
A Graphical Interval Logic for Specifying

Concurrent Systems

L. K. DILLON, G. KUTTY, L. E. MOSER, P. M. MELLIAR-SMITH, and

Y. S. RAMAKRISHNA

University of California

This article describes a graphical interval logic that is the foundation of a tool set supporting

formal specification and verification of concurrent software systems. Experience has shown that

most software engineers find standard temporal logics difficult to understand and use. The

objective of this article is to enable software engineers to specify and reason about temporal

properties of concurrent systems more easily by providing them with a logic that has an intuitive

graphical representation and with tools that support its use. To illustrate the use of the

graphical logic, the article provides some specifications for an elevator system and proves several

properties of the specifications. The article also describes the tool set and the implementation.

Categories and Subject Descriptors: D.2. 1 [Software Engineering]: Requirements/Specifics-

tions—kmguages; tools; D.2.2 [Software Engineering]: Tools and Techniques: F.3. 1 [Logics

and Meanings of Programs]: Specifying and Verifjing and Reasoning about Programs-nzech -

anical verification; specification techniques

General Terms: Human Factors, Languages, Verification

Additional Key Words and Phrases: Automated proof-checking, concurrent systems, formal

specifications, graphical interval logic, temporal logic, timing diagrams, visual languages

1. INTRODUCTION

One of the great challenges facing today’s software engineers is the develop-

ment of correct programs for real applications. Recent advances in hardware

reliability and fault tolerance technology can assure extremely low hardware

failure rates for devices. Unfortunately, technologies for digital hardware

design and software engineering have not matched this advance. The use of

computers in many critical applications is now primarily limited by the

reliability of system designs and implementations.

This research was partially supported by the NSF grant CCR-9014382 with cooperation from

ARPA. An early version of the article was presented at the 14th International Conference on

Software Engineering, May 1992 (Institution of Engineers Australia, IEEE Computer Society,

Association of Computing Machinery, Institution of Radio and Electronic Engineers Australia,

and Australian Computer Society).

Authors’ address: Department of Computer Science, University of California, Santa Barbara, CA

93106.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

01994 lo49-331x/94/0400-o131 $03.50

ACM Transactions on Software Engmeermg and Methodology, Vol 3, No 2, Aprd 1994, PP 131-165

Laura K. Dillon
Text Box
© ACM, (1994). This is the author's version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version was published in ACM TOSEM,
http://doi.acm.org/10.1145/192218.192226

Laura K. Dillon
Text Box

132 . L. K. Dillon et al.

Often, the most critical real applications involve concurrency, which in-

creases the difficulty of system development and validation. Modern methods

of structured programming, which are quite effective for sequential pro-

grams, are notoriously inadequate for concurrent ones. Moreover, the nonde-

terminism inherent in applications that involve concurrency and the reactive

character of those applications make them hard to test. Aggravating these

problems is the need to explore large spaces of possible executions, which

grow exponentially with the number of independent threads of control.

Formal methods for specifying and verifying systems can, in principle, offer

a greater assurance of correctness than informal design/code checks or

testing. Formal verification methods can demonstrate that a high-level design

meets formally specified correctness requirements, thereby reducing the risk

that faulty designs will be used as the basis for system development. Formal

specifications are valuable for defining interfaces between independently

developed software modules and for establishing software and interface

standards. Because the y provide a succinct and unambiguous statement of

system requirements, formal specifications can potential y be analyzed for

consistency, a particularly difficult and important problem for concurrent

systems. Formal specifications can also be used during the selection of test

data to suggest behaviors that should be tested and, later, to determine

whether the execution of a test case is correct or erroneous. Thus, system

developers can use formal specifications throughout the system life cycle to

guide development, maintenance, and enhancement.

In practice, however, system developers seldom make significant use of

formal specification and verification methods. We believe that this is due, in

large part, to the reliance of those methods on mathematical formalisms that

are difficult to understand and use. Formal specification and analysis meth-

ods must be made accessible to system designers and software engineers if

they are to be used in the development of real-world systems. Users must be

able to express the properties of the systems about which they wish to reason

as naturally as possible and to confirm mechanically that the specifications,

designs, testing criteria, and sample executions have the required properties,

Temporal logics [Barringer et al. 1984; Lamport 1990; Manna and Pnueli

1981; Wolper 1987] are well suited for specifying temporal properties of

concurrent systems. Experience has shown, however, that specifications of

even moderate-sized systems are too complex to be readily understood. This

complexity stems chiefly from the need to establish the temporal context

within which properties, such as bounded liveness and invariance, must hold.

