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1. INTRODUCTION

Designing a concurrent real-time system is an extremely difficult and
challenging task. The complexity of the task stems from the large number
of different possible executions of the system due to the different orderings
or interleavings of concurrent events and the variability of real-time
durations. Interactions between causal dependencies and real-time dura-
tions preclude reasoning about each of them separately, and thus render
the task more difficult than for sequential or concurrent systems. These
difficulties, and the importance of concurrent real-time systems in critical
real-world applications, necessitate continued research into methodologies
and tools for specifying and reasoning about the designs of such systems.
Temporal logic is an appropriate formalism for reasoning about the

relative ordering of events in a concurrent system [Manna and Pnueli
1992]. However, system designers have found it difficult to reason in
temporal logic and to relate temporal logic to their software and hardware
designs. The textual representation of temporal logic has contributed in
part to these difficulties and has discouraged the use of temporal logic in
industrial applications. The real-time characteristics of industrial applica-
tions have contributed further to these difficulties.
Software and hardware engineers often employ graphical representa-

tions, such as timing diagrams, data flow graphs, state machines, and
dependence graphs to describe properties of the systems they design [Fisler
1996; Harel et al. 1990; Schlör and Damm 1993]. Such graphical represen-
tations can capture and communicate the designer’s intuitive understand-
ing of a system. Research [Koedinger and Anderson 1990] has indicated
that graphical representations do indeed facilitate human comprehension
and reasoning. However, the graphical representations used by system
designers often are informal and lack a well-defined meaning.
To enable software and hardware engineers to describe and reason about

concurrent real-time systems with greater ease and rigor, we have devel-
oped a temporal logic, called Real-Time Graphical Interval Logic (RTGIL),
and a graphical environment to support its use. RTGIL employs the natural
graphical representation of the time line to represent events, and intervals
between events, within an execution of a system. Specifications in RTGIL
resemble the “back-of-the-envelope” timing diagrams drawn by system
designers and are intended to match the user’s intuitive way of thinking
about the problem domain. Nevertheless, RTGIL has a rigorously defined
syntax and semantics.
RTGIL is a propositional interval temporal logic that is interpreted over

a dense time line and is decidable. Interpretation over a dense time line
simplifies the expression of real-time properties and the task of hierarchi-
cal verification. Decidability provides greater predictability for the user of
verification tools based on the logic. As a propositional logic, RTGIL is not
intended to be free-standing. Rather, it is intended as a temporal logic
component of a more comprehensive verification system, such as EHDM
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[Crow et al. 1990] or PVS [Owre et al. 1995], that provides support for
multiple theories and quantification.
The RTGIL environment that we have developed employs a property-

theoretic or axiomatic approach to design, specification, and verification of
concurrent real-time systems. Like automated theorem proving in general,
mechanical verification of properties of concurrent real-time systems is
inherently complex. Our approach to controlling that complexity exploits a
symbiotic relationship between the human and the theorem prover. The
user engages in the creative activity of devising the specifications that are
the axioms of a theory for the system being modeled. Working in that
theory and the underlying logic, the human creates theorems, lemmas, and
proofs to demonstrate that the system defined by the concrete specifica-
tions satisfies the requirements imposed by the abstract specifications. The
RTGIL environment provides mechanical support, routine reasoning and
checking, attention to detail, completeness, and accuracy. The advantage of
a property-theoretic approach is that it is possible to break up a complex
proof into small proof steps, each of which can be understood by the human
and can be checked by the mechanical theorem prover. The disadvantage is
that substantial human time and effort are required.
An important aspect of the RTGIL environment is that the user sees

nothing of, and does not need to know anything about, the internal
representations and mechanisms of the environment. All input is supplied
graphically, and all output is returned to the user in the same graphical
representation. The RTGIL theorem prover is based on a decision proce-
dure, which obviates the need for a detailed understanding of its internal
mechanisms and which provides predictability.
Experience has shown that, without rigorous mechanical checking, it is

difficult for designers to write specifications and to make correct inferences
about those specifications. Inevitably they make mistakes. The RTGIL
environment helps to find such errors. If an attempted proof is not valid,
the environment displays a counterexample in a graphical representation
that is easy for the user to understand and to relate to the graphical
representation of the failed proof attempt.
The software architecture of the RTGIL environment is shown in Figure 1.

The graphical editor of the RTGIL environment enables the user to construct
graphical formulas on a workstation display and checks whether those formu-
las are syntactically correct. The automated theorem prover consists of a
tableau-based decision procedure that checks the validity of proofs in the logic
and a counterexample generator that produces counterexamples to failed proof
attempts. The database and proof manager tracks proof dependencies and
allows graphical formulas to be stored and retrieved.

2. REAL-TIME GRAPHICAL INTERVAL LOGIC

The basic concepts of RTGIL are presented below. Appendix A provides a
formal abstract syntax and model-theoretic semantics for the logic. The
decidability of RTGIL is established in Ramakrishna et al. [1996b] by means of
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an automata-theoretic decision procedure; an axiomatization is currently
being developed. Further examples of RTGIL formulas appear throughout the
remainder of the article, in particular in Section 6 and Appendix B, where
specifications and proofs for an input-output system are presented.
Formulas in pure temporal logic involve invariants, eventualities, and

order constraints, allowing us to express safety and liveness properties,
while making no reference to time. However, the correctness of real
systems often also depends critically upon the real time between events
within the system. Much of the elegance of temporal logics is that the value
of time and the quantification over time are hidden by the logic, facilitating
automatic processing by decision procedures. We preserve this characteris-
tic in RTGIL by defining intervals over which properties are asserted to
hold and by defining bounds on the durations of intervals. This allows us to
express time-bounded safety and liveness properties.
In RTGIL an interval represents a trace of states of a computation,

defined on a dense time line, rather than on a discrete time line as in many

Fig. 1. The software architecture of the RTGIL environment includes a graphical editor, an
automated theorem prover, and a database and proof manager. Rectangles in the diagram
represent program modules, and ovals represent data structures through which information is
communicated between program modules in the directions indicated by the arrows.
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other temporal logics. These traces, or models, are required to be right
continuous and finitely variable (see Appendix A for the formal definitions).
Right continuity forces each primitive proposition to hold its value for a
nonzero duration. It thus excludes the occurrence of instantaneous states
and captures our intuition that any state of the system must persist for a
measurable amount of time; we do not, however, impose any a priori lower
bound on those durations.
Finite variability ensures that there are only finitely many state changes

in any bounded interval of time. It thus precludes the existence of Zeno
runs in which the system undergoes infinitely many changes before any
finite point in time. Zeno runs and instantaneous states cause problems for
hierarchical verification [Abadi and Lamport 1994], similar to those caused
by the next time operator of temporal logics interpreted over a discrete time
line. Finite variability ensures that any specification that attempts to
define Zeno behavior is inconsistent and thus unsatisfiable. It is, of course,
essential to show that a specification is satisfiable, since anything can be
deduced from an inconsistent specification. Unfortunately, a direct demon-
stration that a specification is satisfiable may be computationally infea-
sible. However, if we can exhibit a concrete model, possibly derived from an
implementation, and can demonstrate that the model is non-Zeno and
satisfies the specification, then we have also demonstrated the non-Zeno-
ness of the specification.

2.1 Graphical Constructs of RTGIL

In RTGIL the progression of states of a computation in time is shown using
a horizontal time line. An interval is represented by a segment of the time
line and is delimited by two states, which correspond to its left and right
endpoints. Lower and upper bounds can be placed on the duration of an
interval. Formulas in RTGIL are read from top to bottom and from left to
right, starting with the topmost interval which represents an entire com-
putation. Formulas can be combined using standard logical infix operators
laid out vertically. In vertical layout a conjunction is indicated by stacking
the formulas one below the other without the conjunction operator. Braces
are used to disambiguate formulas.
Syntactically, an interval is defined by two search patterns, one for each

of its endpoints. Each search pattern is a sequence of one or more searches.
A search in a search pattern begins at the start of the context, or at the
state located by the previous search in the sequence, and locates the next
state in the future (to the right) at which its target formula holds. The last
search in a search pattern locates the state that corresponds to the
endpoint of the interval defined by the search pattern. An interval is
half-open in that it includes its left endpoint, but not its right endpoint.
As shown in the formulas below, searches are represented by dashed

horizontal line segments with arrowheads, search patterns by a sequence of
such line segments, and intervals by solid horizontal line segments, delim-
ited by [ and ). In these formulas f, g, and h can be replaced by any RTGIL
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formula. Once an interval has been defined, properties can be asserted to
hold on the interval. The different types of properties are given below.

Initial Property. To assert that a formula holds at the first state of an
interval, the formula is drawn left-justified below the left endpoint of the
interval. For example,

asserts that h holds at the first state of the interval that begins with the first
state at which f holds and ends just prior to the next state at which g holds.

Henceforth Property. To express an invariant (henceforth) property that
holds throughout an interval, the formula that is asserted to be invariant is
positioned below the interval and is indented to the right of the bracket
that delimits its start. For example,

asserts that h holds at every state of the interval that begins with the first
state at which f holds and extends up to, but does not include, the next
state at which g holds. Temporal expressions that are invariant over the
entire computation are indented beneath the topmost interval.

