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In accordance with the physiological networks that underlie it, human cognition is

characterized by both the segregation and interdependence of a number of cognitive

domains. Cognition itself, therefore, can be conceptualized as a network of functions.

A network approach to cognition has previously revealed topological differences

in cognitive profiles between healthy and disease populations. The present study,

therefore, used graph theory to determine variation in cognitive profiles across healthy

aging and cognitive impairment. A comprehensive neuropsychological test battery was

administered to 415 participants. This included three groups of healthy adults aged

18–39 (n = 75), 40–64 (n = 75), and 65 and over (n = 70) and three patient groups

with either amnestic (n = 75) or non-amnestic (n = 60) mild cognitive impairment or

Alzheimer’s type dementia (n = 60). For each group, cognitive networks were created

reflective of test-to-test covariance, in which nodes represented cognitive tests and

edges reflected statistical inter-nodal significance (p < 0.05). Network metrics were

derived using the Brain Connectivity Toolbox. Network-wide clustering, local efficiency

and global efficiency of nodes showed linear differences across the stages of aging,

being significantly higher among older adults when compared with younger groups.

Among patients, these metrics were significantly higher again when compared with

healthy older controls. Conversely, average betweenness centralities were highest in

middle-aged participants and lower among older adults and patients. In particular,

compared with controls, patients demonstrated a distinct lack of centrality in the

domains of semantic processing and abstract reasoning. Network composition in the

amnestic mild cognitive impairment group was similar to the network of Alzheimer’s

dementia patients. Using graph theoretical methods, this study demonstrates that the

composition of cognitive networks may be measurably altered by the aging process

and differentially impacted by pathological cognitive impairment. Network alterations

characteristic of Alzheimer’s disease in particular may occur early and be distinct from

alterations associated with differing types of cognitive impairment. A shift in centrality

between domains may be particularly relevant in identifying cognitive profiles indicative

of underlying disease. Such techniques may contribute to the future development of

more sophisticated diagnostic tools for neurodegenerative disease.
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INTRODUCTION

The integrity of our cognitive functions is heavily influenced by a
number of factors including, but not limited to, our educational
background (Katzman, 1993), age (Glisky, 2007; Harada et al.,
2013), and the structure and function of the physiological
systems that underlie them. Although more heavily exacerbated
in disease, declines in cognitive function are also inherent to
healthy aging (Salthouse, 2003; Harada et al., 2013). As aging itself
is amajor risk factor associated with the development of dementia
due to multiple etiologies, it is imperative that clear distinctions
may be drawn between what can be determined age-related and
pathology-related cognitive decline.

Despite recent advances in biomarker identification (Olsson
et al., 2016; Jack et al., 2018), clinical diagnosis of many
neurodegenerative diseases continues to rely on the detection
of distinct cognitive or behavioral changes, characteristic of a
given disease (National Institute for Health and Care Excellence,
2018). Due to the heterogeneous nature of neurodegenerative
conditions, particularly in the prodromal stages (Petersen, 2004;
Ismail et al., 2016), evaluations of individual cognitive functions
in this manner tend to be limited in their ability to differentiate
accurately between etiologies and predict future progression to
dementia (Loewenstein et al., 2006; Fischer et al., 2007).

Although the traditional reductionist approach toward the
study of cognitive functioning is clinically helpful and provides
a valuable theoretical avenue for the formulation of inter-
disciplinary research hypotheses (Barendregt and van Rappard,
2004), a more global, non reductionist view is of help to
characterize cognitive profiles in psychopathology in a way that is
more attentive to the intertwined nature of symptoms (Borsboom
et al., 2019). This would be particularly valuable in clinical
neuropsychological practice, where diagnoses are formulated
using profiles of test scores, resultant of inter-connected, rather
than isolated functions.

In line with a non-reductionist view of cognition, one concept
of senescent change, which may be captured via methods of
network analysis, is that of cognitive dedifferentiation. Originally
described by psychometric studies, cognitive dedifferentiation
refers to the tendency for cognitive and sensory functions
spanning differing domains to present with increased intra-
individual correlation among aging populations (Baltes et al.,
1980; Baltes and Lindenberger, 1997). Despite conflicting
evidence in the literature regarding the existence of this
phenomenon (de Frias et al., 2007; Tucker-Drob, 2009; La
Fleur et al., 2018; Tucker-Drob et al., 2019), the cognitive
dedifferentiation hypothesis remains a central concept within the
study of aging and cognition, due largely to the assumption
that the well-established dedifferentiation in neural function
and response to cognitive tasks in older individuals (Koen
and Rugg, 2019; Koen et al., 2020) is likely to result in
greater correlations between subsequent performance on tasks
of differing domains. Dedifferentiation, therefore, whether
a factor of healthy aging or a manifestation of disease
(Batterham et al., 2011), provides an example of network-level
cognitive alteration that demonstrates how a non-reductionist
approach to the global cognitive system may be beneficial

to elucidate subtle changes beyond the level of individual
abilities or behaviors.

Graph theory is a mathematical tool that allows topological
quantification of any system that could reasonably be described
as a network. In this case, a network comprises a set of entities,
referred to as nodes, joined by a series of connections, referred to
as edges (Bondy and Murty, 1976). Although adhering to distinct
domains, cognitive functions do not exist in isolation from one
another. Rather, successful performance of most tasks relies on
the interdependence of a number of cognitive domains. The
characteristic separation and integration of cognitive abilities,
therefore, allows for the conceptualization of a cognitive network
in which performance on each task corresponds to a node and
the interrelatedness or correlation between performances, to an
edge (Garcia-Ramos et al., 2016). Graph theoretical methods
have rarely been applied to interrogate the nature of our
cognitive systems. A number of studies by Garcia-Ramos et al.
(2015, 2016) and Kellermann et al. (2015, 2016), probing the
nature of cognition in epilepsy, have, however, exploited graph
theory methods in this area to some effect, demonstrating the
utility of the technique in identifying measurable differences in
neuropsychological profiles between distinct groups. Only two
previous studies have implemented similar network analyses
comparing the cognitive profiles of healthy aging individuals
to those with Alzheimer’s disease (AD). A recent study by
Tosi et al. (2020) analyzed cognitive networks in healthy
older adults, patients with AD and patients with vascular
encephalopathy. Although this study demonstrated a number
of qualitative differences in network characteristics between
the healthy group and those with neurological disease, the
results were limited in terms of quantitative differentiation
between aging and disease-related cognitive network topology.
Ferguson (2021) took the approach a step further, comparing
the cognitive networks of healthy older adults to those with
early Alzheimer’s type dementia and amnestic mild cognitive
impairment, who may represent a prodromal stage of disease.
This study was able to corroborate Tosi et al.’s findings,
demonstrating substantial evidence for reorganization of the
cognitive network in even the earliest stages of Alzheimer’s
disease. What is lacking from the literature, however, is an
exploration of cognitive network reorganization as it may occur
throughout the stages of healthy aging, as conceptualized by
the cognitive dedifferentiation hypothesis. Such establishment of
a possible aging effect on network composition is important
for identifying topological deviations that may be indicative of
an age-related neuropathology. Furthermore, the assertion that
pathological cognitive impairment may result in an abnormal
reorganization of the cognitive network suggests that etiologies
other than AD may similarly demonstrate such topological
alterations. Given the varying cognitive profiles associated with
differing disease etiologies, it is likely that the network topologies
associated with other types of cognitive impairment will also
differ, as seen in the comparison between patients with AD
and patients with vascular encephalopathy in Tosi et al.’s (2020)
study. The present study, therefore, applied methods of graph
theory to evaluate differences in the structure of cognitive
networks between healthy individuals of different age groups and
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in patients with different severities and sub-types of cognitive
impairment, relating to neurodegenerative disease. Six network
metrics that are frequently utilized by neuroimaging studies,
assessing network integration, segregation, and modularity, were
chosen to test the hypothesis that differences in network topology
identified in Alzheimer’s disease at a neural level will similarly
manifest in cognition. It was expected therefore, that the topology
of cognitive networks highlighted by these metrics would show
both quantitative and qualitative differences between the stages
of healthy aging that would be distinct from network alterations
associated with pathological cognitive decline.

