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Abstract. We present a new graphic language which can serve, for instance, 

as models for VLSI and control systems. Its primitives are based on standard 

timing diagrams, and this is a great advantage over other formalisms since 

designers can rapidly master it. The semantics is rigorously defined in the 

formalism of the theory of automata on infinite words. Using this formalism, 

we are able to give a rather precise upper-bound on the expressive power of our 

graphic language in terms of a language theoretic measure, the concatenation 

level. A detailed example is presented. 
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1. Introduction 

This paper emerged as the result of a discussion between circuit designers and researchers 

working in the area of specification languages on the one hand and automata theory on the 

other. It has a practical component, the description of new formal specification language 

resembling timing diagrams, as well as a strong theoretical flavour, since the semantics of 

the language is based on results from the theory of automata on infinite words. 

Our work is motivated by the following observation : circuit designers are often discour- 

aged by the complexity of the specification languages. In an effort to remedy this problem, 

we introduce a graphic language, called the Chronogram Language (Antoine & Le Goff 

1991), the primitives of which are based on standard timing diagrams. Timing diagrams 

are a formalism which is commonly used in the community of circuit designers, so our 

language can be rapidly mastered. In other words, contrary to most formalisms, properties 

are drawn rather than written, and this pictural representation is much more convenient 

for the non-specialist than an abstract formalism. 
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On the other hand, the use of pictures does not preclude a precise syntax and semantics. 

It tums out that the primitives of our language can be conveniently interpreted as rational 

(also called regular) expressions on infinite words. It will follow from our syntax that all 

chronograms can be interpreted as rational expressions. This approach not only permits 

us to define rigorously the semantics of the chronogram language, but also gives precise 

information about its expressive power. Before stating our results, we need to briefly 

review some facts on rational sets of infinite words. 

There are two well-known scales to measure the complexity of a rational set, the log- 

ical scale and the combinatorial scale. The logical scale branches into two main parts, 

corresponding to the first order logic and to the monadic second order logic, respectively. 

Within the first order logic one can define a hierarchy by counting the number of alterna- 

tions between existential and universal quantifiers. The combinatorial scale, on the other 

hand, is based on the basic operations used to define the rational sets : boolean operations, 

concatenation product and iteration. It also branches into two main domains : the star-free 

sets (which can be defined without using iteration) and the rational sets. A hierarchy inside 

the star-free sets is obtained by counting the number of alternations between the use of the 

boolean operations and of the concatenation product. A nice (but non-trivial) feature is that 

the logical and the combinatorial scales coincide (Thomas 1982; Perrin & Pin 1986). Our 

main result states that the languages definable using chronograms are within level 3 in the 

star-free (or logical) hierarchy. This gives a rather precise upper bound to the expressive 

power of the Chronogram Language. 

Although our language was originally designed as a language, for specifying circuit 

behaviour, it can serve more generally for modelling temporal properties. The Chrono- 

gram Language has been designed to provide designers with a good expressive power for 

temporal properties. For instance, both safety and liveness properties can be expressed in 

the Chronogram Language, in contrast with other languages VHDL (Lipsett et al 1990), 

Lucid (Ashcroft & Wadge 1976), Lustre (Caspi & Halbwachs 1986), Signal (Le Goff et al 

1989), etc. which cannot express liveness properties. To ensure compatibility with exist- 

ing formalisms, the chronograms that represent safety properties can be compiled into 

VHDL (a standard description language used in circuit design) and Signal expressions, 

and liveness properties will be translated into CTL* in the future. 

The paper is organized as follows. The Chronogram language is introduced through an 

example which is analysed later in § 6. The abstract syntax of the Chronogram Language is 

given in § 4. In order to keep the paper self-contained, the main definitions on languages and 

automata required for this paper are summarized in § 3. The semantics of the Chronogram 

Language are presented in § 5 and are illustrated by means of a detailed example in § 6. 

The paper concludes with our plan for future work. Our approach is illustrated by several 

examples of interpretations of chronograms involving rational sets of infinite words. 

2. A presentation of the Chronogram Language 

At the top of the chronogram in figure 1 is shown the CLOCK, which informally, represents 

the time. All the events are synchronized on the rising edges of the clock, except if all zones 

below the clock are IRRELEVANT zones. In the latter case, the duration of the signal is not 
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A chronogram. 

Figure 1. A chronogram. 

specified. This chronogram defines constraints on the events of three boolean signals: I, O 

and B. Each line is dedicated to a signal: the second one for B, the third one for O and the 

first and the last ones for I. Each line consists of IRRELEVANT zones and bold line boxes. 

Only the bold line boxes are relevant for the definition of constraints. On the second line 

(dedicated to the B signal), there are three boxes with a solid line at the bottom, and three 

boxes with a solid line at the top. This means that B must carry the true value during the 

period of time represented by the first three boxes, and the false value during the period of 

time represented by the last three boxes. On the first and third line, the boxes are labelled 

by a symbol (v, x or w). This means that during the period of time represented by the box, 

the signal carries the value v (resp. x or w). This value v (resp. x, w) is not specified in the 

chronogram but has to be the same in all boxes labelled by v (resp. x, w). A minus sign 

can be added in the left part of the box: in this case, the signal carries the value fi opposite 

to the label v of the box. On the first line such a box is used with the symbol w. 

The bold line boxes can be connected by arrows. The resulting graph can have several 

(simply) connected components. Each component defines a constraint. The relative loca- 

tion of the boxes is relevant only inside a connected component. For instance, the properties 

1, 2, 4, 5, 6 and 3 which are detailed in § 6 are specified in this order by the chronogram. 

Let us consider the first property: when the gate is opened, I and 0 carry the same value. 

The gate is opened if and only if B carries the false value. And in this case, I and O carry 

the value denoted by the symbol v in the chronogram: the arrows mean that "B carries the 

false value" implies that I and O carry the value v. The other properties can be read in a 

similar way in the chronogram: two linked arrows must be interpreted as a logical and. 

