homology modeling, ab initio protein
structure prediction, and protein design applications. Many methods have been presented, although only a
few computer programs are publicly available. The SCWRL program is one such method and is widely used
because of its speed, accuracy, and ease of use. A new algorithm for SCWRL is presented that uses results
from graph theory to solve the combinatorial problem encountered in the side-chain prediction problem. In
this method, side chains are represented as vertices in an undirected graph. Any two residues that have
rotamers with nonzero interaction energies are considered to have an edge in the graph. The resulting graph
can be partitioned into connected subgraphs with no edges between them. These subgraphs can in turn be
broken into biconnected components, which are graphs that cannot be disconnected by removal of a single
vertex. The combinatorial problem is reduced to finding the minimum energy of these small biconnected
components and combining the results to identify the global minimum energy conformation. This algorithm
is able to complete predictions on a set of 180 proteins with 34,342 side chains in <7 min of computer time.
The total �1 and �1 + 2 dihedral angle accuracies are 82.6% and 73.7% using a simple energy function based
on the backbone-dependent rotamer library and a linear repulsive steric energy. The new algorithm will
allow for use of SCWRL in more demanding applications such as sequence design and ab initio structure
prediction, as well addition of a more complex energy function and conformational flexibility, leading to
increased accuracy.
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Protein structure prediction by homology modeling or ab
initio methods remains a difficult challenge. An important
component of any modeling method is the prediction of
side-chain conformations. Side-chain prediction usually en-
tails placing side chains onto fixed backbone coordinates
either obtained from a parent structure or generated from ab
initio modeling simulations or a combination of these.
Many side-chain prediction methods have been presented in
the past 15 years (Summers and Karplus 1989; Holm and

Sander 1991; Lee and Subbiah 1991; Tuffery et al. 1991;
Desmet et al. 1992, 2002; Dunbrack and Karplus 1993;
Wilson et al. 1993; Kono and Doi 1994; Laughton 1994;
Hwang and Liao 1995; Koehl and Delarue 1995; Bower et
al. 1997; Samudrala and Moult 1998; Dunbrack 1999;
Mendes et al. 1999a; Xiang and Honig 2001; Liang and
Grishin 2002).

Nearly all of these are based on using a rotamer library of
discrete side-chain conformations (McGregor et al. 1987;
Ponder and Richards 1987; Tuffery et al. 1991; Dunbrack
and Karplus 1993, 1994; De Maeyer et al. 1997; Dunbrack
and Cohen 1997; Lovell et al. 2000; Xiang and Honig 2001;
Dunbrack 2002) obtained from statistical analysis of the
Protein Data Bank (PDB; Berman et al. 2000). Rotamer
libraries can either be backbone-independent or backbone-
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dependent. Backbone-dependent rotamer libraries contain
information on side-chain dihedral angles and rotamer
populations as a function of the backbone dihedral angles �
and � (Dunbrack and Karplus 1993, 1994; Dunbrack and
Cohen 1997; Dunbrack 2002), whereas backbone-indepen-
dent libraries ignore such dependence.

In side-chain prediction methods, rotamers are chosen
based on the desired protein sequence and the given back-
bone coordinates, by using a defined energy function and
search strategy. Energy functions that have been used in
side-chain prediction include simple steric energy functions
combined with log probabilities of backbone-dependent ro-
tamer populations (Dunbrack 1999), as well as molecular
mechanics potential energy functions with complex solva-
tion free energy terms (Mendes et al. 2001a; Xiang and
Honig 2001; Liang and Grishin 2002).

For some emerging uses of side-chain prediction, fast
calculations are a requirement. These include Web-based
homolog and fold-recognition programs that align query
sequences to proteins of known structure and model pro-
teins based on these identifications and alignments. For in-
stance, 3D-PSSM (Kelley et al. 2000) uses SCWRL (Bower
et al. 1997) to generate models of proteins from structure-
derived profile alignments. As the numbers of available
sequences and experimentally determined protein structures
both increase, improved models of proteins can be con-
structed on the basis of a number of parent structures and
many alternative alignments, as demonstrated at the recent
CASP5 meeting. In some cases, hundreds of models can be
used to determine the best parent and alignment for a single
query sequence, thus necessitating fast side-chain predic-
tion. The protein design problem, in which a sequence is
designed that will fold into a given defined set of backbone
coordinates (Desjarlais and Handel 1995; Dahiyat and
Mayo 1996) also requires efficient side-chain search meth-
ods, because several residue types and many rotamers must
be tested at every site of the protein. In this case, the com-
binatorial problem can be quite severe.

A search method used in side-chain prediction can be
classified as either exact or approximate, depending on
whether it is guaranteed to find the global minimum energy
given the rotamer library and energy function, or instead
whether it finds a low-energy conformation without such a
guarantee. The many versions of the dead-end elimination
algorithm (Desmet et al. 1992, 1997; Lasters and Desmet
1993; Goldstein 1994; Keller et al. 1995; Lasters et al. 1995;
Gordon and Mayo 1999; Pierce et al. 1999; De Maeyer et al.
2000; Voigt et al. 2000; Looger and Hellinga 2001) are
designed to find the global minimum energy, when they are
able to converge. Conversely, Monte Carlo methods (Holm
and Sander 1991; Liang and Grishin 2002), cyclical search
methods (Dunbrack and Karplus 1993; Xiang and Honig
2001), and some other algorithms (Desmet et al. 2002) are
not guaranteed to find a global minimum, but they will

almost always find a low-energy conformation in a reason-
able time.

We have continued to develop the SCWRL program,
originally written by Michael Bower, over a number of
years (Bower et al. 1997; Dunbrack 1999). SCWRL uses a
backbone-dependent rotamer library (Dunbrack and
Karplus 1993, 1994; Dunbrack and Cohen 1997; Dunbrack
2002) and an energy function based on log probabilities of
these rotamers and a simple repulsive steric energy term. In
this article, we will present a new algorithm for SCWRL
based on graph theory, which is considerably faster than the
original algorithm. The new algorithm will enable new uses
such as protein design and ab initio structure prediction, as
well as increases in accuracy with new energy functions and
side-chain flexibility.

Before describing the new algorithm, it is useful to sum-
marize the previous method used to solve the side-chain
combinatorial problem in SCWRL as well as its drawbacks.
The original SCWRL algorithm initially places side chains
onto the backbone according to the backbone-dependent
rotamer probabilities and steric interactions with the nonlo-
cal backbone. Any side chains that clash with other side
chains according to the steric energy function are then de-
fined as “active.” These active residues are placed in each of
their possible rotamers in turn, and if any rotamer clashes
with any currently “inactive” residues, these residues be-
come active as well. This procedure continues until a set of
active residues is identified. The combinatorial problem is
reduced to finding the minimum energy configuration of
these active residues, because the inactive residues are in
their minimum energy conformation. This is de facto a
dead-end elimination of all rotamers except one for each
inactive residue.