Of particular interest to this study, was the hypothesis
that as individuals age, crystallized cognitive abilities such as
vocabulary, general knowledge, and semantic memory (Cattell,
1971) may be more heavily relied upon to support healthy
cognitive function in the presence of age-related declines in
domains such as processing speed, executive function, and
episodic memory (Li et al., 2004; Harada et al., 2013). Throughout
the lifespan, crystallized abilities have been shown to remain
relatively stable, showing markedly low levels of decline in old
age, compared with other cognitive domains (Cattell, 1971;
Nyberg et al., 1996; Rönnlund et al., 2005), with some tests
even being found to show gradual improvement between the
decades of life, until around the age of 60 (Nilsson, 2003;
Verhaeghen, 2003; Rönnlund et al., 2005; Salthouse, 2009, 2019).
In contrast, however, patients with AD, even at a very early
stage of disease, show declines in these areas, in particular in
language and semantic memory function (Garrard et al., 2005;
Amieva et al., 2008; Vonk et al., 2020). Through examination
of the relationship between test performances in a range of
cognitive domains, the present study aimed to test the hypothesis
that compared with younger adults, older healthy adults will
present with a cognitive network in which tests of semantic
memory are highly influential. In patients with Alzheimer’s
disease, however, even among those in a prodromal stage, the
role of semantic processing in the cognitive network was expected
to be significantly reduced, suggesting that even in the absence
of a measurable decline in functioning, network analysis may
reveal alterations in the inter-relatedness of cognitive domains,
in particular their relation to crystallized abilities, that may serve
to differentiate healthy aging from disease. As such, in line
with the Alzheimer’s disease cognitive profile (McKhann et al.,
2011), network differences in comparison with controls, among
amnestic groups were expected to bemost evident, in terms of the
relationships between cognitive test performance, in the domains
of semantic processing and memory function. Between the stages
of healthy aging, however, it was expected that crystallized
cognitive functions such as semantic processing (Cattell, 1971)
may have a more prominent role in the network structure of
older adults compared with younger groups, while substantial
differences in network properties relating to tests of executive
functioning may be further apparent, in line with age-related
declines in this domain (Harada et al., 2013). Furthermore, in
accordance with the findings of Ferguson (2021) and previous
neuroimaging analyses (Rashidi-Ranjbar et al., 2020), patients
with an amnestic mild cognitive impairment, and not those with
a non-amnestic impairment, were expected to present with a

network composition closely aligned to patients diagnosed with
Alzheimer’s dementia.

MATERIALS AND METHODS

Participants
The participant sample (N = 415 datasets) included in this study
were identified retrospectively from a large database coordinated
by the University of Sheffield’s Department of Neuroscience.
Healthy adults (n = 220) were approached using multiple
recruitment strategies, with a proportion being carers of patients
and others obtained via opportunity sampling and assigned to
one of three groups according to their age: a younger group aged
18–39 (n = 75), a middle-aged group aged 40–64 (n = 75) and
an older group aged 65+ (n = 70). All patients were recruited
through amemory clinic after neurological examination andwere
split according to clinical diagnosis. Of the 195 patients, 60 had
a clinical diagnosis of probable Alzheimer’s disease dementia,
in adherence to the NINCDS-ADRDA criteria (McKhann et al.,
2011), and 135 received a diagnosis of mild cognitive impairment
(MCI) who, following the criteria outlined in Albert et al.
(2011), were further categorized into those with an amnestic MCI
(aMCI) profile (n = 75) and those with a non-amnestic profile
(naMCI) (n = 60) according to neuropsychological assessment.
All procedures were carried out following the Declaration of
Helsinki. This study received ethical approval from the West of
Scotland Regional Ethics Committee 5, Ref. No.: 19/WS/0177.
Written informed consent was obtained from all participants.

Demographic data for all participant groups can be found
in Table 1. All patient groups were matched with the healthy
older adults in terms of age and were further age and education
matched with each other. All healthy groups were also education
matched with each other. All patient groups, however, had
significantly fewer years of education than each control group.
There were no significant differences across any of the groups in
terms of gender ratios.

Neuropsychological Assessment
All participants completed an extensive neuropsychological test
battery assessing a range of cognitive domains. The tests used in
the present study were chosen to reflect test batteries routinely
administered in tertiary-care clinics. This battery, in particular,
has demonstrated high discriminatory power in differentiating
patients with neurodegenerative conditions, even in early disease
stages, from healthy groups, as well as patients with functional
memory disorders (Venneri et al., 2011; Wakefield et al., 2014,
2018). A comprehensive list of included tests can be seen in
Table 2 and detailed descriptions of these can be found in
Neuropsychological Assessment, 5th Edition (Lezak et al., 2004).
For between-group comparison of test performance, raw scores
taken from healthy adults were converted to z-scores based on
the mean and standard deviation of the overall healthy reference
sample. In the case of patients, similarly standardization of scores
was based on norms obtained from the same healthy reference
sample. This harmonization served to standardize data variability
according to each group’s age range and assess variability in
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TABLE 1 | Median (and inter-quartile range) of demographics for participant groups.

Young (n = 75) Middle aged (n = 75) Older (n = 70) aMCI (n = 75) naMCI (n = 60) Dementia (n = 60)

Age 23.00 (10.00)e 53.00 (8.00)bc 72.00 (7.00) 75.00 (12.00) 71.00 (12.00) 74.50 (17.00)

Education 15.00 (3.00) 14.50 (5.00) 14.00 (4.00) 10.00 (5.00)d 12.00 (6.00)d 11.00 (5.00)d

Gender (M/F) 31/44 37/38 31/39 29/46 27/33 33/27

MMSE 29.00 (2.00)a 30.00 (1.00) 29.00 (2.00)a 26.00 (3.00)d 27.00 (2.00)d 21.00 (4.00)e

Individual Mann–Whitney U tests were applied among all groups to assess differences between age (in years), levels of education (in years) and Mini Mental State

Examination (MMSE) scores. Gender-ratio differences were calculated with a chi-square test.
aSignificantly lower than middle-aged controls p < 0.05.
bSignificantly lower than older controls p < 0.05.
cSignificantly lower than all patient groups p < 0.05.
dSignificantly lower than all control groups p < 0.05.
eSignificantly lower than all other groups p < 0.05.

test scores in relation to healthy functioning. Medians and
interquartile ranges of the standardized test scores for each group
can be found in Table 2.