Interval logics [Halpern and Shoham 1991; Schwartz et al. 1983] address this

problem by defining temporal intervals to represent such contexts. For exam-

ple, to express the requirement that a process that releases a lock on a

database must signal that it intends to enter the database before obtaining a

new lock, an interval might be used to represent the activity of the system

from the time that the process releases the lock until it acquires a new one;

the process would be required then to signal its intension within the re-

stricted context represented by the interval (bounded liveness).

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 2, April 1994

A Graphical Interval Logic . 133

Stylized pictures show complex timing relationships and dependencies

often more clearly than linear textural representations of the same informa-

tion. Such diagrams correspond more closely to common conceptualizations

than does linear text. Often, software engineers draw timing diagrams, like

those used to denote signal levels in hardware designs, when describing and

reasoning about properties of systems. Even logicians fluent in temporal logic

find timing diagrams helpful to explain the meanings of temporal logic

formulas and to motivate lines of reasoning (e.g., Gabbay [1987]). However, in

the absence of a formal semantics, timing diagrams cannot be used for

rigorous analysis of system properties. Pictorial documentation is typically ad

hoc and liable to ambiguous interpretation.

This article describes a visual temporal logic in which formulas resemble

the informal timing diagrams familiar to designers of hardware systems and

to software engineers. Graphical Interval Logic (GIL) has a formal model-the-

oretic semantics and is as expressive as propositional temporal logic with

Until and without Next [Ramakrishna 1993]. It, thus, provides an intuitive

and natural visual notation in which to express system specifications without

sacrificing the benefits of a formal notation. A visual editor allows GIL

specifications to be easily constructed and to be stored in and retrieved from

files. The editor also provides a visual interface to a proof checker and model

generator, which permit verification of temporal inferences.

The article provides an overview of GIL in Section 2. Then it presents

sample specifications for an elevator system in Section 3 and shows, in

Section 4, how a designer uses the specifications to reason about properties of

the system. Section 5 describes the GIL tool set, and Section 6 provides an

overview of the implementation. Related work is discussed in Section 7, with

conclusions and future work presented in Section 8. The Appendix provides a

model-theoretic semantics for the logic.

2. GRAPHICAL INTERVAL LOGIC

When reasoning about temporal properties exhibited by a concurrent system

during a computation, it is convenient to regard the system as passing

through a sequence of states. To model a nonterminating computation, the

state sequence must be infinite. A terminating computation can, likewise, be

modeled with an infinite state sequence by repeating, or stuttering, the final

state. This permits a concurrent system to be identified with the set of

infinite state sequences that represent its potential computations. GIL speci-

fications for a system describe properties of legal state sequences. That is, the

specifications must hold at the first state of every infinite state sequence that

represents a computation of the system. We adopt a total-order model of

computation, rather than a partial-order model, which has some advantages

for representing causality in concurrent systems [Pratt 1986], because total

orders are more readily abstracted into meaningful “intervals” that can be

represented pictorially at an appropriately high level.

A GIL formula is evaluated at a state in an infinite sequence of states. In-

finite state sequences, therefore, provide the contexts within which formulas

ACM TransactIons on Software Engineering and Methodology, Vol. 3, No. 2, April 1994.

134 . L, K, Dillon et al.

are evaluated. A formula that holds at a state in a context describes a

property of the state’s future within the context, or of the infinite tail

sequence that begins with the state and extends through the end of the

context. A reflexive interpretation of the future, in which the future includes

the present, allows a semantics that is insensitive to finite stuttering. This

facilitates the use of hierarchical abstraction and refinement while reasoning

about concurrency [Lamport 1993].

Intervals permit the specification of contexts within which properties hold.

We denote an interval by a left-closed right-open line segment: [~. Thus, an

interval shows the individual states in a context as points on a line segment,

with the horizontal dimension showing progression through the context (time

progresses from left to right). As suggested by the representation, every

interval has an initial point (state). However, since contexts are infinite, we

do not regard an interval as having a final point.

Interval formulas are the heart of the graphical interval logic. The basic

interval formula asserts that a formula holds at the first state of a designated

context (interval). Derived operators assert that a formula holds at every

point in a context or at some arbitrary point in a context. GIL, therefore, also

provides the usual temporal Eventually and Henceforth operators.