Eventuality Property. To express an eventuality property, a diamond {

is placed on the interval, with the eventuality property left-justified below
the diamond. For example,

asserts that h holds at some state of the interval that begins with the first
state at which f holds and extends up to, but does not include, the next
state at which g holds.

Weak versus Strong Searches and Intervals. If the target formula of a
search does not hold at any state in the future of the state at which the
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search begins, the search to the formula fails. This differs from a search
without a target formula, i.e., a search to the end of the context, which
always succeeds. If either of the searches for the left or right endpoints of
an interval fails, or if the state located by the search for the right endpoint
coincides with the state located by the search for the left endpoint, the
interval cannot be constructed. If the interval cannot be constructed, the
interval formula holds vacuously. The single-arrow searches and single-line
intervals in the previous examples are referred to as weak searches and
weak intervals, respectively.
The logic also provides strong searches and strong intervals. The strong

search, denoted by a dashed line segment with double arrowheads as, for
example, in

expresses the requirement that the search to g must not fail. More
specifically, it requires that the search to g must succeed unless the weak
search to f fails.
The strong interval, denoted by a double solid line, in the following example

requires that the interval is nonempty, provided that the searches to f and
g do not fail. In effect, it means that following the first occurrence of f, if
any, the first future occurrence of g, if any, must be in the strict future;
thus, a nonempty interval is created.

Real-Time Duration Constraints. RTGIL imposes real-time bounds on
the durations of intervals using the len predicate. For example,

asserts that the duration of the indicated interval, if it can be constructed,
is greater than d time units and less than or equal to D time units, where
d and D represent nonnegative rational constants or ` (represented as inf
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in the RTGIL environment). This construct appears to suffice for describing
most real-time constraints directly and easily, and it disallows the con-
struction of undesired expressions in which time is manipulated inappro-
priately.
As the above formulas indicate, RTGIL only admits forward searches. We

have considered the addition of backward searches into the logic, but this
allows the chop operator [Harel et al. 1982] to be expressed succinctly in
the logic, thus rendering its decision problem nonelementary.1 To constrain
the cost of theorem proving, we have intentionally restricted the logic to
forward searches. Like most other real-time temporal logics, RTGIL ex-
presses relative timing constraints rather than absolute times.

2.2 Comparison with GIL and PTL

RTGIL provides the capability of expressing real-time properties, which
distinguishes it from other logics such as Graphical Interval Logic (GIL)
[Dillon et al. 1994] and the well-studied Propositional Temporal Logic
(PTL) [Manna and Pnueli 1992]. GIL is, in fact, equivalent in expressive-
ness to PTL without the next operator [Kutty et al. 1995]. Although the
graphical syntax of RTGIL is similar to that of GIL, the underlying
model-theoretic semantics are different. Formulas in RTGIL are inter-
preted over a dense time line (the nonnegative reals), whereas formulas in
GIL and PTL are interpreted over a discrete time line (the nonnegative
integers). GIL and PTL have no capability for reasoning about real time,
although real-time extensions of PTL do exist (see Section 7).
The interval constructs of RTGIL, and GIL, allow more succinct and

understandable statements of temporal properties than the until construct
of PTL. Consider, for example, the following formula. First note that the
start of the search is indented below the outer context interval, which
indicates that it is an invariant property. The left endpoint of the interval
is located by first searching to a state at which ¬q holds and from there to
a state at which q holds. The right endpoint of the interval is located
similarly, starting from the left endpoint of the interval. The { on the
interval, delimited by these endpoints, indicates that there exists a state
within the interval at which p holds.

1In other words, the worst-case complexity of the decision procedure is a stack of powers of 2,
where the number of exponentiations is not bounded above by any constant.
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This formula expresses the property that, between every pair of states at
which a proposition q commences to hold, there is a state at which a
proposition p holds. In PTL this property is expressed by the formula

h~¬qf¬qU~q∧~qUp∨qU~¬qU~ p∧¬q!!!!!

where h is the henceforth operator, and U is the weak until operator.
Although no real-time constraints appear in this example, even properties
that can be expressed in PTL can often be expressed more naturally in
RTGIL. The deep nesting of until formulas in the above PTL formula
makes that formula very difficult for most software and hardware engi-
neers to read and understand.

2.3 Hierarchical Abstraction, Composition, and Refinement

In RTGIL, as well as in other logics [Abadi and Lamport 1995], composition
is represented by the conjunction of specifications. A primary concern when
composing specifications is that the set of specifications may be inconsis-
tent, i.e., their conjunction may be equivalent to false, from which anything
can be demonstrated. To ensure that a set of specifications is consistent, it
suffices to show that at least one model, or computation, exists for their
conjunction, i.e., that the conjunction is satisfiable. For example, the two
specifications

are each individually consistent, but together they are inconsistent, i.e.,
their conjunction is unsatisfiable.
The RTGIL environment can be used to demonstrate satisfiability and

thus consistency of specifications. In general, however, a demonstration of
satisfiability must consider the entire set of specifications and can easily
exceed the computation time and memory resources available. A demon-
stration of validity is easier to mechanize because it can be derived from a
subset, rather than the complete set, of specifications. Methods are avail-
able [Abadi and Lamport 1995; Moser and Melliar-Smith 1995] for demon-
strating consistency by a sequence of simpler demonstrations of validity,
each of which can be verified mechanically with reasonable resources.
These methods are based on establishing the independence, syntactically or
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semantically, of sets of specifications. RTGIL is particularly suited to such
demonstrations. Properties can be defined that are restricted to an inter-
val, and specifications defining properties in disjoint intervals can readily
be demonstrated to be independent.
Refinement involves the elaboration of a set of abstract specifications

into a set of concrete specifications. The concrete specifications typically
involve propositions that are different from those of the abstract specifica-
tions. For example, the abstract specification

might be refined into the concrete specification

Here b in the abstract specification is refined into locating a state at which
c is true followed by a state at which c is false, where those two states are
separated by at least 10.0 time units. A logic that is interpreted over a
discrete time line may present problems for refinement. A model for the
abstract specification may have only one state in the interval delimited by
the state at which a is true and the state at which a is false. Such a model
cannot be refined into a model for the concrete specification that contains
both a state at which c is true and a state at which c is false in that
interval. The dense time line of RTGIL avoids such problems.
Abstraction is in some sense the inverse of refinement in that it relates

the propositions of the abstract specifications to those of the concrete
specifications. For temporal logics, a simple functional mapping between
propositions, applied in each state separately, does not suffice. Temporal
abstraction involves mappings between propositions over intervals. For
some applications, the intervals of the abstract specifications are necessar-
ily different from those of the concrete specifications, as in the above
example.
Abstraction, composition, and refinement are often associated with hier-

archical verification. In this approach, by assuming lemmas and theorems
of the concrete specifications, and by exploiting the mappings between the
concrete and abstract specifications, theorems are proved of the abstract
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specifications. For example, given the following mapping between the
abstract and concrete specifications

and assuming that the following two properties

hold for the concrete specifications, we can demonstrate the theorem

for the abstract specifications, using the RTGIL theorem prover. This
allows the verification to begin with the demonstration of simple properties
of small components of the system and to build up to the demonstration of
complex properties of the entire system [Moser and Melliar-Smith 1990].

3. THE GRAPHICAL EDITOR

The graphical editor of the RTGIL environment, shown in Figure 1, enables
the user to construct and edit RTGIL formulas on a workstation display. It
is a syntax-directed editor that uses an attribute grammar definition of
RTGIL for its implementation. Syntax-directed editors [Lunney and Perrot
1988] allow only syntactically correct formulas to be constructed and are
particularly appropriate for graphical languages, such as RTGIL, as they
eliminate the need for parsing.
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3.1 The Graphical User Interface

The graphical user interface to the editor is shown in Figure 2, as it
appears on a workstation display. The interface provides high-level editing
operations corresponding to the constructs of RTGIL, and it provides
templates containing boxes for formulas yet to be defined, as illustrated in
Figure 3. The mouse allows the user to select a box or formula on the
display and to highlight it.
The menu-and-button interface enables the user to create and edit

graphical formulas and to compose them into more complex formulas. The
pull-down menus (File, Edit, Misc) at the top of the display contain
commands for storing and retrieving formulas, for overriding the default
layout of formulas, and for invoking the theorem prover. The buttons on the

Fig. 2. The graphical user interface as it appears on a workstation display. The upper
window in the background shows an attempted proof of a real-time property for the input-
output system example in Section 6, while the lower window in the foreground shows a
counterexample which demonstrates that the attempted proof is invalid. Note the lower and
upper bounds on the durations of the intervals in the attempted proof and in the counterex-
ample.
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upper left (New, Del, Cut, Paste, etc.) provide editing operations that allow
the user to create a new formula, delete a selected formula, store a selected
formula in a buffer, and subsequently insert that formula in a selected box.
The buttons on the lower left (Text, [—), len, etc.) are used to select an
appropriate RTGIL construct to apply to the currently highlighted subfor-
mula. Scroll bars allow the user to view very large formulas.
The graphical editor provides capabilities for automatically replacing

formulas with other formulas, resizing formulas to suit the context length,
etc. If a formula does not fit into the space allotted, an error is indicated by
highlighting the formula. The user may then resize the context length or
the search arrows to allow the formula to be drawn correctly. All affected
subformulas of the formula are automatically resized to scale.