Network Formation
For network formation, standardized test scores for each of the
healthy control groups were recalculated based on the mean
and standard deviation of their own age group. For patient
groups, the same standardized scores were used, as in the
between-group comparisons, based on the means and standard
deviations of matched controls. Although graphs representative
of psychological profiles have been often constructed based
on Gaussian Graphical Models, the major part of cognitive
scores in our six groups was not normally distributed and,
therefore, was unsuitable for this approach. Within-group test-
to-test correlations were thus computed between standardized
test scores of each of the 16 cognitive measures using a non-
parametric version of the partial-correlation procedure, based
on Spearman’s rho, controlling for age (in years) and level of
education (in years). The covariates age and education were
chosen to reflect two demographic factors that have been found
to mediate cognitive functioning most strongly among healthy
populations and as such are the basis of the majority of normative
studies (Caffarra et al., 2002, 2003; Alviarez-Schulze et al., 2021;
Hammers et al., 2021; Lee et al., 2021; Málišová et al., 2021).
While many additional factors may have a modulatory role
in cognition, the inclusion of these two variables alone allows
for parsimony while still providing appropriate control over
extraneous factors when assessing differences between clinical
groups. In the youngest control group, the number of measures
was reduced to 14 because the Prose Memory test was not part
of the original testing protocol available for this age group. All
cognitive test scores were adjusted (i.e., multiplying scores by −1
where needed) so that higher scores were always indicative of
better performance. Correlation coefficients with a p-value less
than 0.05 were considered significant, and those associated with a
p < 0.1 and >0.01 were further tested with a permutation-based
approach, using 5000 randomizations (Hayes, 1998). Absolute
differences between original and resampling-based p-values were
then inspected. No difference was larger than 0.01, indicating
minimal effect of chance. From the correlation matrix, a binary
adjacency matrix was then created for each group in which a
one was given for a significant correlation and a zero for a

non-significant correlation. As in previous work in this area,
three negative correlation coefficients were removed at this point,
one from each control group, in adherence with the validation
of graph theory measures on positively connected networks
(Kaiser, 2011; Kellermann et al., 2016). Negative correlations
between tests of differing cognitive domains, in fact, have no
clear theoretical explanation and may reflect more complex
relationships than those represented by positive associations.
These accounted for only 0.5% of the total number of correlations
calculated across groups, and, as such, their impact on the
graphs was assumed to be negligible. However, when applying
bootstrapping these correlations retained their significance. To
assess their influence on the network, therefore, an additional
analysis was performed on the graphs of the healthy control
groups including the three negative correlations.

For each group, a cognitive network was created that consisted
of 16 nodes, representing each cognitive test (14 in the youngest
control group), and a number of binary bidirectional links,
or edges, between the nodes, representing significant positive
correlations. Due to the use of the absolute threshold of p < 0.05,
the number of edges differed between groups. A proportional
threshold was avoided in this case due to the known potential of
such thresholds to include spurious, non-significant correlation
coefficients as edges (van den Heuvel et al., 2017). As one
objective of the present study was to explore the concept of
cognitive dedifferentiation in aging (Baltes et al., 1980; Baltes
and Lindenberger, 1997), the use of an absolute threshold in this
case was also considered more appropriate to highlight group
differences in network density.

Network Visualization
In order to visualize the structure of each cognitive network,
the binary adjacency matrices for each group were exported
to the Gephi software (Bastian et al., 2009), where the data
were transformed into two-dimensional graphs. These were then
displayed applying the Force Atlas algorithm (scaling = 1000,
gravity = 100 with ‘prevent overlap’ selected) (ForceAtlas2,
Jacomy et al., 2014). The algorithm forces poorly connected nodes
apart while pulling well connected nodes together, improving the
structural visualization of each graph.

To quantify network structure further, the community
conformation of each graph was calculated with the Louvain
community detection algorithm applied to each node using
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TABLE 2 | Median (and interquartile range) of cognitive test z-scores for each participant group, with results of a Kruskal–Wallis H test.

Young

(n = 75)

Middle aged

(n = 70)

Older

(n = 75)

aMCI

(n = 75)

naMCI (n = 60) Dementia

(n = 60)

Kruskal–

Wallis H

df p-Value

Raven’s Progressive

Matrices Z Scores

Median (IQR) 0.36 (1.03) 0.36 (1.12) −0.24

(1.96)ab

−0.62

(1.80)ab

−0.86 (1.59)ab
−2.19 (2.55)f 135.628 5 <0.001

Mean Rank 281.03 286.66 216.69 180.89 165.88 84.27

Letter Fluency Z Scores Median (IQR) −0.15

(0.98)

0.29 (1.20) −0.04

(1.33)

−0.59

(1.51)b
−0.92 (1.40)abc

−1.28

(1.11)abcd

80.104 5 <0.001

Mean Rank 240.81 279.09 235.15 186.12 164.13 117.67

Category Fluency Z

Scores

Median (IQR) −0.22

(1.28)

0.16 (1.07) −0.21

(1.75)

−1.52

(1.08)abc

−1.08 (1.45)abc
−2.36 (1.10)f 198.682 5 <0.001

Mean Rank 266.61 307.12 264.36 137.93 174.4 66.27

Digit Cancelation Z

Scores

Median (IQR) 0.53 (1.04) 0.40 (0.97) −0.16

(1.62)a
−0.77

(1.76)ab

−1.09 (1.60)abc
−2.06

(2.65)abcd

139.272 5 <0.001

Mean Rank 290.05 279.47 226.39 175.67 152.57 90.49

Similarities Z Scores Median (IQR) −0.53

(1.29)b
0.32 (1.44) 0.32 (1.50) −0.52

(1.65)bc

−1.00 (1.64)
abc

−1.98 (1.90)
abcd

118.952 5 <0.001

Mean Rank 220.28 279.77 276.88 195.93 151.65 94.02

Token Test Z Scores Median (IQR) 0.19 (1.25) 0.73 (0.54) 0.19 (1.62) −0.31

(2.25)b
−1.04 (2.54)abc

−2.63 (3.28)f 131.499 5 <0.001

Mean Rank 257.77 286.02 237.98 201.64 147.64 81.59

Rey-Osterrieth

Complex Figure – Copy

Z Scores

Median (IQR) 0.48 (0.76) 0.10 (1.29) 0.06 (1.46)a −0.51

(1.94)ab

−0.81 (2.05)ab
−2.80 (4.32)f 108.129 5 <0.001

Mean Rank 296.23 242.95 224.16 184.13 177.59 95.43

Rey-Osterrieth

Complex Figure –

Recall Z Scores

Median (IQR) 0.65 (1.19) −0.09 (1.19) −0.30

(1.23a

−1.54

(1.33)abc

−0.89 (1.21)ab
−2.37 (0.73)f 191.69 5 <0.001

Mean Rank 316.13 269.83 231.45 136.79 196.67 68.53

Stroop Test – Time

Interference Z Scores

Median (IQR) 0.50 (0.80) 0.10 (0.84) −0.38

(1.53)ab

−0.88

(2.14)ab

−1.15 (1.98)ab
−1.26 (3.92)ab 87.65 5 <0.001

Mean Rank 301.58 251.5 188.64 172.43 166.93 144.77

Stroop Test – Error

Interference Z Scores

Median (IQR) 0.23 (0) 0.23 (0.05) 0.28 (0.05) −0.13

(2.08)abc

0.19 (2.49)abc
−4.98 (6.70)f 116.16 5 <0.001

Mean Rank 238.92 273.84 270.27 174.59 171.9 92.27

Digit Span Forward Z

Scores

Median (IQR) 0.12 (1.00) −0.11 (1.55) −0.11

(2.10)

−0.20

(1.07)

−0.49 (1.36) −1.07

(1.51)abcd

40.01 5 <0.001

Mean Rank 254.13 233.52 213.01 202.99 195.18 131.68

Digit Span Backward Z

Scores

Median (IQR) −0.29

(2.25)

−0.29 (0.93) −0.29

(1.09)

−0.11

(1.23)

−0.83 (1.23) −1.14 (0.72)f 55.16 5 <0.001

Mean Rank 245.01 237.67 242.48 196 191.66 115.78

Prose Memory Test –

Immediate Recall Z

Scores

Median (IQR) 0.02 (1.24) −0.25

(1.36)

−22

(1.55)bce

−0.50 (1.28) −2.33 (1.48)f 151.84 4 <0.001

Mean Rank 242 216.46 128.01 193.7 57.43

Prose Memory Test –

Delayed Recall Z

Scores

Median (IQR) −0.06 (1.66) −0.28

(1.50)