The logic provides two search primitives for use in specifying intervals.

—Search to a target formula ~, represented ---~ ~

—Search to the right end of the context, represented ---4

A search to a target formula locates the first future point at which the target

holds. The dot represents the point at which the search starts. The search

fails if the target does not hold at any future point (inclusive of the present)

in the context. A search to the right end of the context permits the specifica-

tion of a tail interval.

Searches can be composed sequentially, with each successive search start-

ing from the point, if any, located by the previous search. For example,

------ M

f
!-----~

locates the first point at which f holds and then, beginning from this point,

locates the next point at which g holds, We allow the shorthand notation

---~l-dg when the target f of the first search is a state formula, which does

not revolve any temporal operators. Because this shorthand produces more

compact formulas, we use it extensively in the examples below. 1 The search

*--d}--d is equivalent to ---4, provided that f holds at some future point;

however, if the search *--4 ~ fails, then *--4;--4 also fails. A tail search, when

it appears, must be the last search in a search pattern.

lAs a result, the examples are slightly less general than they might be, since a sequence of

searches cannot always be drawn on the same line. However, they are easily converted into more

general examples by drawing each primitive search on a new line.

ACM TransactIons on Software Engineering and Methodology, Vol 3, No. 2, Aprd 1994

A Graphical Interval Logic . 135

------ B4
f
L..... .+

H’

●✍✍✍✍✎✍✍✍✍✍✍✍☛

❞❆

● ✍✍✍✍✍ w
f

* ----- E-------M

i-r
.-~

true
L..--..---

d

●✍✍✍✍✍❇☞✍✍✍✍✍✍✍❞ ☛✍✍✍✍✍☛ ✍✍✍✍✍✍✍✍✍❞

f f

Ag
k ------------

2

[) *-------------------..--....--.B
+———~

Fig. 1. Examples of some derived intervals (left column) and their definitions (right column).

The extent of an interval is specified by means of a pair of search patterns,

which designate searches for locating the left and right ends of the interval.

Both searches begin from the same point. We, therefore, draw them one

beneath the other, with their start points aligned horizontally. The interval

determined by the searches is drawn directly beneath the searches, its left

end aligned horizontally with the point located by the first search pattern

and its right end aligned horizontally with the point located by the second

search pattern. For example:

-------------W
,f

------------------------------- ------- M

~—) g

The interval starts at the point located by the search for its left end and

extends up to, but does not include, the point located by the search for its

right end. The above diagram, thus, represents the interval that starts with

the first point at which f holds and ends just prior to the first point at which

g holds. The interval cannot be constructed if either search fails or if the

interval is empty (i.e., the point specified by the first search pattern does not

precede that specified by the second search pattern).

Figure 1 illustrates conventions that simplify the representation of several

common types of intervals. The first abbreviation, in which a single search

pattern specifies the extent of an interval, is permitted when the search for

the interval’s left end is a prefix of the search for its right end. Thus, the

interval in the first example begins with the first point at which f holds and

extends up to, but does not include, the next point at which g holds. The

interval cannot be constructed if f does not hold at any future point, if g does

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 2, April 1994.

136 . L. K. Dillon et al,

not hold at any point in the future of the first point at which f holds, or if g

holds at the point located by the search to ~.

The second example in Figure 1 is a special case of the first, in which the

target of the first search is true. A search to true succeeds immediately,

locating the point at which the search begins. The interval in the second

example, thus, begins with the point at which the specification is evaluated

and extends up to the next point (exclusive) at which ~ holds. The interval

cannot be constructed if f does not hold at any future point or if ~ holds at

the present point. Such intervals are used to specify finite prefixes of larger

contexts.

The triangle ~ in the third example in Figure 1 is called the point

operator. As illustrated by the example, the point operator appears directly

below the point located by the final search in a sequence of searches and

constructs the tail interval that starts with the point so located. The point

operator is used to locate a point within a context and, when the point is

located, assert that a property holds over the suffix of the computation

starting at that point. The point cannot be located if any of the searches fail.

The final example shows that, by itself, an interval line represents the full

context.

To assert that a formula h holds at the initial point of an interval, h is

drawn left justified below the left delimiter. For example,

-----------b+ 1
.f

.--------------------------

+------;91 (1)

h J

asserts that h holds at the first point of the designated interval. A formula

holds vacuously at the first point of an interval that cannot be constructed.