3. Languages and automata 

In this section, we briefly recall some basic definitions from the theory of automata needed 

in this article. For more details, the reader is referred to Eilenberg (1974, 1976), Perrin 

(1990) and Thomas (1990). We also define the language-theoretic hierarchy that will serve 

as a measure of the expressive power of the Chronogram Language. 
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We denote respectively by A*, A + and A °J the sets of finite words, non-empty finite 

words and infinite words on an alphabet A. A language is a set of finite words, that is, 

a subset of A*. The rational operations are the three operations union, product and star, 

defined on languages as follows 

(1) Union • L1 L) L2 = {u I u E L1 or u ~ L2} 

(2) Product" L1L2 = {UlU2 I Ul ~ L1 and u2 ~ L2} 

(3) Star : L* = {Ul ""Un I n > 0 andul  . . . . .  Un ~ L} 

The set of rational (or regular) languages of A* is the smallest set of subsets of A* containing 

the finite sets and closed under finite union, product and star. For instance, {a, ab}*ab tA 

(ba*b)* denotes a rational set. The rational subsets of A + are the rational subsets of  A* 

that do not contain the empty word. It is possible to generalize the concept of rational 

languages to infinite words as follows. First, the product can be extended to A* × A °J, by 

setting, for X C A* and Y C A °~, 

X Y  = {xy ! x ~ X et y e Y}. 

Next, we define an infinite iteration co by setting, for every subset X of A + 

X °~ = {xoxlx2 . . .  I for all i > O, X i E X } .  

That is, X ~° is the set of infinite words obtained by concatenating an infinite sequence of 

words of X. By definition, a subset of A °J is w-rational (or og-regular) if it is equal to a 

finite union of sets of the form X Y  ~° where X and Y are non-empty rational sets of A +. 

Boolean operations comprise union, intersection, complementation and set difference. 

It can be shown that the rational subsets of A* are closed under finite boolean operations. 

The set of star-free subsets of A* is the smallest set of subsets of A* containing the finite 

sets and closed under finite boolean operations and product. 

For instance, A* is star-free, since it is the complement of the empty set. More generally, 

if B is a subset of the alphabet A, the set B* is also star-free since B* is the complement of 

the set of words that contain at least one letter of B r = A \ B. This leads to the following 

star-free expression (where X c denotes the complement of a set X). 

B* = A* \ A*(A  \ B)A*  = (OC(A \ B)OC) c = (OC(A c U B)COC) c 

Of course, B + = B* \ {e} is also star-free. 

The set of star-free subsets of A ~° is the smallest set S of subsets of A ~° closed under 

finite boolean operations and such that if X is a star-free subset of A + and Y e S, then 

X Y ~ S .  

The definition of star-free languages of A* makes use of two different types of opera- 

tions: boolean operations and concatenation product. By alternating the use of these two 

operations, one gets a hierarchy, called the concatenation hierarchy, defined as follows. 

(1) The sets of level 0 are the empty set and A*, 

(2) For every integer n > 0, the sets of level n + 1/2 are the finite unions of the sets of 

the form 

Loal L la2  • • • akLk 
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where L0, L 1 . . . . .  Lk are sets of level n and al . . . . .  ak are letters 

(3) For every integer n > 0, the sets of level n + 1 are finite boolean combinations of sets 

of level n + 1/2. 

Note that a set of level m is also a set of level n for every n > m. The languages of level 

1/2 are the finite unions of languages of the form A*alA*a2... akA*, the languages of 

level 1 are finite boolean combinations of these languages, etc. The following languages 

are of level 1 on the alphabet A: 

B*=A*\  W A*aA* 
aEA\B 

{e}=a*  \ W A*aa* 
aEA 

B + = B* \ 

The next proposition summarizes several results relative to this hierarchy. 

PROPOSITION I 

(Brzozowski & Knast 1978; Perrin & Pin 1986), 

(1) The finite languages have level I. 

(2) For each n >_ O, the languages of level n are closed under union, intersection, and 

complement. 

(3) For each n > 0, the languages of level n + I/2 are closed under union, intersection, 

and product. 

(4) Let n >_ 0 and let ~o • A* --+ B* be a monoid morphism. IlL is a language of level n 

(respectively n + I/2), then ~o - I ( L ) is also of level n (respectively n + I/2). 

(5) The hierarchy is strict for all n: there exist languages of level n + I that are not of 

level n + I/2 and languages of level n + I/2 that are not of level n. 

Concatenation hierarchies can be extended to infinite words as follows (Perrin & Pin 

1986). 

(1) The sets of level 0 are the empty set 0 and A w, 

(2) For every integer n >_ 0, the sets of level n + 1/2 are the finite unions of the sets of 

the form XaY, where X is a set of A* of level n + 1/2, Y is a subset of A w of level n 

and a is a letter. 

(3) For every n >_ 0, the sets of level n + 1 are finite boolean combinations of sets of level 

n +  1/2. 

4. An abstract syntax of the Chronogram Language 

The abstract syntax of the language is given by a grammar, in which the initial of each 

non-terminal is a capital letter (e.g. C l o c k )  and each terminal is either written in capital 



130 Ch~stian Antoine et al 

leaers (e.g. IDENTIFIER), or consists of a single iowevcase letter (e.g. i )  or of a non 

a~habefic sign (e.g. 1, *). 

The roles are grouped by level of derivation and eve~  role is wnt~n only once. As a 

consequence, the derivation roles of ce~ain mrms may p~cede some of Heir occurrences. 