−1.84

(1.24)bce

−0.70 (1.97)bc
−2.66 (3.84)f 183.1 4 <0.001

Mean Rank 248.77 237.2 117.54 175.45 56.09

Verbal Paired

Associates Learning

Test Z Scores

Median (IQR) 0.42 (1.50) −0.04 (1.34) −0.50

(1.24)a
−1.06

(1.16)abc

−0.67 (1.19)ab
−2.09 (1.54)f 174.14 5 <0.001

Mean Rank 303.03 272.09 231.76 153.5 193.52 63.99

Confrontation Naming

Test Z Scores

Median (IQR) −0.02

(1.78)

0.64 (1.01) −0.02

(1.56)

−0.19

(1.63)

−0.19 (1.63) −1.42 (3.41)f 40.11 5 <0.001

Mean Rank 230.97 252.21 207.92 203.51 209.83 127.9

Table shows results of a Kruskal–Wallis H test with post hoc Dunn tests and a Bonferroni correction for multiple comparisons (significance set at p < 0.05). Significant

differences between groups are indicated as:
aSignificantly lower than young controls p < 0.05.
bSignificantly lower than middle aged controls p < 0.05.
cSignificantly lower than older controls p < 0.05.
dSignificantly lower than aMCI p < 0.05.
eSignificantly lower than naMCI p < 0.05.
f Significantly lower than all other groups p < 0.05.
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the Brain Connectivity Toolbox within MATLAB (Rubinov
and Sporns, 2010). Nodes with high interconnectivity are
grouped within modules, while nodes with low levels of
connectivity are segregated from one another. This allows for
the detection of sub-network communities that were color-coded
accordingly in the graphs.

Network Analysis
Quantification of node-level network parameters was then
performed on each adjacency matrix using the Brain
Connectivity Toolbox run in a MATLAB environment. The
specific parameters assessed included betweenness centrality,
clustering coefficient and both the local and global efficiency
of each individual node. Whole-network connection density
was also computed for each graph. Together, these parameters
function to quantify the integration and segregation of the
network. Specifically, betweenness centrality represents a
measure of how integral a node is to the efficient communication
of the overall network and is calculated as the fraction of shortest
paths (i.e., the path between any two given nodes that contains
the least number of edges) between any two nodes that include
the given node (Bullmore and Sporns, 2009; Rubinov and

Sporns, 2010). Clustering coefficient is a measure of network
segregation that assesses the interconnectivity of the nodes
neighboring the node of interest. It is calculated as the fraction
of a node’s neighbors (i.e., other nodes it is connected to by an
edge) that are also connected to each other. Local efficiency is
another measure of network segregation that is highly related
to the clustering coefficient. It is calculated as the inverse of
the average path length (i.e., the average length of the shortest
paths between two nodes) between the neighbors of a given
node. Global efficiency, on the other hand, is a measure of
network integration. It is calculated as the inverse of the average
path length between a given node and any other node in the
network. Efficiency is an inverse measure because the shorter
the shortest path length between nodes, the more efficient the
connection between them. Figure 1 illustrates, using examples,
how each of these parameters are measured. Connection density,
sometimes referred to as wiring cost, simply refers to the fraction
of edges that are present in the graph in relation to the number
of possible edges that may be available, given the number of
nodes. In the present study connection density was calculated
on a node-by-node basis as the fraction of edges connected
to a given node, out of the possible number of edges available

FIGURE 1 | Schematic representation of network parameters. Figures are provided demonstrating the graph properties of local efficiency, clustering coefficient,

betweenness centrality and modularity. Global efficiency is omitted as this measure reflects the same calculation as local efficiency but computed on the entire

graph. In the top left, the local efficiency for node ‘2’ is low in example a because the average path length (path between any two nodes with the least number of

edges) between its neighboring nodes is reasonably high (all are connected by two edges). It is high in example c, however, because the average path length is

much lower (all nodes are connected by one edge), therefore demonstrating a highly efficient network structure. Clustering coefficient is a similar measure. In this

case, node ‘2’, in the first instance, has a clustering coefficient of 0 because none of its neighboring nodes (nodes that are connected to it by an edge) are

connected to each other by an edge. This increases to 0.33 in example b, because 1/3 of its neighboring nodes are connected and finally increases to 1 in example

c because all of its neighboring nodes are now connected. In the top right of the figure, the betweenness centrality of node ‘2’ is high because it is included in the

shortest paths between node ‘5’ and all the other nodes in the network. Node ‘5,’ however, has a low betweenness centrality as it is not included in the shortest

paths between any of the other nodes. Finally, modularity is demonstrated in the bottom left by showing what constitutes an optimal modular structure.
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if it were connected to all other nodes in the network. Please
refer to Bullmore and Sporns (2009) for a succinct description
of network parameters and Rubinov and Sporns (2010) for an
overview of the mathematical formulas used to calculate the
network metrics included in this study.

Further assessment of how network parameters differed
between cognitive domains was conducted through the use of
mean network metrics derived from select nodes. The values
of network metrics derived from sub-sets of nodes, chosen
according to their cognitive domain, were averaged to give
a mean value for each metric for four different cognitive
domains. Tests reflective of memory function, abstract reasoning,
semantic processing, and executive functioning were grouped,
in the first instance, on a theoretical basis so that metrics
relating to memory function were calculated using a mean score
derived for each group from the nodes corresponding to recall
of the Rey-Osterrieth Complex Figure, both Prose Memory
measures and the Verbal Paired Associates Learning Test of
the Wechsler Memory Scale (Wechsler, 1997). Mean metrics
for semantic processing were calculated using data derived
from the Similarities sub-set of the Wechsler Adult Intelligence
Scale (Wechsler, 2008), the Category Fluency Test and the
Confrontation Naming Test. Similarly, mean abstract reasoning
metrics were calculated again using the Similarities and Category
Fluency Test but including Raven’s Progressive Matrices in place
of the Confrontation Naming Test. Finally, metrics relating to
executive functioning were calculated using data derived from
each of the Stroop Test interference measures, the Letter Fluency
Test and the backward version of the Digit Span Test. The intra
and inter-domain consistency of performance on cognitive tests
corresponding to each domain was further assessed using test-to-
test correlations calculated for the whole cohort, and comparing
the coefficients of correlation calculated between the tests in each
domain group (i.e., the six coefficients of correlation calculated
between four tests of memory) with the coefficients of correlation
calculated between every single test not included in the given
domain (i.e., the 48 coefficients of correlation calculated between
each test of memory and every single non-memory test). This
was done correcting for age, education and, as this analysis was
done using the entire cohort, MMSE scores. After transforming
the correlation coefficients into z scores, the results indicated
extremely robust consistency within the memory domain (intra-
domain coefficient: 0.392; inter-domain: 0.142) and a positive
trend within the semantic domain (intra-domain coefficient:
0.278; inter-domain: 0.222) and within the abstract-reasoning
domain (intra-domain coefficient: 0.332; inter-domain: 0.246).
The executive domain showed instead comparable levels of inter-
and intra-domain consistency without any visible trend. This is
in line with a multi-componential view of executive functioning,
described by recent models not as a unitary function, but as a set
of distinct and only partially correlated functions (Miyake et al.,
2000; Packwood et al., 2011).

Statistical Analyses
According to a Shapiro–Wilk test, continuous demographic
data were largely non-normally distributed. As such, between-
group differences were assessed using individual two-tailed

Mann–Whitney U tests. Differences in categorical variables were
assessed using chi-square tests (Table 1). Neuropsychological
test data were also largely non normally distributed and were,
therefore, assessed using the non parametric Kruskal–Wallis H
test with post hoc Dunn tests and a Bonferroni correction for
multiple comparisons, with significance set at p < 0.05 (Table 2).

Between-group differences in network parameters were
assessed using individual two-tailed Mann–Whitney U tests with
significance determined as p < 0.05. A Bonferroni correction for
multiple comparisons was further applied.