Thus, if either ~ or g never holds in the future, or if the first (future) point at

which ~ holds does not precede the first (future) point at which g holds, then

(1) holds by default. The right brace helps, visually, to delimit the formula.

The subformulas that appear in an interval formula (e.g., f, g, and h in the

above formula) may be arbitrary graphical interval logic formulas.

GIL provides the usual logical operators: A (conjunction), V (disjunction),

= (implication), = (equivalence), and ~ (negation). Formulas composed of

subformulas that contain intervals are drawn using a vertical layout. In

vertical layout, the operands of a binary operator are left justified, with the

first operand above the second and the operator between them, and a formula

to be negated is drawn left justified below the negation sign.

“fJ’’f’.f

Av =-i+

999f7

Conjunction is the default in vertical layout, so that the operator ~ can be

omitted in the fh-st example above.

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 2, Aprd 1994

A Graphical Interval Logic . 137

: ~

Tf

A
false }

1*-------H
f]

A

false 1

Fig. 2. Representation of invariants (top left) and eventualities (bottom left), and their defini-

tions (right column).

Both layout and precedence rules determine the grouping of operations.

GIL formulas obey a variation of Landin’s offside rule [Lanolin 1966], which

requires that every token of a formula lie in the lower right quadrant

determined by the upper left corner of the smallest rectangle that contains its

first token. The first token that does not obey this rule, called an offside

token, terminates the parse of a formula. The precedence of operators (from

high to low) is: negation, conjunction, disjunction, implication, and equiva-

lence. Binary operators associate from left to right. Right braces delimit

interval formulas and permit explicit grouping of operations.

The weak Until operator U of propositional temporal logic (PTL) is ex-

pressed in GIL as follows.

----------------------- -------------- w

‘f

v

1]
(2)

A

9 J

The formula asserts that g holds at the first point where either f does not

hold or g does hold, unless no such point is located. In the latter case, f (as

well as - g) holds at all future points. In other words, f holds at least until g

holds.

GIL provides a special syntax for invariants and eventualities. To assert

that a formula holds at every point in an interval, the formula is drawn

indented directly below the interval. To assert that a formula holds at some

point within an interval, the formula is drawn left justified directly below a

diamond O drawn on the interval. Fig-are 2 shows these conventions and

their definitions. The definition (top right) of the invariant notation (top left)

can be understood as follows. Since false does not hold at any point of a

context, the point formula holds precisely if the search to 1 f fails, i.e., if f

holds at all future points. Similarly, the formulas in the bottom row assert

that f holds at some future point.

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 2, April 1994.

138 . L, K. Dillon et al.

As noted above, an interval formula holds vacuously if any search per-

formed in locating the ends of the interval fails or if the interval is empty.

Thus, an interval formula is implicitly predicated on locating all search

targets and on locating the left end of the interval before locating the right

end. We, therefore, refer to the search operator and interval operator de-

scribed above as weak operators.

GIL also provides strong versions of these operators, which are useful in

specifications and in expressing the negations of interval formulas. A double

arrowhead denotes a strong search and asserts that the search succeeds

unless some prior weak search fails. A double line denotes a strong interval

and asserts that the point located by the search for the interval’s left end

strictly precedes that located by the search for its right end unless some

search fails. For instance,

------------------4----------------++!~.
9

L----- . ..---------------.#

~“ 1 (3)

k J

holds by default if the search for f fails. However, if this search succeeds,

then the formula requires that the subsequent searches for g and h succeed,

that the interval is not empty (h does not hold at the point located by the

second search), and that k holds at the first state of the interval.

The dual of an interval formula is obtained by changing the senses (strong

to weak and weak to strong) of the interval modality and of the searches for

the ends of the interval. This dual relationship implies that negation can be

moved into an interval formula by changing the senses of the interval and of

its searches. For instance, the negation of (3) is equivalent to

-----------------W------------------M
f ~

L---------------------------

~)h

7k 1

The Appendix gives formal definitions for the syntax and semantics of GIL.

3. AN EXAMPLE SPECIFICATION

We present a GIL specification for an elevator system to illustrate the ideas

in the previous section. The example includes specifications of basic safety

and liveness requirements, and also of more complex fairness requirements.