Constraint ::= Property Constraint I Property 

Property ::= Clock Hypothesis Conclusion 

Hypothesis ::= TimeDiagram 

Conclusion ::= TimeDiagram 

TimeDiagram ::= MultiColumnList 

Clock ::= IDENTIFIER 

MultiColumnList ::= MultiColumn MultiColumnList I MultiColumn 

MultiColumn ::: StaticMultiColumn I DynamicMultiColumn 

StaticMultiColumn ::= Width StaticRowList 

DynamicMultiColumn ::= FiniteLowerBoundUpperBoundDynamicRowList 

StaticRowList ::= StaticRow StaticRowList I StaticRow 

DynamicRowList ::= DynamicRow DynamicRowList J DynamicRow 

StaticRow ::: StaticIntervalList IDENTIFIER 

DynamicRow ::: DynamicIntervalList IDENTIFIER 

UpperBound ::= FiniteUpperBound I * 

Width ::= INTEGER 

Length ::= INTEGER 

FiniteLowerBound ::= INTEGER 

FiniteUpperBound ::= INTEGER 

StaticIntervalList ::= StaticInterval StaticIntervalList I NIL 

DynamicIntervalList ::= DynamicIntervalDynamicIntervalListiNIL 

StaticInterval ::= Length PrimitiveSymbol 

DynamicInterval ::= PrimitiveSymbol 

PrimitiveSymbol ::= i I f I e I r I s I 1 t 0 I SymbolicValue 

SymbolicValue ::- IDENTIFIER j IDENTIFIER 

The inmi~ve meaning of He primitive symbols is He ~llowing: 

i (Irrelevant) The v~ue of He signal is not specified and can be eider 0 or 1. 
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1 The signal is stable and its value is 1. 

0 The signal is stable and its value is 0. 

f (Falling) The signal owns one and only one falling edge (but may have 0, 1 or 2 rising 

edges). 

r (Rising) The signal owns one and only one rising edge (but may have 0, 1 or 2 falling 

edges). 

s (Stable) The signal is stable but its value is unknown. 

e (Edge) The value of the signal changes once and only once. 

5. Semantics of the Chronogram Language 

The formal semantics of the Chronogram Language are given in terms of w-rational lan- 

guages. More precisely, a certain rational language is associated with each of the graphic 

primitives of the Chronogram Language and with each variable. Next, to each operator of 

the Chronogram Language (generation of intervals, rows, columns, multicolumns, time 

diagrams, etc.) corresponds an operation on languages that preserves rationality. A distin- 

guishing feature of the Chronogram Language is the use of symbolic values or boolean 

variables. We shall first detail this peculiar aspect. 

5.1 Boolean variables and valuations 

If v denotes a boolean variable, ~3 will denote its complement. Thanks to boolean variables, 

one can specify in the Chronogram Language not only properties like "The value of the 

signal at time t is 0 (resp. 1)", but also properties of the form "the value of the signal is v 

at time t and ~ at time t + 3". In order to take in account these variables, it is convenient, 

in the first place, to represent a signal not as an infinite word on i_he alphabet B = {0, 1 }, 

but as 'an infinite word on the extended alphabet C = B U V U V, where V is the set of 

variables used in the chronogram. 

One goes back to the binary alphabet B by associating a value with each variable. This 

can formally be realized by a valuation, that is a map v : C --+ B such that 

a) for all b E B, v(b) = b 

b) for all v E V, v(~) = v(v). 

For instance, the previous example would be interpreted as "the value of the signal is 0 at 

time t and 1 at time t + 3" (which corresponds to the valuation v defined by v(v) = O) 

or "the value of the signal is 1 at time t and 0 at time t + 3" (which corresponds to the 

valuation v defined by v(v) = 1). 

A valuation v : C -+ B defines in a natural way a function v : C* --+ B*, by setting, 

for every word C l C 2  " " " Cn E C * ,  

V(ClC2 "''cn) = V(Cl)P(C2)"" V ( C n )  

If L is a subset of C*, the set v(L) is called the valuation of L. 
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5.2 Constraints on a single signal 

A signal is considered as an infinite word u on the binary alphabet B. As we shall see 

later, the constraints defined on a given signal in our language can always be formulated 

under the form u ~ L B  ~°, where L is a certain rational language of B*, that we shall now 

compute in more detail. 

If the chronogram contains variables, we first identify the signal with an infinite word 

u on the alphabet C, as was explained before. The constraint in which the variables are 

not interpreted can be formulated under the form u ~ L B  °~, where L is a certain rational 

language of C*, while the final constraint can be expressed under the form 

[,.j v ( L ) B  °~. 
V valuation 

There are in fact two types of constraints, the "static" constraints, which correspond to the 

case where L is a finite language, and the "dynamic" constraints, that correspond to the 

case where L can be an infinite language. 

In the case of a static constraint, the language L is obtained as a finite concatenation of 

rational languages corresponding to static intervals. For instance, the following sequence 

of static intervals defines a constraint: "between time nl and n2, the signal has a unique 

rising edge, between time n2 and n3, its value is a constant v and between time n3 and n4, 

its value is always 0". Note that in this case, the values of  n2 - nl,  n3 - n2 and n4 - n3 

are the length of the static intervals. 

In the case of a dynamic constraint, the language L is obtained as a finite concatenation 

of rational languages corresponding to dynamic intervals. For instance, the following 

sequence of dynamic intervals defines a constraint: "There exist instants n2, n3, n4 such 

that between time nl and n2, the signal has a unique rising edge, between time ng and n3, 

its value is a constant v and between time n3 and n4, its value is always 0". The difference 

with the previous case is that the values of n2 - nl, n3 - n2 and n4 - n3 are not specified 

in the dynamic constraints, that is, can be chosen arbitrarily. 

The languages associated with (static or dynamic) intervals are themselves obtained 

from the so-called primitive languages associated with the primitive symbols. This vocable 

concerns the elements of the set 

v u 9 u {i, 0, 1, f, r, s, e}, 

that is, all symbols of  variables (possibly overlined) and the symbols associated with the 

graphic primitives of the Chronogram Language. Recall the intuitive meaning of  these 

primitives. 

i (Irrelevant) The value of the signal is not specified and can be either 0 or 1. 