We can represent the side-chain combinatorial problem in
terms of graph theory by making each residue a vertex in an
undirected graph. If at least one rotamer of residue i inter-
acts with at least one rotamer of residue j, then there is an
edge between vertices i and j of the graph. In the original
SCWRL algorithm, the active residues can be represented as
a graph, one that is not necessarily connected. The active
residues can therefore be grouped into interacting clusters.
Residues in different clusters do not have contacts with one
another. Each cluster is a connected subgraph of the entire
graph. The combinatorial problem is therefore reduced to
enumerating the combinations of rotamers for the residues
in each connected graph. In SCWRL, the lowest energy of
each cluster is found by using a backtracking algorithm with
pruning (see Materials and Methods).

Some clusters are too large to be solved in a reasonable
period of time. The solution to this problem (Bower et al.
1997) is to locate one residue (the “keystone”) that when
removed from the cluster graph, breaks the graph into two
separate subgraphs. This procedure is shown in Figure 1A.
Assuming each residue has the same number of rotamers,
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nrot, the number of combinations in this graph, is n11
rot. The

graph in Figure 1A has one residue labeled as a dark gray
vertex that breaks the graph into two pieces when removed,
as shown on the lower part of the figure. The global mini-
mum of the energy can be found by identifying the mini-
mum energy configuration for each subgraph once for each
rotamer of the keystone residue. The solution is the one that
finds the minimum energy using the equation

E = min
ri

�EL�ri� + ER�ri� + Eself�ri�� ( 1)

where EL(ri) � min
{rj,j�L,j � i} E({rj}| ri) is the lowest energy com-

bination of rotamers in the left subgraph (L) with the key-
stone residue i fixed in rotamer ri, and ER is the term for the
right subgraph. Eself (ri) is the energy of interaction of the
side chain with the backbone and other fixed non–side-
chain atoms, such as ligands. Splitting the graph results in
n5

rot + n7
rot combinations. This process may result in sub-

graphs that are also too large to be solved in a reasonable
time. SCWRL breaks these up by using a similar procedure,
so that each subgraph is broken up for each rotamer of the
first keystone residue and then for each rotamer of the sec-
ond keystone residue, and so on.

In addition to the challenges described above for side-
chain prediction, there are a number of other reasons for
developing a new algorithm for SCWRL. First, when the
backbone used for modeling is not the native backbone
structure for the protein, the connectedness of side chains
(i.e., the average number of edges per node in the graph)
may be higher than for native backbones, because in gen-
eral, there may not be sufficient volume available for all
side chains. This is especially true at low sequence identity
and in ab initio modeling, when backbone structures very
different from the native are generated. For a small propor-
tion of target structures to be modeled, SCWRL may not

converge in any reasonable amount of time. Second, to im-
prove SCWRL accuracy, it is likely to be necessary to
implement an energy function that includes favorable van
der Waals interactions, as well as electrostatic and solvation
energy terms (Liang and Grishin 2002). Flexibility of side
chains may also be necessary to improve the accuracy of
large hydrophobic residues (Mendes et al. 1999a). These
changes will make the connectedness problem even worse,
and the current SCWRL algorithm is not robust enough to
find a solution.

Third, SCWRL also uses a number of heuristic steps to
reduce the number of rotamers and the number of interac-
tions considered in the cluster-solving algorithm. These in-
clude removing rotamers with backbone (local and nonlo-
cal) energies >5.0 kcal/mole, and not forming edges be-
tween residues in the graph unless there is some pair of
rotamers with interaction energy >10.0 kcal/mole. The ef-
fect of using these heuristics is that SCWRL does not locate
the global energy minimum of its own energy function,
because many interactions are ignored when setting up the
combinatorial searches to make the calculations tractable.

In this article, we propose a new algorithm for SCWRL
based on graph theory that overcomes the combinatorial
problem in a novel way, as illustrated in Figure 1B. Instead
of recursively breaking up graphs into pieces as in previous
versions of SCWRL (Fig. 1A), the new algorithm breaks up
clusters of interacting side chains into the biconnected com-
ponents of an undirected graph. Biconnected graphs are
those that cannot be broken apart by removal of a single
vertex. Biconnected graphs are cycles, nested cycles, or a
single pair of residues connected by an edge (sometimes
referred to as a bridge). In Figure 1B, the graph in Figure 1A
is shown, before and after being broken up into biconnected
components. This graph can be broken up into five bicon-
nected components: A is residues V10, R15, Y21, and K17;
B is residues K17 and T30; C is residues T30, Q25, M32,

Figure 1. Splitting clusters into components. (A) Splitting a cluster into two components in SCWRL2.95 and earlier versions of
SCWRL. (B) Splitting a cluster into biconnected components in SCWRL3.0. First-order articulation points are in light gray, and the
second-order articulation point is in dark gray.
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H29, and W11; D is residues W11 and F35; and E is resi-
dues W11 and D39.

Vertices that appear in more than one biconnected com-
ponent are called “articulation points.” Removing an articu-
lation point from a graph breaks the graph into two separate
subgraphs. In this graph, vertices K17, T30, and W11 are
articulation points. The order of an articulation point is the
number of biconnected components of which it is a member
minus one. A first-order articulation point connects only
two components. Both K17 and T30 are first-order articu-
lation points (Fig. 1B, light gray), whereas residue W11 is
a second-order articulation point (Fig. 1B, dark gray). Find-
ing biconnected components and their articulation points is
easily accomplished by using an algorithm developed by
Tarjan (1972). The algorithm uses a standard depth-first
search algorithm from graph theory contained in many com-
puter science textbooks.

To solve the side-chain combinatorial problem with bi-
connected components, we use the following simple proce-
dure, illustrated in Figure 2. For each biconnected compo-
nent with only one articulation point, we find the minimum

energy over all combinations of rotamers of the residues in
the component for each rotamer of the articulation point.
This energy includes all interactions among these residues
and between these residues and the fixed rotamer of the
articulation point. So in the first panel of Figure 2, we
calculate the minimum energy over all combinations of ro-
tamers of residues V10, R15, and Y21 for each rotamer of
residue K17. Once this is accomplished, we can collapse the
biconnected component onto the articulation point, obtain-
ing the graph in the second panel of Figure 2. That is, we
can now consider residue K17 a superresidue with a number
of superrotamers. If residue K17 has 10 rotamers, superresi-
due {K17, V10, R15, Y21} also has 10 rotamers. The en-
ergies of these superrotamers include both the self-energies
of residue K17 and the minimum energy of the biconnected
component consisting of residues V10, R15, and Y21. After
collapse, we reduce the order of articulation point K17 by
one, so it is now no longer an articulation point in the
second panel (i.e., is of zeroth order).

We now proceed to another component with only one
articulation point, for instance, component E. We find the
minimum energy of E for each rotamer of W11 and collapse
the component onto W11, making it the superresidue {W11,
D39}, resulting in the third panel of Figure 2. After col-
lapse, W11 is now of first order. We can also solve com-
ponent D for each rotamer of articulation point W11, re-
sulting in the superresidue {W11, D39, F35}. W11 is now
no longer an articulation point (Fig. 2, fourth panel).