RESULTS

Cognitive Task Performance
The results of a Kruskal–Wallis H test comparing task
performances between groups are reported in Table 2. Patient
groups demonstrated significant differences from healthy
controls in a number of cognitive tests aligned to the severity and
sub-type of their diagnosis (see Table 2).

Older adults performed significantly worse than both younger
groups on Raven’s Progressive Matrices and took significantly
more time than both when completing the Stroop Test.
Furthermore, older adults performed significantly worse than the
youngest group on tasks including Digit Cancelation, copying
and recall of the Rey-Osterrieth Complex Figure and the Verbal
Paired Associates Learning Test.

No significant differences were found between the older
control group and younger groups on tasks relating to
language or semantic memory. The middle-aged group, however,
performed significantly better than younger controls on the
Similarities task.

Visualization of Network Structure
Figure 2 shows the binary adjacency matrices created for each of
the six participant groups.

Notable qualitative differences were apparent between
groups in terms of network organization. Two-dimensional
representations of each graph can be seen in Figure 3. Among
healthy control groups there were substantial differences
in community structure. The younger group presented
with a sparse network, including many nodes with no
network connections, whereas both older groups showed
more interconnected networks with definable community
structures. Where modularity calculated in the middle-aged
group revealed four sub-network communities, in the older
group this was reduced to three. In healthy older and middle-
aged adults, sub-network modules could be loosely described as
corresponding to cognitive domains, as described in Figure 3. In
younger controls, however, although some evidence of domain
specificity was present, module formation was limited due to the
sparsity of the graph.

Network modules defined within the naMCI group were
highly heterogeneous and adhered less clearly to cognitive
domains, particularly when compared with the other two patient
groups. In this case, tests of language, memory and semantic
processing were relatively evenly spread across three sub-network

Frontiers in Aging Neuroscience | www.frontiersin.org 7 July 2021 | Volume 13 | Article 676618

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


Wright et al. Cognitive Networks in Aging/AD

FIGURE 2 | Binary adjacency matrices for participant groups. Panel (A) shows the binary adjacency matrices of healthy controls (Young, Middle Aged and Older

groups). Panel (B) shows the binary adjacency matrices of patients (aMCI, naMCI and dementia groups). A grid square filled in black represents a significant positive

correlation (an edge) between two cognitive tests (nodes). Correlations between memory tests are enclosed by the red square, abstract reasoning by the blue

square, semantic processing by the green square and executive functions by the yellow square. For ease, cognitive tests have been converted to numbers so that:

1 = Rey-Osterrieth Complex Figure – Recall, 2 = Prose Memory Test – Immediate Recall, 3 = Prose Memory Test – Delayed Recall, 4 = Verbal Paired Associates

Learning Test (WMS), 5 = Raven’s Progressive Matrices, 6 = Similarities (WAIS), 7 = Category Fluency Test, 8 = Confrontation Naming Test, 9 = Letter Fluency Test,

10 = Stroop Test – Time Interference, 11 = Stroop Test – Error Interference, 12 = Digit Span Test – Backward, 13 = Digit Span Test – Forward, 14 = Digit Cancelation

Test, 15 = Rey-Osterrieth Complex Figure – Copy, 16 = Token Test.

modules, whereas, among aMCI and dementia patients, module
class was heavily influenced by a node’s relation to memory
functioning. The aMCI group similarly demonstrated three
discernible sub-network communities. Unlike the naMCI group,
however, nodes relating to language and semantic processing
within the aMCI network were less evenly spread between
modules. aMCI patients instead presented with one well-defined
module for memory function and two less distinct modules,
including a very large module comprised of nodes relating to
multiple domains and a very small three-node module including
two tests of semantic function and one unrelated task of
visuoconstructive ability. In this sense, the cognitive network of
the aMCI group was more similar to the dementia patients, in
which only two modules were present. In this case, sub-networks
were clearly delineated into one module consisting only of tests
of language and memory function and another consisting of tests
corresponding to any other cognitive domain. In both groups,
the module relating to memory function included the same six
cognitive tests.

Overall, there was distinctly less differentiation between
cognitive domains among healthy older individuals when
compared with the younger groups. This was clearly
exacerbated in disease groups, particularly among the aMCI and
dementia patients.

The size of nodes shown in the graphs in Figure 3 reflects their
respective betweenness centrality. Nodes with a high betweenness
centrality can be described as demonstrating hub-like properties
(van den Heuvel and Sporns, 2013). Network hubs with a
betweenness centrality greater than 1.5 standard deviations above
the mean for each group are highlighted with thick black
borders in Figure 3.

Since network structure can be influenced by both
age and education, post hoc analyses were carried out
including and excluding education as a regressor in the
analytic procedures. Across groups, the total number of
correlations that were altered by the presence or absence
of education as a covariate in the analysis was 39 out of
the 603 coefficients of correlation (6.5%) and this appeared
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FIGURE 3 | Two dimensional graphs representing the structure of each participant group’s cognitive network. Panels (A) represent the graphs of Young, Middle

Aged and Older controls, respectively. Panels (B) represent the graphs of naMCI, aMCI and AD dementia groups, respectively. Each node corresponds to a cognitive

test and each edge represents a significant correlation between tests. Color is reflective of modularity class, identified using the Louvain community detection

algorithm, and node size is representative of betweenness centrality relative to the individual graph. Modules in each group loosely correspond to cognitive domains

described as follows: (Ai) Young controls: Four modules (and one disconnected node) with two modules corresponding to memory and language function (green)

and memory and executive function (pink). (Aii) Middle-aged controls: Four modules corresponding to language comprehension and semantic processing (orange),

verbal memory and executive functioning (green), recollective memory function (blue) and a less clearly defined module corresponding to multiple domains including

memory, language functioning and abstract reasoning (pink). (Aiii) Older controls: Three modules corresponding to episodic memory and visuoconstructive ability

(blue), language comprehension and semantic processing (green) and verbal memory and executive functioning (pink). (Bi) naMCI patients: Three heterogeneous

modules (and one disconnected node) corresponding to episodic memory, abstract reasoning and visuoconstructive ability (blue), verbal memory and executive

function (pink) and attention, executive function, verbal memory and language comprehension (green). (Bii) aMCI patients: Three modules corresponding to

language and memory function (pink), semantic processing and visuoconstructive ability (green) and a heterogeneous module including tests of language

comprehension, abstract reasoning, verbal memory and executive function (blue). (Biii) Dementia patients: Two modules with one consisting only of tests of

language and memory function (green) and another consisting of tests corresponding to any other cognitive domain (red). Nodes are labeled as: 1 = Rey-Osterrieth

Complex Figure – Recall, 2 = Prose Memory Test – Immediate Recall, 3 = Prose Memory Test – Delayed Recall, 4 = Verbal Paired Associates Learning Test (WMS),

5 = Raven’s Progressive Matrices, 6 = Similarities (WAIS), 7 = Category Fluency Test, 8 = Confrontation Naming Test, 9 = Letter Fluency Test, 10 = Stroop Test –

Time Interference, 11 = Stroop Test – Error Interference, 12 = Digit Span Test – Backward, 13 = Digit Span Test – Forward, 14 = Digit Cancelation Test,

15 = Rey-Osterrieth Complex Figure – Copy, 16 = Token Test.
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particularly relevant for tests of semantic processing/abstract
reasoning and memory.

Network Metrics
Among healthy adults, measures of both network segregation
and network integration showed linear differences across groups
with average global and local efficiency measures, clustering
coefficients and connection density being lowest in the youngest
group and highest in the older control group. Betweenness
centrality, however, demonstrated a different pattern. This
measure was lowest among the youngest controls and highest
in the middle-aged group, with older controls showing a
decrease in this measure compared with middle aged adults.
Significant differences, calculated by Mann–Whitney U tests, can
be seen in Figure 4.