Fig. 3. Editing steps taken by the user to construct an example RTGIL formula.
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The editor enables the user to align corresponding points in the formulas
that comprise a proof. The user can thus see how states in different
formulas are ordered relative to one another, how intervals are aligned
relative to each other, and how durations of intervals are related to satisfy
real-time constraints. Alignment can be very helpful in constructing and
debugging proofs, but has no semantic content.
The graphical editor can format a formula in PostScript, suitable for

printing or inclusion in a document. All of the RTGIL formulas in this
article were produced directly by the graphical editor.

3.2 Implementation of the Editor

The graphical editor has been implemented in Common Lisp using the
Garnet graphics toolkit [Myers et al. 1990] and runs within the X windows
system. The mechanisms used in the implementation of the graphical
editor are described below.

Graphical Objects. The graphical editor for the RTGIL environment
uses the graphical object system of Garnet, which provides primitive
objects such as rectangles. RTGIL formulas and other symbols required by
the editor are derived directly from these primitive objects, or they are
constructed by composing several of them to form a single composite object.
A graphical object in Garnet is represented by a schema that consists of a

set of slots and a value for each slot. The values of the slots denote relevant
properties of the object. Garnet also provides aggregates for creating
hierarchical structures.

Attributed Syntax Trees. The graphical editor represents RTGIL formu-
las internally as attributed syntax trees. A syntax tree represents the
structure of the corresponding RTGIL formula, and the attributes provide
layout information. A node in the syntax tree represents a rectangular box,
which contains the corresponding graphical formula. The attributes—left,
top, width, and height—define the position of the box in the editing area.
The attribute grammar relates the position of each box to the positions of
the boxes for its parent and its siblings in the syntax tree.
The attributed syntax trees are implemented by Garnet aggregates; the

nodes in the tree are schemata, and the attribute values are kept in slots.
Figure 4 shows an RTGIL formula, the structure of the formula with a
rectangular box around each of its subformulas, and the structure of the
formula represented by a Garnet aggregate.

Attribute Evaluation. In our implementation, an attribute value of a
node in the syntax tree is computed as a function of attribute values of
other nodes. When an attribute value changes as the result of an editing
operation, the other attribute values that depend on it must be recomputed.
The consistency of the attribute values ensures that the formulas con-
structed using the editor are syntactically correct and appropriately posi-
tioned on the display.

44 • L. E. Moser et al.

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 1, January 1997.



The constraint maintenance facilities of Garnet are used to establish the
relationships between the values of slots in different schema. The value of a
slot is computed only if it is actually required in the evaluation of other
slots. This lazy method of evaluation results in a reasonably efficient
implementation.

Editing Operations. When a formula is constructed using the graphical
editor, the corresponding attributed syntax tree is built incrementally. The

Fig. 4. An RTGIL formula, the structure of the formula with a rectangular box in thin lines
around each of its subformulas, and the structure of the formula represented by a Garnet
aggregate.
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formulas generated by the editor initially contain boxes that are expanded
into well-formed formulas during subsequent editing, as shown in Figure 3.
Each expansion of a box corresponds to a production in the grammar and a
corresponding operation on the attributed syntax tree. As the user per-
forms editing operations, the attributed syntax tree is updated to reflect
the edited formula.
Editing operations fall into one of two categories: subtree replacement

and attribute modification. Operations such as deleting a subformula and
expanding a box correspond to removing a subtree from the syntax tree and
replacing it with a new subtree. Routines for pruning a specified subtree
and grafting a new subtree in its place are provided. Operations such as
resizing an arrow or supplying an extra parenthesis do not change the
underlying tree structure but only change the value of the appropriate
attribute. Changing the value of an attribute in the syntax tree may, of
course, require reevaluation of other attributes in the tree.

4. THE THEOREM PROVER

The structure of the RTGIL theorem prover is shown in Figure 1. The
decision procedure and the counterexample generator that comprise the
theorem prover are described below.
Theorem proving in any temporal logic that subsumes propositional

calculus is at least NP-hard. Due to the greater expressiveness of most
temporal logics, it is usually at least PSPACE-hard. Our approach to
controlling that complexity is to have the human work closely in conjunc-
tion with the theorem prover. The RTGIL theorem prover is a satisfiability
checker based on a decision procedure for RTGIL, rather than a Gentzen-
style theorem prover based on inference rules. The user, working in the
theory defined by the system specifications and the underlying logic,
creates theorems and proofs and submits them to the decision procedure for
validation.
To create and validate the proof of a theorem T, the user selects a subset

of the axioms and previously proved lemmas and theorems as the premises
P1, P2, . . . , Pn of the proof. It is the user’s responsibility to select a set of
premises sufficient to establish the theorem but small enough to keep the
proof time reasonable; intermediate lemmas and theorems may be re-
quired. The graphical editor displays the proof represented by the
formula P1 ∧ P2 ∧ . . . ∧ Pn f T in its graphical form, as illustrated in
Figure 2.
The reduction module, shown in Figure 1, converts the graphical repre-

sentation of this implication into a textual representation for use by the
theorem prover. The textual representation is generated by traversing the
syntax tree and ignoring all attributes that are not relevant to the theorem
prover, in particular the layout attributes. The Lisp S-expression so gener-
ated for the implication is then submitted to the theorem prover for
refutation.
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The theorem prover invokes the decision procedure on the negation of the
implication. If the decision procedure finds a satisfying model for the
negated implication the attempted proof fails, and the generated model is a
counterexample to the attempted proof. In this case we refer to the
attempted proof as an “invalid proof.” If no such satisfying model exists the
implication is valid, and the attempted proof succeeds.
The theorem prover exploits the fact that RTGIL, as a propositional logic,

is decidable [Ramakrishna et al. 1996b]. Quantification is, of course,
necessary to specify and verify complex properties of concurrent real-time
systems. We plan to integrate the theorem prover into a verification
environment, such as EHDM [Crow et al. 1990] or PVS [Owre et al. 1995],
which includes decision procedures for other theories, as well as a Skolem-
izer and facilities for naming, typechecking, and modularization. In such a
verification environment, existentially quantified formulas are reduced to
ground terms, which the decision procedures can handle, by having the
user supply instances of the existentially quantified variables. For RTGIL,
the time variable never needs to be instantiated, since it is hidden from the
user.

4.1 The Decision Procedure

As for most temporal logics, a decision procedure for RTGIL may be given
as an automata-theoretic method [Ramakrishna et al. 1996b]. In that
approach, the satisfiability problem for the logic is reduced to the empti-
ness problem for the corresponding automaton. For typical formulas, the
automata-theoretic method is unnecessarily inefficient in both time and
space. The decision procedure that we have implemented is therefore a
tableau-theoretic method. It is an extension of the conventional tableau-
theoretic method [Wolper 1985], deriving its novelty from the timed tableau
and region tableau that it employs to handle real-time duration con-
straints.
A tableau for a formula f may be viewed as a directed graph in which

each node represents a set of states, and each edge represents a set of
transitions between states in the source and target nodes. Each node is
labeled by a set of subformulas of the formula f that hold in all of the states
represented by that node. The formulas in this set give rise to a set of
propositional requirements on the states represented by the current node
and a set of requirements for the future. The latter constrains the choice of
nodes that can be successors of the current node by constraining the truth
values of both primitive propositions and temporal formulas in future
states. An edge connects two nodes in the tableau if and only if, from every
state represented by the first node, a transition is possible to some state
represented by the second node. The representation of a set of states by a
node does not actually enumerate those states, but rather enumerates the
subformulas that hold at those states. By clustering states and transitions
in this manner, the tableau-theoretic method typically achieves better time
and space efficiency than the automata-theoretic method.
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For each node in the tableau that contains an eventuality formula, the
procedure checks for the existence of a path in the tableau such that the
eventuality is satisfied at some point in the future of that node. Nodes
containing eventualities that are not satisfied are pruned from the tableau.
If the procedure terminates by pruning all of the initial nodes from the
tableau, then the formula is unsatisfiable. Otherwise, a satisfying model
for the formula can be extracted from the tableau, in the form of an infinite
path through the tableau in which all eventualities are satisfied, by
projecting the set of formulas labeling each node of the path down to the
primitive propositions and their negations.
A detailed formal description of the tableau method underlying the

theorem prover is beyond the scope of this article, requiring the introduc-
tion of much additional technical machinery [Ramakrishna et al. 1996a;
1996b]. Here we confine ourselves to a high-level description using a simple
example to illustrate the major steps of the algorithm, which involve
construction of an untimed tableau, a timed tableau, and a region tableau.
Suppose then that we wish to check the satisfiability of the formula f

given by

which is represented textually as v3 ¬a, 3ai 3Bb))len (1.0, 2.0].