At this point, after collapsing several biconnected com-
ponents, we have two components that now have only one
articulation point, whereas before they had two each. We
solve the first one, B, for each rotamer of residue T30 and
form the superresidue {T30, K17, V10, R15, Y21}. We are
left with one biconnected component with no articulation
points. We find the minimum energy of this component over
all combinations of its rotamers.

The procedure as just described always converges into a
single biconnected component or a single residue, each ro-
tamer of which now contains information about all other
residues in the cluster as well as the total energy. The order
of complexity of the side-chain problem is now reduced to
the size of the largest biconnected component in any cluster.

To achieve reasonably sized biconnected components,
the new program, referred to here as SCWRL3.0, begins
with a dead-end elimination (DEE) step, based on the
simple Goldstein criterion (Goldstein 1994). This DEE step
replaces the heuristics in SCWRL previously used to re-
move many high-energy rotamers not likely to be part of the
minimum-energy configuration. Because the simple DEE
criterion is not sufficient to solve the combinatorial problem
on its own for reasonably sized proteins, a number of recent
papers have presented complex DEE schedules that remove
clusters of rotamers. However, the new SCWRL algorithm
based on biconnected components stands in contrast to re-

Figure 2. Solving a cluster by using biconnected components. The mini-
mum energy configuration of the cluster shown in Figure 1 is identified by
stepwise solution of biconnected components. Each biconnected compo-
nent is solved as shown in the right margin, and the collapsed component
is shown as superresidues in curly brackets.
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cent DEE implementations (Pierce et al. 1999; De Maeyer et
al. 2000; Looger and Hellinga 2001) in its simplicity and
speed.

We show that the new algorithm is extremely fast even
for very large proteins. We evaluate the accuracy and speed
of the new algorithm, as implemented in SCWRL3.0. The
new algorithm will allow for new applications and for the
development of more accurate energy functions and consid-
eration of side-chain flexibility without a significant impact
on computational times.

Materials and methods

Outline of the procedure

The full procedure for side-chain prediction in SCWRL3.0 con-
sists of a number of steps that are described more fully below.

Step 1: Input
Read in backbone coordinates and (optionally) a new sequence

file and ligand coordinates. Measure backbone � and � dihedral
angles from the input coordinates, checking for chain connectivity.

Step 2: Rotamers
For each residue, read in rotamer dihedral angles and probabili-

ties from binary-formatted backbone-dependent rotamer library,
given measured values of � and � and the amino acid type. Cur-
rently rotamers are read in from highest to lowest probability until
the cumulative density reaches at least 90% for each residue. Cal-
culate cartesian coordinates for rotamers of all side chains, and
calculate side-chain/backbone energy terms

Ebb�ri� K log
p�ri��,��

p�ri = 1��,��
+ �

j�i− 1
j�i + 1

Esb�ri , j� ( 2)

where the first term is derived from the backbone-dependent ro-
tamer probability given � and �, and the second term consists of
the interactions of the side-chain rotamer ri of residue i with the
backbone of all residues further than one amino acid away in the
sequence. The backbone-dependent rotamer library is assumed to
take care of the backbone/side-chain interactions of residue i with
itself and its neighbors one residue away. Determine which pairs of
side chains may be able to interact given the distance between their
C� atoms and the maximum distance of any atom in the side chain
from its C�. These distances have been calculated from data in the
PDB used in the backbone-dependent rotamer library.

Step 3: Disulfides
If desired, determine likely disulfide pairings (see below). Fix

Cys side chains that are designated disulfides for the rest of the
calculation.

Step 4: Dead-end elimination
Perform a DEE of rotamers that cannot be part of the global

minimum energy configuration by using the “Goldstein criterion.”
The Goldstein criterion is the simplest version of DEE. If the total
energy for all side chains is expressed as the sum of self and
pairwise energies,

E = �
i= 1

N

Eself �ri� + �
i= 1

N − 1

�
j�i

N

Epair�ri,rj� ( 3)

then a rotamer si can be eliminated from the search if there is
another rotamer ri for the same side chain that satisfies the fol-
lowing equation:

Eself �si� − Eself �ri� + �
j = 1, j�i

N

min
rj

�Epair�si,rj� − Epair�ri,rj�� � 0 ( 4 )

In words, rotamer si of residue i can be eliminated from the search
if another rotamer of residue i, ri, always has a lower interaction
energy with all other side chains and the backbone regardless of
which rotamer is chosen for the other side chains. The DEE step
can be made fairly efficient by applying the algorithm for rotamers
from highest to lowest Eself, and once removed, a rotamer is not
included in the minimum or sum steps in Equation 4. Residues that
have only one rotamer left after the DEE step are fixed for the rest
of the calculation. The energy of interaction of these fixed side
chains (also including disulfide-bonded cysteines) with any un-
fixed side chains is added to the self-energy of the unfixed side
chains. That is,

Eself �ri� = Ebb�ri� + Efixed �ri� ( 5)

where Efixed �ri� = �
j�fixed

residues

Epair �ri,rj�.

Step 5: Residue graph
Define residues that have more than one rotamer left after the

DEE step as “active” residues. These residues can be viewed as the
vertices of a graph that may or may or not be connected. The first
step in solving the combinatorial problem of the active residues is
to compute the edges among the active residue pairs. For every
pair of residues, i,j, there is an edge if at least one energy, Epair-

(ri,rj) � 0. This does not necessarily mean checking every pair of
rotamers, because as soon as one pair of interacting rotamers is
found, then an edge is established, and the energies for other
rotamer pairs for residue pair i,j do not need to be evaluated at this
stage. Determine the interacting clusters of residues. That is, de-
termine which sets of residues form connected graphs, given the
list of edges.

Step 6: Biconnected components
For each cluster, determine the set of biconnected components

and articulation points in the graph by sing a depth-first search
procedure (see below; Tarjan 1972). The order of each articulation
point is defined as Nbicon − 1, the number of biconnected compo-
nents attached to the articulation point minus one. An articulation
point that connects only two biconnected components is first order.

Step 7: Solve clusters
Find the minimum energy for each connected graph (cluster) in

turn: For each biconnected component of the cluster with only one
articulation point, find the energy minimum of the residues in the
component for each rotamer of the articulation point. That is, the
rotamer of the articulation point is fixed, and the rotamers of the
other residues in the component are searched until the minimum
energy is found. A branch-and-bound backtracking algorithm is
used for this purpose (see below), in which the residues in the
component are sorted from lowest to highest number of rotamers

SCWRL3.0 algorithm
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and the rotamers of each residue are sorted from lowest to highest
self-energy. Store the lowest energy of the biconnected component
as well as the rotamer identities with each rotamer of the articu-
lation point. The articulation point rotamers now have a new en-
ergy component in their self energies—the energy of the bicon-
nected component, B, which includes the self energies of these
rotamers as well as their interactions with each other and with the
articulation point rotamer, ri,

Eart �ri� = �
j�B
j�i
�Eself �rj� + Epair �ri,rj� + �

k�i
k�j

Epair �rj,rk�� ( 6)

The total self-energy for the articulation point rotamers is now

Eself �ri� = Ebb �ri� + Efixed �ri� + Eart �ri� ( 7)

After a biconnected component is solved for each rotamer, the
component can be collapsed so that the articulation point rotamers
are now superrotamers, defined as a group of residues with one
rotamer defined for each residue. The superrotamers have self-
energies defined in Equation 7. After the collapse, we reduce the
order of the articulation point by one. If the order is zero, then the
residue is no longer an articulation point. After collapsing all bi-
connected components with only one articulation point and reduc-
ing the orders of these articulation points, additional biconnected
components will have only one articulation point, as illustrated in
Figure 2. These biconnected components are then solved in a
similar fashion. The process of solving each biconnected compo-
nent for the rotamers of its articulation point is performed until
there is only one biconnected component left with no articulation
points. This final component is solved with the branch-and-bound
algorithm described below.