For simplicity, we consider an elevator with three floors. The specification

makes use of the following state predicates, for n = 1,2, 3. The predicate

at $ n is true when the elevator is at floor n and false when it is not. The

predicate goingup models a physical switch whose setting, when the elevator

ACM Transactions on Software Engineering and Methodology, Vol. 3, No 2, April 1994,

A Graphical Interval Logic . 139

leaves a floor, determines the direction of travel: up, if goingup is true, and

down, if goingup is false. The predicate open$ n is true when the doors to the

elevator are open at floor n and req $ n is true when there is an outstanding

request for service at floor n. Finally, When the elevator is at the second floor,

arriveup indicates whether it was going up or down when it arrived.

specifications are read from top to bottom and left to right. By convention,

we begin each specification with a context line, which represents a legal

execution of the system. The first specification expresses initial requirements,

and the remaining specifications describe system invariants. We associate

labels (shown in bold) with specifications for reference purposes below.

Init. The elevator begins operation at the first floor, all doors are closed,

and there are no requests for service.

[)
at$l

T Teq$l

7 wq$2

7 yeq$.3

1 opetl $1

T ope?t.$2

1 opal $3

1

Atnm, 1 s n < m <3. The elevator is never at two different floors

simultaneously.

at$)1
a

7 at$m 1

UpFrom$l. The elevator goes up when it departs the first floor, arriving at

the second floor without firs; visiting any other floors.

[)“
ut.$1

>
............------w

7 at$l

A

goingup

ut$2

[
7 at$l

7 at$3
‘i

The invariant in this formula is predicated on locating a point at which the

elevator has just left the first floor. The specification asserts that the elevator

is going up at every such point and that it reaches the second floor before

ACM Transactions on Software Engineering and Methodology, Vol 3, No. 2, April 1994

140 . L. K. Dillon et al.

either of the other floors. The strong search requires that the elevator

eventually arrives at the second floor and the strong interval requires that it

does not arrive there immediately upon leaving the first floor, but takes some

time to do so.

UpFrom$2 The elevator goes up when it departs the second floor precisely

if it goes directly to the third floor.

[)’
at$2

+
. +-l

7 u t$2

A

goingup >
~

+===+’
T at$g

7 at$l
-1

DownFrom$2 The elevator goes down when it departs the second floor

precisely if it goes directly to the first floor.

[)]
(Lt$2 I
*
.......---------- u

7 ut$.2

A

1 goi rtgup
~

at$l

[
1 Ut.$:

1 ([t$~’
~i I

DownFrom$3. The elevator goes down when it departs the third floor,

arriving at the second floor without visiting any other floors first.

[))
at.$s

*
..M

1 clt$3

A

1 goi?lyllp

Ut$z

~)
7 at$l

3 at$3
‘i I

ACM TransactIons on Software Engmeermg and Methodology-, Vol. 3, No 2, April 1994

A Graphical Interval Logic . 141

SafeOpen$n, n = 1,2,3. The doors open at a floor only when the elevator

is at the floor.

~)
P

>

e------------------- +4
open $n

A
at$tt / /

Safdlepart$n, n = 1,2,3. The elevator departs a floor only when the

doors at the floor are closed.

ReqService$n, n = 1,2,3.The doors open at a floor only in response to a

request for service at the floor.

[)
1 t“eq$tl

*

H+J’op’n$n
?’Cq$)l I I

WaitService$n, n = 1,2,3. A request for service at a floor is only canceled

if the floor is being serviced (the doors are open).

[
req$n

)

-
“------------- ---- w

q req$n

A

1 open$n 1 I

CancelService$n, n = 1,2,3. The doors do not remain open indefinitely,

and all requests for service at the current floor are canceled when they close.

[)
0JW2$0
e-

7 open$n

A

1 ~eq$n 1 1

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 2, April 1994.

142 . L. K, Dillon et al

ArriveUp. Whenever the elevator arrives at the second floor from the first

floor arriueup is true, and it remains true at least until the elevator departs

the second floor.
r ,.

ut$l

>
. w

at $2
L----------------.-.-w

~ “ “’”’”U’

7 at.$2 1

ArriveDown. Whenever the elevator arrives at the second floor f om the

third floor arriveup is false, and it remains false at least until the elevator

departs the second floor.

[)
at$.3

*
. w

at$,?
L.. ------------------+

~ a“’’’’”

7 cLt$2 11

ContinueUp. If the elevator is going up when it arrives at the second floor,

it continues going up when it departs the second floor precisely if someone

requires service at the third floor by the time the elevator departs.