The analysis on the graphs of the healthy groups was repeated
including the three negative correlations. The findings confirmed
that the inclusion of these negative correlations had very little
impact on the results (see Supplementary Material for a full
description of the findings and Supplementary Figure 1 for their
graphical representation).

In patient groups, the measures of network segregation,
clustering coefficient and local efficiency, demonstrated the
greatest differences when compared with controls, with all three
groups demonstrating significantly greater levels of each measure
when compared with healthy older adults (Figure 5). Network
integration also differed between patients and healthy adults,
with all patient groups also demonstrating significantly higher
connection densities than the healthy older group and dementia
patients further having significantly higher levels of global
efficiency than the control group (Figure 5). Comparison of all six
groups can be found in Supplementary Figure 2, demonstrating
the exacerbation of age-related changes among patients.

Cognitive Domains
Qualitative differences between groups in neuropsychological
profiles, relating to the network metrics of four cognitive
domains, are detailed below.

As with the network average, global efficiencies in all cognitive
domains showed a linear trend of differences between control
groups, with the youngest group having the lowest efficiency
scores and the oldest group the highest (Figure 6). In general,
global efficiencies relating to all domains were higher in aMCI
patients than controls and highest in dementia patients, with the
exception of executive functioning.

Local efficiency and clustering coefficient tended to be higher
within patient groups, across domains, compared with controls,
particularly in executive functioning and abstract reasoning. In
the dementia group this was again the case in semantic processing
and memory domains (Figure 6).

Among control groups, local efficiency and clustering
coefficient ranged from lowest in the youngest group and highest
in the older group in both abstract reasoning and semantic
processing. In the case of memory, however, the middle-aged
group had the lowest measures of both parameters, and the
highest in executive functioning, compared with the other
healthy groups (Figure 6).

Betweenness centrality was lowest among the youngest
controls in all cognitive domains, aside from executive function,
where the dementia group presented with a lower average, and
highest among the middle-aged group in all domains with the
exception of abstract reasoning in which it was highest among
older healthy adults.

All patient groups showed lower average betweenness
centralities than older controls in the domain of semantic
processing and considerably lower centralities in abstract
reasoning. This was also true in the domain of executive
functioning. In contrast, average betweenness centralities in
the memory domain were very similar between patient groups
and healthy older adults. Both patients and healthy older
adults, however, demonstrated substantially lower betweenness
centralities in this domain when compared with the middle-aged
group (Figure 6).

Finally, we examined in more detail the profile of multi-
domain aMCI patients (n = 64 of the original 75). The resulting
graphs were very similar to those of the original aMCI group.

DISCUSSION

Network Alterations in Healthy Aging
In the healthy groups, significant differences in network
connection density between the youngest adults and both
older groups, demonstrate definable differences between the
stages of healthy aging in the independent function of separate
cognitive domains. Although not a significant difference, greater
connection density was also apparent among the oldest control
groupwhen compared with themiddle-aged group. Such findings
provide supporting evidence for the existence of age-related
dedifferentiation between cognitive domains, particularly in the
transition between early life (<40 years old) and middle age, a
change that may occur in a similar manner to the age-related
dedifferentiation of the neural response (Koen and Rugg, 2019).

A further indication of age-related cognitive dedifferentiation
is reflected by the results relating to modularity. As in previous
studies reporting similar age-related decreases in network
modularity within brain systems (Cao et al., 2014; Chan et al.,
2014; Han et al., 2018; Chong et al., 2019), the number of
modules delineated in the graphs of the control groups was lowest
among older adults and highest among younger adults, where a
sparsely connected graph resulted in a number of disconnected
modules. Given that the nature of module identification serves to
maximize the number of within-module edges while minimizing
the number of between-module edges (Rubinov and Sporns,
2010), a low number of definable modules can indicate a globally
well-connected graph with relatively low distinction between
separable node groups of higher interrelatedness. However, it
must be noted that an absence of connections between nodes
may also result in a graph with low modularity. To some extent,
the calculation of community modules is comparable to factor
analysis, reducing a larger number of variables to a smaller
number of influential factors that, in the present study, may
be best described in terms of cognitive domain (Park et al.,
2012; Agelink van Rentergem et al., 2020). A previous study by
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FIGURE 4 | Box plots showing the median and interquartile range of network metrics for the graphs of the healthy groups. Significant differences calculated using

independent two-tailed Mann–Whitney U tests. *p < 0.05, **p < 0.01, ***p < 0.001 (Bonferroni correction for multiple comparisons).

Li et al. (2004), which used a principal component analyses of
15 cognitive tests, conducted on six age groups from childhood
to old age, revealed fewer dominant principal components in
childhood, late adulthood and old age than in adolescence
to middle age; a finding that the authors attributed to the
differentiation–dedifferentiation hypothesis of intellectual ability

across the lifespan (Reinert, 1970; Baltes et al., 1980; Baltes
and Lindenberger, 1997). In addition to the dedifferentiation
hypothesis of aging, the differentiation hypothesis of human
intelligence, originally introduced byGarrett (1946), posits that in
early development general childhood cognitive ability is gradually
broken down into the distinct domain-specific functioning that

Frontiers in Aging Neuroscience | www.frontiersin.org 11 July 2021 | Volume 13 | Article 676618

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


Wright et al. Cognitive Networks in Aging/AD

FIGURE 5 | Box plots showing the median and interquartile range of network metrics for the graphs of the older controls and patient groups. Significant differences

calculated using independent two-tailed Mann–Whitney U tests. *p < 0.05, **p < 0.01.

characterizes adult cognition. As such, the results presented by
Li et al. (2004), as well as those of the present study, are in line
with a theory of cognition that suggests that the interrelatedness
of our cognitive domains, highlighted here by the topological

parameters of cognitive networks, is a dynamic process, heavily
affected by the processes of maturation and senescence.

Unlike factor analysis, however, modularity, in this case, is
calculated as part of a wider, complex set of metrics and therefore
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FIGURE 6 | Bar charts showing the average network metrics for each cognitive domain across participant groups.

functions as a contributing factor to the thorough description of
the entire cognitive scaffold. Graph theory parameters assessing
both the segregation and integration of the overall network,
also showed significant differences between the stages of healthy
aging. Differences tended to present in a linear manner, with
older adults demonstrating significantly higher levels of both
efficiency measures and clustering coefficients than the youngest
controls and the middle-aged group having averages that
were intermediate between the two. As measures of network
segregation, both differences in clustering coefficient and local
efficiency indicate a difference in the local interconnectivity
between neighboring nodes, suggesting higher levels of cognitive
network segregation in older adults. Conversely, as a measure
of network integration, significantly higher levels of global
efficiency among both the older groups, when compared
with young controls, is an indication of greater network-wide
interconnectivity (Rubinov and Sporns, 2010). A network that
demonstrates high levels of network segregation, in combination
with high levels of network integration, can be described as
presenting with the property of ‘small-worldness’ (Watts and
Strogatz, 1998). Increasing small-worldness across the stages of
healthy aging may again reflect a shift in cognitive functioning
from the domain-related independent functioning of early and
middle adulthood to a more generalized network-dependent
functioning in old age (Reinert, 1970; Baltes et al., 1980;
Baltes and Lindenberger, 1997). Findings relating to betweenness
centrality among the control groups may be a further reflection of