The Untimed Tableau Construction. The first part of the algorithm
constructs the initial untimed tableau corresponding to the formula f. We
start, as illustrated in Figure 5, with an initial node containing f. At every
step, we check the requirements imposed by the set of formulas that
comprise the current node and abandon a node if it leads to a propositional
inconsistency. For the initial node, the requirements on the future depend
on whether ¬a, the target of the first search, holds at present. This leads to
a case split, in which the initial node is split into two nodes, corresponding
to { f, a} and to { f, ¬a}. The formula ¬a which forced this choice is called a
reductor of the formula f.
Consider the node containing f and ¬a in Figure 5. Since the search to ¬a

is already satisfied, we require that f1 5 v3ai3Bb))len(1.0, 2.0] should
also hold at the current state. We say in this case that ¬a reduces f to f1.
The next possible choice for a reduction is based on the target of the next
search in f1, namely a. But this choice is precluded, since ¬a holds at the
current state. Thus, f1 is irreducible, and the requirement that f1 must
hold at the current state translates into a requirement that it must hold in
the immediate future. The node N2 is thus a completed node, and we create
a successor node to which we propagate the requirement f1.
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No further choices or reductions are forced in N1, which likewise becomes
a completed node, and its requirement f is propagated into its future. When
the new node representing the successor of N1 is reduced, it is split into
two nodes containing precisely the same sets of formulas as N1 and N2.
Consequently, we do not create new nodes for the successors of N1 but,
rather, insert edges to indicate that N1 and N2 are the possible successors
of N1.
Proceeding in this manner, we obtain the initial untimed tableau, shown

in Figure 6 with formula abbreviations in Table I, which is the graph
consisting of the completed nodes and the edges that have been deter-
mined. It is not difficult to see that the expansion of the tableau must
terminate, since all of the formulas introduced during the process are
subformulas of the original formula. (Here we use subformula in a semantic
sense, somewhat different from the usual syntactic notion of subformula.
See Ramakrishna et al. [1996a; 1996b] for the precise technical meaning.)
The extension of a branch can be terminated as soon as a previously
encountered set of formulas is obtained.
While the initial untimed tableau handles untimed safety properties

correctly, it does not, in general, handle liveness properties correctly,
because it may contain paths that postpone forever the fulfillment of
eventualities. An example eventuality is the formula f7 5 ¬[3b u 3)false,
which requires b to hold at some state in the future. In general, if there is
a node in the tableau containing a formula of the form ¬[3g u 3)false,
which requires the formula g to hold at some future state, but for which
there is no reachable node containing g, then that node and its associated
edges are removed from the tableau. This pruning of the tableau is
repeated, using an ordinary depth-first-search reachability check, until no
further nodes can be removed. In the worst case, the cost of this pruning is

Fig. 5. Construction of the initial untimed tableau by reduction and choice within nodes
(shown by means of thin lines) and propagation across nodes (shown by means of thick
arrows).
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proportional to the product of the number of occurrences of eventuality
formulas in the tableau and the total number of nodes in the tableau.

From Untimed to Timed Tableau. The tableau obtained at the end of
the previous stage is called an untimed tableau because, although it
handles non-real-time properties correctly, it does not yet have any quanti-
tative notion of time and, thus, cannot check the satisfaction of real-time
constraints. These constraints are already present in the nodes of the
untimed tableau as formulas of the form (len(0, D] and (¬len(0, D]. (Note
that the formula (len(d1, d2] is equivalent to (¬len(0, d1] ∧(len(0, d2] by
the semantics of RTGIL.) The decision procedure uses this information in
the nodes of the untimed tableau to build a timed tableau by introducing
timers to keep track of the time elapsed between events in the tableau.

Fig. 6. Construction of the initial untimed tableau for f. See Table I for the abbreviations f1
through f7.
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Consider now, as an example, the node N4 containing the formula f5 5
[2 u 3b)len(0.0, 2.0]. We start a timer T1 on transitioning into the node and
subsequently check, whenever b next becomes true (i.e., on transitioning
into node N8), that the timer satisfies T1 # 2.0. Similarly, for handling
lower bounds on interval durations, such as those required by the formula
f3 5[2 u 3b)¬len(0.0, 1.0], we wait until the next state when the formula f4
5 [2 u 3b)len(0.0, 1.0] becomes true and, at this transition, activate a
timer T2. (Observe that for f3 to hold now, f4 must hold before b becomes
true.) At the first subsequent time when b becomes true, we check that
T2 5 1.0. A timer is deactivated as soon as the right endpoint of the
interval that it is timing has been encountered.
In this manner, we obtain a timed tableau in which a set of active timers

is associated with each node and in which a set of timer actions (activation
and deactivation) and timer tests is associated with each edge. The timer
augmentation details for the example are listed in Tables II and III.

The Region Tableau and Emptiness Checking. Having obtained the
timed tableau, we now check that it contains a trace that respects not only
the liveness conditions, but also the real-time constraints imposed by the
timers. We use a variation of Dill’s algorithm [Dill et al. 1989] to check
whether such a trace exists.
Consider, for instance, the transition that takes us from node N2 to node

N4, while activating the timer T1. The value of T1 in node N4 satisfies the
trivial condition {0.0 # T1}. Such a set of constraints on the active timers
associated with a node is called its timer region. Consider now an outgoing
transition, say (N4, N6), which carries the timer condition T1 # 2.0. By
our model-theoretic assumption, each state has a nonzero duration, so T1 is
strictly greater than 0.0 when an outgoing transition is taken. The transi-
tion (N4, N6) can be taken only if there is a nonempty intersection between
the region {0.0 , T1} associated with the source node and the region {T1 #
2.0} defined by the transition constraints. Since this is so, the transition
can be taken. In the process of taking this transition, we must also activate
the timer T2. For the node N6, the timer values must, therefore, satisfy the

Table I. Abbreviations for Formulas used in the Example
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following set of conditions:

$0.0 , T1 , 0.0 # T2 , T2 , T1 , T1 2 T2 # 2.0%

This set of conditions defines the timer region associated with N6, when
entering it from N4 as above. Observe that there is another path by which
it is possible to enter N6, and this path might associate a different region
with N6, requiring replication of this node. However, for our simple
example, both paths produce the same region for N6, and no replication is
required. In our construction, we must also delete any transition that
yields an empty intersection between the previous region and the region
defined by conditions of the next transition.
We call the graph obtained after the above steps have been completed a

region tableau. Dill et al. [1989] have shown that there is an effective and,
in fact, canonical representation of regions using so-called difference
bounds matrices and that the construction of this graph terminates when
rational numbers are used for timer conditions. The region tableau for our
simple example, however, contains the same nodes and edges as the timed
tableau; the regions associated with each node are listed in Table IV.
Since building the region tableau may eliminate paths from the untimed

tableau, a further round of tableau pruning is needed to ensure that
eventualities are fulfilled. The original formula f is satisfiable if and only if
at the end of this step an initial node of the tableau remains. In our
example, no transition is eliminated during the construction of the region
tableau, and this check need not be repeated. It is easy to extract a
satisfying model for the formula f from the final tableau.

Table II. Active Timers Associated with Nodes in the Timed Tableau
(nodes with no active clocks have been omitted)

Table III. Timer Conditions and Actions Associated with Transitions in the Timed Tableau
(edges with no timer actions and no timer conditions have been omitted)
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Efficiency Considerations. Although we have described our construction
in three distinct steps for expositional ease, it is more efficient to construct
the region tableau on-the-fly while maintaining its strongly connected
components. We define a bottom strongly connected component to be a
strongly connected component that does not lead to any other strongly
connected component of the graph. As soon as a bottom strongly connected
component of the region tableau is constructed that is not self-fulfilling
(i.e., does not satisfy all of its eventualities), that component can immedi-
ately be deleted from the tableau, thus saving memory space, which is a
critical resource. If a bottom strongly connected component is constructed
that is self-fulfilling, the procedure terminates with the answer that the
formula is satisfiable, and a satisfying model for the formula can then be
extracted.
The advantages of this on-the-fly approach are that the space require-

ments are smaller and that the entire tableau need not be constructed
before a satisfying model is found. The disadvantage is that the procedure
might be slower because some bottom strongly connected components may
have to be recomputed each time they are reached by different paths. This
enhancement to the decision procedure causes invalid proofs to be identi-
fied substantially more quickly, although valid proofs may take slightly
longer to verify. In most verification contexts, this is an advantageous
trade-off.
In Ramakrishna et al. [1996b] we showed the elementary decidability of

RTGIL by reducing its decision problem to the emptiness problem of timed
Büchi automata [Alur and Dill 1990]. The decision procedure is in EXP-
SPACE. For a formula with n propositional and temporal terms, depth k of
interval nesting, and size t of the binary encoding of the timing constants
in the formula, we obtain a DEXPTIME(n2k z k z log n 1 t z log t) decision
procedure. This complexity is at least as good as that for any other
decidable dense real-time temporal logic known to us. In practice, the
decision procedure is quite well matched to the human user. A proof that is
too complicated to be decided in a reasonable time by the decision proce-
dure is also sufficiently complicated that the human is likely to have made
mistakes while devising it.