Step 8: Output
Print coordinates of the chosen rotamers, including the disul-

fides, the fixed side chains, and those solved in each of the clusters.

Articulation points and biconnected components

In Step 6 above, a cluster of interacting residues, represented as
vertices in a graph, are broken up into biconnected components. In
this process, the articulation points that connect the biconnected
components are also identified. A vertex of a connected graph is an
articulation point if its removal from the graph, together with all
the edges incident from that vertex, would split the graph into two
or more components, with no edges between them. If a graph does
not contain any articulation point, it is defined as biconnected.

The procedure for identifying biconnected components and ar-
ticulation points is described in a number of computer science
textbooks. The first step involves a depth-first search, or tree tra-
versal, in which each vertex of the graph is assigned a depth-first
number (DFN), numbering the vertices in the order in which they
are visited. This is illustrated in Figure 3. In a depth-first search,
the vertices and edges of the graph are used to build a tree, in
which each vertex may have several children, or descendants, con-
nected by edges of the graph, and each vertex has a single parent,
or ancestor. The nodes of the tree are searched by descending the
tree as far as possible, before exploring additional nodes attached
to each traversed vertex, in reverse order. For example, given the
residue interaction graph from Figure 1B, a depth-first traversal
starting from residue V10 assigns the DFNs shown inside of the
circles representing each node in Figure 3. In the figure, the edges
that were used during depth-first tree traversal are drawn in con-

tinuous lines and are called tree edges, whereas the ones that were
not traversed are called back edges and are drawn with dashed
lines.

In addition to the depth-first numbers, each vertex is assigned a
low number, notated as L(u) and defined by

L�u� = min�DFN�u�

min�L�w�|w is a child of u�

min�DFN�w�|�u,w� is a back edge�

( 8)

In words, L(u) is the lowest DFN that can be reached from u using
a path that includes only descendants of u and at most one back
edge. In our example (Fig. 3), low numbers are printed within the
square boxes near each node. A node u that has a child w that
satisfies DFN(u) < L(w) is either the root node or an articulation
point.

We implemented a recursive function ART that scans the tree
and computes the L and DFNs. Also it stores all the traversed
edges in a stack. If for a certain vertex the articulation point in-
equality is met, a new biconnected component is created. All the
edges are popped off of the edge stack and the vertices of these
edges are used to define a biconnected component. For each iden-
tified articulation point, we keep track of the number of bicon-
nected components that it is part of. The algorithm is shown in
pseudocode in Figure 4.

Backtracking and branch-and-bound algorithms

In Step 7, the minimum energy configuration of each biconnected
component given a fixed rotamer of one articulation point in the
component must be identified. Backtracking algorithms are a large
class of methods for solving combinatorial problems without hav-
ing to perform a complete enumeration of all possible combina-
tions. For the side-chain prediction problem, we have a number of

Figure 3. Algorithm for splitting a graph into biconnected components. In
the bottom part of the figure, the depth-first search numbers (DFN) are
shown in the circles for each node, and the low numbers (L) are shown in
shaded squares adjacent to each node. Inequalities between the DFNs and
L numbers of adjacent residues that indicate the presence of articulation
points (and also the root node) are shown.
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residues, each of which has a number of viable rotamers. We can
illustrate the problem as a tree, as shown in Figure 5A. At the top
level of the tree, we have one residue with two rotamers and,
hence, two branches of the tree. Under this residue is the second

residues with three rotamers, for a total of six combinations. As we
proceed down the tree, we add one more residue at each level, until
we reach the bottom of the tree, where each leaf of the tree rep-
resents a full combination of rotamers for the set of residues rep-
resented by the tree. For the side-chain problem as we proceed
down the tree, we add the self-energy of the rotamer at the new
level, plus the pairwise energies of that rotamer with rotamers
higher up in that branch of the tree. When we reach the bottom of
the tree, the energy includes all self and pairwise energies for that
combination of rotamers in the full set of side chains. A full
enumeration of the possibilities would entail examining every
node of the tree. Because SCWRL has only positive energy terms,
the tree can be easily pruned when the total energy at any level of
the tree exceeds the best energy obtained so far for any complete
set of rotamers (i.e., from any leaf at the bottom of the tree). This
is the method used in previous versions of SCWRL, implemented
as a recursive function.

A faster algorithm can be designed, because for each level of the
tree we can calculate the minimum energy obtainable from any
branch below it. This energy is the minimum of the self-energies
for residues further down in the tree plus the minimum pairwise
energy of these residues with residues higher up in the tree. This
is the so-called “branch-and-bound” algorithm, in which the bound
is defined as

Ebound�i� = �
j�i

�min
rj

Eself�rj�� + �
j�i

�
k�j

�min
rj, r k

Epair�rj,rk�� ( 9)

As defined by Equation 9, the energies may be negative, positive,
or zero.

We show in the Results section that a further optimization may
be implemented by sorting the residues in the tree by the number
of rotamers (from lowest to highest) and by sorting the rotamers in
order of self-energy, from lowest to highest. This results in finding
low-energy configurations of the system as early as possible in the
search, thereby resulting in more frequent pruning in the search
process. Sorting the tree by the number of rotamers is illustrated in
Figure 5B.

Rotamer library

SCWRL3.0 uses a new version of the backbone-dependent rotamer
library (D.A. Montgomery and R. Dunbrack, unpubl.). A number
of improvements have been made in the Bayesian statistical analy-
sis in the determination of probabilities and average dihedral
angles and variances for each rotamer at each value of � and �.
Also, the quality control measures advocated by Lovell et al.
(2000) in their backbone-independent rotamer library have been
implemented. These include steric checks on hydrogen atoms
(Word et al. 1999a) and B-factor cutoffs of 30.0 for any atom in a
side chain, before it is included in the library data set. Also, Asn,
Gln, and His residues have been checked for hydrogen-bonding
partners and flipped when there was a clear preference for the
opposite orientation of the terminal dihedral angle than the coor-
dinates imply (Word et al. 1999b). Side chains with ambiguous
orientations were not used in the data set. These three residue types
now have six, four, and three rotamer types for their outermost
dihedral angle respectively, compared with three, three, and two in
previous versions of the rotamer library. This new rotamer library
is available at http://dunbrack.fccc.edu/bbdep.html.