1 The signal is stable and its value is 1. 

0 The signal is stable and its value is 0. 

f (Falling) The signal owns one and only one falling edge (but may have 0, 1 or 2 rising 

edges). 

r (Rising) The signal owns one and only one rising edge (but may have 0, 1 or 2 falling 

edges). 
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s (Stable) The signal is stable but its value is unknown. 

e (Edge) The value of the signal changes once and only once. 

This leads to the following table of the primitive languages associated with the graphic 

primitives: 

L(i) = {0, 1} + L(1) = 1 + L(0) = 0 + 

L ( f ) = 0 * l + 0 + l  * L ( r ) = l * 0 + l + 0  * L ( s ) = 0  + u l  + 

L(e) = 0 + 1  + U 1+0 + 

On the other hand, the primitive language associated with each variable v is 

L(v) = v + and L(f)) = f)+. 

We, therefore, have 

PROPOSITION 2 

The primitive languages and their valuations are star-free languages of  level 3/2. 

Proof. We have already seen that the languages L(i) = {0, 1} +, L(1) = 1 +, L(0) = 0 +, 

L(v) = v + and L(~) = fi+ are languages of level 1. It follows that L(s) = 0 + U 1 + is 

also of level 1. On the other hand, L(f) = 0"1+0+1 * is a product of languages of level 

1/2 and thus is of level 3/2. A similar argument would show that the languages L(r)  and 

L(e) are of level 3/2. Finally, each valuation of the languages L(v) and L(fi) is equal to 

either 0 + or 1 +, which are languages of level 1. [] 

We can now formally define the notion of interval. A static interval is a couple I = (£, t) 

where £ is a positive integer and t is a primitive symbol. Intuitively, the integer £ represents 

the length of the interval on which the condition defined by t will be considered. For 

example, if £ = 5 and t = e, the value of the signal will change once and only once in the 

interval [0, 5]. The language associated with I is the subset of C* defined by 

L ( I )  = L(e,  t) = L(t) N C e. 

For example, if ~ = 5 and t = e, then 

L(I)  = (0+1 + U 1+0 +) N C 5 

= {01111,00111, 00011, 00001, 10000, 11000, 11100, 11110} 

A dynamic interval is simply a primitive symbol and thus the corresponding language is 

already defined. 

A static (resp. dynamic) row is a sequence of static (resp. dynamic) intervals (figure 2). 

The language associated with a row (ll, 12 . . . . .  Is) is defined by 

L(I1, 12 . . . . .  Is) = L( I1 )L( I : ) . . .  L(Is). 

For instance, the language of C + associated with the row represented below is 

llv{O, 1}~{Oll l l ,O0111,  O0011, O0001}. 
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0 1 2 3 4 5 6 7 8 9 10 

t l  ! L_U] I I I I 

V Irrel. V" e 

11 

~ ° °  

Figure 2. A static row. 

Here is another example, for a dynamic row. If ll = v, 12 = e and 13 = ~, then 

L(1) = v+(0+l  + U 1+0+)~ +. 

The languages associated with rows are described in the next proposition 

PROPOSITION 3 

The languages associated with a static row and their valuations are finite languages. The 

languages associated with a dynamic row and their valuations are languages of  level 3/2. 

Proof The language associated with a static row is an intersection of languages associated 

with static intervals, which are finite languages. Since the valuation of a finite language is 

finite, the first part of the statement follows. 

The language associated with a dynamic row is a product of languages of dynamic 

intervals. Now, by proposition 2, the languages associated with dynamic intervals and 

their valuations are of level 3/2 and by proposition 1, the product of languages of level 

3/2 is also of level 3/2. [] 

Finally, if L is the language associated with a (static or dynamic) row, the constraint defined 

by this row is the set 

~.J v(L)B ~°. 
I.' i s  a v a l u a t i o n  

In other words, in order to compute the constraint defined by a row, one first computes the 

language L associated with this row on the extended alphabet C and then one simply gives 

a value to the variables. For instance, for the row represented in figure 2, the constraint can 

be written 

(111{0, 1}00{01111, 00111, 00011,00001} 

U110{0, 1}11{01111,00111, 00011, 00001})B o) 

5.3 Constraints on several signals 

We now define the language associated with a constraint on a set of k signals. We first 

introduce some auxiliary notation. Let A be an alphabet. For each integer k, Ak denotes 

the alphabet consisting of k-uple of letters of A, denoted as a column matrix. For instance, 

B8 is the set of bytes, and the triple is a letter of B3. Thus 
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(llIZl(ii(ilIi! u =  1 

1 

is a word on the alphabet B3. By reading in parallel the lines of  the previous representation, 

one gets the three words 10110, 11000 and 10000. Therefore the word u given above can 

be represented by the triple (10110, 11000, 10000) of  words of  B*. More generally, it is 

always possible to represent a word of  length n on the alphabet Ak as a k-array of  words 

of  A*. (al,1) [a2,1) an,l) 
al,k \ a2,k an,k 

We denote by JrA " A~ --> A* x A* × . . .  x A* the function defined by 

k times 

I alllia21 (an lll al,2 a2,2 an,2 
7~A . . . . .  . = 

\ \ al,k \ a2,k an,k 

(al,la2.1 • • "an.l,  al,2a2,2 • • • an,2 . . . . .  al,ka2,k • • • an,k) 

This function ~A is in fact a monoid morphism of  A~ into A* × A* × • • • × A* • this simply 

means that it preserves the concatenation product. However, it is not an isomorphism 