4.2 The Counterexample Generator

If the decision procedure determines that an attempted proof is invalid, the
user can invoke the counterexample generator to produce a counterexample

Table IV. Regions Associated with the Nodes in the Region Tableau
(nodes with no active clocks have been omitted)
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to the invalid proof. A model satisfying the negation of the implication
representing the proof is then extracted from the tableau. This model is a
counterexample to the invalid proof.
The counterexample is displayed in an auxiliary window (shown in

Figure 2) as a sequence of contiguous intervals of a computation, repre-
sented as a sequence of rectangles, with a list of values of the predicates in
each interval and with real-time constraints below the intervals. A timing
diagram is also shown if the user selects that option. By associating the
targets of the searches in the formulas of the proof with the intervals in the
sequence at which the predicates become true or false, or the points in the
timing diagram at which the signals rise or fall, the user can more readily
discover the fallacy in the reasoning and correct it (see the example in
Section 6.3).
In addition to checking formulas for validity, the user can also invoke the

decision procedure to check a formula for satisfiability. The decision
procedure then tries to find a satisfying model for the formula. If such a
satisfying model exists, the user can invoke the counterexample generator
to extract a model from the tableau and to display it. Satisfiability checking
enables the user to determine whether a set of specifications is consistent.

5. THE DATABASE AND PROOF MANAGER

The RTGIL environment also includes a simple database and proof man-
ager, shown in Figure 1 and described below. The most interesting issue
here is how the graphical formulas of RTGIL are stored efficiently.

5.1 The Database

In the RTGIL database, formulas are stored on disk in Unix files. Several
formulas can be stored in the same file by associating a unique name with
each of them; these names are used for subsequent retrieval of formulas.
The user can invoke the editor to display the names of the formulas in a file
and to load, add, or delete a formula to, or from, a file.
A textual representation is used to store RTGIL formulas in a file,

because the graphical representation would require an excessive amount of
storage. This textual representation is different from that used by the
theorem prover, since now it is necessary to store layout attributes needed
to reconstruct the graphical representation of the formulas.
A formula is stored in the form of Lisp function calls (with appropriate

arguments) to specific functions that reconstruct the attributed syntax
tree. These are precisely the functions that are invoked by the syntax-
directed editor during the construction of the formula. This method of
storage allows the formula to be easily reconstructed and is more space
efficient than storing the attributed syntax tree itself.

5.2 The Proof Manager

The RTGIL proof manager aids the construction of large proofs. A specially
designated file is used to store information about proofs that have been
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successfully validated by the theorem prover in the current verification
effort.
For each formula in a file, the user can invoke the proof manager to

determine if a proof for the formula already exists and to list the premises
of the proof. If a proof does not exist, the editor interactively queries the
user for the premises of the proof. The user then lists the appropriate
specifications and lemmas by name. When the user has finished supplying
the premises, the editor displays the graphical formula that represents the
proof. The theorem prover immediately proceeds to check the validity of
this formula. The user can also construct a proof directly and then invoke
the theorem prover to check whether or not the proof is valid.
If an attempted proof succeeds, the proof dependency file is updated to

include information about the proof and the time at which it was per-
formed. This information is used to ensure that the proof is up-to-date by
checking that neither the theorem nor any of the premises of the proof has
been modified since the time of the proof. The proof manager also detects
circularities in a proof and ensures that no cycles are introduced into the
proof dependency graph.
A prove-all option allows the user to proof check the entire proof

dependency graph above a specific formula. This option rechecks the
validity of those proofs that are out-of-date, using the last modification
times of the formulas involved.

6. AN EXAMPLE APPLICATION

We now present an example application of the use of the RTGIL environ-
ment for reasoning about real-time properties of an input-output system.
The input-output system is based on a four-phase handshaking protocol
and is widely used in industrial control computers, in embedded computers,
and in personal computers. In such a master/slave system, the input and
output are controlled by the processor which selects the device to, or from,
which data are to be transferred, as Figure 7 illustrates. In this example,
we only show the input from the device to the processor and present
specifications for a single device. Generalizations to both input and output,
and to multiple devices, are straightforward.

Fig. 7. An input-output system based on a four-phase handshaking protocol.
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6.1 The Input-Output System

The input-output system involves two agents: a requester (the processor)
and a responder (the device). The requester sets the following:

—addr: a predicate representing the presence of address information on
the address bus.

—req: a boolean control signal indicating to the responder that the re-
quester has placed address information on the address bus.

The responder sets the following:

—data: a predicate representing the presence of data on the data bus.
—resp: a boolean control signal indicating that the responder has received
the requester’s address information and that the responder has placed
information on the data bus for the requester.

Initially, all four signals are false.
The handshaking protocol operates in four phases:

(1) The requester places information on the address bus and, after a short
delay, sets req to true. The delay between setting addr and setting req
is intended to ensure that the information on the address bus is
available to the responder before the responder detects that req has
become true.

(2) The responder detects that req has become true and reads the address
information on the address bus. It then places the requested informa-
tion on the data bus and, after a short delay, sets resp to true.

(3) The requester detects that resp has become true and reads the informa-
tion on the data bus. At this point, the requester knows that the
responder has detected that req has become true and has read the
information on the address bus. The requester then sets addr and req to
false.

(4) The responder detects that req has become false and knows that the
requester has read the information on the data bus. The responder then
sets data and resp to false.

Once the requester has detected that resp has become false, the requester
can restart the cycle by placing further information on the address bus.
The specifications for the four-phase handshaking protocol are given in

Appendix B. The relationships between these specifications and the conven-
tional timing diagram representation of the protocol are given in Figure 8.
The specifications are labeled S for the requester and R for the responder.
This example illustrates significant advantages of RTGIL for specifying

real-time constraints. Frequently, system designers need to express con-
straints on the durations of intervals between one signal and the next
signal. For example, Specification S1 constrains the duration of the inter-
val between setting addr and setting req to be between 1.0ms and 2.0ms.
Another common need is to ensure that a signal, once set, remains set for a
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certain minimum duration to prevent glitches in the logical circuitry. For
example, Specification S7 requires that req must remain true for more than
10.0ms before going false again. Moreover, practical systems must react
appropriately when one of the agents fails—for example, the processor
must not wait forever. Consequently, Specification S7 also requires the
requester to remove its req signal within 20.0ms even if no resp signal is
detected. The durations of the data and resp signals are similarly con-
strained.
The specifications become more complex when two timing constraints

interact. For example, Specification S9, which requires req to become false
2.0ms to 5.0ms after resp becomes true, may conflict with Specification S1.
Consequently, Specifications S8, S9, and S10 involve a three-way case split.
Specification S9 represents the normal case in which resp is neither early
nor late; thus, the timing of req going false is determined relative to resp
becoming true, without conflicting with the constraints of Specification S7.
If resp becomes true sufficiently early, Specification S8 determines the
timing of req going false. If resp becomes true too late, or never becomes
true, Specifications S10 determines the timing of req. This case split is not
an artifact of RTGIL, but is inherent in the application and, indeed, in
many other applications whose timing constraints are precisely specified.
To be effective in practical applications, a real-time temporal logic must be
able to express complex temporal constraints.

6.2 Proof of a Time-Bounded Recurrence Property

The following theorem expresses the time-bounded recurrence property
that, starting from a state at which all four signals are false, the requester
having set req to true and then to false again, there exists another state at
which all four signals are false and that state occurs within 17.0ms.

Fig. 8. The relationships between the specifications and the conventional timing diagram
representation of the four-phase handshaking protocol for the input-output system. The
specifications are labeled S for the requester and R for the responder.

Design of Concurrent Real-Time Systems • 57

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 1, January 1997.



This property, that the system returns to a quiescent state in which it is
available for the next activity within a real-time bound, is precisely the
type of property that must be demonstrated for many practical applica-
tions.
To add interest to the proof, we do not use Specifications R8, R9, and

R10. In effect, we demonstrate that, even if the handshaking fails so that
the responder does not detect req becoming false, the values of the time
constants are such that all four signals indeed return to false within
17.0ms.
In Appendix B we present the lemmas for the proof of the theorem. The

lemmas and proofs were created by the human, using the graphical editor,
and were then submitted to the theorem prover for validation. This
approach to automated theorem proving, which is used in specification and
verification systems such as EHDM [Crow et al. 1990] and PVS [Owre et al.
1995], has the advantage that it exploits the understanding and creativity
of the human and the completeness and precision of the theorem prover. It
permits mechanical theorem proving within the time and space limits of
existing workstations.

Proofs of Invariant Properties. Proofs involving initial properties, rather
than invariant properties, are less expensive for the theorem prover and
are easier for humans to understand. Since all of our specifications but one
are invariant properties, we use them as initial properties to prove an
initial property (Lemma L11) and then use metatheoretic reasoning to
derive the invariant property expressed by the theorem.
From the semantics of RTGIL, it follows that, if (hF ∧ S0) f G is valid,

then hF f h(S0 f G) is valid. In the proof, we let S0 be the initial
specification, hF the remaining invariant specifications, G Lemma L11,
and hT the theorem to be proved. Using the theorem prover, we then prove
that h(S0 f G) f (S0 f hT) is valid (see Figure 11). From the semantics
of RTGIL, we then have the desired result that (hF ∧ S0) f hT is valid.