Energy function

The energy function consists of a log-probability term from the
backbone-dependent rotamer library and steric terms between the

Figure 4. Pseudocode for biconnected component algorithm.

Figure 5. Backtracking algorithm. (A) A tree representing a cluster of four
interacting residues. Each level of the tree indicates an additional residue,
and each branch a different rotamer. One combination of rotamers for all
four residues is indicated, such that residue 1 is in rotamer 2, residue 2 is
in rotamer 1, residue 3 is in rotamer 4, and residue 4 is in rotamer 2. (B)
After sorting the residues in terms of the number of rotamers. The same full
combination is indicated.
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side chains and the backbone and between side chains. The library
term has the form

Elib�ri� K log
p�ri|R,�,��

p�ri = 1|R,�,��
( 10)

where R is the residue type, and K is a constant, currently set to 3.0
based on optimization of the energy function for a 180-protein test
set. The argument of the log is normalized to the highest prob-
ability rotamer (defined as ri � 1), so that the energy of this ro-
tamer is zero and all others are positive. The steric energy function
between side-chain atoms and the backbone and between side-
chain atoms of different residues is essentially the same as in
earlier versions of SCWRL (Bower et al. 1997). This function is a
very simple linear repulsive energy term, such that

E�r� = 0 r � Rij

= 10 r � 0.8254Rij

= 57.273�1 −
r

Rij
� 0.8254Rij 	 r 	 Rij ( 11)

where r is the interatomic distance, and Rij is the sum of the
hard-sphere radii for atoms i and j. C� is treated as a backbone
atom. The radii used for atoms are as follows: carbon, 1.6 Å;
oxygen, 1.3 Å; nitrogen, 1.3 Å; and sulfur, 1.7 Å. The form of the
function is designed to represent the repulsive part of the van der
Waals energy in a linear form. It is capped at a value of 10.0
kcal/mole to alleviate the fixed rotamer approximation.

Input and output

As with earlier versions of SCWRL, SCWRL3.0 takes a PDB-
formatted file that contains backbone coordinates and outputs a
file, also in PDB format, containing backbone and predicted side-
chain coordinates. Also, SCWRL optionally takes two other files
as input. First, a sequence file may be used to change the sequence
of the protein. This is an ASCII text file containing only the new
sequence. As with earlier versions of SCWRL, this file can be used
to instruct SCWRL to preserve the cartesian coordinates of some
side chains from the input PDB file by placing them in lower case
in the file. These side chains are kept fixed throughout the calcu-
lation. Their interaction energies with the rotamers of all other side
chains are added to the self-energies of the active side-chain ro-
tamers. In benchmarking tests of homology modeling, keeping
conserved residues in their template conformation leads to im-
proved prediction accuracy (data not shown).

Another optional input file for SCWRL contains coordinates for
ligands (ions, small molecules, nucleic acids, or proteins) that may
interact with side chains to be predicted. These atoms are kept
fixed, and are assigned atomic radii based on their atom types. All
naturally occurring elements are represented within SCWRL.
SCWRL attempts to determine the element from the atom name
(see online documentation). Radii were obtained from an analysis
of nonbonded ligand-protein atom distances in 5319 proteins in the
PDB obtained from the PISCES server (http://dunbrack.fccc.edu/
pisces; Wang and Dunbrack 2003). Given the radii for protein
atoms (given above), the radii for other atom types, mostly ions,
were determined from the minimum distances between ligand at-
oms of each element type and protein atoms of any type. For
example, minimum Zn–O distances in the PDB are ∼1.9 Å. Be-
cause the radius of oxygen in SCWRL is 1.3 Å, the radius of Zn

is 0.6 Å. Distances were determined such that there would not be
significant repulsive interactions in the SCWRL energy function at
atom–atom distances observed in the PDB. The radii for 46 ele-
ments were determined in this manner. Radii for other elements
were arbitrarily set to 1.0 Å.

Disulfide bonds

We use an empirically derived scoring function to determine di-
sulfide bond pairings. The function is evaluated for all cysteine
pairs in a protein, and a disulfide bond is made if for any rotamers
of a given pair, the following scoring function is <45.0,

S =
|d − 2.0Å|

0.05Å
+

|A1 − 104°|

5°
+

|A2 − 104°|

5°

+
min�||�2|− 80°|,||�2|− 180°|�

10°
+

min�||�4|− 80°|,||�4|− 180°|�
10°

+
||�3|− 90°|

20°
+

Eself �r1� + Eself �r2�

2
( 12 )

where d is the S
1–S
2 distance, A1 is the bond angle C�1-S
1-
S
2, A2 is the bond angle S
1-S
2-C�2, �2 is the dihedral angle
C�1-C�1-S
1-S
2, �4 is the dihedral angle S
1-S
2-C�2-C�2, �3

is the dihedral angle C�1-S
1-S
2-C�2, and r1 and r2 are the
rotamers for the first and second cysteines in the proposed disul-
fide. In a set of 1865 disulfides in 2778 protein structures, this
function correctly identifies 1848 of them. It overpredicts 301
disulfides, nearly all of which occur with cysteines that are ligands
for ions. In these cases, the disulfide bond function can be turned
off with a command line flag (−u).

Implementation details

SCWRL3.0 implementation was done in object-oriented C++.
C++ was chosen over other widely used programming languages
used in computational biology (FORTRAN, C) because of the high
level of abstraction and flexibility it confers. Taking advantage of
data encapsulation, inheritance, and polymorphism, the source
code uses logical high-level entities (e.g., cluster, biconnected
component, residue). At the same time, the code is highly modular,
so that changes can be made without affecting the rest of the code.
Other advantage are the more error-proof syntax imposed by C++
comparing, for instance, with C, as well as memory allocation/
deallocation via wrapper classes instead of the classical C-style
memory handling, which is prone to overflows. In terms of design,
we preferred an object aggregation approach versus object com-
position. This provides us with more options regarding future
changes and code reusability. We also made extensive use of the
Standard Template Library for the parts of the code that involved
vectors, sets, stacks, and maps. The development and debugging
was done with Microsoft Visual C++ .Net, but the source code was
constrained to standard C++ only, in order to keep it cross-com-
piler and cross-platform compatible. For a C++ compiler for Linux
and MacOS X, we used gcc, version 3. SCWRL3.0 has been
compiled on Microsoft Windows XP, RedHat Linux 7.3 and 8.0,
and MacOS X (version 10.2).

Benchmarking was performed on a dual AMD MP1800+ com-
puter running RedHat Linux 7.3.