[

1
)-

clt$2

U?77l~cup

>
-------------------- w

7 Clt$z

A

goingup
——

w?q$:~-1

ContinueDown. If the elevator is going down when it arrives at the

second floor, it continues going down when it departs the second floor

precisely if someone requires service at the first floor or no one requires

service at the third floor by the time the elevator departs.

a t.fw

7 a r-n”oeup }
>

------------w

7 at$2

A

7 uOi ~LylLp
——

(Yeq.$1 V 7 req$3) 11

ContinueUp and ContinueDown require that, once the elevator starts travel-

ing in a given direction, it changes directions only if no one requires service at

ACM TransactIons on Software Engineering and Methodology, Vol. 3, No, 2, April 1994

A Graphical Interval Logic . 143

a floor in that direction. The disjunction in ContinueDown permits (but does

not require) the first floor to act as the “home floor,” to which the elevator can

return when it is idle.

ServeReqsOnArrival$n, n = 1,2,3. If a passenger requests service at a

floor by the time the elevator reaches the floor, the elevator opens its doors

before departing the floor.

[)
1 Ut$n

*
-------------- M

at$?t

A

wy$ll
*

+-----+ 0’”’’’$’2
at$n

‘1 II

ServoNoConflict$n, n = 1,2,3. If a passenger needs service at a floor

while the elevator is at the floor and no one needs service at another floor,

then the elevator opens its doors before departing the floor.

[)
at$n 1 1

req$n

7 veq$m

1 req$k I
*

-----------------*I

F----+” $”’$” I

a t$n
J

>

J
We use m and k in this and the remaining specifications to denote the other

floors, that is, {m, k} = {1,2,3} \{tz}, and m < k.

ServeOrDepart$rz, n = 1,2,3. If the elevator is at a floor and a passenger

requires service at a different floor, then either the doors open at the current

floor, or the elevator departs the floor (without first opening the doors).

[

1
)

at$n

(req$m V req$k)

>

*) ‘pen’”

1

v

1 at$n

~)

‘w 1}

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 2, April 1994.

144 . L. K. Dillon et al.

NoServeDepart$rz, n = 1,2,3. The elevator departs a floor without first

opening its doors whenever no passenger requires service at the floor, the

doors are closed, and someone needs service at another floor.

[

1
)

at$n

7 Yeq.$?l

7 open$?z

(req$m // req$k)

>
. --------------- -.. .

F-----+” “$”

1 open $n ‘1 .

The last four specifications ensure that the elevator makes progress and

that it services floors in a timely fashion. If a passenger requests service at a

floor by the time the elevator arrives there, the appropriate ServeReqsOnAr-

rival specification guarantees that the elevator stops at the floor before

traveling on to other floors. Similarly, the ServeNoConflict specifications

ensure that the elevator services a request if both the elevator is at the floor

needing service and no one is waiting for service at another floor. However, if

a passenger requires the elevator at some other floor, the appropriate

NoServeDepart specification ensures that, once the current floor is serviced,

the elevator departs the floor without servicing any additional requests for

service at the current floor that may be made in the interim. The ServeOrDe-

part specifications prevent the elevator from sitting idly at a floor if other

floors require service.

For purposes of comparison, we show how UpFrom$2 and ArriveUp are

expressed in PTL. Nested until operations are required to limit the scope of

subformulas to the appropriate contexts.

UpFrom$2:

❑ (at$2 ~ at$2U[~ at$2 A {goingup E (Oat $3 A ~ at $3

A (= at$l A = CZt$2)UCZt$a)]})

ArriveUp:

❑ (at$l - Tat $2U[at $2 A { ❑ arrzueup V 1 (at $2U 1 czrriueup)]])

4. GRAPHICAL PROOFS OF SYSTEM PROPERTIES

An important benefit of formal specifications is that they can be analyzed for

potential consequences. Analysis can demonstrate that specifications express

higher-level system requirements correctly and can help the designer learn

more about the system under development. If analysis reveals that the

specifications admit computations that violate requisite properties, the speci-

fications are incomplete or in error. On the other hand, when desired proper-

ties can be proven from the specifications, the designer gains confidence that

they provide a complete and accurate description of the system to be built.

ACM TransactIons on Software Engineering and Methodology, Vol 3, No 2, April 1994

A Graphical Interval Logic . 145

The following are examples of properties that are required of the elevator

system. The first requirement is one of many safety properties that a de-

signer might wish to establish. The second expresses a minimal fairness

requirement.