Example Proofs. Lemmas L7 and L10 are two of the key lemmas used in
the proof of the theorem. Lemma L7 establishes that the duration of the
interval from req to ¬resp is bounded by 13.0ms and 27.0ms. To perform the
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proof of Lemma L7, shown in Figure 9, the user first creates the formulas
that comprise the proof using the graphical editor and stores them in the
specification database with the names S0, L6, R7, L3, and L7. The user
then invokes the theorem prover, whereupon the proof manager determines
that a proof does not already exist. The graphical editor then interactively
queries the user to supply the premises of the proof. The user supplies the
names S0, L6, R7, and L3, and the editor automatically generates the proof
in its graphical form and displays it to the user. The theorem prover then
checks the validity of the proof as represented by the given implication. The
proof of Lemma L7 required 31 seconds by the theorem prover on a
167MHz Sun UltraSPARC workstation.
The graphical nature of RTGIL makes it easy for the user to create

specifications and proofs. Consider Specification R7, illustrated in the proof
of Lemma L7. The user constructed the interval from resp to ¬resp and
constrained the duration of that interval to be more than 10.0ms and at
most 20.0ms. The forward searching, and the local searches to the next
state at which a search predicate is true, makes the logic more operational

Fig. 9. The proof of Lemma L7. In this proof, the bounds of 3.0ms and 7.0ms on the interval
from req to resp, established by Lemma L6, are combined with the bounds of 10.0ms and
20.0ms on the interval for which resp remains true, required by Specification R7. Lemma L3
establishes that data is false when resp becomes false. Note that in Lemma L6 the strong
search and the strong interval imply that resp must become true and that the interval is
nonempty. This result is combined with Specification R7 which, as an invariant, is applicable
whenever resp becomes true.
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and, therefore, easier for system designers to use. Furthermore, the real-
time constraints are naturally expressed as bounds on the durations of
intervals.
In the proof of Lemma L7, the duration of the interval from req to resp to

¬resp and ¬data is naturally derived from the constraint on the duration of
the interval from req to resp, given in Lemma L6, and the duration of the
interval from resp to ¬resp, given in Specification R7. Lemma L3 deter-
mines that data is false when resp becomes false. Note how these three
formulas are aligned in the proof so that the states at which resp is true
and the states at which resp is false are positioned vertically. We have
found that this alignment makes it easy to construct proofs, and to check
them, by stepping down the formulas of the proof making certain that each
specification or lemma does indeed properly match those above it.
Lemma L10 concludes that either the interval from ¬req and ¬addr to

addr is bounded below by 18.0ms, or else the interval contains a time at
which resp and data become false, as indicated by the double arrowhead.
The proof of Lemma L10, shown in Figure 10, looks more complex than that
of Lemma L7, but really it is just a case split, simpler than the proof of
Lemma L7 and validated by the theorem prover in 16 seconds. In general,
initial properties are computationally more tractable than henceforth prop-
erties, especially when those properties involve real-time constraints.
Again, in constructing the proof of Lemma L10, the user first stores the

formulas that comprise the proof in the specification database. On invoking
the theorem prover for Lemma L10, the user finds that no proof exists and
then supplies the graphical editor with the names S0, S12, S13, S14, L2,
and L5 as the premises of the proof. The editor then assembles the proof
and displays it to the user in its graphical form, whereupon the theorem
prover checks the validity of the proof.
Finally, in Figure 11 we exhibit the proof which yields the theorem that

expresses the time-bounded recurrence property. This proof required 27
seconds by the theorem prover. To show that the theorem follows from the
original specifications, we apply the metatheoretic reasoning described
above.
Construction of the specifications and proofs for the four-phase hand-

shaking protocol example took about five person-days spread over a month.
Multiple iterations were required to achieve appropriate specifications.

6.3 A Counterexample Model

In the event that an attempted proof is invalid, the user can request the
counterexample generator to extract a counterexample from the tableau
and to display it. For example, while attempting to prove Lemma L10, the
user accidentally used Lemma L3 in place of the very similar Lemma L5,
resulting in an invalid proof. The user then requested the counterexample
generator to provide the counterexample shown in Figure 12.
We now examine the counterexample to determine why the proof failed.

The only difference between Lemma L3 and Lemma L5 is the substitution
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Fig. 10. The proof of Lemma L10. In this proof, Specifications S12, S13, and S14 form a case
split that determines how long a period must elapse between req becoming false and addr
becoming true, depending on when resp becomes false. Lemma L10 shows that either this
interval is more than 18.0ms, or else it contains a time at which resp and data become false, as
indicated by the double arrowhead. Lemmas L2 and L5 show, respectively, that addr and data
are false when req and resp become false.
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of ¬req for resp in the third search. The proof of Lemma L10 involves a case
split that depends on when resp becomes false after req has become false,
and on resp and data being false simultaneously, as required by both
Lemma L3 and Lemma L5.
However, the erroneous use of Lemma L3 in the proof allowed, at the

time req became false in the third interval, resp to be false without data
being false. This satisfies Specification S12 of the case split and permits the
interval from ¬req to addr (the third and fourth intervals) to have a
duration greater than 10.0ms. Subsequently, in the fifth interval, both resp
and data become false but only when addr also becomes true, in contradic-
tion to Lemma L10.

Fig. 11. This proof yields the theorem that expresses the time-bounded recurrence property.
The proof employs Specification S0 and Lemma L11. To see that the theorem follows from the
original specifications, we apply the metatheoretic argument of Section 6.2.
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Comparing the sequence of intervals in the counterexample with the
sequence of target states in Lemma L3, it is clear why that lemma did not
achieve the desired effect and what had to be done to correct the proof.
The reasoning employed in these proofs is intricate, because of the

interactions between real-time constraints, non-real-time temporal (causal-
order) constraints, and nontemporal logical constraints. It is best checked
mechanically and exhaustively by a computer rather than by a human. In
contrast, the construction of the proofs, by selection of the appropriate
specifications and lemmas, is a highly skilled and creative human activity
requiring considerable understanding of the application and of the reasons
why particular theorems and lemmas must hold for that application. Not
infrequently, a proof fails because of some human oversight during its
construction, but examination of the counterexample generated by the
theorem prover usually reveals quite quickly the error or omission in the
proof.

7. RELATED WORK

The original idea of the graphical environment and the need for temporal
reasoning with real-time constraints arose from our experience with the
EHDM specification and verification system [Crow et al. 1990] and the
design verification of SIFT [Moser and Melliar-Smith 1990]. RTGIL has

Fig. 12. The top of the figure shows a sequence of contiguous intervals of a computation,
represented as a sequence of rectangles, with a list of values of the predicates in the interval.
If a predicate is not listed, it can have either value true or false in the interval. Below the
sequence of intervals are the real-time constraints satisfied by the computation, and below
them is a timing diagram for the predicates.
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evolved from the interval logic of Schwartz et al. [1983], a textual interval
logic for which formulas were illustrated with graphical depictions [Mel-
liar-Smith 1988]. From that textual logic and its graphical depictions, we
developed GIL [Dillon et al. 1994], a logic less powerful than RTGIL in that
it is defined on a discrete, rather than a dense, time line and has no
capabilities for reasoning about real time. The decidability of GIL and
RTGIL are established in Ramakrishna et al. [1996a; 1996b] by means of
automata-theoretic decision algorithms, which are less suited to mechani-
zation than the tableau procedure described here and implemented in the
RTGIL environment.
A widely used graphical design environment is STATEMATE [Harel et

al. 1990], which is based on the statechart visual formalism [Harel 1987]
and is oriented toward the development (rather than the formal verifica-
tion) of complex reactive systems. Within STATEMATE, application sys-
tems are defined as state machines, represented graphically. Modechart
[Jahanian and Mok 1994] is a graphical language for expressing a system’s
timing behavior derived from the statechart formalism and based on a
first-order (hence undecidable) real-time logic RTL. A collection of tools,
called MT [Clements et al. 1993], has been developed for specifying and
analyzing real-time systems using modecharts.
Most of the work on temporal logic theorem proving using satisfiability

checking has been based on linear-time temporal logics, particularly Prop-
ositional Temporal Logic (PTL) [Manna and Pnueli 1992] and its deriva-
tives. Real-time extensions of PTL have been developed by several re-
searchers, the first of whom were Koymans et al. [1983]. The Temporal
Logic of Actions (TLA), developed by Lamport [1994], has also been
extended to allow reasoning about real-time systems [Abadi and Lamport
1994]. Recently, Lamport [1995] has introduced a pictorial representation
for TLA, called predicate-action diagrams, which like state-
charts depict states and state transitions. RTGIL, in contrast, depicts the
time line and changes of properties in time. One of the most comprehensive
temporal logic theorem provers based on PTL is the Stanford Temporal
Prover (STeP) [Bjørner et al. 1995]. A structured visual language of
temporal verification diagrams [Manna and Pnueli 1994] is used for guid-
ing, organizing, and displaying proofs, but the temporal formulas are
purely textual unlike the graphical formulas of RTGIL. Recently, STeP has
been extended with capabilities for reasoning about real-time based on
clocked transition systems [Kesten et al. 1995].
TRIO [Ghezzi et al. 1990] is a first-order temporal logic language, based

on PTL, for executable specifications of real-time systems. Unlike most
other logics described here, TRIO allows quantification over time values,
enhancing expressiveness but making verification more difficult; indeed, in
its most general form, TRIO has an undecidable satisfiability problem. A
model-checking2 tool [Felder and Morzenti 1994] has been developed for