such a shift. Significantly lower levels of betweenness centrality in
the younger group compared with the middle-aged group in this
study is likely to be largely reflective of the limited edges present
in the graph of this group and the disconnection of network
modules, resulting in a lack of overall betweenness centrality.
Such a finding, although largely explained as a product of
differing connection densities, is still in line with the concept that
in younger age our cognitive abilities are largely dissociable from
one another, with less influence from general factors dictating
performance of multiple tasks. Significantly greater betweenness
centrality in middle age, however, may reflect the emergence of
a greater reliance on a reduced number of cognitive factors, as
per the findings of factor analysis studies (Li et al., 2004), to
facilitate multiple disparate cognitive functions. Contrastingly,
however, the oldest group of healthy controls presented with a
lower, although not significantly, average betweenness centrality
than the middle-aged group. Although not a direct measure
of interconnectivity, betweenness centrality may be influenced
by the density of the network. In accordance with this, higher
connection densities and lower betweenness centralities were also
apparent among patient groups when compared with controls.
As a fractional value, dependent on the number of shortest
paths between any two nodes to which a given node belongs,
lower betweenness centrality values may be influenced by the
average shortest path length of the graph. A graph containing
a higher number of binary, undirected edges will inherently
present with a shorter average path length, as was demonstrated
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by the linear increase in connection density and global efficiency
outlined between participant groups. This, therefore, may reduce
the fraction of shortest paths to which a given node belongs,
thereby reducing that node’s betweenness centrality (see Rubinov
and Sporns, 2010 for the relative arithmetical formula). It could
be argued, therefore, that a potential limitation of this study
was the use of an absolute threshold to identify graph edges,
leading to differences in network density between the groups.
As outlined in the methods, however, an absolute threshold was
chosen to avoid the inclusion of non-significant correlations in
the networks (van den Heuvel et al., 2017), particularly where
significant correlations were highly sparse, as in the youngest
control group. Use of an absolute threshold, in this case, instead
provided an arguably more accurate visualization of how the
structure of cognitive networks differs between the stages of
aging, with network density itself proving an integral alteration
that likely reflects an age-related breakdown of highly segregated
domain-specific functioning.

Despite the controversies surrounding the differentiation–
dedifferentiation hypothesis (de Frias et al., 2007; Tucker-Drob,
2009; Tucker-Drob et al., 2019), the use of graph theory provides
additional evidence for age-related alterations in the topology of
the cognitive network itself, in a step away from the relatively
simplified operationalization of cognitive dedifferentiation put
forward by previous factor analyses. Graph theory metrics not
only allow for similar exploration of cognitive dedifferentiation,
via connection density and modularity, but further establish
age-dependent differences in our cognitive system between
the stages of aging from a relatively disparate conformation
of independent domains to a well-established network, that,
in accordance with brain networks, may be defined by the
property of small-worldness and the presence of a number
of influential hubs (Bullmore and Sporns, 2009) that underlie
general cognitive ability.

Across individual domains, the linear pattern of differences
in clustering coefficient, as well as in global and local efficiency,
was relatively well preserved among the three healthy groups
and the levels of each parameter were relatively similar for
each domain within groups. Betweenness centrality of individual
domains, however, revealed notable differences depending on
age group. Young adults demonstrated similarly low levels of
betweenness centrality across domains whereas middle aged and
older adults showed a much greater variance in betweenness
centrality, with both groups showing the highest levels of this
measure in the domains of abstract reasoning and semantic
processing. In particular, when compared with the middle-aged
group, the oldest group of healthy adults demonstrated much
higher levels of betweenness centrality in the domain of abstract
reasoning, while showing much lower levels in the memory
domain. Such findings may reflect changes in the reliance on
differing domain-specific functions across the lifespan. High
levels of betweenness centrality in the domains of semantic
processing and abstract reasoning, in both the middle-aged
and older groups, support the hypothesis that there is an
increased reliance on this type of crystallized intelligence, which
is developed throughout the lifetime (Cattell, 1971), to support
healthy cognitive function, across multiple domains, as we age

and our fluid abilities decline (Harada et al., 2013). Such an
interpretation has previously been put forward by factor analysis
studies that have demonstrated a greater correspondence between
crystallized and fluid abilities in older age (Li et al., 2004), and
more recently, neuroimaging studies have even outlined age-
related neural network alterations as a possible mechanism for
this phenomenon (Spreng et al., 2018). This is, therefore, in
accordance both with the neuropsychological findings of the
present study that showed no age-related declines in semantic
memory function among healthy groups, instead demonstrating
a significantly better performance among middle-aged adults
compared with the younger group on the Similarities task, as well
as with previous studies demonstrating the relative maintenance
of semantic processing and language functions in normal aging,
despite notable declines in other areas such as episodic memory
and processing speed (Nyberg et al., 1996; Salthouse, 2009,
2019). Low levels of memory-related betweenness centrality in
the older healthy group, when compared with the middle-aged
group, therefore, may reflect the tendency for this cognitive
function to decline in normal aging (Harada et al., 2013) and,
as such, play a diminishing role in the connectivity of the wider
cognitive network.

Network Alterations in Disease
Significant differences in cognitive network topology were further
established between healthy groups and those with pathological
cognitive impairment. Firstly, all patient groups presented with
significantly greater levels of connection density than healthy
adults, a finding reflected by previous network analyses of
cognitive profiles in healthy aging and Alzheimer’s disease
(Tosi et al., 2020). Higher connection densities among disease
populations, in comparison with controls, may reflect a greater
tendency for individuals in these cohorts to demonstrate a
concordance in their dysfunction across a range of disparate
cognitive tests. Despite the propensity for neurodegeneration
to affect certain domains more than others, a level of global
decline is often apparent in the presence of disease (Amieva
et al., 2005, 2008; Bäckman et al., 2005; Grober et al.,
2008). In accordance with the suggestion that age-related
cognitive dedifferentiation may reflect the effects of undiagnosed
disease processes (Batterham et al., 2011), it is likely that
the impact of neuropathological damage on overall effortful
cognitive processing may result in shared variances in task
performance across a number of domains and therefore an
exacerbated expression of dedifferentiation in the cognitive
network. Such findings, therefore, support the use of graph
theory measures to highlight system-wide alterations in cognitive
functioning among disease populations (Garcia-Ramos et al.,
2016; Kellermann et al., 2016). Cognitive covariance networks
such as this may, furthermore, provide a means to partial out
the effect of global declines when assessing neuropsychological
functioning among cognitively impaired patient groups. The
suggestion that performances on individual cognitive tests
are influenced not only by deficits in a specific domain but
furthermore, by some general disease-related constraint on
cognition, may be somewhat problematic in the pursuit of
early differential diagnosis of neurodegenerative etiologies. The
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quantification of cognitive profiles, using graph theoretical
techniques, eliminates the potential for global impairments
to impact on the identification of disease-specific cognitive
change. By evaluating the topology of the cognitive network
and the inter-relatedness of its various domains, the underlying
neuropsychological mechanisms influencing individual task
performances can be more readily examined. As such, this
technique may provide a clearer indication of the specific
alterations driving cognitive impairments and, therefore, be
beneficial for differential diagnosis.

Regarding modularity, of particular interest was the finding
that the discernible modules in the graphs of the aMCI and
dementia groups were clearly separated by their relation to
language and memory function, a characteristic identified in
Alzheimer’s disease in the study by Tosi et al. (2020) and in
both aMCI and Alzheimer’s dementia patients in the study by
Ferguson (2021) that was not apparent among the healthy older
participants or the naMCI patients. Given the corroboration of
this finding by previous network analyses (Tosi et al., 2020;
Ferguson, 2021), and the fact that both these domains are known
to be significantly affected in Alzheimer’s disease (McKhann
et al., 2011), the graphs presented here can be said to reflect
accurate neuropsychological profiles that are characteristic of
this type of neurodegeneration. Furthermore, in line with the
findings of Ferguson (2021), similarities between the graph of
the aMCI and Alzheimer’s dementia groups demonstrate that this
pattern may be discernible even in the early stages of disease,
being clearly distinguishable from the profile of healthy older
individuals. In an extension of Ferguson’s findings, the lack of
similarity between the networks of the Alzheimer’s dementia
group and the naMCI patients, who may be more likely to
represent the prodromal stages of a differing neurodegenerative
condition (Petersen et al., 2001; Petersen, 2004; Busse et al.,
2006; Petersen and Negash, 2008; Ferman et al., 2013), suggests
that cognitive network analysis may be a useful technique for
characterizing differential cognitive profiles between disparate
neurological populations (Garcia-Ramos et al., 2016; Kellermann
et al., 2016; Jonker et al., 2019; Tosi et al., 2020) not only in the
dementia stages of disease but, furthermore, in the prodromal
stages. Future work in this area will endeavor to include a wider
range of etiologies to determine applicability of these methods in
the distinction of divergent presentations of cognitive decline.