Test set

The test set used for speed and accuracy assessments consists of
180 proteins of resolution 	1.8 Å and mutual sequence identity of
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<50%, and were obtained from the PISCES server. The chains
used were the single-chains in PDB entries 2ilk, 1bec, 1rb9, 1thv,
1pot, 1tca, 2end, 6cel, 1lam, 8abp, 3ebx, 1thg, 2erl, 1pmi, 1kuh,
1ixh, 1c52, 1a7s, 1gci, 1nkd, 1koe, 1ycc, 1tif, 1orc, 2pth, 3grs,
1bs9, 2por, 1l58, 1dcs, 1tag, 3lzt, 1bd8, 1tyv, 1qnf, 1npk, 1mrj,
1eca, 3pte, 1bfd, 7rsa, 1nls, 1a68, 3cyr, 1lcl, 1uae, 2eng, 1a8d,
2acy, 1xnb, 1vqb, 1msi, 1moq, 1hxn, 3vub, 1hfc, 2hbg, 1aqb, 1kid,
1rzl, 1ctf, 1a8e, 1csh, 1pdo, 1smd, 1aba, 2tgi, 1bm8, 2rn2, 2a0b,
1ako, 2ctc, 1b6g, 1msk, 2qwc, 1bfg, 3nul, 1pda, 1arb, 1wab, 1gof,
1bg6, 2cpl, 1vie, 1cor, 1rhs, 1aie, 1bgf, 3cla, 1ifc, 1vjs, 4xis, 1ha1,
1dhn, 1amm, 2sak, 1jer, 1vhh, 1g3p, 1cyo, 1hyp, 1cbn, 3pyp, 1cex,
1ctj, 1a8i, 1mof, 1a6m, 1cnv, 1ryc, 1mrp, 1xjo, 2sn3, 2fdn, 1din,
2baa, 1aru, 1chd, 1cv8, 1bx7, 16pk, 1bdo, 2sns, 3lck, 3seb, 1al3,
1rie, 2dri, 1lbu, 1sbp, 1mml, 1ush, 1edg, 1ads, 2mcm, 1yge, 1whi,
1iab, 1ppn, 1zin, 1lst, 1hka, 1fna, 1poa, 1svy, 3sil, 1fus, 1mun,
1oaa, 1gai, 153l, 1cem, 119l, 1iuz, 1e70, 1mla, 1bj7, 1ezm, 1ra9,
2igd, 1nox, 1fnc, 1aop, 1opd, 2ayh, 1byi, 1cvl, 1ayl, 1axn, 2cba,
1pgs, 5pti, 1bkf, 1vns, 1aho, 1b6a, 1c3d, 1phb, 1rcf, and 1atg.

Availability

SCWRL3.0 is freely available to nonprofit research groups from
http://dunbrack.fccc.edu/scwrl3/scwrl3.html. Commercial compa-
nies should contact the investigators by electronic mail at
RL�Dunbrack@fccc.edu.

Results

As outlined in the Materials and Methods section, the
SCWRL3.0 algorithm consists of a number of steps, some
in common with earlier versions of SCWRL, some bor-
rowed from other published algorithms, and some novel.
We examined each step to determine its effect on reducing
the size of the combinatorial problem.

Backtracking algorithm

We use a backtracking algorithm (Kreher and Stinson 1999)
to find the minimum-energy combination of rotamers for
each biconnected component. Backtracking algorithms are
used to generate all feasible solutions to a combinatorial
optimization problem by traversing a tree that represents all
combinations of the system. This is illustrated in Figure 5.
A number of techniques are available for pruning the tree,
so that not all combinations must be enumerated. One of

these is to use a bounding function, which is defined at each
level of the tree. For the side-chain problem here, we use a
bounding function shown in Equation 9 that is the sum of
minimum self-energies and minimum pairwise energies for
all residues further down in the tree. Another way to im-
prove the pruning is to sort the rotamers of each residue by
their self-energies, so that low-energy rotamers are encoun-
tered as early in the tree search as possible. It is also pos-
sible to sort the residues by their respective number of ro-
tamers. We investigated the effect of these three variants,
singly and in combination, and the results are shown in
Table 1. In this table, “ener+” and “ener−” indicate sorting
of rotamers from lowest-to-highest and highest-to-lowest
energy, respectively. Similarly, “nrot+” and “nrot−” indi-
cate sorting the residues from lowest to highest and highest
to lowest number of rotamers, respectively. “Bound” means
using the bounding function indicated in Equation 9.

In Table 1, the results of six experiments are shown, in
which self and pairwise energies were randomly generated
for a 10-residue cluster, in which each residue had a random
number of rotamers between 2 and 10. In all cases studied,
each variation identified the same lowest-energy configura-
tion. The results indicate that sorting residues by number of
rotamers (nrot+), sorting rotamers by self-energies (ener+),
and using the bounding function (bound) each has a signifi-
cant effect. In combination, they are very powerful, reduc-
ing the number of nodes searched from �50,000 to <100.
With random energies, the number of nodes can be pushed
to �200 and still be solved in less than a minute (data not
shown). With the energy function used currently in SCWRL
in which many pairwise energies are zero, the algorithm is
not as powerful because the bounding function sometimes
does not change from level to level. However, breaking the
degeneracy with favorable packing and electrostatic inter-
actions will allow the branch-and-bound algorithm greater
efficiency in solving larger clusters.

Computational complexity

SCWRL3.0 uses an updated version of the backbone-de-
pendent rotamer library (Dunbrack and Cohen 1997; Dun-

Table 1. Backtracking algorithm comparison

Algorithm Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6

Nrot−, Ener− 415,007 7,074,673 3,591,422 4,856,216 15,209,910 8,610,675
Nrot− 115,799 138,707 30,052 3685 821,949 98,619
Nrot+, Ener− 27,362 119,237 34,396 32,175 42,355 30,904
Nrot−, Ener+ 71,629 18,978 477 1932 7255 1487
None 2937 56,130 26,352 8264 42,983 45,055
Nrot+ 5363 26,791 2055 3894 9907 9408
Nrot+, Ener+ 1684 23,146 730 2201 2681 5321
Bound 906 2481 1360 1112 2692 1123
Nrot+, Ener+, Bound 72 68 70 71 76 62

Number of nodes searched with different sorting conditions and bounding functions (see text). “None” refers to the default SCWRL2.95 algorithm.
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brack 2002), with improved Bayesian analysis of the prob-
abilities and mean and variance of dihedral angles at all
values of � and �. The backbone-dependent rotamer library
contains information on all rotamer types for each side
chain. For instance, lysine has four dihedral angle degrees
of freedom, each of which can take on one of three different
rotamer values, for a total of 81 rotamers. However, many
of these are sterically impossible and have never or only
very rarely been seen in the PDB. Because the library con-
tains many rotamers of very low probability, SCWRL reads
in the rotamers from highest to lowest probability, given the
backbone conformation, and keeps only the top D propor-
tion of the cumulative density. Currently D � 0.9 is used,
because the prediction rate does not improve with higher
values of D (M.J. Bower, unpubl.). After the coordinates are
constructed for the input rotamers, the DEE step with the
simple Goldstein criterion (Goldstein 1994) is used to re-
move rotamers that cannot be part of the global minimum-
energy configuration. In Table 2, we list the average number
of rotamers that fall within the top 90% of density for each
side-chain type, as well as the number that pass the DEE
step. For Lys and Arg, the number of rotamers is reduced
from 81 to less than 2 on average by the top-D and DEE
criteria. However, the range is quite broad due to the vari-
ability in side-chain environments (buried, surface, number
of near neighbors).

