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ABSTRACT Graph theory analysis, a mathematical approach, has been applied in brain connectivity studies
to explore the organization of network patterns. The computation of graph theory metrics enables the
characterization of the stationary behavior of electroencephalogram (EEG) signals that cannot be explained
by simple linear methods. The main purpose of this study was to systematically review the graph theory
applications for mapping the functional connectivity of the EEG data in neuroergonomics. Moreover, this
article proposes a pipeline for constructing an unweighted functional brain network from EEG data using
both source and sensor methods. Out of 57 articles, our results show that graph theory metrics used
to characterize EEG data have attracted increasing attention since 2006, with the highest frequency of
publications in 2018. Most studies have focused on cognitive tasks in comparison with motor tasks. The
mean phase coherence method, based on the ““phase-locking value,” was the most frequently used functional
estimation technique in the reviewed studies. Furthermore, the unweighted functional brain network has
received substantially more attention in the literature than the weighted network. The global clustering
coefficient and characteristic path length were the most prevalent metrics for differentiating between global
integration and local segregation, and the small-worldness property emerged as a compelling metric for the
characterization of information processing. This review provides insight into the use of graph theory metrics
to model functional brain connectivity in the context of neuroergonomics research.

INDEX TERMS Brain connectivity, cognitive functions, clustering coefficient, EEG, functional connectiv-

ity, graph theory, motor processing, neuroergonomics.

I. INTRODUCTION

The brain is the most complex organ in the human body,
composed of 100 billion neurons connected by almost
150 trillion synapses [1], [2]. Over the last few decades, map-
ping of the human brain connectivity has gained considerable
attention in the areas of neuroscience and cognitive neuro-
science [3]-[7]. Modern network science, a mixture of
dynamic systems theory, graph theory, and statistics, has
been applied to the study of the functional and structural
brain connectivity network under various states and condi-
tions. Efforts have been made to study the topological prop-
erties of the brain for neurological disorder networks [8],
brain disease and dysfunction networks [9]-[11], aging
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networks [9], resting-state network [12], and high brain func-
tion networks such as perception, problem-solving, memory,
and attention [13]-[16].

The graph theory approach, a powerful mathematical
tool [17], graphically illustrates a complex network archi-
tecture based on the modern theory of networks. In 1736,
the physicist Leonard Euler solved the problem of crossing
the Pregel River, which is known as the “Seven Bridges
of Konigsberg.” The aim was to cross the seven bridges
that connected two small islands in the Pregel River to the
city of Konigsberg only once and to return to the original
location using an abstract representation and eliminating all
features except for the landmasses and the bridges connecting
them. In modern terms, Euler replaced each landmass with
an abstract point (i.e., “vertex’’ or “node’’) and each bridge
with an abstract connection (“edge” or “line”’), resulting
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TABLE 1. The classification of brain signals by frequency range with descriptions, psychological and behavioral conditions, and location in the brain.

Brain Frequency Description Psychological and behavioral Brain location
signal range conditions
Delta (8) 0.5to4 Hz - The slowest brain wave regarding - Dominant during the deep sleep stage - Posterior region in children
the frequency - Frontal region in adults
- The highest amplitude
- Represents the gray matter
- Dominant in infants
Theta (0) 4to 8 Hz - Known as a slow activity - Dominant during deep relaxation, - Thalamic region
- Normal in children up to age 13, meditation, and dreaming in light sleep
while abnormal in awake adults
Alpha (o) 8 tol3 Hz - Represents white matter - Dominant in wakeful but relaxed - Posterior regions
- Found in all ages states with closed eyes (i.e., calm)
Mainly appears in drowsiness
conditions
- Disappears when eyes are open
Beta (B) 13 to 30 Hz - A fast wave but not the fastest - Dominant in alertness, concertation, - Parietal and frontal regions
attention, anxiety, thinking, and
calculating
- Associated with behavioral tasks such
as problem-solving, task engagement,
and decision-making
Lower 30 to 80 Hz - The fastest brain frequency signal - Dominant during high-level cognitive - Somatosensory cortex
Gamma (y) tasks
- Related to perception, learning, and
Upper 80 to 150 Hz language processing
Gamma (y)

in a mathematical structure called a “graph” or “‘network.”
The contemplation of this problem led to the foundations of
“graph theory”” — the first true proof in the theory of net-
works. In 1741, Euler published his paper ‘Solutio problema-
tis ad geometriam situs pertinentis,” describing a hypothetical
solution to the Konigsberg bridge problem [18].

Graph theory has since become a vital method in the field
of electrical circuits and chemical structures. The modern
era of graph theory began in the late 1990s with the discovery
of small-worldness [19] and scale-free network models [20],
enabling the quantification of brain connectivity patterns.
Graph theory metrics are used to investigate the topological
organization of the brain network and to characterize mean-
ingful functional segregation and integration of the human
brain.

The purpose of a systematic review is to identify, summa-
rize, and analyze the findings of all relevant individual studies
that address a predefined research question. The preferred
reporting items for systematic reviews and meta-analyses
(PRISMA) is a structured guideline to ensure reliable and
meaningful review results. The protocol consists of 27 check-
list items that help researchers to prepare and report evidence
accurately and reliably, which in turn improves the quality
of research [21]. The present study focuses on understanding
the current state of knowledge regarding the applications of
graph theory analysis in the context of neuroergonomics.
Neuroergonomics, the study of the brain and behavior at
work, applies methods and tools from neuroscience to elu-
cidate neural signatures of human performance [22]-[24].

The brain possesses five different types of waves, and a
variety of classifications of brain signals are available in
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the literature [25]-[27]. The most widely used taxonomy is
based on the five frequencies of the brain waves measured
in Hertz (Hz) as follows: delta (0.5—4 Hz), theta (4—8 Hz),
alpha (8—13 Hz), beta (13—30 Hz), and gamma (30— 150 Hz)
[27]. Table 1 summarizes the information regarding the dif-
ferent types of brain signals according to their frequency
ranges, with descriptions of the psychological and behavioral
conditions [28]-[30].

The human brain is composed of four main parts: the
cerebrum, cerebellum, brainstem, and diencephalon, which
together control all bodily functions. Possessing the largest
number of neurons, the cerebrum has four main lobes: the
frontal, temporal, partial, and occipital lobes, each of which
performs a specific function. The frontal lobe is associated
with reasoning, movement, planning, emotion, and problem-
solving. In contrast, the parietal lobe is associated with
movement, recognition, and the perception of stimuli. The
temporal lobe is associated with memory, speech, and the
recognition of auditory stimuli, whereas the occipital lobe is
related to visual responses [27], [29]-[35]. Information trans-
fer among different brain regions reflects a combination of
locally segregated and functionally integrated processes [36].

The ‘“‘connectome” refers to the connectivity among dif-
ferent brain regions and the manner by which information
is transferred among these regions [7], [37]. Three dif-
ferent types of connectivity are closely related: structural,
functional, and effective connectivity [38], [39]. Structural
connectivity encompasses the physical connections among
neurons, known as ‘‘neuroanatomical” connections [40],
which refers to the white matter connectivity in the brain.
Functional connectivity is “the statistical interdependencies
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between physiological time series recorded from different
brain regions’ [41], [42]. Effective connectivity refers to the
causal effect and the direct influence of one neural element
on another [41], [43], [44]. Functional and effective con-
nectivities are determined by sampling recorded signals over
multiple time points, which provides a better understanding
of brain function. For a review of functional and effective con-
nectivity, we refer the reader to Friston ez al. [41], Friston [42]
and [45], and Goldenberg and Galvén [46].

Continuous efforts in the neuroergonomics field have
been devoted to studying the brain signals at work and in
everyday settings [22], [23]. The number of useful analyti-
cal approaches used in neuroergonomics research is rapidly
expanding; however, the functional brain connectivity and
network topology in the context of neuroergonomics is
largely unknown. Brain networks are typically modeled from
data collected by different neuroimaging techniques. Mod-
ern electroencephalogram (EEG) systems are noninvasive,
portable, wireless, and easy to use, rendering them attractive
and applicable to neuroergonomics studies [47]. A consid-
erable amount of work in functional connectivity studies
has focused on the blood oxygenation level mainly by func-
tional magnetic resonance imaging (fMRI) [3], [48], [49]
due to its good spatial resolution. However, this technique
has low temporal resolution and only provides an indirect
measurement of brain activity. To study dynamic cognitive
processes and the directional flow of information regarding
brain activity, a high temporal resolution technique, such
as EEG, enables capturing of the temporal dynamics of
brain activity at the sub-second time scale [50], [S51] and
reflects the rapid changes in neuronal states [52]. Further-
more, EEG is capable of capturing the rich temporal infor-
mation that aids identification of the directions of the flow
of information among different brain regions (i.e., causal
inference) [53].

Over the last two decades, EEG connectivity has gained
considerable interest in clinical studies. The first appli-
cation of graph theory to EEG data was reported by
Stam et al. [54], who compared the functional brain network
of control individuals and patients with Alzheimer’s disease.
However, little is known regarding healthy participants during
everyday activity. Since the emergence of neuroergonomics,
research attempting to characterize EEG data has been lim-
ited to the traditional analysis of EEG signals using indi-
vidual electrodes, and the interdependencies among different
EEG electrodes have been poorly addressed [55], [56].

Previous studies have succeeded in quantifying human
states under a great variety of cognitive [57] and phys-
ical [58] tasks; nevertheless, further work is required to
understand the dynamic temporal interactions among brain
regions during everyday tasks. Accordingly, the current
study sought to review patterns of brain connectivity using
the computation of graph theory metrics in task-evoked
EEG data.

In contrast to previous reviews [9], [44], we have restricted
the current review to EEG studies that utilized the functional
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brain connectivity data in healthy participants relevant to
the field of neuroergonomics. Furthermore, we summarized
the pipeline for the construction of a functional network
for EEG data. The primary focus of the current systematic
review was to provide a framework that will facilitate the
application of functional brain network analyses in the field
of neuroergonomics in the near future. The present paper
is organized as follows: Section II, Methods, presents the
standards, search strategy, and eligibility criteria used for
selection of the articles evaluated in the current review, as well
as the extraction and synthesis of data and validity risk assess-
ment; Section III, Theoretical Background, defines functional
connectivity and the basic concepts of graph theory. This
section also describes the pipeline for the construction of the
functional brain network based on EEG data and discusses the
different types of networks using a mathematical description
of network measurements to characterize global and nodal
brain connectivity; Section IV, Results, provides the results
of the systematic literature search, the study characteristics,
and a validity assessment of the considered studies; Section V,
Discussion, discusses the applications of graph theory
in cognitive functions and motor processing; and finally,
Section VI, Limitations and Future Directions, outlines
the current limitations and provides suggestions for future
research.

Il. METHODS

A. REVIEW STANDARDS

This systematic review was conducted based on the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines [21], [59], [60]. Articles were selected
based on several research questions, and the search strat-
egy was designed to reduce the effect of research expec-
tations on the current review. The Cochrane Collaboration
method was used to minimize the risk of bias, according to
Higgins et al. [61].