(except if  k = 1) because an element of  A* × A* x - • • x A* may have components  of  

different length. Let 

Dk(A) = {(ul, u2 . . . . .  Uk) E A* x A * . . .  × A* I lull = In21 . . . . .  [Ukl} 

denote the set of  k-tuples of  words of  the same length. Now, since ~A induces an isomor- 

phism from A~ onto Dk(A), one can identify the k-tuples of  Dk(A) with the words of  

Returning once again to signals, a static multicolumn is a couple M = (p,  R) where 

p is a positive integer and R = (R1 . . . . .  Rk) is a k-uple of  static rows. Intuitively, to 

each row corresponds a signal, but it is important to observe that two rows or more can 

represent the same physical signal. This allows one to impose several distinct constraints 

on a given signal and to conveniently display hypothesis-conclusion pairs, when a signal 

can figure in one set of  hypotheses and in another set of  conclusions. By definition, the 

language associated with a static mult icolumn (p,  R) is 

L(p,  R) ~- C;  0 ~ c I ( L ( R x )  x L(R2) x . . .  x L(Rk) f') Ok(C)) 

In other words, the k-tuples (u 1, u2 . . . . .  uk) such that u 1 E L (R1), u2 6 L (R2), . . . ,  uk 6 

L(Rk) and lull = lu21 . . . . .  lukl = P are selected and identified with words of  

CL 
A dynamic multicolumn is a triple M = (n, m, R) where n is a integer, m is either an 

integer or the symbol  • and R = (R1 . . . . .  Rk) is a k-tuple of  dynamic rows. Define 
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C~ O'm]= O C~. 
0<i<m 

The language associated with a dynamic multicolumn is by definition 

L(n,m, R)=C~(cIO'm]N j rc l (L(R1)  × L(R2) × . . .  × L(Rk)n Dk(C))), 

L(n, . ,  R)=C~:(C~: Nrrc l (L(R1)  x L(R2) × . . -  x L(Rk) n Dk(C))). 

The difference between the types of multicolumns is that, in a dynamic multicolumn, there 

may be no upper bound on the common length of the ui 's. 

One can show for the multicolumns a result similar to the one obtained for rows 

PROPOSITION 4 

The languages associated with a static multicolumn and their valuations are finite lan- 

guages. The languages associated with a dynamic multicolumn and their valuations are 

languages of level 3/2. 

Proof. Let M = (p, R) be a static multicolunm. Then the language associated with M is 

a subset of C[  and hence is finite. The valuations are subsets of B [ and are also finite. 

The case of a dynamic multicolumn M = (n, m, R), where m is an integer, is similar. 

Finally, let M = (n , . ,  R) be a dynamic multicolumn. Then L(M) = C~C~ 
1 

n 

rrc 1 (L(RO x L(R2) x - . -  × L(Rk) N Dk(C))). Since C~ is a finite language, it is of level 

1 by proposition 1. By the same proposition, the languages of level 3/2 are closed under 

intersection and product and it remains to show that the language zrc 1 (L(R1) x L(R2) x 

• .. x L (Rk) O Dk (C)) is of level 3/2. Denote by 71" i the ith projection of  C~ on C*, defined 

by 7i" i (Cl, C2 . . . . .  Ck) = Ci. We first observe that 

7rc I (L(R1)  × L(R2)  × ' "  × L(Rk) NDk(C)) = n :rrt 7 I ( L ( R i ) ) "  
l<i<k 

Indeed, the above language is actually the set of k-tuples (u l, u2 . . . . .  Uk) such that l u 11 = 

lu21 . . . . .  lukl and ui E L(Ri) for 1 < i < k. Now the languages L(Ri) are of level 

3/2 by proposition 3, and by proposition 1, so are the languages zr~l(L(Ri)) and their 

intersection. Therefore, Zrc 1 (L(R1) x L(R2) × . . .  x L(Rk) n Dk(C)) is of level 3/2, as 

required. 

Let v • C --+ B be a valuation. By definition, one has 

( n ( * N r r c I ( L ( R 1 ) x L ( R 2 ) × . . . × L ( R k ) N D k ( C ) ) ) )  Lv(M) = v C k C k 

~--- O/~ p(C/~ N T r c I ( L ( R I )  X L(R2)  X ' ' '  X L(Rk)N Dk(C)) ). 

A lemma is in order to treat this expression: 

Lemma 1. Let v • C ~ B be a valuation and let L1, L2 . . . . .  L k  be languages of C*. 

Then the following formula holds 

v(Ct N ~cI (L(R1)  × L(R2) x . . .  × L(Rk)n  DI(C)))  
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Proof. 

= 1~ n N Y r [ - l ( v ( L i ) )  • 

l<i<k 

One has successively 

/) u c f  n ~c~(g(R~) x L(R2) x . . .  x L(Rk) n Ok(C) = ,)/era" / 
V Cl,2. C2,2. . . .  Cm,2. I m _> 0 and 

Cl,k \ C2,k \ Cm,k 

I 

Cl,lC2,1 ...Cm, 1 G_ L1 . . . .  , Cl,kC2,k'''Cm,k E L k [  

I 
(i"(C1,1) ~ ( I)(C2, 1) ~ 

v(c2,2) [ . . .  1)(¢1'2). ] 

/ 
P(Cl,k) .] i)(C2,k) J 

I) (Cm, 1 ) 

V(Cm,2) 

l)(Cm,k) 

]m > 0 a n d  

I C1,1C2,1 "" "Cm,1 E L1 . . . . .  Cl,kC2,k'" "Cm,k E L k [  --- 

I 

bl,2 / b2,2 bin',2 I m > 0 and 

bl,k ] bE k ] \ bm,k ] 

bl,lb2,1" "'bm,1 E v(L1) . . . . .  bl,kb2,k ""bm,k E v(Lk) -: 

{ulu2 " " Um I m >_ O and yrl (UlU2 . . . Um) E v(L1) . . . . .  
7rk(UlU2"''Um) e V(Lk)} = B~ N N Yri -lv(Li) 

l<i<k 
[] 

Let us achieve the proof of proposition 4. By lemma 1, one has 

L v ( M ) =  B k v Clc M r c  (L(R1) x L(R2) x . . .  × L(Rk) M Dk(C) 

= B~(B;  M N 7rZl(Lv(Ri))) • 
l<i<_k 

The languages Lv(Ri)  are of level 3/2 by Proposition 3, B~ is finite and B/~ is of level 1. 