We can measure the complexity of the side-chain prob-
lem by calculating the log10 of the number of viable com-
binations at each stage of the calculation. In Figure 6, A and
B, the log10 combinations for the top-D rotamers and the

post-DEE rotamers, respectively, are shown for the 180-
protein test set versus the length of each protein. These
values are calculated from the equation

log10 C = �
i= 1

N

log10 ni ( 13)

where ni is the number of viable rotamers for residue i. The
log-top-D rotamer complexities are essentially linear in the
number of residues. The DEE step reduces the complexity
from ∼150 log10 units for 300-residue proteins to 10 to 30
log10 units.

After the DEE step, SCWRL converts the side-chain
problem into a graph containing residues as vertices and
interactions between residues as edges. An edge occurs be-
tween residues i and j if for some rotamers ri and rj there is
an energy Epair(ri,rj) � 0. This graph is generally not con-
nected but rather will comprise several smaller internally
connected graphs, which do not have edges between them.
The minimum-energy configuration of each of these con-
nected subgraphs is part of the global minimum energy
configuration of the entire system. Determining these sub-
graphs reduces the complexity of the problem from that of
the total graph to that of the sum over the subgraphs. We
refer to these connected subgraphs as clusters. In Figure 7,
we show a histogram of the cluster sizes in the 180-protein
test set. In this figure, clusters of size 1 are omitted. Of
34,342 non-Ala, non-Gly residues, only 4996 of them exist
in clusters of more than one residue. Nearly all clusters are
size 	40, with one cluster in the 180-protein set of 78
residues. Once the clusters are determined, the complexity
of the problem is reduced to a sum over the clusters,

log10 C = log10 �
k= 1

Nclus

Ck ( 14)

where Ck is the complexity for each cluster k, and C is the
total complexity of the problem. The results are shown in
Figure 6C.

Some clusters could be solved immediately by the back-
tracking algorithm, but many of them are still too large to be
enumerated in a reasonable amount of time, as demonstrated
by Figure 6C. A novel step in SCWRL3.0 is to break up the
cluster graphs into biconnected components, which can be
solved separately for each articulation point and then com-
bined to produce a global minimum energy configuration
for the cluster. The success of the method depends on the
size of these biconnected components and on whether they
can be solved quickly. A histogram of the biconnected com-
ponent sizes is shown in Figure 8. Most biconnected com-
ponents have sizes of 2 or 3 residues, although a small
number are as large as 20 residues. The complexity of the

Table 2. Average number of rotamers in the top 90% of density
in the rotamer library and after dead-end elimination

Residue type

No. of
rotamers in

library
No. of top-D

rotamers 

No. of DEE

rotamers 


ARG 81 21.2 3.7 2.0 2.2
ASN 18 6.9 1.0 1.3 0.7
ASP 6 4.3 0.8 1.2 0.6
CYS 3 2.1 0.4 1.1 0.3
GLN 36 12.0 2.5 1.4 1.2
GLU 27 11.2 1.0 1.4 1.2
HIS 9 4.8 0.9 1.4 0.9
ILE 9 2.4 0.9 1.2 0.4
LEU 9 2.0 0.6 1.1 0.4
LYS 81 17.1 3.1 1.3 1.2
MET 27 8.9 1.3 1.9 1.5
PHE 6 2.6 0.6 1.3 0.6
PRO 2 1.9 0.3 1.0 0.2
SER 3 2.4 0.5 1.1 0.3
THR 3 1.6 0.6 1.1 0.2
TRP 9 4.7 0.8 1.7 1.0
TYR 6 2.5 0.7 1.3 0.5
VAL 3 1.5 0.7 1.0 0.2

Top-D indicates top 90% of density; DEE, dead-end elimination.
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problem is now reduced to a sum over the biconnected
components, as shown in Figure 6D. Even the most com-
plex protein now has complexity of <1011. Finally, the
backtracking algorithm solves each biconnected component
without fully enumerating all of the combinations. The
complexity is then the number of combinations actually
evaluated by the backtracking algorithm. This is shown in
Figure 6E, in which the maximum number of combinations
actually evaluated is <107.

Although the DEE step is effective in reducing the com-
plexity, it is not sufficient on its own to reduce the problem
to manageable size for most proteins, either with or without
the clustering step. However, the number of combinations
after breaking the clusters into biconnected components is

easily solved for each protein. The branch-and-bound algo-
rithm is very efficient in solving the biconnected compo-
nents, although its impact on the total size of the problem is
small. However, as noted previously, if we add flexibility to
the side chains and increase the number of interactions be-
tween residues, the branch-and-bound algorithm is likely to
be very useful in keeping the calculation time to a mini-
mum.

Speed

Previous versions of SCWRL were generally very fast com-
pared with other side-chain prediction programs, but suf-

Figure 6. Complexity of combinatorial problem at various stages of calculation. Complexity is represented as log10 of the number of
combinations that would have to be searched at each stage, if subsequent stages were not performed. Test set of 180 proteins was used.
(A) Log10 of combinations of top 90% rotamers. (B) Log10 of combinations of post-DEE rotamers. (C) Log10 of sum of cluster
combinations. (D) Log10 of sum of biconnected component combinations. (E) Log10 of total number of nodes in backtracking trees
searched
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fered from two drawbacks. One is that a number of heuris-
tics were used to reduce the complexity by removing rota-
mers with backbone energies >5.0 kcal/mole (parameter
EBBMAX) and ignoring pairwise interactions <10.0 kcal/
mole when determining the residue graph (parameter
EPAIRMIN). Varying these parameters by increasing
EBBMAX and reducing EPAIRMIN in SCWRL2.95
increases the complexity and computation time of the prob-
lem rapidly. The other is that for a small number of proteins
SCWRL would get stuck trying to solve very large clusters
and, in fact, would never reach a solution. In Table 3, we
compare the computational times for SCWRL2.95 and
SCWRL3.0 with various settings of EBBMAX and
EPAIRMIN. Although SCWRL2.95 solves the 180-protein
test set in 17 min with the previous default settings, as these
parameters are varied so that more rotamers and rotamer
pairs are included in the calculation, the time increases rap-
idly. The number of proteins that can each be solved in 	15
min of CPU time (for each protein) also decreases. We
implemented EBBMAX and EPAIRMIN in SCWRL3.0 for

purposes of comparison with SCWRL2.95. When these pa-
rameters are omitted (equivalent of EBBMAX of infinity
and EPAIRMIN of 0.0), the time taken for SCWRL3.0
on the test set is 13 min. Even with EBBMAX of 50.0,
SCWRL2.95 is only able to complete 132 proteins in 4.3 h.
This time does not include the failures. We have set the
default value of EBBMAX to 50.0 and EPAIRMIN to in-
finity (i.e., no minimum energy cutoff for pairs of rotamers)
in SCWRL3.0.