B. RESEARCH QUESTIONS (RQs)
eRQ1: With the advent of graph theory, what applica-
tions have been used to model human cognition and motor
processing?

eRQ2: How can computational methods be used to char-
acterize the underlying neural mechanisms of cognitive func-
tion and motor processing?

eRQ3: What does EEG add to the connectome?

eRQ4: How can an undirected, unweighted functional
brain network be modeled using EEG data?

eRQ5: Is the graph theory approach useful for characteriz-
ing the underlying neural mechanisms of human cognition
and movement as measured by EEG in comparison with
traditional approaches?

eRQ6: How can computational methods for model-
ing patterns of brain connectivity be implemented in
neuroergonomics?
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C. SEARCH STRATEGY

Comprehensive literature searches were independently con-
ducted using the following databases and search engines:
Google Scholar, Science Direct, IEEE Xplore, Springer-
Link, Ergonomics Abstracts, and ProQuest, with no limita-
tions on publication year. Firstly, we applied the following
Boolean operators: ‘“‘electroencephalography” OR “EEG”
AND “‘graph theory” OR ‘““functional connectivity” OR
“brain network.” This search resulted in a total of 5,429 arti-
cles from Science Direct (n = 2,159), Google Scholar (n =
2149), SpringerLink (n = 544), IEEE (n = 489), ProQuest
(n = 50), and Ergonomics Abstracts (n = 38). Subsequently,
duplicate articles were removed, resulting in 4,929 records.

D. STUDY SELECTION

Due to the massive number of results obtained from the
previous search terms, more keywords with Boolean opera-
tors were applied, with no restrictions on publication date,
as follows:

o ‘“‘electroencephalography”” OR “EEG” AND ‘“graph
theory” OR ‘“functional connectivity” OR “brain
network” AND “‘cognitive function” OR “cogni-
tive work” OR ‘“cognitive task” OR “‘cognitive
performance.”

o ‘“‘electroencephalography”” OR “EEG” AND ‘“graph
theory” OR ““functional connectivity” OR “‘brain net-
work” AND “‘physical work”” OR “‘physical task” OR
“physical performance” OR “physical activity” OR
“motion”” OR “motor”” OR “exercise.”

o ‘“‘electroencephalography” OR “EEG” AND ‘“graph
theory” OR ‘‘functional connectivity” OR “brain
network” AND ““fatigue.”

o ‘“electroencephalography”” OR “EEG” AND *“graph
theory” OR ‘““functional connectivity” OR “brain
network™ AND ““workload.”

o ‘“‘electroencephalography”” OR “EEG” AND ‘“graph
theory” OR ‘“functional connectivity” OR “brain
network” AND “working memory.”

o ‘“‘electroencephalography”” OR “EEG” AND “graph
theory” OR ““functional connectivity” OR “brain
network” AND ““perception.”

o ‘“‘electroencephalography”” OR “EEG” AND ‘“graph
theory” OR ‘““functional connectivity” OR “brain
network™ AND “‘exertion.”

These keywords helped to maintain our focus and narrowed
the final selection of studies by excluding an additional
3,784 articles. After independently reviewing all titles and
abstracts of the remaining articles, two researchers (LI and
WK) independently reviewed the full text of 325 articles
for inclusion and exclusion criteria. Any disagreements were
resolved by consensus.

E. CRITERIA FOR INCLUSION AND EXCLUSION
Exclusion criteria were applied to limit the final selection
of studies. To meet the eligibility requirements, we only
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included published articles that fulfilled the following crite-
ria: (a) only English language publications; (b) experiments
in humans; (c) studies using only the EEG technique;
(d) experimental studies in healthy participants; and (e) con-
tent in peer-reviewed journals, conference publications, text-
books, and reference books.

Articles with the following features were excluded:
(a) studies on brain diseases or neural disorders; (b) studies
that used neuroimaging techniques other than EEG;
(c) experimental studies in infants; (d) studies on pathological
conditions; and (e) studies that investigated only the resting-
task state without considering task-evoked activity. These
exclusion criteria were applied because completely different
global topological properties and brain architectural features
are obtained for these key factors. Accordingly, an additional
273 studies were excluded from the current review. During
the screening phase, we identified a large number of studies
that focused on the human brain network during resting-state
tasks.

To collect all relevant articles in the literature search,
the reference lists of the candidate articles (n = 325) were
reviewed, yielding five additional articles that met the inclu-
sion criteria. The findings of the literature search and the
selection process are summarized in a PRISMA diagram
(Fig. 1). This aspect of the study was performed from
October 2019 to February 2020.

F. DATA COLLECTION AND SUMMARY MEASURES
Relevant information from the included articles was
extracted; this information is summarized in Supplementary
Material A, which displays the node definition, edge defini-
tion, graph theory metrics, number of participants, domain,
experiment, and primary findings, providing answers to
RQ1 and RQ2.

G. DATA EXTRACTION AND SYNTHESIS

The selected articles were classified according to
the following six domains: (1) fatigue; (2) workload;
(3) working memory load; (4) exertion; (5) perception; and
(6) motion.

H. QUALITY ASSESSMENT

Study quality was independently assessed by two researchers
(LT and WK). Any disagreement between the authors
was resolved by consensus. The Cochrane Collaboration
method [61] was used to assess the risk of bias in each
experiment in the selected studies. The Cochrane Collabo-
ration method has six main domains: (1) random sequence
generation; (2) allocation concealment; (3) blinding of par-
ticipants and personnel; (4) blinding to outcome assessment;
(5) incomplete outcome data; and (6) selective reporting.
To assess the quality of the articles, the following judgments
were used: low bias risk, unclear bias risk, or high bias
risk.
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FIGURE 1. Flow diagram of the methodology and selection process used in this review, following the prisma guidelines [59].

Ill. THEORETICAL BACKGROUND

A. FUNCTIONAL CONNECTIVITY

Functional connectivity measures the statistical interdepen-
dence of physiological time series recorded in different brain
regions [62]. Functional connectivity has been employed by
several studies due to it being the best choice for analyz-
ing functional neuroimaging data and developing computer
simulation models [63]. Since the calculations of functional
connectivity are highly dependent on brain activities over
the time series, a high temporal resolution technique such as
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EEG (< 1 ms) is the optimal choice to reflect the dynamic
and rapid neural response [53]. Furthermore, EEG is a very
promising method for connectivity analysis and causal infer-
ence, addressing RQ3. The statistical dependencies between
pairs of regions are measured using different methods
categorized into linear, nonlinear, and information-based
techniques. These are sensitive to both linear and nonlinear
statistical dependencies between two time series and can
be used to assess causality. Table 2 provides an overview
of the most established estimation methods for functional
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TABLE 2. List of functional connectivity measurements, indicating: (1) whether it is a univariate or multivariate connectivity measure; (2) whether it is a
directed or undirected connectivity method; (3) whether it is a time domain analysis, frequency domain analysis, or cross-frequency phase coupling; (4)
whether it is a linear, nonlinear, or information-based technique; (5) sensitivity to the volume conduction [67]-[69].

Functional Univar  Multi- Direct In- Time- Freque  Phase Linear Non- Info- Volume
estimator iate variate Causality  direct domain  ncy couplin linear  based  conduction
based domain g sensitivity

Correlation v v 4 v Highly
sensitive

Cross correlation v v v v Less sensitive

Magnitude squared v v v Highly

coherence [70] sensitive

Phase locking value v v v v Highly

(PLV) [71] sensitive

Phase lag index v v v Less sensitive

(PLI)

Weighted phase lag v v v Less sensitive

index (WPLI) [72]

Partial coherence v v v v Robust

Mutual information v v v Robust

[73]

Transfer entropy v v 4 v v Less sensitive

Generalized v v v

synchronization

Synchronization v v v Sensitive

likelihood [74]

Phase v v v v Sensitive

synchronization

Granger  causality v v v v v Less sensitive

[75]

Directed  transfer v v 4 v v Sensitive

function (DTF)

[67]

Imaginary part of v v v Less sensitive

the coherence [76]

Partial directed v v v v Less sensitive

coherence

(PDC) [77]

connectivity. It should be noted, however, that selecting the
optimal estimation method is a challenging problem that is
beyond the scope of this review article [64]-[66].

Univariate analysis should be used when analyzing the
feature of a single signal from a particular neurophysio-
logical technique, whereas multivariate analysis is typically
applied when combining different neurophysiological tech-
niques. A considerable body of evidence relies on linear
methods; however, some researchers use nonlinear analysis
methods to detect the nonlinear phenomena of the brain [78].
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Other authors are opposed to using nonlinear methods since
they are highly susceptible to noise [64].

B. THEORETICAL ASPECTS OF GRAPH THEORY ANALYSIS
Over the last two decades, the application of graph the-
ory in the quantification of neurophysiological data has
gained much attention in biology and neuroscience for the
diagnosis of brain disorders such as epilepsy [79], [80],
schizophrenia [12], Alzheimer’s disease [62], rehabilitation
after stroke [81], and other brain disorders (for a review, see
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Vecchio et al. [9] and Farahani et al. [3]). Several subsequent
works aimed to study the topological configuration of the
brain in response to task modulation. Most of the studies pre-
sented herein primarily focused on cognitive neuroscience;
hence, one of the aims of the current review was to shed light
on the functional connectivity of the brain at work and during
everyday tasks.

C. APPROACHES TO GRAPH THEORY

For a better understanding of network properties, the data
are presented as a graph (G), which is a basic topographical
representation consisting of a collection of V vertices (nodes)
that are connected by edges (E) (links or connectors) (Fig. 2),
where G = (V, E). To study the human brain network
on a macroscopic scale, the nodes represent brain regions
(i.e., EEG electrodes/sensors), whereas the edges represent
statistical measures of association, including anatomical,
functional, or effective connections [5], [46]. Graph edges
include weighted direct, unweighted direct, weighted indi-
rect, and unweighted indirect. A direct edge shows that the
information flows in one direction only and that one node’s
activity depends on the other (i.e., causal influence); how-
ever, an indirect graph shows that information flows in both
directions along edges that connect. The weight of the line
between two nodes reflects the connectivity strength of the
edge, which allows for discrimination between strong and
weak connections. Weak connections can be removed by
thresholding.

node

edge
S

Network

FIGURE 2. A small representation of a network containing eight nodes
and ten edges. Modified from Newman [82].

1) PIPELINE STEPS FOR THE CONSTRUCTION OF A
FUNCTIONAL BRAIN NETWORK BASED ON EEG DATA

The following eleven steps present the full pipeline for the
construction of a functional brain network with graph the-
ory of the EEG data using either the EEG sensor source
method or space source method, which addresses RQ4. Pre-
vious studies have provided steps for either the sensor space
method [40] or the source space method [53]. In the current
study, we briefly describe the steps required for both methods
focused on unweighted networks. We summarize all the steps
of the pipeline, starting with the acquisition of EEG brain
signals and ending with a statistical description of the brain
network (Fig. 3). Our aim was to provide a simple stepwise
method that can be used by non-expert researchers in the
field.
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a: DEFINE THE NODES OF THE BRAIN NETWORK

The nodes of the brain network represent the brain region.
Defining the network nodes is a challenging step and
significantly affects the outcome of the brain network
analysis [83]. In EEG studies, nodes are defined using
one of two approaches. The first approach is termed
“sensor signals” or “individual channel” and relies on
the predefined standard placement of the EEG electrodes
(Fig. 3a) [84]-[86].