Since the languages of level 3/2 are closed under intersection, the previous formula shows 

that Lv(M)  is of level 3/2. [] 
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5.4 Timing diagrams and properties 

A timing diagram (TD) is a sequence of multicolumns. A property is a pair P = (M, N) 

of timing diagrams: M = (M1, M2 . . . .  Mr) is the hypothesis and N = (N1, N2 . . . Nr) 

is the conclusion. A property defines a particular binary relation on k-tuples of signals. 

The property is satisfied if every k-tuple of signals that satisfies the hypothesis satisfies the 

conclusion, too. 

In the rational language formalism, this can be translated as follows: an infinite word w 

on the alphabet Bk satisfies a property P = (M, N) if, for each suffix s of w and for all 

valuations v, if there exists a factorization u 1 u 2 " " " U r Ur+ 1 of S, where u 1 E L v ( M 1 ) ,  u 2 E 

Lv(M2), • • •, Ur E Lv(Mr), Ur+l E B~, then there exists a factorization U~lU~2. . . Urt u tr+l 

ofs ,  whereu~ E Lv(MI)NLv(N1),u~ E Lv(M2)NLv(N2) . . . . .  Utr ~ Lv(Mr)nLv(Nr) ,  
! CO 

Ur+ 1 ~ B k . This can be reformulated as follows. 

Theorem 1. An infinite word w on the alphabet Bk satisfies P if and only if none of  its 

suffixes belong to the set 

K ( P ) =  U Lv(M1)Lv(M2) ' . .Lv(Mr)B¢[ 
P valuation 

\ ( (Lv(M1)  n Lv(N1))(Lv(M2) N Lv(N2) ) . . .  (Lv(Mr) n Lv(Nr)))B([. 

Proof It is easier to consider the negation of the condition. By definition, an infinite word 

w on the alphabet Bk does not satisfy P if and only if there exist a suffix s of w, and a 

valuation v such that there exists a factorization of s of the form u -- u 1 u2 • • • U r u r+ 1 with 

Ul E Lv(M1), U2 E Lu(M2) . . . . .  Ur ~ Lv(Mr), Ur+l E B~ 

but such that 

s ¢ (Lv(M1) N Lv(N1))(Lv(M2) N L v ( N 2 ) ) ' "  (Lv(Mr) n Lv(Nr)))B~.  

The formula of the statement follows immediately. [] 

COROLLARY 1 

An infinite word w on the alphabet Bk satisfies a property P if and only if  it belongs to the 

set L(P)  = B~ \ B~K(P).  

We arrive at our main result. 

Theorem 2. For every property P, the set L( P) is a star-free set of  level 3. 

Proof Proposition 4 shows that the languages Lv(Mi) and Lv(Ni) are of level 3/2. 

Since the languages of level 3/2 are closed under intersection and product, the sets 

Lv(M1)Lv(M2) . . .  Lv(Mr)B °J and ( (Lv(M1)NLv(N1))(Lv(Mz)NLv(N2))""  (Lv(Mr) 

ALv(Nr)))B °J are also of level 3/2. Therefore K(P)  is of level 2 and L(P)  is of level 3. 
/ 

[] 
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5.5 Constraints 

We call a constraint a finite sequence of properties. Let (P1, P2 . . . . .  Pn) be a constraint. 

Let L(P1), L(P2) . . . . .  L(Pn) be the sets of infinite words defined by P1, P2 . . . . .  Pn, 

respectively. Then the set of words defined by (P1, P2 . . . . .  Pn) is the language L(P1) f) 

L(P2) ~ . . .  N L(Pn). In other words, a constraint is a conjunction of properties. Now, 

the languages of level 3 are closed under intersection. Therefore, theorem 2 implies the 

following result. 

COROLLARY 2 

The set of  infinite words defined by a constraint is a star-free language of  level 3. 

6. An example 

This section is devoted to the detailed study of an example. Consider a car washing machine. 

We propose to specify its control system using chronograms. The wash does not take more 

than one car at a time. There is a gate at the entrance. This gate is closed while a car is in the 

wash and opened if the wash is empty. Moreover, there are two switches set respectively 

at the entrance and at the exit of the wash. These switches may be either on or off at any 

instant, subject to the constraint that the one at the entrance toggles every time a car enters 

the wash, and the one at the exit toggles every time a car exits from the wash. 

The car wash control system can be modelled by three boolean signals denoted by B, 

I, and O. The signal B (Entrance) carries the 0 value to model the opened gate and the 1 

value to model the closed gate. The signals I (In) and 0 (Out) model the entrance switch 

and exit switch, respectively. Initially, the value of the signals B, I, and O is set to 0, which 

means the wash is empty and its gate is open. 

The following five properties specify the car wash control system. This set of properties 

may be neither consistent nor minimal. The set of figures below show the chronograms for 

these properties. An automaton model of the system induced from these properties is also 

proposed. Then we prove that a sixth constraint is effectively satisfied by the automaton. 

Here are the first five properties. 

(1) During any instant, if the gate is opened, I and O carry the same value. 

(2) During any instant, if I and O carry the same value, the gate is opened. 

(3) If the gate is closed during an instant t, then I is stable between t and t + 1 (since the 

machine cannot wash more than one car at a time). 

(4) If the gate is open during an instant t, then O is stable between t and t + 1 (since the 

machine is empty). 