2Note that satisfiability and model-checking problems are not equivalent. In model checking,
we are given a model and must determine whether it is a satisfying model for the formula,
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TRIO that allows the user to test whether a history of the system satisfies
the specification. Another logic intended for specification and verification of
real-time systems is the Duration Calculus [Ravn et al. 1993]. The Dura-
tion Calculus is quite different from RTGIL in that it has an integral
operator and allows reasoning about cumulative behavior. Over a dense
time domain, satisfiability checking is undecidable for even the simplest
real-time fragment of the calculus, and without real-time, satisfiability
checking is nonelementary for the simplest fragment.
More extensive practical use has been made of model-checking tools in

the branching-time temporal logic, Computation Tree Logic (CTL), devel-
oped by Clarke et al. [1986]. Model checking in CTL is computationally less
expensive than model checking in linear-time temporal logics, such as
RTGIL. However, satisfiability checking in CTL is at least as difficult as
satisfiability checking in linear-time temporal logics. Furthermore, CTL
cannot express some useful properties, such as fairness. COSPAN [Har’El
and Kurshan 1990] is a widely used tool for model checking. Courcoubetis
et al. [1992] developed real-time COSPAN and provided model checking for
real-time systems. Verus [Campos et al. 1995], a more recent tool for
reasoning about real-time system designs based on CTL model checking,
determines bounds on the durations of intervals between events and
computes the number of events within an interval. Like many other
real-time tools, Verus is based on a discrete notion of time, which presents
problems for composition and refinement.
Schlör and Damm [1993] have developed tools for a graphical specifica-

tion language called Timing Diagrams. Specifications are created using a
graphical editor and resemble traditional informal timing diagrams, syn-
tactically different from but conceptually similar to the formulas of RTGIL.
The language lacks the real-time capabilities of RTGIL and is carefully
restricted so that computationally efficient algorithms can be used for
model checking. Somewhat similar is the work of Fisler [1996], who has
focused on the relationships between timing diagrams and schematic
diagrams for state machines and combinational logic.
Until recently, little was known about the decidability of dense real-time

temporal logics. Alur and Henzinger [1993] characterized the decidability
of a wide range of temporal logics and showed that most of the known dense
real-time temporal logics are undecidable. TCTL [Henzinger et al. 1992] is
an expressive dense real-time counterpart of CTL that has a decidable
model-checking problem, but an undecidable satisfiability problem. ICTL
[Alur et al. 1996b] extends TCTL to allow reasoning about hybrid systems
involving real-valued physical quantities. Model checking for TCTL and
ICTL are implemented efficiently in the HyTech tool [Alur et al. 1996b].
Alur, Feder, and Henzinger [Alur et al. 1996a] introduced Metric Interval

Temporal Logic (MITL) which, like RTGIL, is a dense real-time linear
temporal logic with a decidable satisfiability problem. MITL and RTGIL

whereas in satisfiability checking, we must determine whether a satisfying model for the
formula exists.
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appear to be mutually inexpressible. MITL defines intervals by real-time
duration bounds and then constrains the events that can occur in such
intervals. RTGIL defines intervals by the occurrence of events and then
imposes real-time constraints on the durations of intervals. Consequently,
RTGIL appears to be more appropriate for design of asynchronous event-
triggered systems, whereas MITL may be more suitable for design of
synchronous time-triggered systems.

8. CONCLUSIONS

The Real-Time Graphical Interval Logic environment described here is a
rigorous and formal, but fully interactive and graphical, environment for
specifying and verifying properties of concurrent real-time systems. RTGIL
is a dense real-time propositional interval temporal logic with an elemen-
tary decision procedure. It is suitable for specifying and reasoning about
asynchronous systems with real-time constraints. Logics such as GIL and
PTL are defined on a discrete time line, rather than on a dense time line,
and are incapable of expressing real-time properties.
The prototype RTGIL environment that we have developed includes a

syntax-directed graphical editor, an automated theorem prover, and a
database and proof manager. These tools provide construction and editing
of graphical specifications, a graphical representation of formal proofs, a
decision procedure with elementary complexity for a dense real-time tem-
poral logic, generation of counterexamples to invalid proofs in a graphical
representation, tracking of proof dependencies and detection of circularities
in a proof, and storage and retrieval of graphical specifications in a
database. The environment supports property-theoretic reasoning and hier-
archical abstraction, composition, and refinement. This allows the inevita-
bly complex chains of deduction about real-time properties of complex
systems to be broken down into small proof steps that are tractable for both
the human and the machine.
Our experience with the RTGIL environment has shown that it is

effective for specifying and reasoning about properties of concurrent real-
time systems. In addition to the input-output system presented in this
article (for which more than 70 lemmas and theorems have now been
proved), we have also used the RTGIL environment to specify and verify
properties of a railroad crossing system, an aircraft landing system, a
robot, and an alarm system.
The graphical representation of RTGIL is intended to be easier to use

and understand than the textual representation of other temporal logics. A
disadvantage of the graphical representation of RTGIL is that it occupies
more space on a workstation display than a textual representation. We are
now experimenting with a new graphical representation similar to the
conventional timing diagram shown in the input-output system example.
Such a representation tends to encourage the combination of several
properties into a single graphical formula, with the advantage of compact-
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ness, but with the potential disadvantage of overwhelming the capabilities
of the human and of the theorem prover.
The theorem prover has been found to be a useful tool for accurate

reasoning about real-time properties. In our current implementation, the
hard limit of memory exhaustion is typically more restrictive than the soft
limit of computation time. Although it is sometimes slow, the theorem
prover is quite well matched to the human. A proof that is too complicated
to be decided in a reasonable time by the decision procedure is also
sufficiently complicated that the human is likely to have made mistakes
while devising it. It is our experience that users learn quite quickly how
large a proof can be and yet still complete with a reasonable decision time.
Users typically choose to subdivide large proofs into smaller proof steps
rather than risk memory exhaustion or a long wait for the theorem prover.
Further work is required to improve the performance of the decision
procedure, especially to minimize the memory space required.
The counterexample generator is a particularly useful tool for debugging

invalid proofs. Matching the counterexample against an invalid proof helps
the user to see why the attempted proof was invalid and what must be done
to correct it. An enhancement to the environment, currently under consid-
eration, would adjust the alignment of formulas of an invalid proof to
correspond to the sequence of intervals in the counterexample, thus reduc-
ing the time to identify and correct the inadequacy in the proof.
Full exploitation of the RTGIL environment will depend on its integra-

tion into a general-purpose specification and verification environment, such
as EHDM or PVS, which supports other aspects of the design of complex
systems. Based on our experience, we are satisfied that, within such an
integrated environment, RTGIL is capable of specifying and verifying, in
many small steps, the properties of complex concurrent real-time systems.

APPENDIX

A. REAL-TIME GRAPHICAL INTERVAL LOGIC

We now provide a formal abstract syntax and model-theoretic semantics for
RTGIL. For conciseness we present the logic in its textual representation;
the correspondence with the graphical representation is similar to that
given in Dillon et al. [1994] for the non-real-time logic, GIL, and is not
repeated here.
An RTGIL formula is evaluated at a state within an interval. An interval

is defined by two search patterns a and b, which locate its left and right
endpoints, and is denoted by [a u b), which indicates that the interval
includes its left endpoint but not its right. A search pattern a consists of a
sequence of searches, each of which locates a state at which its target
formula holds. The RTGIL formula [a u b)f asserts that f “holds” at the first
state of the interval [a u b). We also define prefix intervals, denoted by
[2 ub), and suffix intervals, denoted by [a u 3).
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A.1 Syntax

The syntax of RTGIL is defined relative to a finite set P of propositions in
terms of its well-formed formulas (wff) and well-formed search patterns
(wfsp) as follows:

true and false are wff.
If p [ P, the p is a wff.
If D [ Q1, then len(0, D] is a wff,
where Q1 denotes the set of nonnegative rationals including `.

If f is a wff, then so is ¬f.
If f and g are wff, then so is f ∧ g.
If f and g are wff, then so are [a u b)f, [2 u b)f and [a u 3)f,
where a and b are wfsp.

If f is a wff and a is a wfsp, then 3 f and 3 f, a are wfsp.
Nothing is a wff or wfsp except if obtained by finite application of these
rules.

We use len(d, `) as an abbreviation for ¬len(0, d] and len(d, D] as an
abbreviation for len(d, `) ∧ len(0, D]. In addition to the usual derived
operators ∨, f, and [, we define the following derived temporal operators:

Eventually
{f [ ¬[3 f u 3)false

Henceforth
hf [ ¬{¬f

Strong interval
va i b))f [ [a u b) f ∧ ([a, b u 3)false ∨¬[a u b)false)

Strong search
{a, 3B f, b u g} g [ {a, 3 f, b u g} g ∧ [a u 3){f
{a u b, 3B f, g} g [ {a u b, 3 f, g} g ∧ [a, b u 3){f

Note that the definitions of eventually { and henceforth h result in their
standard temporal logic interpretations and that the definition of a strong
search depends on whether the strong search appears in the first or second
search pattern. Also note that a, b, and g could themselves contain strong
searches and that the braces { and } represent either [ and ) or v and )).