While this approach is simple, the volume conduction,
which is the leading cause of reduced spatial resolution,
may affect the accuracy of the functional connectivity esti-
mates [69]. Thus, a second approach based on EEG source
space connectivity has been proposed [53], [87], which can
be achieved by subdividing the brain into different regions
and selecting the regions-of-interest based on a parcellation
scheme and individually segregated anatomical regions-of-
interest (ROIs) from brain atlases [88], [89]. The source space
is computed after the EEG signals are recorded (Fig. 3b),
preprocessed, and epoched (Fig. 3c). The 3D electrode loca-
tions are then determined via the software acquisition sys-
tem. To localize the brain source and reconstruct the time
course, the inverse problem, which relies on dipole the-
ory, must be solved [90], [91] by applying the following
steps: (a) Obtain a head model by either using simple spher-
ical head models or imaging a realistic head model by
MRI (Fig. 3d). Realistic head models are usually prefer-
able for an accurate calculation of the brain’s electrical
potentials and geometric characteristics; and (b) Estimate
the source localization in the head model to determine the
location of the dipole source and reconstruct the time course
(Fig. 3e). Several algorithms are used for this purpose,
including beamforming, low-resolution brain electromag-
netic tomography (LORETA) [92], standardized LORETA
(sLORETA) [93], exact LORETA (eLORETA), minimum
norm estimate (MNE) [94], and weighted MNE (wMNE)
algorithms. Subsequently, the source reconstructed time
series is partitioned into individual ROIs from the brain
(Fig. 3f) determined from functional atlases [95] to obtain a
regional time series (Fig. 3g).

b: PREPROCESS THE EEG DATA

After high-quality EEG signals are recorded from the scalp
surface, the continuous EEG time series data (Fig. 3b) must
be preprocessed for segmentation, filtration, denoising, and
artifact removal (Fig. 3c) [96]. EEG data are contaminated
by different types of artifacts, which are categorized as phys-
iological or non-physiological [97]-[100]. Various methods
for data cleaning are discussed in [34], [101]. Then, specific
time windows are extracted from the cleaned continuous EEG
data “‘epochs.”

c: DEFINE THE EDGES

The edges represent connections between different neu-
rons or brain regions and exhibit various patterns of
connectivity, including structural, functional, and effective
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FIGURE 3. Schematic illustration of the pipeline for the construction of a functional brain network based on EEG data
using graph theory. The green line defines the first approach, termed the “sensor signal” or “individual channels”

method, while the red line defines the second approach,

denoted as “EEG source connectivity.” (a) Place the cap

containing electrodes on the scalp. (b) Record the EEG time series. (c) Preprocess the data by cleaning, filtering,
removing artifacts, and epoching. (d) Solve the inverse problem by first estimating or imaging the head model

(method 2). (e) Reconstruct the electrical potential time source (method 2). (f) Parcel the source reconstructed epochs
into the ROI (method 2). (g) Define the ROI for the epochs. (h) Develop the connectivity matrix for the selected ROI.

(i) Develop the connectivity matrix for the selected EEG channels (method 1). (j) Apply the threshold value(s) to binarize
the connectivity matrix (methods 1 & 2). (k) Construct the scalp functional brain network between EEG electrodes.

(I) Construct the cortex functional brain network within the ROI. (m) Apply the network topological properties to
calculate graph theory measurements. (n) Apply statistical analysis methods. (o) Classify different states,

if needed [157].

connectivity [102]. In functional connectivity, the edges
represent the time series correlation between two different
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nodes (Fig. 3c) or regions (Fig. 3g). The edge is categorized
as either direct or indirect with or without weights. Weights
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provide more information about the relationship between
node pairs.

d: COMPUTE THE CONNECTIVITY MATRIX (A)

The connectivity matrix is known as the adjacency matrix
and contains information regarding the associations among
connectivity patterns. The connectivity is described by an
N x N symmetric matrix, in which the rows (i) and columns
(j) denote nodes, and matrix entries (aij) denote edges. There
are two types of metrics: one is based on channels (Fig. 3i)
and the other is based on the brain region (current densities
for each brain region pair) (Fig. 3h).

e: CONVERT THE CONNECTIVITY MATRIX INTO A BINARIZED
MATRIX

Matrix binarization is performed to convert the adjacent
matrix to an unweighted matrix (Fig. 3j). For matrix bina-
rization, a threshold value is calculated for each element.
If the correlation measures for each pair exceed the threshold,
value edges are added between node pairs (otherwise no edge
exists) [37].

f: CHOOSE A THRESHOLD VALUE

The optimal threshold value is an open question in the lit-
erature. Thresholding helps to simplify the complexity of
the brain network calculations by eliminating weak, noisy,
and insignificant edges from the network. Moreover, thresh-
olding facilitates the definition of the null model for statis-
tical comparison [4], [40], [80]. Selection of the threshold
value significantly affects the network topology properties
and the ability to detect differences among groups, ages, and
genders. Selecting an inappropriate threshold method creates
instability and increases the bias; therefore, careful selection
is crucial. A key factor is to select a method capable of
controlling and minimizing the occurrence of type I errors
(i.e., false-positives) [103].

Some criteria for appropriate threshold selection are
reported in [103]-[105]. A variety of thresholding meth-
ods are available, including fixed threshold, fixed aver-
age degree, and fixed edge density (for a detailed
review, see [104], [106]). However, none of these meth-
ods are free from bias. To perform statistical inference
on connectome data, some researchers have suggested to
“independently test the hypothesis of interest at each discrete
density along the curve” [107]. In contrast, others have
recommended more sophisticated methods, such as false
discovery rate (FDR) error metric, network-based statistics
(NBS) [88], and subnetwork-based analysis[88], [108], [109].
The threshold-free network-based method provides statisti-
cally significant thresholding values [108]. Drakesmith [110]
proposed a multi-threshold permutation correction approach
for improving sensitivity to substantial group effects with
minimal a priori assumptions. The minimum spanning
tree avoids methodological biases when comparing net-
works [111] and helps to rectify thresholding issues [112].
A novel methodology, namely the minimum connected

VOLUME 8, 2020

component MCO), has been  proposed by
Vijayalakshmi et al. [113], which overcomes the threshold
issues.

g: ESTIMATE THE FUNCTIONAL CONNECTIVITY
MEASUREMENT

A comparison between the methods for functional connec-
tivity estimates are summarized in Table 2. A comprehensive
review of these articles is provided in [44], [114]. Unfortu-
nately, there is no optimal method to universally assess the
functional connectivity [115], [116].

The following factors should be considered when choosing
the functional connectivity estimator: (1) the definition of the
underlying hypothesis that will be studied [44]; (2) the nature
of coupling linear interdependencies, nonlinear interdepen-
dencies, or information-based techniques [116], [117]; (3) the
time domain- or frequency domain dependence of the esti-
mator that is originally based on the neuroimaging technique
being selected in the study [44]; (4) the frequency specificity
of the interaction (broad vs. narrowband); (5) direct (i.e.,
causal interaction) or indirect type of measurement [65];
(6) model-based or data-driven techniques [65]; (7) stationary
or quasi-stationary brain signals [44]; (8) bivariate or mul-
tivariate modeling consideration [114]; (9) source or sensor
electrode connectivity; and (10) the sensitivity to volume
conduction phenomenon [69], [118].

In general, the EEG signals are best expressed based on
frequency domain characteristics to distinguish between neu-
ral and artifact signals; thus, methods for frequency-based
functional estimators are particularly attractive [119]. Fur-
thermore, the extraction of several different frequencies of
brain signals is possible with the frequency domain method.
Pereda et al. [78] support the use of multivariate analysis
methods, but nonlinear methods have also been used since
they are more sensitive to the detection of nonlinear coupling
in EEG signals [116], [120], [121]. Several MATLAB-based
toolboxes are available for estimating the source or func-
tional connectivity and analyzing the network measurements,
as summarized in [53].

h: CONSTRUCT THE NETWORK

Mathematically, a network is a matrix [9], and the binarized
matrix is converted into a sparsely connected graph, repre-
sented as a scalp graph (Fig. 3k) or cortex network (Fig. 31).

iz ANALYZE THE DATA USING GRAPH THEORY

Different graph theory metrics are used to quantify network
structures by analyzing the topological properties of the net-
work (Fig. 3m). Graph theory is used to extract features
from the functional connectivity network. Different toolkits
have been developed to visualize and analyze topological
properties, as summarized by Xia et al. [122] and Hassan and
Wendling [53]. In the following section, we present a detailed
description of the measures used to detect aspects of func-
tional integration and segregation for unweighted networks.
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J: APPLY STATISTICS

Statistical methods are applied to compare graph theory met-
rics and topological network properties and assess their sta-
tistical significance (Fig. 3n). This step is usually performed
by either comparing two different states (alert vs. drowsy),
conditions (movement vs. rest), populations (healthy vs. dis-
eased), or genders (males vs. females) or by comparing
results with a theoretical reference network [128]. Mean-
while, there is no predefined way to assess the statistical vari-
ability. The application of confidence intervals is essential for
measuring the significance of the obtained results and proving
the reliability of graph analysis of functional brain networks.
Other methods for statistical inference include nonparametric
statistics, permutational statistics, and bootstrapping, which
are the most appropriate for the nature of EEG data [2].
The aforementioned statistical methods failed to address the
graph topology between the massive edge features, leading
researchers to develop a novel pathway for investigating
the phenotype of connectome features [82]. An automatic
k-partite graph detection (KPGD) algorithm succeeded
in identifying the k-partite subgraphs in complex net-
works [124]. Hierarchical Bayesian Gaussian graphical
models have been recently proposed to provide robust brain
network estimation [125], [126].

k: CLASSIFY THE CONDITIONS

Several methods have been employed to classify different
brain states (Fig. 30). Functional connectivity estimates
have been used to classify fatigue and non-fatigue condi-
tions [127], whereas hand movements have been classified
based on network node strength [128]. Other classification
algorithms, such as artificial neural networks [129] and sup-
port vector machines [130], [131], have been used to clas-
sify mental workload and mental fatigue with connectivity
features.

D. GRAPH THEORY MEASURES AND NETWORK
TOPOLOGY PROPERTIES

Network measures are calculated for the quantitative investi-
gation of network properties. Table 3 presents a short non-
mathematical description of the commonly used network
measures categorized into global (graph) and local (nodal)
measures. Global measures include the characteristic path
length (PL), clustering coefficient (CC), small-worldness (o),
global efficiency (Eglobal), local efficiency (Elocal), tran-
sitivity (T), network density, assortativity (r), and modular-
ity (Q); whereas, nodal measures include nodal centrality,
node degree, hubs, degree distribution, degree correlation,
betweenness, eigenvalue centrality, eccentricity centrality,
closeness centrality, nodal efficiency, and motifs. The pro-
vided definitions are limited to unweighted graphs. Detailed
descriptions of these network measures and their interpre-
tations are provided in several studies [4], [132]-[135].
Furthermore, reviews on the application of graph the-
ory in neuroscience can be found in many previous
works [102], [136], [137]. Several software packages
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are available for the identification and characterization
of network measurements, including BCT [5], EEG-
Net [138], [139], and BrainNet Viewer [122].

1) NETWORK TYPES

There are four types of networks: regular, well-ordered,
or lattice-like networks; random networks; small-world net-
works; and scale-free networks (Fig. 4) [140]. These different
networks are distinguished based on the number of local
segregation events (represented through CC) and the global
integration between nodes (represented through PL). Regular
networks have a high CC and a long PL, indicating that the
network is robust but inefficient at transferring information.
In contrast, random networks have a small CC and a short
PL, indicating that the network is efficient at transferring
information but is not robust.