(5) As soon as a car enters the wash, the gate closes. 

The property to be proved is the following: 

(6) When the gate is closed, the car that is in the machine will eventually exit. 

The chronograms of these properties are drawn in the figures 3 to 5. An explanation 

is in order for the chronogram representing property 6 (figure 5). Indeed, the clock 
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I I 

~ I ! !  ~ i ] ~  ~' ~:~ ": ~i ¸ t~ 

Figure 3. The chronograms of properties 1 and 2. 

signal seems to count off one time unit between v and ft. However, since the signals 

I and O carry the value IRRELEVANT during the same period, the clock signal is 

irrelevant. Thus property 6 is an unbounded liveness property. 

The semantics of these chronograms can be expressed by rational co-expressions. The 

basic alphabet is B3 = {0, 1 }3. Each matrix v; represents one of the value of the 

93 

( i )  triple. The set of these matrices is the alphabet of the language on which the 

previous properties are defined. In the following definitions, v, vl, v2, etc. will denote 

boolean variables. 

Figure 4. The chronograms of properties 3 and 4. 
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'"-~::........:::: ~ ~  ........ ..-~ ~,.!'~ii'ii " "'* """ N ~ 4 - ~ : - . : - ' - ' - ' ' } " ~  ............... ~ ....... i ................... i 

CLOCK ~'$ 

: ~ : ~ " : : . : ' : ~ "  "~ ~.:~-"~'::::  :~','~.'~'~.4g-~::8 8 ~ : ~ : : : :  ~:~i::~:~:ii:i.:: 

:" ~:~'~.~-':2-~i~"" " " " " ~-"-~':~".".8:::""~..-'::: ": ; 

Figure 5. The chronograms of properties 5 and 6. 

a) The first constraint states that if B = 0, then I and O carry the same value. In other 

words, the letters and cannot occur. Thus the set C1 associated with 

the first constraint is defined by 

/(i) (i)(i)(il (i)(')1 CI = , . . . .  1 

1 

b) The second constraint states that if I and O carry the same value, then B = 0. In 

other words, the letters and 1 cannot occur, either. Therefore, the set C2 

1 

associated with the second constraint is defined by 

/(°) C2 = 0 . . . . .  

0 

c) Thethirdc°nstraintstatesthatiftheletteru(t)isequalt°(lv) 'thenthelettervl 

u (t + 1) is equal to v . What can be written as By \ B~K1 By, where 

v 3  

} K1 = 1 0 , 0 IVl,V2, v 3 E B  . 

V l  v 3  V l  \ v 3  

d) The fourth constraint states that if the letter u(t) is equal to , then the letter 
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u(t + 1) is equal to . What can be written B~ \ B~K2B~, where 

K 2 =  , Vl v3 [ Vl, V2, V3 E B . 

1 0 

e) The fifth c°nstraJnt states that if u(t) is equal t° ( Vlv ) ' and if u(t + l) is equal v2 

( 3 ] ,  then v3 = l. This can be written as B~ \ B~ K3B~, where 

v4 / 

K3 = v I V, Vl, V2, V3 E B . 

1)2 

Let us consider the system specified by these five properties. The first two ones define the 

following set of words 

The last three ones define the following set of words B~ ° \ B~ K B~, where 

K = K1 U K2 U K3. 

The five properties altogether define the following set of words S = C ~° \ C* RC% where 

{(°/(i) (i)(!)} C =  0 , , , 

0 

and 

0 1 0 0 1 0 1 1 

( ~ ) '  ( 0 0 ) ( I ) '  ( 1 0 ) ( ~ ) '  ( ~ ) ( ~ ) '  

0 1 1 1 1 0 

(°0) 
Since the initial value of the three boolean signals is set to 0, the car wash control system 

can be represented by the automaton shown in figure 6. 

Note that the states of this automaton are solutions of the equation I + O = B mod 2. 

Consider the sixth property, which is a liveness property. It says that, given an instant t such 

that u(t) is of the form v2 , then there exists a subsequent instant s (s > t) such that 

V3 
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(1,1,0) 

(0, O, O) (1, l, 0 ~ ( 0 ,  1, 1) 

(1,0, I) 

(0,1,1) 

Figure 6. 

properties. 

The automaton of the five 

(") u(s) is equal to v~ . Thus, property (6) is described by a rational expression involving 

\ 1)3 
six multicolumns: M1, M2, M3, N1, N2, N3. The languages they define are, respectively, {(1)} 

L(M1) = 132 I v2, v3 E B 

v3 

' ] L(N1) = ' J Vl, v 2 ~ B 

L(Mz) = 8~ 

L(N2) = B~ 

{(:) L(N3) = ~ 

Let K (P)  be the language representing the property. It follows 

K(P) = K1K~ U K3K~, 

where 

-I-{(i), (i)/ 
-,-{(i),(i)} 

/(i) (i)(i)(1)} K2 = , , , 1 

1 

{(i) (Z)(i)(i)} K4 ---- , , , 

L(M3) = B3, 

,,, } 
[UI,V 2 ~ B  . 

It is theoretically possible to compute the automaton associated with K(P) ,  and then to 

prove that S is a subset of B~ \ B~K(P), where B~ \ B~K(P) is given by corollary 1. 

More directly, one can observe that S C B~ \ B~ K ( P ) is equivalent to S f) B~ K ( P ) = 0 

which can be rewritten into 

T f) K(P) = 0, 

where the set T = {u ~ B~ ° ] vu ~ S for some o E B~} is recognized by the Bfichi 

automaton (Thomas 1990) given in figure 6, by taking all the states as initial and final 

states. Recall that an infinite word u is accepted by a Btichi automaton if there is at least 
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an infinite run with label u starting at some initial state and visiting a final state infinitely 

often. Thus the equality T N K ( P )  = 0 can be directly verified on this automaton, since 

no word of K ( P )  can have an infinite run on the Biichi automaton for T. 