Network segregation appeared significantly affected by the
presence of disease, with both local efficiency and clustering
coefficients being significantly higher among patient groups
when compared with healthy older controls. Furthermore, all
patient groups demonstrated significantly higher connection
densities when compared with controls and dementia patients
further presented with significantly higher global efficiencies,
suggesting an alteration to network integration. Previously,
neuroimaging studies assessing the topology of both structural
and functional neural networks have demonstrated significant
alterations in the small-world properties of such networks in
Alzheimer’s disease patients, at varying disease stages, including
patients with prodromal and even preclinical manifestations
of disease (He et al., 2008; Yao et al., 2010; Zhao et al.,
2012; Tijms et al., 2013a, 2016; Wang et al., 2013; Zhou and

Lui, 2013; Brier et al., 2014; Pereira et al., 2016, 2018; Dai
et al., 2019; Franciotti et al., 2019). Though such alterations
tend to indicate a breakdown in the small-worldness of brain
networks among patients with Alzheimer’s disease, the results
presented here, in clustering and efficiency measures, suggest
that, at the cognitive level, functional domains may show greater
levels of network integration and segregation, in terms of their
statistical correlation, among patient groups, compared with
controls. Given that this is one of the first investigations using
graph theoretical methods to model neuropsychological profiles
within a cognitively impaired, neurodegenerative population,
it remains unclear what the relationship may be between
underlying alterations of physiological network topology and
the differences seen at a cognitive level. However, in line
with the findings relating to connection density, and the
demonstration by previous studies of a significant relationship
between brain network graph theory parameters and measures
of cognition (Shu et al., 2012; Tijms et al., 2014, 2018; Dicks
et al., 2018; Verfaillie et al., 2018), the results presented
here could be explained as a reflection of the influence
of significant changes in brain network functioning on the
global cognitive system that may influence the variance
in task performance in a similar manner across domains,
resulting in greater interconnectivity among clusters and across
the wider network.

Average network parameters for particular cognitive domains
allowed for more nuanced insight into domain-specific
differences between the groups. In general, network parameters
in each domain revealed a similar pattern of differences between
patients and controls as findings relating to the overall graph,
with measures of clustering coefficient, local efficiency and global
efficiency tending to be lowest in young healthy adults and
highest in patients. However, measures of betweenness centrality
indicated some notable differences between patients and
controls in how integral differing domains were to the efficient
communication of the network. In particular, betweenness
centralities in the domains of abstract reasoning and semantic
processing were distinctly lower among patient groups when
compared with healthy adults, with the relative levels of this
metric in abstract reasoning being the greatest difference seen
between MCI patients and healthy older adults. Contrastingly,
betweenness centralities in the domain of memory were very
similar between older healthy adults and the patient groups,
where both had distinctly lower averages when compared with
middle-aged adults. A diminished role of memory function
in the cognitive network, reflected here by low betweenness
centralities, therefore, appears to be a property of both healthy
and pathological aging, likely resultant of declines in episodic
memory, that are a well-established characteristic of both the
healthy aging process (Nyberg et al., 1996; Rönnlund et al., 2005)
and of Alzheimer’s-related cognitive impairment (Dubois et al.,
2007; McKhann et al., 2011). Similarities in network parameters
relating to memory function between healthy adults and those
with a cognitive impairment, emphasize the inadequacy of
episodic memory measures alone to characterize pathological
decline in age-related neurodegenerative disease, especially in
its early stage.
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Low levels of betweenness centrality in semantic and abstract
reasoning domains among the patient groups, when compared
with controls, however, may reflect a disease-related decrease
in the reliance on such functions to facilitate cognition. This
finding is supported by studies showing that significant declines
in semantic processing tend to occur in concomitance with
the earliest pathological stages of Alzheimer’s disease (Joubert
et al., 2010, 2020; Barbeau et al., 2012; Venneri et al.,
2019; Vonk et al., 2020) and, therefore, demonstrates the
possibility for graph theoretical methods to highlight differences
in neuropsychological profiles in normal aging and disease,
particularly through the assertion that age-related reliance on
crystallized semantic ability, or knowledge, to facilitate cognitive
function is greatly diminished in the presence of pathology.
Evidence from longitudinal studies has previously implicated
semantic memory impairment as one of the earliest markers of
cognitive decline in individuals who go on to develop Alzheimer’s
disease dementia (Amieva et al., 2008; Vonk et al., 2020)
and, as such, neuropsychological profiling in this manner may
have significant implications in the identification of incipient
disease processes.

Limitations
A possible limitation of this study was the exclusion of
extraneous factors, such as education and imaging features
from the analytical process of cognitive network formation.
In a post hoc analysis, education was excluded from the set
of regressors in order to compare education-corrected and
education-uncorrected coefficients of correlation. Except for
the youngest controls, education had some influence over the
significance of correlation coefficients seen between cognitive
tests. As such, the number and conformation of edges that are
moderated by education attainment differ across diagnoses, and
appear to be particularly relevant among the middle aged and
naMCI groups. The percentage of coefficient of correlations
altered by inclusion/exclusion of education, was however small.
These findings, therefore, suggest that education does indeed
play a role in the formation of cognitive networks and suggests
that cognitive reserve, a concept heavily linked to educational
attainment (Stern, 2009; Meng and D’Arcy, 2012), may be
partially reflected in the strength of the relationship between
differing cognitive domains and their shared influence in the
completion of cognitive tasks.

A second potential limitation might be related to lack of
inclusion of imaging features in the analysis. While the inclusion
of neuroimaging is certainly important, the current literature
already includes many studies that have investigated the utility
of graph theoretical methods in assessing alterations in neural
networks at varying stages of Alzheimer’s disease (He et al.,
2008; Yao et al., 2010; Zhao et al., 2012; Tijms et al., 2013a,
2016; Wang et al., 2013; Zhou and Lui, 2013; Brier et al., 2014;
Pereira et al., 2016, 2018; Dai et al., 2019; Franciotti et al.,
2019). While previous studies have successfully demonstrated
an association between brain network topology and cognitive
function (Shu et al., 2012; Tijms et al., 2013b, 2014, 2018;
Dicks et al., 2018; Verfaillie et al., 2018) researchers have yet
to investigate the potential parallels between neural network

dysfunction and topological alterations in cognitive systems.
Potential future research, therefore, may take the direction of
mixed MRI/cognitive graphs that may be better equipped to
identify clinical profiles with greater specificity.

CONCLUSION

In conclusion, the present study outlines a new approach to
the modeling of age- and disease-related cognitive decline.
Quantification of the structure of cognitive networks within both
patients and healthy controls revealed compelling evidence for
the existence of measurable alterations in neuropsychological
profiles throughout healthy aging that are distinct from
alterations associated with underlying pathological change.
Furthermore, topological distinctions between the cognitive
networks of differing diagnostic groups suggests some potential
for the further exploitation of graph theory methods for the
differentiation of cognitive profiles associated with varying
disease etiologies. Finally, network parameters in specific
cognitive domains highlighted a prominent role of crystallized
abilities in the network connectivity of healthy older adults that
appeared greatly diminished among patient groups, a defining
feature that may serve to inform future investigations into novel
diagnostic approaches to pathological cognitive impairment.
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