We also compared SCWRL3.0 with the generalized DEE
algorithm of Looger and Hellinga (2001). These investiga-
tors present CPU time for several large proteins, including
1xwl (580 residues) 1bu7 (910 residues), 1a8i (812 resi-
dues), and 1b0p (2462 residues). For these same proteins,
their times were 1823, 2472, 2590, and 3018 sec, respec-
tively, on an SGI R12000 processor. SCWRL3.0 achieves
times of 17, 43, 86, and 239 sec, respectively, on an Athlon
MP1800+ processor. The AMD CPU is 1.3 to 1.8 times
faster than the SGI R12000 (depending on the clock speed
of the SGI CPU; see http://www.specbench.org/osg/
cpu2000/results/cpu2000.html#SPECfp), which makes
SCWRL at a minimum 7 (1b0p at 1.8×) and maximum 82
times (1xwl at 1.3×) faster on these four proteins.

Accuracy

We used the same set of 180 proteins to determine the
prediction accuracy of SCWRL3.0 and to compare this
accuracy to SCWRL2.95, the most recent, publicly released
version of SCWRL. Although the energy function is es-
sentially identical to that of SCWRL2.95, SCWRL3.0 uses
a new rotamer library and is able to perform a search in-
cluding all interactions in the energy function. These dif-
ferences result in slightly higher prediction accuracy. Table
4 lists the �1 and �2 accuracy (within 40°) of each residue
type achieved by the backbone-dependent rotamer library

Figure 8. Biconnected component sizes in 180 proteins. The number of
biconnected components of size 1 is 2325 (truncated on the graph to show
the distribution at higher sizes).

Figure 7. Cluster sizes in 180 proteins. Size of graphs after DEE step is
performed and edges among residue vertices are determined. Clusters of
size 1 are not shown.

Table 3. Speed of SCWRL2.95 and SCWRL3.0 calculations on
the 180-protein test set

EBBMAX EPAIRMIN

SCWRL2.95 SCWRL3.0

Time
(sec)

No.
completed

Time
(sec)

No.
completed

5 10 1012a 180 234 180
5 0 3430 174 228 180

50 10 8549 168 395 180
50 0 15,537 132 404a 180
� 0 N.D. N.D. 790 180

EBBMAX is the maximum backbone/side-chain interaction energy for a
rotamer to be included in the calculations. EPAIRMIN is the minimum
side-chain/side-chain interaction energy for two residues to be considered
connected in determining clusters of interacting residues.
Each calculation was stopped if it took >15 min (900 sec). Time does not
include the failures. Number completed is out of 180 proteins. N.D. indi-
cates not done.
a Default parameters for each program.
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alone, SCWRL2.95, and SCWRL3.0. Using only the most
preferred rotamer from the backbone-dependent rotamer li-
brary results in 73.0% �1 accuracy. The accuracy for
SCWRL3.0 is 82.6% for �1 and 73.7% for �1+2 which are
slightly higher than the results for SCWRL2.95 of 81.7%
and 70.9%, respectively. Further analysis of prediction ac-
curacy is outside the scope of this article, and will be con-
sidered when new energy functions are implemented.

Discussion

As the number of protein families with at least one structure
is rising rapidly, the need for fast and accurate homology
modeling is increasing. Improving the accuracy will require
more complex energy functions (Liang and Grishin 2002)
and flexibility of side chains around rotamer dihedral angle
values and standard bond lengths and angles (Mendes et al.
1999a,b; Xiang and Honig 2001). The new algorithm is
robust enough to handle energy functions and conforma-
tional flexibility that increase the connectedness of side-
chain interaction graphs. In the future, we plan to implement
favorable packing interactions, hydrogen bonds, electrostat-
ics, and solvation terms to improve side-chain prediction
accuracy. Allowing for flexibility of side chains away from
standard bond lengths and angles or fixed dihedral angles
for each rotamer will also be tested for improved accuracy.
Nevertheless, the current energy function and algorithm

produce predictions that are better than nearly all published
methods that are publicly available (G. Wang and R.L. Dun-
brack, unpubl.), except some that are two to three orders of
magnitude slower (Mendes et al. 2001b; Liang and Grishin
2002).

SCWRL has enjoyed widespread use in the protein struc-
ture prediction community because of its ease-of-use, accu-
racy, and speed. In CASP5, SCWRL was used by at least
12 groups for side-chain prediction (see http://www.
forcasp.org). Of the top 10 groups in side-chain prediction
on high sequence-identity targets, SCWRL was used by 5
of them, and the backbone-dependent rotamer library used
in SCWRL was used by 2 other groups (see http://
forcasp.org/modules.php?name�Papers&file�article&sid�
1985). SCWRL is designed to be used as a homology-mod-
eling tool, and so it preserves all input coordinate features
(e.g., residue numbering, chain IDs, ligand atom positions),
in contrast to many publicly available programs. We have
designed SCWRL3.0 to retain these advantages, and at the
same time to provide for increased speed and reliability and
future opportunities for increased accuracy through new en-
ergy functions and flexibility.
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Table 4. Accuracy results for backbone-dependent rotamer library alone (BBDEP), SCWRL2.95, and SCWRL3.0 in 180-protein
test set

Residue
type

No. of
residues

�1 Prediction accuracy �1+2 Prediction accuracy

BBDEP SCWRL2.95 SCWRL3.0 BBDEP SCWRL2.95 SCWRL3.0

PHE 1653 75.4 92.9 93.7 68.3 84.9 87.4
TYR 1633 74.1 91.0 92.3 68.9 83.8 86.5
ILE 2134 87.7 91.8 91.8 70.1 78.1 80.4
LEU 3406 72.9 89.0 89.9 66.1 80.1 81.8
VAL 2787 85.9 89.3 89.9 85.9 89.3 89.9
TRP 671 68.4 87.0 88.4 41.3 60.6 64.8
CYS 679 80.6 86.5 88.2 80.6 86.5 88.2
THR 2449 85.0 87.4 88.0 85.0 87.4 88.0
HIS 899 67.7 83.3 85.3 59.3 66.4 75.1
PRO 1994 82.6 83.9 84.4 82.6 83.9 84.4
ASP 2493 71.7 80.2 80.8 62.6 56.5 70.4
MET 789 64.9 76.9 80.4 37.8 59.8 65.1
ASN 2036 68.1 77.9 78.7 55.6 56.9 66.1
ARG 1888 62.6 75.8 76.9 48.7 61.9 63.7
GLN 1569 66.1 74.0 74.6 40.9 54.7 52.6
LYS 2319 66.5 73.9 74.0 46.8 57.0 57.0
GLU 2267 61.7 70.0 71.3 39.9 50.5 51.7
SER 2676 62.6 65.7 66.4 62.6 65.7 66.4
All 34,342 73.0 81.7 82.6 63.2 70.9 73.7

�1 prediction accuracy is expressed as percent of side chains with �1 dihedral angles within 40 degrees of the X-ray crystallographic value. For side chains
with only �1, the �1 accuracy is given in the �1+2 columns. For �1+2 to be correct, both �1 and �2 must be within 40 degrees of their X-ray values. Residue
types are sorted by their SCWRL3.0 �1 accuracy.
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