Regular network Random network

L () o o
L] L] «®
o .'. ®
® ) ®
o %
@ ® . .o *
* ®

Small-world network Scale-free network

FIGURE 4. Four types of networks (in the scale-free network, the white
and striped nodes represent network hubs) [136], [149].

A small-world network is intermediate between regular
and random networks and has a short PL similar to a random
network, and a higher CC than a regular network [141].
Small-world networks are considered near-optimal net-
works in terms of segregation, integration, cost, and perfor-
mance [62], [74]. A scale-free network is unique due to its
extremely short path length [136], [158], [159], and strikes
a balance between global and local communications [160]
with a power-law degree distribution. Other network classifi-
cations have been proposed by Kaiser [102], which are based
on topological and spatial organization.

IV. RESULTS

A. STUDY CHARACTERISTICS

A total of 57 articles met the selection criteria. Just under half
of the selected articles (44%; n = 25) were published from
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TABLE 3. Typical Network measures.

Global measurement

Characteristic path length (PL) is the average of the shortest path lengths over all possible nodes in the network [141], [142]. It is used to measure

Global efficiency (Eglobal)

Clustering coefficient (CC)

Small-worldness (o)

Transitivity (T)

Network density (D)

Assortativity
Modularity (Q)

the functional integration of brain regions and provides information regarding the global communication. A low PL
shows greater functional integration among brain regions and is an indication to the ease of information flow.

is the inverse of the average shortest path length and is used to quantify the overall efficiency of information transfer
across the whole network (i.e., global information processing) [132]. A higher Eglobal value indicates a faster
parallel transfer of information in a network [133] and a superior integration of information [143].

is the ratio of the number of existing edges between adjacent nodes to all possible connected edges [83], [102]. It is
used to measure the functional segregation of brain regions and provides information regarding the local efficiency.
A higher clustering coefficient corresponds to more robust and efficient local interactions (i.e., a more segregated
network).

is the ratio of the normalized CC (denoted as y) to the normalized PL [144], [145] and quantifies how close a network
is to a small world [146], indicating that most nodes can be reached from any other node in a small number of steps
[46].

is the number of triangles in the matrix [5].

is the actual number of connections within the model divided by its maximal capacity. Density ranges from 0 to 1;
the sparser a graph, the lower its value [147].

is the tendency of nodes to link to other nodes with similar numbers of edges [148].

Modules are large subgraphs with nodes that are more connected to each other than the rest of network, as defined
by Stam [149]. Modularity is a measure of the network structure according to the statistical arrangement of edges
[150].

Nodal (local) measurement

Local efficiency (Elocal)

Nodal centrality

Degree centrality (K)

Hub

Degree distribution P(k)

Degree correlation

Betweenness

Eigenvalue centrality

Closeness centrality

Nodal efficiency (Enodal)

Motif (M)

Network cost

is the average efficiency of all pairs of nodes, indicating the efficiency of information transfer among the first
neighbors of a given node [136].

reflects the relative importance of a node to the network. There are several metrics for measuring nodal centrality,
including degree centrality, betweenness centrality, eigenvalue centrality, closeness centrality, and node efficiency.

is the number of edges that connects one node with all other nodes, quantifying the importance of the node in the
brain functional network. A higher degree centrality indicates a more central node. The incoming node connections
are referred to as “afferent,” while the outgoing connections are referred to as “efferent” [102]. A node with a high
degree of centrality is referred to as a “hub” [40], [151].

is a node with more edges than any other node [102] and indicates the important brain regions that interact with
other regions [40]. Provincial hubs are those connected to other nodes in the same module, whereas connector hubs
are connected to nodes in other modules [152].

is the probability distribution of the degrees of all network nodes and provides information regarding the network
structure.

shows whether the degree of a node is influenced by another node to which it is connected [136].

is the tendency of a single node to be more central than all other nodes in the graph, as defined by Unnithan et al.
[153]. It is a measure of the extent to which a node lies on paths between other nodes.

measures the ease of accessibility of a node (i) to other nodes [154].

shows the closeness of a node in the network to all other nodes [154]. The more central a node, the closer it is to all
other nodes [155].

measures the ability of a node to propagate information to the other nodes in a network, as defined by Wang et al.
[137].

is a simple subgraph consisting of a small number of nodes connected in a specific way, as defined by Stam and
Reijneveld [136].

is the ratio of the existing number of edges to the number of all possible edges in the network, as defined by Wang
etal. [137]. Network cost is also referred to as network density. A costly network has many edges with high weights
[156]. A network with high Eglobal and Elocal values is considered an economic small-world network [134], [141].

2006 to 2016, whereas over half were published within the
last three years (56%; n = 32). Thus, this review demonstrates
an increasing trend in brain function studies using brain

connectivity techniques and graph theory metrics (Fig. 5).
We expect the number of future studies to increase dramat-
ically over the next several years.
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FIGURE 5. Scatter plot of the publications per year of graph theory
studies relevant to neuroergonomics based on EEG data.

B. QUALITY ASSESSMENT

To evaluate the strength of evidence in these studies,
we applied the standards of the Agency for Healthcare
Research and Quality [161]. Studies of good quality were
judged to have a low risk of bias; studies of fair quality were
judged to have two unclear criteria; and studies of low quality
were judged to have a high risk of bias. The overall quality of
the studies was categorized as good, fair, or low if the number
of low-risk domains was > 4, = 3, or < 2, respectively.

Of the 57 studies included in this systematic review, n =
18 were classified as good-quality, n = 7 were classified as
fair-quality, and n = 32 were classified as low-quality (Fig. 6).

This finding can be attributed to the fact that most studies
neglect to describe random sequence generation and allo-
cation concealment. Moreover, an unclear bias results from
unclear selective reporting of the data and attrition; thus,
the level of evidence in the included studies is low.

The present review analyzed the performance in different
domains and found that the majority of the reviewed articles
focused on fatigue followed by workload assessment.

Overall, the evidence indicates that cognitive functions
(80%) are more frequently addressed than motor process-
ing (20%). Techniques for estimating functional connectiv-
ity, including PLV [71], PDC [77], and PLI, exhibited the
greatest potential impact (40%) (Fig. 7). Numerous stud-
ies (n = 9) employed the PLV technique since it over-
comes the limitations involved in using traditional coherence
methods and calculates the linear correlation among EEG
signals [71]. The PLV technique is followed by PDC in
frequency of use, since this technique allows assessment of
the statistical interdependence of EEG signals in the fre-
quency domain [77], [162]. Further, Stam et al. [62] sug-
gested the use of PLI for non-stationary EEG data. PLI is
less sensitive to volume conduction than other connectiv-
ity measures [72], [163], and has a lower impact on gait-
phase-locked artifacts [164]. The use of a weighted network
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leads to a rich topological brain organization; however, many
of the selected studies (n = 48) used an unweighted net-
work, known as a “binarized network,” whereas only a few
(n = 9) applied a weighted network. The CC and PL are the
most frequently used graph theory metrics (average, normal-
ized, or weighted) (n = 33 and 26, respectively) (Fig. 8).
We further found that approximately 79% of studies analyzed
indirect networks, while 21% assessed direct networks. Our
findings are consistent with the FMRI study reported by
Bullmore and Sporns [4]. Both the CC and PL are helpful
in the evaluation of small-world organization [156]. The CC
is useful for quantifying functional segregation in the brain,
whereas the PL is useful for quantifying network integra-
tion. Furthermore, the calculation of both Eglobal and Elo-
cal depends on these two metrics. The construction of the
connectivity matrix and calculations of the matrices can be
accomplished with the aid of different software programs.
A commonly used toolbox in the selected articles (n = 22)
is BCT [5], which has a large number of topological metrics
and is an open-source MATLAB toolbox.

A critical aspect of any EEG functional connectivity net-
work is the selection of the number of nodes, which are
represented by the recording electrode channel number. Two
recommendations for this selection were found in the lit-
erature. A denser electrode distribution results in a high
clustering coefficient and may cover more areas for future
findings. A large number of electrodes (i.e., > 64 channels) is
recommended for the EEG source connectivity method [53],
[147], [165], [166].

Furthermore, a large number of electrodes increases the
accuracy of electrical source estimation [167] and signal
preprocessing [47]. In contrast, Garcia-Prieto et al. [168],
Li et al. [169], and Wang et al. [170] recommend fewer than
32 electrodes, demonstrating that a small number is adequate
to cover the ROI and obtain reliable information. A small
number is also suggested by Luck [33], indicating that the
use of 16-32 active electrodes is better for monitoring brain
activity. The electrode numbers used in previous publica-
tions are summarized in Table 4. According to our analysis,
20 studies followed the first recommended condition, with
> 64 electrodes, 31 studies followed the second strategy
(< 32 electrodes), and the remaining studies (n = 6) used
between 32 and 64 channels.

The demographic distribution of the studies included
healthy male and female participants (Fig. 9). Of these,
21 studies used males only, whereas none of the studies used
only females. The majority of studies had a higher num-
ber of males than females (n = 16). The remaining studies
(n = 9) did not precisely describe the number of participants
by gender, as presented by the green bars (Fig. 9).

V. DISCUSSION

This section describes the major findings of the reviewed
studies. Considerable changes in the functional brain network
configuration have been demonstrated in different cognitive
and physical states. This section also provides insight into
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FIGURE 6. Assessment of the risk of bias using the Cochrane Collaboration tool.
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FIGURE 7. Pareto chart of methods for estimating functional connectivity (phase-locking value [PLV], partial directed coherence [PDC], phase lag
index [PLI], directed transfer function (DTF), mutual information [MI], minimum connected component [MCC], and magnitude square

coherence [MSC]).

TABLE 4. Number of studies for each range of recording electrode
number.

Number of recording electrodes Studies (n)
> 64 20
32—64 6
<32 31

the application of graph theory in the study of cognitive and
motor processing, in line with RQ1, RQ2, and RQ5.
Application of Graph Theory in Functional Brain Network
Analysis: This subsection is grouped into six main domains:
fatigue, workload, working memory, exertion, perception,
and motor processing. There is some degree of overlap in the
cognitive processes. For instance, the cognitive workload is
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directly related to the allocation of resources to the working
memory and its association with attentional processes, which
can be substantially affected by mental fatigue [171].

A. CONNECTIVITY STUDIES ON FATIGUE

Mental fatigue is a complex psychobiological state in
which a high level of cognitive and motor activity is
required during a prolonged task [172]-[174]. In gen-
eral, fatigue diminishes human performance by slowing
the response time, increasing the error rate, increasing
drowsiness, and causing musculoskeletal disorders. Previ-
ous studies have addressed the underlying neural mech-
anism of mental fatigue in realistic applications [175].
In particular, the effect of mental fatigue on vehicle driv-
ing and piloting performance has gained much atten-
tion in the neuroergonomics literature [172], [174]-[180].
The PSDs of the alpha and theta bands have been shown to
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be robust indices of neural changes related to fatigue [175],
[181]-[197]. A significant increase in PSD for both fre-
quency bands is primarily associated with mental fatigue
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in the frontal cortex, medial prefrontal cortex, fronto-
central, occipital, and parietal brain regions [181]-[183],
[185]-[187], [191], [195], [196], [198], [199]. Recent studies
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in cognitive neuroscience have explored the interactions
among brain regions after the performance of fatiguing tasks.
The functional connectivity of the frontal, central, and pari-
etal brain is strongly correlated with mental fatigue [200]. The
middle frontal gyrus and several motor areas are connected
during tasks that require sustained attention [131]. Different
patterns of connectivity between the right and left hemi-
spheres in sensorimotor areas have also been demonstrated
during a state of fatigue [201], similar to the findings of
Liu et al. [200] in different brain regions.