7. Conclusion 

We have presented a new formal language for the specification of temporal properties 

of Discrete Event Dynamic Systems. This language, called the Chronogram Language, 

is based on a well-known graphic metaphor: waveforms. It allows specifying certain com- 

plex temporal properties in a more convenient way than textual temporal logics (CTL, 

CTL* . . .  ). Although we do not consider this language as a universal one, we think that 

its graphical approach might be appealing to designers. In fact, we view the chronogram 

language as a basic part of a future Computer Aided Design (CAD) environment includ- 

ing validation tools. Several authors have developed similar work (Borriello 1992; Cingel 

1993; Coombes & McDermid 1993; Dillon et al 1994; Helbig et al 1993; Khordoc et al 

1991; Tiedemann 1992; Tiedemann et al 1992). It would be too long to compare in detail 

these related works with ours. However, the idea of using rational expressions to define 

the semantics seems to be new in this context and can probably be successfully applied 

in other cases. This is not really surprising, since the equivalence between proportional 

(linear) temporal logic, first order logic over the non negative integers with signature 

(<, Ra(a E A)) (where Ra is a predicate giving the positions of the letter a in a given 

infinite word of A ~°) and star-free sets of infinite words is a well-known fact. 

The Chronogram Language is graphic and fully declarative. In this paper, we defined 

rigorously its semantics by using automata theory. The main result of this work is that it is 

possible to associate a finite automaton with any chronogram. This means that chronograms 

are w-rational. In fact, as shown in this paper, chronograms correspond to a much smaller 

class that the class of w-rational sets, and this may lead to some specific compilation 

algorithms in the future. 

We are now studying new developments: an extension of the Chronogram Language 

allowing designers to specify properties without any reference to some clock or including 

timing aspects (having physical time delays) and a consistency checking tool for sets of 

chronograms. We are also working on the improvement of the compilation algorithm since 

it is crucial to compile chronograms into as small as possible automata. Currently, compilers 

generate VHDL code and Signal code. New output languages will also be available in the 

future. 

Thanks are due to the anonymous referees for their numerous suggestions and remarks 

that greatly improved the quality of this paper. 

References 

Antoine C, Le Goff L 1991 Timing diagrams for writing and checking logical and behavioral 



A graphic language based on timing diagrams 145 

properties of integrated systems. CHARME'91, Correct hardware design methodologies (eds) 

P Prineto, P Camurati (Turin, Italy: Elsevier) pp 441-453 

Ashcroft E A, Wadge W W 1976 Lucid - a formal system for writing and proving programs. SlAM 

J. Comput. 5:336-354 

Borriello G 1992 Formalized timing diagrams. In Proceedings of the European Conference on 

Design Automation, Los Alamitos, CA (IEEE Comput. Soc. Press) pp 372-377 

Brzozowski J A, Knast R 1978 The dot-depth hierarchy of star-free languages is infinite, J. 

Comput. Syst. Sci. 16:37-55 

Caspi P, Halbwachs N 1986 A functional model for describing and reasoning about time behaviour 

of computing systems. Acta Info. 22:595-627 

Cingel V 1993 A graph-based method for timing diagrams representation and verification. In 

CHARME'93, Correct hardware design and verification methods (eds) G J Milne, L Pierre 

(Berlin: Springer) pp 1-14 

Coombes A C, McDermid J A 1993 Using diagrams to give a formal specification of timing 

constraints in Z. In Proceedings of the Seventh Annual Z User Meeting (eds) J P Bowen, 

J E Nicholls (Berlin: Springer-Verlag) pp 119-130 

Dillon L K, Kutty G, Melliar-Smith P M, Moser L E et al 1994 Visual specifications for temporal 

reasoning. J. Visual Languages Comput. 5:61-81 

Eilenberg S 1974 Automata, languages and machines (New York: Academic Press) vol. A 

Eilenberg S 1976 Automata, languages and machines (New York: Academic Press) vol. B 

Helbig J, Schlor R, Damm W, Dohmen Get  al 1993 VHDL/S - integrating statecharts, timing 

diagrams and VHDL. MicroProcess. Microprogramming 38:571-580 

Khordoc K, Dufresne M, Cerny E 1991 A stimulus/response system based on hierarchical tim- 

ing diagrams. In 1991 IEEE International Conference on Computer-Aided Design. Digest of 

Technicalpapers, Los Alamitos, CA (IEEE Comput. Soc.) pp 358-361 

Le Goff B, Benveniste A, Figueira C, Le Guernic P, 1989 CAD environment for real-time control 

system. In American Control Conference ACC'89 (Pittsburgh, PA: IEEE) 

Lipsett R, Schaeffer C F, Ussery C 1990 VHDL: Hardware description and design (Boston, MA: 

Kluwer) 

Perrin D 1990 Automata. In Handbook of theoretical computer science. Vol B: Formal models 

and semantics (ed.) J Van Leeuwen (Amsterdam: Elsevier) 

Perrin D, Pin J E 1986 First order logic and star-free sets. J. Comput. Syst. Sci. 32:393-406 

Thomas W 1982 Classifying regular events in symbolic logic. J. Comput. Syst. Sci. 25:360--375 

Thomas W 1990 Automata on infinite objects. In Handbook of theoretical computer science. Vol 

B: Formal models and semantics (ed.) J Van Leeuwen (Amsterdam: Elsevier) 

Tiedemann W-D 1992 Bus protocol conversion: from timing diagrams to state machines. In 

Computer aided systems theory., EUROCAST'91 (eds) F Pichler, R M Diaz (Berlin: Springer) 

pp 365-377 

Tiedemann W-D, Lenk S, Grobe C, Grass W 1993 Introducing structure into behavioural de- 

scriptions obtained from timing diagram specifications. MicroProcess. Microprogramming 

38:581-588 