A.2 Models

We let R1 denote the set of nonnegative real numbers, I 5 [ xl, xr) any
left-closed right-open interval of R1 (where xr may be `), and P a finite set
of propositions. A model is a function M: I 3 2P. A state M( x) [ M(I) is
the set of propositions that have the value true at time x. A model M: I 3
2P is admissible if it is finitely variable and right continuous. Finite
variability means that, for any x, y [ I such that x , y, M takes on only
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finitely many different values between x and y. Right continuity means
that, for any x [ I, limy3x1M( y) 5 M( x). Finite variability guarantees
that there are finitely many state changes in any bounded interval of time,
while right continuity guarantees that a property can be observed only if it
holds over an interval of positive duration. Together these two properties
imply that there exists a sequence x0, x1, x2, . . . of time values that
partition the time domain I 5 [ xl, xr) into half-open intervals [ xi, xi11)
such that (1) x0 5 xl, (2) for all i, xi , xi11, (3) if xr , ` then, for some j,
xj 5 xr, (4) if xr 5 `, then limj3`xj 5 `, and (5) for all p [ P, the
valuation of p over [ xi, xi11) is constant.

A.3 Semantics

The semantics of RTGIL are defined in terms of the models relation u5,
using a special value ' in the case that a search to a formula fails. The
models relation u5 for a model M with time domain I 5 [ xl, xr) and for a
pair of indices x, y, where xl # x, y # xr or x 5 ' or y 5 ', is defined as
follows:

If x 5 ' or y 5 ' or y # x, then
(M, x, y) u5 f

If x Þ ' and y Þ ' and x , y, then
(M, x, y) u5 true and (M, x, y) uÞ false
(M, x, y) u5 p iff p [ M( x), where p [ P
(M, x, y) u5 len(0, D] iff y # x 1 D
(M, x, y) u5 ¬f iff (M, x, y) uÞ f
(M, x, y) u5 f ∧ g iff (M, x, y) u5 f and (M, x, y) u5 g
(M, x, y) u5 [a u b) f iff (M, Locate(a, M, x, y),

Locate((a, b), M, x, y)) u5 f
(M, x, y) u5 [2 u b) f iff (M, x, Locate(b, M, x, y)) u5 f
(M, x, y) u5 [a u 3) f iff (M, Locate(a, M, x, y), y) u5 f

where

Locate ~3 f,M, x, y! 5 5
z if x Þ ' and y Þ ' and x # z , y and ~M, z, y! u5 f

and for all w, x # w , z, ~M, w, y! uÞ f

' if x 5 ' or y 5 ' or y # x or ~x Þ ' and y Þ '

and for all w, x # w , y, ~M, w, y! uÞ f

Locate~~3 f,a!,M, x,y! 5 Locate~a,M,Locate(3f,M, x,y!,y)

A well-formed formula f is satisfied in a model M: R1 3 2P if and only if
(M, 0, `) u5 f. More generally, a formula f is satisfiable if and only if there
exists an admissible model M: R1 3 2P such that f is satisfied in M. A
formula f is valid if and only if ¬f is not satisfiable.
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B. INPUT-OUTPUT SYSTEM

B.1 Specifications for the Input-Output System

The specifications for the input-output system include an initial property
S0, a set of invariant properties S1–S4 and S7–S14 that define the behavior
of the requester, and a set of invariant properties R1–R10 that define the
behavior of the responder. Specifications S1, S7–S9, S11–S13, R1, R5, and
R7–R9 require progress in the handshake. Specifications S4 and R4 require
simultaneous removal of signals. Specifications S2, S3, R2, R3, and R6
ensure that signals are generated only when their preconditions are
satisfied. Specifications S10, S14, and R10 set bounds on the durations of
intervals for which signals persist. Note that Specifications S1–S4 and
S7–S14 constrain addr and req, the signals of the requester, but do not
constrain data or resp, the signals of the responder. Similarly, Specifica-
tions R1–R10 constrain data and resp, the signals of the responder, but do
not constrain addr or req, the signals of the requester. For reasons of space,
we do not depict all of these specifications here.
Specification S0 requires all of the signals to be false initially.

Specification S1 locates a state at which addr changes from false to true.
Following this transition, a state must be found at which req is true. The
duration of the interval until it is found must be greater than 1.0ms but less
than or equal to 2.0ms. Note the strong search, which ensures that a state
is found at which req becomes true, and the strong interval, which ensures
that the interval is nonempty.

Specification S2 requires that an interval from ¬req to req must contain a
state at which addr is true. Since this is an invariant property, it must
apply to a “short” interval immediately preceding the transition of req to
true. Consequently, addr must be true immediately before req becomes
true.
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Specification S3 is similar to Specification S2 except that, in place of req
and addr, we have ¬addr and req, respectively.

Specification S4 locates a state at which both addr and req are true. In
the next state at which either addr or req is false, both addr and req must
be false. In other words, both become false simultaneously.

Specification S7 requires req to remain true for more than 10.0ms and no
more than 20.0ms.

Specifications S8, S9, and S10 form a case split on when resp becomes
true. Specification S9 covers the typical case in which the duration of the
interval is determined by resp becoming true and is analogous to Specifica-
tion S1. Specification S8 addresses the special case in which resp becomes
true sufficiently early that the lower bound of S7 constrains the duration of
the interval in which req is true. Similarly, Specification S10 addresses the
special case in which resp becomes true sufficiently late that the upper
bound of S7 constrains the duration of that interval.
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In particular, Specification S8 asserts that, if resp becomes true within
5.0ms of req becoming true, then req becomes false between 10.0ms and
11.0ms of req becoming true.

Specification S9 asserts that, if resp becomes true between 5.0ms and
16.0ms after req becomes true, then req becomes false between 2.0ms and
5.0ms after resp becomes true.

Specification S10 asserts that, if resp becomes true between 16.0ms and
20.0ms after req becomes true or if resp does not become true before req
becomes false, then req becomes false between 18.0ms and 20.0ms of req
becoming true.
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Specifications S11–S14 are similar to S7–S10 and are not illustrated
here. The specifications for the responder are similar to those for the
requester. Specifications R1 and R5 are similar to Specification S1, ex-
pressed for data and resp and for req and data, respectively, rather than for
addr and req. The duration of the interval for Specification R1 is between
1.0ms and 2.0ms, while that for Specification R5 is between 2.0ms and 5.0ms.
Specifications R2 and R3 are similar to Specification S2, expressed for resp
and data and for ¬data and resp, respectively, in place of req and addr.
Specification R4 is similar to Specification S4 but expressed for data and resp
rather than for addr and req. Specification R6 requires that an interval from
¬data to data must contain a time at which req is true, and moreover that,
having changed data from true to false, the responder must detect that req is
false before it can set data back to true. Specifications R7–R10 are similar to
Specifications S7–S10 above and are not illustrated here.

B.2 Lemmas for the Input-Output System

The lemmas used in the proof for the input/output system are presented
below. Figure 13 depicts the relationships between these lemmas and their
role in the overall proof. The first five lemmas state simple properties that
involve no real-time constraints. Lemmas L1 and L2 deal with the proper-
ties of req and addr, while Lemmas L3, L4, and L5 concern primarily resp
and data. Lemmas L6 through L9 present relatively simple real-time
properties, derived from the sequential composition of intervals defined in
the specifications. Lemma L10 defines a more complex property involving a
case split that depends on the ordering of events. Lemma L11 is a special
case of the final theorem.
Lemma L1 asserts that, once req and addr have become false then,

between that time and the next time at which req becomes true, addr is
true, i.e., addr becomes true before req.
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Lemma L2 states that, once req has become true, when it becomes false
again, then addr is also false.

Lemma L3 resembles Lemma L2, but now applied to resp and data, i.e.,
once resp has become true, when it becomes false again, then data is also
false.

Lemma L4 asserts that, at some time in the interval between req
becoming true and its becoming false again, resp becomes true.

Lemma L5 is very similar to Lemma L3, substituting ¬req for resp as the
target of the third search.

Lemma L6 asserts that, once req has become true then resp must become
true, as indicated by the strong search with the double arrowhead. More-
over, the duration of the interval from req becoming true to resp becoming
true is more than 3.0ms and at most 7.0ms.
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Lemma L7, whose proof is shown in Figure 9, extends Lemma L6 to show
that once resp has become true, then both resp and data must become false,
and the duration of the interval from req to resp to ¬resp and ¬data is more
than 13.0ms and at most 27.0ms.

Lemma L8 requires that once req has become true it must become false
again and that it remains true for more than 10.0ms and at most 12.0ms.

Lemma L9 extends Lemma L8 to conclude that, for the interval from req
to ¬req and ¬addr, req is true throughout the interval and that resp is true
at some time during the interval. Moreover, the duration of that interval is
more than 10.0ms and at most 12.0ms.

Lemma L10, whose proof is shown in Figure 10, constrains the duration
of the interval from ¬req and ¬addr to addr. Either the duration of the
interval is more than 18.0ms, or it contains a time when resp and data are
both false and when the duration of the interval from ¬resp and ¬data to
addr is more than 2.0ms.
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Lemma L11 is very close to the final theorem in that it expresses an
initial property whereas the theorem expresses an invariant property.

Availability of the RTGIL Environment

The RTGIL environment is implemented in Common Lisp and requires at
least 32MB of main memory and 64MB of swap space. The tools and
documentation can be accessed from /pub/RTGIL at alpha.ece.ucsb.edu by
anonymous ftp or from www.beta.ece.ucsb.edu/rtgil.html.
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