In addition, some studies have observed denser functional
connectivity during post-fatigued tasks in comparison with
pre-fatigued tasks, indicating that the human brain exhibits
stronger coupling during fatigue to maintain information
transmission until the required task is accomplished [56],
[202]-[206]. A higher phase coherence for the alpha and theta
bands [205] and a higher PLI for the delta band [206] have
been demonstrated during drowsiness in comparison with a
state of alertness, indicating a lower degree of asymmetry in
the phase difference.

However, there are also contradictions in the literature; for
example, it has been reported that the functional connectivity
of the alpha band in the parietal-to-frontal region [200] and of
the alpha and beta bands in the frontal-to-parietal region [130]
become weaker as mental fatigue increases. Furthermore,
it has been shown that fronto-occipital coherence values in
the alpha range decrease during the shift from alertness to
drowsiness [207]. Results of the aforementioned studies sup-
port the notion that cortical-to-cortical functional coupling—
mainly in the frontal, central, and parietal lobes of the cerebral
cortex—can characterize the brain during mental fatigue over
short time scales.

Changes in the topological properties of the brain network
reflect human mental states. For instance, an increase in the
maximum eigenvalue of the alpha band reflects a deteriora-
tion of performance in humans [208]. Poor attention during a
mental task is characterized by a decreased PL in the delta and
theta bands [209] and an increased CC [169], [210], [211].
The results reveal that fatigue increases Elocal but reduces
Eglobal, indicating that the resources of the brain may be
reorganized and the interactions between regions may be
inhibited. This trend reflects a decrease in the ability of the
human brain to integrate information during fatigue [209]
and leads to a small-world configuration [169], [204], [210].
A lack of awareness as a result of mental fatigue has been
demonstrated by an increase in the CC and in the Eglobal
value of the sub-band (3644 Hz) [212].

An increase in the degree of centrality in the right pari-
etal brain regio in the delta rhythm [170], [202], and in
all frequency bands [56], [208] indicates good connectiv-
ity among nodes with a reduction in alertness. However,
contrasting results have also been demonstrated, such as
an increase in the percentage of unconnected nodes, indi-
cating breakdowns in connections during the shift from
alertness to drowsiness [209]. Moreover, some studies have
reported decreases in the CC, average degree, and network
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density, and an increase in the PL after a fatiguing
task [130], [132], [201], [213], [214].

An increase in the betweenness centrality in the frontal
cortex has also been observed during fatigue [132]. A mid-
task break (rest) is an effective way to improve the efficiency
of the brain network, thereby mitigating the occurrence of
fatigue [132], [215], as evidenced by a slight increase in both
the CC and PL after a rest between sessions.

Since human performance declines over time, a positive
correlation between the time spent on a task and network
metrics (primarily the node degree, CC, and PL) has been
observed [170], [213]. However, the results of some stud-
ies contradict these findings [15], [127], [131], where an
increased time spent on a task results in a linear reduction
in the network topology. An increased PL and a decreased
small-worldness result in a less optimal brain network as the
time spent on tasks increases [ 127]. Furthermore, a prolonged
time spent on tasks reduces the network betweenness in the
central and left frontal regions but increases the network
betweenness in the right parietal region.

B. CONNECTIVITY STUDIES OF MENTAL WORKLOAD

As discussed by Young et al. [216], the mental work-
load is one of the most widely invoked concepts in the
field of ergonomics [217]-[220], and as a multidimen-
sional construct, can be defined in terms of the resources
available to meet task demands [221]-[231]. The mental
workload assessment based on neuronal data has been of
great interest in neuroergonomics studies (for a review, see
Borghini et al. [172]). The neuro-indices of cognitive work-
load [232], including EEG-based workload, have been dis-
cussed in the context of human-computer interactions [233]
and a virtual driving environment [234].

The PSDs of the frontal theta, occipital theta, and pari-
etal alpha have been demonstrated as a powerful assess-
ment tool for discriminating the state of mental workload.
A reduced parietal alpha PSD and an increased frontal theta
PSD have been observed as task difficulty increases [172],
[177], [235]-[248]; however, other studies have shown incon-
sistent results [249].

Discrimination between different levels of difficulty is
reflected in the functional connectivity of the brain network,
mainly in the prefrontal and parieto-occipital regions. Fur-
thermore, a decrease in functional connectivity has been
shown to indicate a reduction in human accuracy during
difficult tasks [250]. A lower PLV has been demonstrated
in parieto-occipital regions during highly difficult tasks in
comparison with tasks of lower difficulty levels [251]. The
weighted PLI value for the alpha band in all brain regions
has been shown to decrease under a high cognitive workload,
whereas an increase is evident in the coupling of the theta
band during a physical task [252]. Dimitrakopoulos et al. [87]
found that the majority of changes related to the difficulty
of cognitive tasks occur in frontal theta and beta activity,
based on the features obtained from analysis of functional
connectivity.
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Discrimination between cognitive difficulty levels and the
detection of cognitive impairment [113] can be performed by
analyzing graph measurements [253]. Patterns vary between
high and low cognitive or physical workloads. Furthermore,
results may vary from the left to the right hemisphere [254].
The significance of these classifications can help to charac-
terize dangerous situations in the workplace [255].

The Eglobal and Elocal values have a significant impact
on workload level, where increases in the alpha and beta
Elocal activities are associated with elevated workload lev-
els. The Eglobal beta pattern shows a unique trend [256].
Huang et al. [257] observed a decrease in the Elocal of
the theta band and an increase in the Elocal of the beta
band during play. Furthermore, a lower Eglobal in the beta
band and a higher Eglobal in the theta band were observed
when comparing the network organization with that of the
resting state. During the transition from subitizing to retrieval
during a mathematical processing task, an increase in the
Elocal and Eglobal values was observed for the delta, theta,
and alpha bands, mainly in the fronto-parietal regions [253].
Particularly, increased effort results in an increased Eglobal,
yielding a more integrated network and a higher transfer
rate of parallel information. A reduction in the segregation
process is reflected by a reduction in the CC and modularity.
Zhang et al. [258] reported less modularity, less clustering,
a high Eglobal, a low Elocal, and a greater physical syn-
chronization distance in the beta and lower gamma bands
during difficult mental tasks. Moreover, a reduction in the
alpha and beta CC, with a significant increase in the alpha
strength in the central and parietal brain, has been demon-
strated for high workload levels [129], [259]. These results
demonstrate that during a high workload, the human brain
network has a small-world network topology (less clus-
tered and more globally efficient) [260], [261]. Interestingly,
Klados et al. [253] observed that an optimal small-world
organization is evident during both mathematical tasks and
rest. Vijayalakshmi et al. [113] demonstrated a high degree
of interactions among different electrodes and increased func-
tional brain segregation of the beta bands [14].

Local properties appear to be more crucial than global
properties during cognitive processing. For instance, the local
CC is much greater than the global CC during a target
recognition task [262]. Moreover, the node strength exhibits
a higher value in the frontal lobe and left hemisphere than
that in global activity [253]. Furthermore, Enodal increases
in motor executive areas during finger-tapping tasks [263].

C. CONNECTIVITY STUDIES OF WORKING MEMORY

Working memory is related to the process of storing and
processing information. Many situations in the workplace
require the manipulation and recall of information for
decision-making and problem-solving. The ability to recall
and store information is negatively impacted by fatigue,
stress, and workload, which in turn affects attention levels,
situational awareness, and learning performance. Training,
practicing, and learning reduce the workload on short-term
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memory by storing necessary information in long-term mem-
ory. Thus, cognitive brain function can be improved through
working memory training, as evidenced in topological net-
work changes, mainly in the beta band. An inverted U-shaped
curve is observed for the CC and small-worldness, whereas
the PL exhibits a contradictory pattern [160]. Taya et al
demonstrated that the global network properties for the
high-frequency bands increase during training, whereas the
local properties and small-worldness reduce [13]. Inter-
estingly, the node betweenness exhibits a change in the
frontal and temporal regions during training. However,
Langer et al. [264] found an increase in the theta CC and
a reduction in the theta PL length during training-induced
working memory. Therefore, training improves the local
network connectedness and global efficiency of transferred
information.

A greater phase coherence of the theta band in the frontal
and posterior parietal regions is evident when compar-
ing a well-trained, memorized sequence experiment with a
novel task [242]. The brain organization of well-educated
participants is less organized than that of less-educated par-
ticipants during a working memory task [265]. Furthermore,
a large scale network reconfiguration was found in the
coherence theta band after training [264]. Although the con-
nectome approach has been applied in limited studies to
understand the brain organization underlying cognitive train-
ing, the approach is very promising for the characterization
of cognitive functions.

Studies on working memory have primarily focused on
the functional interaction between alpha and theta bands
in the parietal, frontal, and parieto-occipital brain regions.
Klimesch [266] reported that a long-term memory leads to
desynchronization of the alpha band, whereas a short-term
memory leads to synchronization in the theta band. Changes
in phase synchrony of the theta and alpha bands in the frontal
and parieto-occipital regions were found with different work-
load memory levels [267].

Different topological properties have been observed in all
frequency bands during encoding, storage, and retravel [268].
Working memory tasks require a high degree of cognitive
effort, resulting in lower clustering and modular configura-
tions but a higher Eglobal for the alpha, beta, and gamma
bands [269]. When comparing a working memory task with
a resting task, a high degree of functional integration in
the theta band [250] and low functional segregation in the
alpha band have been observed [16]. Thus, a small-world
topology is evident with respect to the storage and retrieval
of memories in all frequency bands [268].

D. CONNECTIVITY STUDIES OF MOTION

Motion is essential for everyday tasks since “human action
is orchestrated by mind (and brain) and body interac-
tions” [270]. The contralateral somatosensory, ipsilateral
somatosensory, and motor areas of the brain are strongly
related to the function of motor processing. Before move-
ment occurs, there is a transfer of information from the
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contra- to the ipsilateral hemispheres, whereas the opposite
pattern occurs after movement [76]. The increase in network
edges during the preparation for movement demonstrates the
need for a higher degree of information exchange in order to
execute movement-related tasks [147]. Moreover, decreased
accessibility and increased centrality have been observed dur-
ing the preparation and execution of finger movement tasks.

Different patterns of coupling are observed for different
intervention strategies. Particularly, different intensity levels
during a cycling task generate different patterns of brain
connectivity in the alpha and beta bands of the prefrontal
motor and central areas [271]. Furthermore, an increase in
synchronization has been observed in the parietal and occip-
ital lobes after physically and visually fatiguing tasks [203].
Increased mutual information values for the beta band have
been observed during a finger-tapping task, reflecting an
increase in the flow of information [263]. Lastly, a strong
interaction between the sensorimotor and prefrontal areas has
been shown to occur during the transition period from the
resting state to the hand movement [272].

Local network properties have been considered during left-
and right-hand movement tasks in order to classify different
movements [273]. Ghosh et al. [128] showed that the node
strength could be applied to the classification of hand move-
ments without the need for a classifier. The Enodal value for
the left sensory and bilateral primary motor cortices increases
during motion-related tasks but decreases in posterior pari-
etal areas [263]. Furthermore, researchers have observed an
increase in the functional connectivity of the motor region
during arm movements, as well as reduced node accessibility
and increased node centrality [274], [275]. Two years later,
the same research group [276] found that arm movements
significantly reduced network connectivity, primarily in the
alpha and beta bands, and reduced the weighted PL only
during movement of the left arm. However, neither the CC
nor the small-worldness exhibited any significant changes.
Jin et al. [263] observed the economy of small-worldness in
alpha and beta band networks during finger movement and
resting tasks. The medial premotor and bilateral prefrontal
cortex for the gamma and beta bands appear to have greater
connectivity and a higher CC, but a shorter PL. during motor
tasks [105]. Significant changes in the hubs of the lower
beta and gamma bands in the superior parietal somatosensory
cortex have been shown to characterize visuomotor associa-
tions [277]. A comparison between the node degree of spec-
tral coherence and that of imaginary coherence in the beta
band during a motor task showed that the spectral coherence
network outperforms the imaginary coherence network in the
contralateral motor cortex [278].

E. CONNECTIVITY STUDIES OF PHYSICAL EXERTION

Exertion is directly related to workload [279] and reflects
the fatigue, strain, intensity of effort, and discomfort that a
subject may face during physical exercise [280]. An increase
in partial theta coherence has been observed in the frontal
region during working memory tasks associated with
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physical exertion. An interesting U-shaped pattern was ini-
tially observed in the CC, where the CC of the theta band
increased during both physical exertion tasks and mental
tasks and decreased significantly when the tasks became
more difficult [250]. The study limited its investigation to the
frontal brain region; however, future studies should investi-
gate the topological properties across the entire brain. A bilat-
eral connectivity pattern of information flow during different
exertion levels was observed by Comani et al. [271]. A recent
study addressed the functional brain patterns and network
topology during a cycling task [281]. Three graph theory
measures were computed in EEG source level for six different
difficulties. The local efficiency remained constant in both the
alpha and beta bands, indicating that fatigue did not alter the
segregation of the brain network. The alpha global efficiency
is significantly changed between pre- and post-cycling due
to the great requirement for alertness. However, the density
of the network is decreased in the beta band during the high
endurance stage, demonstrating the influence of the decision-
making process.

F. CONNECTIVITY STUDIES OF PERCEPTION

The study of perception requires comparisons between sev-
eral cognitive functions (e.g., attention, consciousness, and
memory) and the duration of the task. One study reported
significant changes in the theta band phase-synchronized
coupling in the fronto-parietal area during a target recognition
task [262]. Furthermore, low modularity, high clustering, and
strong interactions among node hubs are evident during the
cognitive processing of targets. The time spent on a task
directly affects the emotions, mood, arousal state, and cog-
nitive load of participants [282]. Ghaderi et al. [143] studied
nonlinear differences in the brain during a time-perception
task. Two groups of participants—those that overestimated
the time and those that underestimated the time—exhibited
significant differences in the beta CC. Furthermore, a higher
perception of task effort revealed strong beta coherence cou-
pling in the prefrontal-motor area [271]. The global effi-
ciency, transitivity, and degree in the overestimation group
were lower than those in the underestimation group.

VI. LIMITATIONS AND FUTURE DIRECTIONS

The results of the present study reveal the growing interest
in the investigation of brain connectivity with respect to the
execution of specific tasks. The presented review also demon-
strates that the use of graph theory metrics with EEG data
yields reliable and feasible results; however, many challenges
must be overcome for further progress. The application of
graph theory metrics in neuroergonomics will help scientists
to study connectivity patterns during everyday activities, and
may provide more rich information regarding brain activ-
ity in comparison with single-channel features in everyday
settings [253]. Therefore, future work should focus on the
use of graph analysis measurements for different real-world
applications. The studies discussed in the current review lack
designs with ecological validity. The studies on fatigue and

155119



IEEE Access

L. E. Ismail, W. Karwowski: Graph Theory-Based Modeling of Functional Brain Connectivity Based on EEG

workload tasks were conducted in well-controlled simulated
environments (i.e., driving and piloting). Motion tasks were
limited to finger movements such as tapping, and exertion
tasks were limited to cycling activity [250]. The study of
perception has been limited to the classical oddball experi-
ment [262]. Regularly performed tasks in everyday settings
such as handling, lifting, gripping, grasping, pulling, push-
ing, assembling, sorting, manual inspection, and lower limb
movements have not been well quantified using graph theory
metrics. Therefore, new exploratory studies are required to
address real-world applications.

The superior temporal resolution of EEG helps to capture
the rapid and dynamic changes in brain activity. Few studies
have considered the flow direction of neural information.
These studies have used the Granger causality, DTF, PDC,
and generalized PDC to quantify the strength of the inter-
action and causality between two signals. These methods
predict the future of signal X from the past of signal Y and
vice versa. The frequency-domain method is more commonly
recommended for EEG due to its ability to extract neural
changes at different frequency bands [44].

Methodological choices through EEG recording, pre-
processing, and analysis significantly impact the func-
tional connectivity estimations and network topology. These
include the choice of reference, the presence of artifacts,
the confounding effect of volume conduction in EEG (in sig-
nal space), and the inverse problem (in source space). Hence,
future research should explore the effects of different types
of references on the connectivity measurements, as discussed
in [118], [283]. To mitigate the volume conduction effect,
less sensitive connectivity estimators to volume should be
used [72], [76], [163]. Other works offer additional sugges-
tions for reducing the effect of volume conduction, such as
using spatial filters (Laplacian montage), applying current
source density through the Surface Laplacian, and imple-
menting the source space method [53], [65], [284]. Despite
the application of source space methods, there is no unique
method to solve the inverse problem without assumptions and
limitations. Additionally, the source space method is diffi-
cult to implement, and the effect of volume conduction can
never be completely abolished [165]. Overall, “none of the
proposed methods have been shown to completely overcome
the limitations of the volume conduction or the field spread
problems,” as mentioned by Hassan and Wendling [53].

Several studies have focused on analyzing the static func-
tional connectivity of EEG data. The human brain is a com-
plex system with dynamic behavior over time. An extension,
known as the dynamic brain network, has been applied to
track the spatiotemporal dynamics of functional brain net-
works. It is based on the use of the EEG source connectivity
combined with a sliding window approach [285]. Changes to
reconfigurations of connectivity patterns over time have been
observed in task-based [286] and even in resting state [287]
studies. There is a continuous reorganization of the human
brain network in response to internal and external stimuli.
Novel insight into the neural mechanism has been provided
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in emotional-based studies [288] and mental imagery [289];
therefore, there is potential for considering the dynamic anal-
ysis of functional brain networks in future studies.

An emerging method for the estimation and classifica-
tion of the dynamic functional brain states is to apply
clustering-based analysis, especially the k-means [290] from
the windowed covariance matrices. Allen et al. [291] pro-
posed a data-driven method to assess the dynamic func-
tional connectivity patterns of the whole brain based on
spatial independent component analysis, sliding time win-
dow correlation and k-means clustering of windowed corre-
lation matrices. The results improved the understanding of
neural shifts occurring during mental work. Other studies
have applied k-means clustering to identify the functional
connectivity patterns that reoccur over time and across sub-
jects [292]-[294]. However, the method requires the setting
of initial values and the number of states to achieve a good
performance [295].

Many attempts have been made to minimize muscular and
ocular artifacts in EEG data [296]-[299]. None of the devel-
oped methods guarantee artifact-free data. It is unknown to
what extent the reduction of artifacts could influence the con-
nectivity measurements. Filtering is used to avoid antialiasing
and to eliminate the effect of direct current. However, careful
selection of filtering is crucial since filtering affects the phase
and amplitude of EEG signals; thus, a zero-phase filter is
highly recommended.

Functional connectivity patterns and graph theory have
proven to be powerful tools for the characterization of brain
signals. However, the ability to use these measurements
as an input parameter for developing predictive models,
adaptive systems, or monitoring systems has been poorly
addressed [130], [255], [300]. One of the most challenging
goals in the field of neuroergonomics has been to develop
smart systems that can accurately monitor and detect an
operator’s mental state and the intention of movements at
work [129], which addresses RQ6. Another challenge in
implementing graph theory is the attraction model of small-
worldness, which has been used to characterize fatigue [170],
[204], [210] and motion [263], [274]. As the primary features,
a high CC and short PL provide a more integrated and less
segregated network organization; however, the methods used
to evaluate this model have some constraints that should be
considered in the future [301].

Brain connectivity studies require high dimensionality sta-
tistical analysis methods that consider the multivariate con-
nectivity edges to obtain accurate estimates of model param-
eters. A challenging area of research is the application of
advanced statistical models in tasked-based EEG functional
brain networks [43].

Another limitation is the difficulty of drawing specific
conclusions, especially when using different factors, as dis-
crepancies could stem from: (a) differences in estimations of
functional connectivity [115], [132], [278]; (b) differences in
threshold values [257], [265], [277], [302]; (c¢) differences in
recording reference locations [70], [163], [283], [303]; (d) the
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number of existing edges [44]; (e) sample size bias [65];
(f) factors related to participant demographics, such as gen-
der and age [304], [305] or educational level [265], [303];
(g) the brain states of the subjects, such as healthy or
pathological [8]; or (h) the inclusion of trained or untrained
participants [13], [160].

Further research is needed to avoid the arbitrary selec-
tion of the threshold value in a binary network to minimize
bias. Recently, the application of the minimum spanning
tree results has minimized the bias observed from thresh-
olding [206]. The chance of having a network with a high
false-negative value and threshold bias motivated researchers
to propose novel computational methods [110], while others
implemented a weighted network since it is more informa-
tive [44]. In that case, care must be taken because variation in
weight affects the network topology [107]. The unweighted
network still dominates the literature since it simplifies the
complexity of brain signals by eliminating the weakest con-
nections [275]. Although several thresholding approaches
have been proposed, there is no reliable method that effi-
ciently filters brain information [113].

There exists some controversy regarding the adequate
number of electrodes and the effect of the electrode num-
ber on connectivity patterns [165]. A considerable number
of studies have used large numbers of electrodes [275].
Finally, the CC and PL have proven to be crucial
metrics for defining functional integration and functional
segregation. More attention is needed in regard to other net-
work metrics, such as the maximum eigenvalue [208] and
motifs [259].

Nodes and edges are the basic elements for the construc-
tion of a network, and their selections significantly affect
the network property estimations [306]. Complex networks
composed of a large number of nodes and edges require
advanced methods to decompose the graph into a nested
hierarchy of increasingly cohesive subgraphs [307]. Those
include k-core [308], k-truss [307], and k-core-truss [309].
Furthermore, complex structures of the brain network have
complex interactions between nodes and a large number of
edges. Therefore advanced methods have been developed to
determine the hierarchal network structures, including the
Kernighan-Lin Algorithm, Spectral Bisection Method, Divi-
sive Algorithms, Agglomerative Algorithm, and CN Agglom-
erative Algorithm [310].

There is a significant gap in studies on the functional
brain network in females. A considerable number of exper-
iments were conducted in males only or in both males
and females. Studies have demonstrated that there are
significant differences between males and females; there-
fore, functional brain network studies focused solely on
female participants are required to address these differences.
Wang et al. [304] suggested dividing participants uniformly
according to age or gender for a more accurate observa-
tion. Moreover, the number of participants in future stud-
ies should be larger in order to achieve a higher degree of
generalization.
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VIi. CONCLUSION

This systematic literature review highlights an increasing
trend in studies on functional brain connectivity networks
using task-evoked EEG data. Graph theory metrics have
emerged as valuable and reliable indicators for the char-
acterization of functional interactions based on the global
integration and local segregation of information process-
ing. We demonstrate different domains in cognitive and
motor functions based on an analysis of 57 articles. We also
provide information regarding the distribution of selected
applications, estimation techniques for functional connectiv-
ity, graph theory metrics, the number of participants, and
the number of electrodes used. Furthermore, we present an
overview of functional brain connectivity and the theoretical
aspects of graph theory. These results provide a useful frame-
work for the construction of an EEG functional brain network
to avoid the most common pitfalls.

A larger number of reviewed studies address cognitive
functions as opposed to motor processing tasks; however,
studies that demonstrate the applications of brain network
analyses in real-world tasks are limited and lack designs with
ecological validity. Heterogeneity in experimental results,
which can be attributed to a variety of factors, led to incon-
sistent outcomes across studies. In practice, graph theory
metrics—mainly the CC and PL—are the most frequently
used metrics since they reflect the functional and global inte-
gration of the brain network. Most studies on fatigue-related
tasks have confirmed a reduced ability of the human brain to
integrate information. Greater task difficulty results in fewer
segregation processes and more integrated networks, primar-
ily in the low-frequency bands. The presence of an economic
small-world network was demonstrated for finger move-
ment [52], the storage and retrieval of memories [233], high
workload [224, 225], increased time spent on tasks [107],
and tasks involving mental fatigue [153]. An assessment of
bias in the reviewed articles demonstrated a high level of
bias risk. Addressing random sequence generation, allocation
concealment, selective data reporting, and attrition should
reduce the risk of such bias in future publications. In sum-
mary, connectome analyses using graph theory metrics may
pave the way for new ideas in the field of neuroergonomics
and ultimately lead to safer work designs. The findings of
our systematic review should be useful for understanding
computational methods that can be applied to the analysis of
EEG data, primarily using graph theory.

VIil. CONTRIBUTIONS

The subject literature was screened, and methodological qual-
ity was assessed independently by LI and WK. Both authors
provided intellectual contributions to the development and
editing of the paper.

IX. SUPPLEMENTARY MATERIAL
A. SUPPLEMENTARY MATERIAL A
Table 5 below summarizes the relevant information
from the selected articles, including the node definition, edge
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TABLE 5. Characteristic path length (PL), clustering coefficient (CC), directed transfer function (DTF), electroencephalogram (EEG), global efficiency
(Eglobal), local efficiency (Elocal), nodal efficiency (Enodal), functional connectivity (FC), multi-attribute task battery (MATB), minimum connected
component (MCC), mutual information (MI), not mentioned in the selected article (NM), partial directed coherence (PDC), phase lag index (PLI), phase
locking value (PLV), psychomotor vigilance task (PVT), region of interest (ROI), small-worldness (o).

Study  Article Node Edge Graph Number of Domain  Experiment Primary findings
# definition  definition theory participants
and metrics
direction
1 [265] 28 EEG Synchroni  CC, PL, Group 1: Males=  Working  Two-back Less-educated individuals exhibited
channels zation and ¢ 14 memory  working more organized small-world network
likelihood memory tests  topologies in comparison with more
) Females =6 highly educated individuals.
Indirect
Group 2:
Males = 15
Females =5
2 [242] 32 EEG PLV FC Males = 5 Working  Finger Greater phase coherence of the theta
channels . memory  movement band was evident in the frontal and
Indirect Females =7 posterior parietal regions.
3 [147] 96 EEG PDC Density, Males = 5 Motion Dorsal The observed increase in network
channels Direct node flexion edges during the movement
strength, preparation phase demonstrates the
strength need for greater information
distribution exchange in the execution of
, link movement tasks. Decreased
reciprocity, accessibility and increased centrality
motifs, were observed during the preparation
Eglobal, and execution of finger movement
and Elocal tasks.
4 [200] 32 EEG DTF FC Males = 50 Mental Vigilance, The FC of the alpha band in the
channels Direct fatigue arithmetic parietal to frontal lobes was
tasks, and weakened, whereas the FC in the
switching central area and middle-to-left region
tasks of the beta and alpha bands increased
during mental fatigue. The middle-to-
right FC of the beta bands increased
after the task.
5 [263] 58 EEG MI Enodal Males = 12 Motion Sequential An economical small-worldness was
channels Indirect finger- observed in the alpha and beta bands.
tapping task The Eglobal value in the alpha band
did not change, whereas an increase
was observed in the beta band. An
increased Enodal was evident in the
bilateral primary motor and left
sensory areas, whereas contrasting
results were found in the posterior
parietal areas. The Ml increased in the
beta band during the task, but not in
the alpha band.
6 [271] 32 EEG Coherenc FC n=1 Motion Road-cycling  During sustained movement, a strong
channels e . athlete FC was observed for the beta band in
. (gender is the frontal-motor area.
Indirect unknown)
7 [251] 64 EEG PLV Elocal Males =1 Mental Arithmetic The PLV of the alpha frequency was
channels Indirect workloa  tasks higher in the parieto-occipital than the
d prefrontal region, and the task
difficulty was best reflected in the
parieto-occipital functional
connections.
8 [254] 256 EEG PLV Degree, Males and Cognitiv ~ Spelling Asymmetric results from the left and
channels Indirect number of females = 9 e tasks right hemispheres were demonstrated
edges, workloa by a higher density, betweenness, and
density, and d node degree for the left hemisphere.
betweennes
s
9 [56] 19 EEG Synchroni  Degree, Males = 12 Physical ~ Walking, An increase in the degree of
channels zation CC, and PL ,mental, driving, and connectivity and the CC and a
and listening decrease in the PL were observed
during fatigue.
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TABLE 5. (Continued.) Characteristic path length (PL), clustering coefficient (CC), directed transfer function (DTF), electroencephalogram (EEG), global
efficiency (Eglobal), local efficiency (Elocal), nodal efficiency (Enodal), functional connectivity (FC), multi-attribute task battery (MATB), minimum
connected component (MCC), mutual information (MI), not mentioned in the selected article (NM), partial directed coherence (PDC), phase lag index
(PLI), phase locking value (PLV), psychomotor vigilance task (PVT), region of interest (ROI), small-worldness (o).

likelihood visual
Indirect fatigue
10 [253] 32 EEG Magnitud ~ Node Males = 12 Working  Difficult During difficult mathematics, a
channels e square strength, memory  calculations denser alpha FC was observed in the
coherence  Eglobal, Females = 12 fronto-parietal regions. The local and
Indirect Elocal, CC, global alpha bands were efficient;
PL, and ¢ however, the beta and gamma bands
exhibited no differences in Eglobal,
Elocal, or c.
11 [203] 19 EEG Horizonta ~CCand PL  Males =12 Mental, Driving, A strong FC was observed in the
channels 1 visibility physical  treadmill, parietal and occipital lobes after
graph , and and visual fatigue tasks, with an increase in the
Indirect visual tasks CC.
fatigue
12 [211] 19 EEG Weighted CCandPL  Males =12 Mental, Simulated An increased CC in the parietal and
channels visibility physical  computer occipital lobes demonstrated the
graph , and driving game  occurrence of fatigue.
similarity visual
Indirect fatigue
13 [201] 64 EEG PDC CC,PL, Males = 15 Mental PVT Significant increases in the weighted
channels Directed and o fatigue PL in a fatigued state and in

Females = 17 functional connectivity in the left

fronto-parietal brain region were

observed.
14 [131] 64 EEG PDC FC Males = 12 Mental PVT Different patterns were observed in
channels Direct fatigue the right and left sensorimotor regions

Females = 14 during a state of fatigue. The middle

frontal gyrus and several motor areas
were crucial for sustained attention.

15 [262] 128 EEG PLV CC, PL, Males = 10 Percepti ~ Visual A strong CC, interactions between
channels Indirect modularity,  Females =8 on discriminatio  hub nodes, and low modularity were
and n observed in cognitive networks.
network
hubs
16 [267] 64 EEG PLV FC Males =9 Workloa  Mental The PLV of the theta and alpha bands
channels Indirect d arithmetic in the frontal and parieto-occipital
Females =7 task brain reflected the cognitive load.
17 [128] 32 EEG DFT Network Males and Motion Motor The node strength for electrode C3
channels . density and ~ females =3 imagery was observed to be high during right-
Direct node tasks hand movements.
strength
18 [209] 16 EEG Granger CC, PL, Males and Mental Simulated A reduction in the ability of the
channels causality Eglobal, females = 12 fatigue driving human brain to integrate information
Direct and was reflected by a decrease in
percentage Eglobal.
of
unconnecte
d nodes
19 [260] 32 EEG PLV z Males = 8 Cognitiv ~ Piloting with A small-world network topology was
channels Indirect e MATB observed for the alpha bands during a
workloa high cognitive workload.
d
20 [274] 21 EEG Spectral Node Males =7 Motion Arm The FC was found to be strong in the
channels coherence  strength, movements motor regions but weak in other
Indirect accessibilit Females = 3 regions. Less accessibility was
v, reported in the central and motor
betweennes areas during movement.
s, and
eigenvector
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TABLE 5. (Continued.) Characteristic path length (PL), clustering coefficient (CC), directed transfer function (DTF), electroencephalogram (EEG), global
efficiency (Eglobal), local efficiency (Elocal), nodal efficiency (Enodal), functional connectivity (FC), multi-attribute task battery (MATB), minimum
connected component (MCC), mutual information (MI), not mentioned in the selected article (NM), partial directed coherence (PDC), phase lag index
(PLI), phase locking value (PLV), psychomotor vigilance task (PVT), region of interest (ROI), small-worldness (o).

21 [113] 40 EEG MCC Degree, Males =9 Cognitiv  Driving MCC was capable of detecting
channels Indirect CC, PL, e simulator cognitive impairment. A high degree
Elocal, and Females = 1 workloa of connectivity during cognitive tasks
Eglobal d indicated strong connections, high
functional segregation, and global
integration.
22 [311] 19 EEG Synchroni ~ FC Males = 20 Fatigue Driving A weak FC was observed after long
channels zation driving tasks.
likelihood
Indirect
23 [257] 16 EEG PDC Degree, Males = 19 Workloa  Playing and During play, Elocal was observed to
channels Direct Elocal, d resting tasks ~ be higher for the beta bands and lower
Eglobal, for the theta bands in comparison
and degree with those for resting tasks.
distribution
24 [132] 11 EEG PLI CC,PL, o, Males = 8 Mental Attention During fatigue, an increased
channels Indirect Eglobal, fatigue task betweenness centrality was observed
and Elocal Females = 12 in the frontal cortex. The CC and PL
increased over time, indicating that
the brain regions were more
segregated and communicated with
each other less efficiently. A reduced
Eglobal and enhanced Elocal implied
that brain resources may be
reorganized and that the concerted
activities within regions were more
active, whereas interactions between
regions were inhibited.
25 [275] 19 EEG Spectral Node Males =7 Motion Left/right The FC increased in the motor region
channels coherence strength, arm during arm movements, and the node
Indirect accessibilit ~ Females =3 movements accessibility decreased with increases
Y, in node centrality during arm
movements.
betweennes
s, CC,
centrality,
and
eigenvector
26 [210] 64 EEG PLI CC, PL, Males = 18 Mental Driving An increased CC and decreased PL
channels Indirect and Eglobal fatigue simulation were observed with mental fatigue.
27 [300] 16 EEG PLV CC, PL, Males and Mental Driving The PLV was found to be able to
channels Indirect Eglobal, fatigue measure  changes in  neuronal
and Elocal ~ females =10 function.
28 [16] 64 EEG Cross- Eglobal, Males =11 Working  N-back tasks ~ Memory load resulted in a higher
channels coherence  CC, PL, memory functional integration in the theta
Indirect Elocal, and Females = 17 bands and a lower functional
betweennes segregation in the alpha bands. The
S theta PL and alpha CC were
negatively correlated with reaction
time, whereas the node betweenness
of the theta bands was positively
correlated with the reaction time.
29 [87] 64 EEG Pearson FC Males = 11 Mental N-back and Changes related to cognitive task
channels correlatio Females = 17 workloa  mental difficulty were found to occur in the
n d arithmetic frontal theta and beta bands based on
. the features obtained from the
Indirect functional connectivity.
30 [208] 19 EEG MI Maximum Males and Mental Mental The maximum eigenvalue increased
channels Indirect eigenvalue females = 18 fatigue arithmetic as mental fatigue increased. The
and degree problems weighted degree centrality exhibited
centrality substantial changes during mental
fatigue
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TABLE 5. (Continued.) Characteristic path length (PL), clustering coefficient (CC), directed transfer function (DTF), electroencephalogram (EEG), global
efficiency (Eglobal), local efficiency (Elocal), nodal efficiency (Enodal), functional connectivity (FC), multi-attribute task battery (MATB), minimum
connected component (MCC), mutual information (MI), not mentioned in the selected article (NM), partial directed coherence (PDC), phase lag index
(PLI), phase locking value (PLV), psychomotor vigilance task (PVT), region of interest (ROI), small-worldness (o).

31 [261] 64 EEG Phase c Males = 10 Mental Flight A more globally efficient but less
channels synchroni workloa  simulation clustered network was observed for a
zation d task with high-difficulty cognitive workload.
Indirect MATB
32 [259] 30 EEG PDC Nodal Males = 10 Mental Piloting with  The strength changed significantly
channels Direct strength workloa ~ MATB with task difficulty. A  higher
and CC d workload corresponded to a lower CC
in the central and parietal regions.
33 [258] 64 EEG PLI Eglobal, Males = 20 Mental Flight The Eglobal and Elocal values for the
channels Indirect Elocal, and workloa  simulation alpha and theta bands were higher in
Enodal d 2D than 3D tasks. The Enodal value
decreased for both the alpha and theta
bands with increasing mental
workload.
34 [204] 32 EEG Coherenc CCand PL  Males and Mental Driving A significant increase in the PL was
channels e fatigue fatigue observed for all EEG bands; however,
. females =3 an increase in the CC was observed
Indirect only for the delta, alpha, and beta
bands.
35 [278] 74 EEG Spectral Weighted Males and Motion Motor The spectral coherence in the beta
channels coherence  node females = 10 imagery activity outperformed the imaginary
and degree coherence in the contralateral motor
imaginary cortex.
coherence
Indirect
36 [205] 40 EEG Phase FC Males = 12 Mental Driving The phase coherence for the alpha
channels coherence fatigue and theta bands was high after a
Indirect driving task.
37 [206] 30 EEG PLI Nodes, link ~ Males =15 Mental Driving The PLI was observed to be high
channels Indirect fatigue during drowsiness.
degree, leaf The degree of delta activity was
fraction, significantly lower during alertness,
kgppa, whereas the delta values for
d1amet§r,. betweenness centrality and kappa
eccentricity were higher during a state of
> drowsiness.
betweennes The degree_t of theta, BC, and kappa
s centrality, were significantly lower during a
state of alertness than during
tree drowsiness.
hierarchy, Moreover, the authors reported a
and degree more organized integrated network
correlation during drowsiness as compared with
that during alertness for the theta
frequency band.
38 [213] 64 EEG Generaliz  CC, PL, Males = 40 Mental PVT with A positive correlation was observed
channels ed PDC and fatigue simulation between PL and task duration, and
direct driving mental fatigue increased both the CC
and PL. A disruption in global
integration was revealed in both
fatigue tasks, whereas increased local
segregation was
observed only for the simulated
driving task.
39 [273] 64 EEG Pearson’s  Degree, Males =7 Motion Motion Graph theoretical metrics were shown
channels correlatio CC,PL, imagery to be useful features for classifying
n betweennes Females = 1 different hand movement tasks,
. s centrality, especially the local properties of the
Indirect and network.
eigenvector
40 [143] 21 EEG Coherenc Degree, Group 1, Case 1: Time Mindfulness Segregation of the beta network was
channels e CC, Males = 11 percepti  state task found to be crucial for time
. transitivity, on perception.
Indirect and Eglobal Females = 6
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TABLE 5. (Continued.) Characteristic path length (PL), clustering coefficient (CC), directed transfer function (DTF), electroencephalogram (EEG), global
efficiency (Eglobal), local efficiency (Elocal), nodal efficiency (Enodal), functional connectivity (FC), multi-attribute task battery (MATB), minimum
connected component (MCC), mutual information (MI), not mentioned in the selected article (NM), partial directed coherence (PDC), phase lag index
(PLI), phase locking value (PLV), psychomotor vigilance task (PVT), region of interest (ROI), small-worldness (o).

Group 1, Case 2:
Males = 14
Females = 11
Group 2, Case 1:
Males =5
Females =3
Group 2, Case 2:
Males =5
Females = 4
41 [13] 62 EEG DTF CC, Males = 18 Workloa  Piloting task ~ During training, Eglobal initially
channels Direct normalized d (MATB) decreased and subsequently
CC, increased, whereas Elocal and small-
normalized worldness exhibited opposite
PL, PL, and patterns. The centrality of nodes
o changed in the frontal and temporal
regions.
42 [268] 60 EEG PDC Degree, Males = 6 Working  Sternberg A small-world topology was evident
channels Direct Eglobal, B memory item in storage and retrieval.
Elocal, and Females = 11 recognition
c
43 [276] 64 EEG Lagged CC, PL, Males and Motion Reaching Movement was found to reduce the
channels coherence  and o females = 10 and grasping  FC. The weighted PL decreased
. movements during left-hand movements.
Indirect
44 [127] 64 EEG PDC Betweennes  Males = 12 Mental PVT During mental fatigue, the PL
channels Direct s, PL, CC, B fatigue increased and o decreased, whereas
and o Females =14 the nodal betweenness decreased in
the left-frontal and middle-central
areas and increased in the right-
parietal areas. A prolonged time spent
on the task reduced the local level of
interconnectivity.
45 [212] 14 EEG Synchroni  Degree, Males = 10 Mental Driving A lack of awareness due to mental
channels zation CC, and Females =2 fatigue fatigue was demonstrated by an
likelihood ~ Eglobal increase in the CC and network
. Eglobal in a sub-band (36-44 Hz).
Indirect
46 [170] 14 EEG Pearson CC and Males = 8 Mental Driving A dense FC was observed during
channels correlatio Eglobal B fatigue fatigue fatigue, with an increase in the CC
n Females =2 and PL as the driving time increased.
. The degree of FC gradually increased
Indirect with time.
47 [304] 32 EEG Phase PL, CC, Adults: Physical ~ Repetitive Different movement-related EEG
channels synchroni  and degree fatigue forearm task  potentials were observed in children
zation centrality Males and and adults during physical fatigue.
Indirect females = 5
Children:
Males = 4
Females = 6
48 [130] 14 EEG PLI CCandPL  Males = 14 Mental Real driving  CC and PL were reduced during
channels Indirect fatigue fatigue, and a weak FC was observed
in the frontal-to-parietal alpha and
beta bands during drowsiness.
49 [202] 62 EEG Pearson Degree Males = 12 Mental Driving task  As the degree of fatigue increased, the
channels correlatio centrality, B fatigue FC and CC increased, whereas the PL
n CC,and pL  Females=4 decreased for the delta band.
Indirect
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TABLE 5. (Continued.) Characteristic path length (PL), clustering coefficient (CC), directed transfer function (DTF), electroencephalogram (EEG), global
efficiency (Eglobal), local efficiency (Elocal), nodal efficiency (Enodal), functional connectivity (FC), multi-attribute task battery (MATB), minimum
connected component (MCC), mutual information (MI), not mentioned in the selected article (NM), partial directed coherence (PDC), phase lag index

(PLI), phase locking value (PLV), psychomotor vigilance task (PVT), region of interest (ROI), small-worldness (o).

50

51

52

53

54

55

56

57

[14]

[256]

[169]

[277]

[250]

[129]

[252]

[255]

19 EEG
channels

64 EEG
channels

9 EEG
channels

17 ROIs

32 EEG
channels

64 EEG
channels

64 EEG
channels

32 EEG
channels

Coherenc
e

Indirect

PLV
Indirect

MI
Indirect

PLV
Indirect

Partial
correlatio
n

Indirect

NM

wPLI
Indirect

PLI

Indirect

CC, PL,
transitivity,
Eglobal,
degree
centrality,
and
modularity

CC, PL,
Eglobal,
and Elocal

o, CC, and
PL

Hubs

cC

Nodal
strength
and CC

FC

Degree
centrality,
modularity,
CC, PL,
Eglobal,
and 6

Males and

females = 12

Males = 33

Males = 20

Males = 4

Females = 8

Males = 8

Females =5

Males and
females = 20

Males and
females = 15

Males and
females = 5

Mental
workloa
d

Mental
workloa
d

Mental
fatigue

Motion

Perceive
d
physical
and
mental
exertion

Mental
workloa

d

Physical
workloa

d

Mental
workloa

d

Mathematica

1 task

Flight
simulation

Arithmetic
task

Visuomotor

Cycling and
working
memory

Working
memory test
battery

Seated and
walking

Security
inspection
monitoring

During problem-solving, the beta
band exhibited strong connectivity
with high degrees of transitivity,
clustering, and modularity. The alpha
band exhibited a disrupted FC with a
reduction in segregation. The theta
band exhibited unaltered brain
network function.

Increased alpha and beta bands were
observed with increasing workload.
The Eglobal beta pattern was
evidently a unique trend.

Mental fatigue was reflected by a
strong coupling connection and a
reduction in the small-world network.

An FC pattern with  hubs
demonstrated the most central brain
regions in a visuomotor task.

The partial correlation of theta bands
increased in the frontal region during
working memory.

Initially, the theta CC increased
during both tasks and subsequently
decreased significantly when the task
became more difficult.

The nodal strength was higher when
the  workload difficulty was
increased. Contrasting results were
found for the CC.

A strong FC was observed in all brain
regions for the theta band during
walking.

During high-workload tasks, the
average degree centrality between
nodes was high, whereas for a low
workload, the connectivity was weak.
When the experts could not detect
whether the blocked item was
dangerous, the characteristic shortest
path was the costliest. When there
was no block but danger or when
there was a block but no danger, the
CC and degree of modularity
increased. The highest Eglobal and
small-worldness values were
observed in cases of danger with no
block. Thus, the highest coherence
occurred for the target stimulus
without any block.
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definition, graph theory metrics, number of participants plus
gender, domain, experiment, and primary findings.
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