Safe$n, n = 1,2,3. The elevator must be at a floor for its doors to be open

there.

open$n

-

at$n)

Service$rz, n = 1,2,3. The elevator eventually responds to a request for

service.

[)
req$n 1

*

[
A

Open$n ‘}1

The specifications for a system express temporal constraints on legal

computations. Thus, the system satisfies a requirement r if the conjunction .s

of the specifications implies r, or, equivalently, the implication s = r is valid.

In principle, the GIL proof checker can check the validity of this inference.

However, in practice, theorem proving requires human assistance in order to

be computationally feasible. The designer provides this assistance in our

proof method by breaking down a complex proof into inferences that are small

enough for the GIL proof checker to validate.

A major advantage of a visual logic, such as GIL, is that a proof can be

represented using pictures that show the temporal flow of the argument. The

graphical representation of the time line allows one to align appropriate

points in the picture. Such alignment helps the designer see the points at

which invariants are being instantiated, t,he intervals and points being

aligned to establish bounded liveness and invariance conditions, the relation-

ships between different points and intervals, and so on. These visual cues can

be extremely helpful both for constructing proofs and for discovering poten-

tial fallacies. This “syntactic sugar” has no semantic content in the proofs

below, although we are investigating a technique that will permit the de-

signer to use alignment to specify orderings of points within a specification.

The alignment and ordering of points on a time line has other uses as well.

For instance, the GIL tool set provides a model generation facility for

producing a counterexample in the case that an inference is invalid. The

counterexample can be displayed as a sequence of states or as a timing

diagram. Aligning the states in the implication appropriately with this

counterexample can help illustrate the fallacy in the inference.

The proof of Safe$n in Figure 3 uses alignment to highlight the underlying

correctness argument. The annotations alongside the picture show the speci-

ACM Transactions on Software Engineering and Methodology, Vol. 3, No 2, April 1994.

146 . L. K. Dillon et al.

‘nit’ ~
7 open$n

SafeOpen$n:
~

*
-------------- -. w

open$n

A
at$n 1 1

SafeDepart$n:
~]

at$n

>
* ----------- M

~ at$n

A
7 open$n II

Safe$n:
~1

open$n

3

at$n ~

Fig 3. Proof of Safe$n, n = 1,2,3.

fications used in the proof. As shown by the annotations, Safe$ n is proved

from

—Init, which asserts that the doors are not open at floor n when the system

starts up,

—SafeOpen$n, which asserts that the elevator is at floor n. when the doors

first open at the floor, and

—SafeDepart$n, which asserts that the doors have closed by the time the

elevator departs the floor.

Aligning the invariant in SafeDepart$n with the point located by the search

to open$ n in SafeOpen$n highlights the fact that, when the invariant is

evaluated at this point, it guarantees that at $ n holds continuously from the

(arbitrary) point at which open$n becomes true at least until open$n is false.

The proof of Service$ n is too complex to be accomplished in a single step.

Figure 4 shows the last step in the proof. As shown by the annotations

alongside the figure, the final deduction makes use of several specifications

and of the intermediate result Arrive$ n, which is established independently

as another step of the proof. The reasoning illustrated by the picture can be

understood as follows. If req $ n holds at a point in a computation, but

becomes false at a future point, then WaitServe$n ensures that the invariant

in Service$n holds at this point. To highlight this reasoning, we align the

invariants in WaitService$n and Service$ n and align the points at which

open$ n is asserted to hold. The remaining premises establish Service $ n in

the case that req $n holds continuously from some point in a computation. We

use Arrive$n to deduce that there is a future at $ n -point. The at $n-point is

purposely positioned within the span of the search arrow in WaitService$n to

remind the reader that we are interested in the case where at $ n is true

ACM TransactIons on Software Engmeerlng and Methodology, Vol 3, No 2, April 1994

A Graphical Interval Logic . 147

Wait Service$n: [)
req$n

+
* ------------- ------------- ------------ --- m

7 req$n

A
OP. ” $n

Arrive$n:
})

E
req$n

*~ 1
ServeNoConflict$n: [

1

)1
at$n

reqs”

_ req.$m

T req$k

*
----------- ----------- ----------- --*

~“pen’”

ServeOrDepart$n:
Ii

[
.t$n

(req.$m v req$k)
}

*
.- ------------ -----------

E------~ Open$n

}
v-- . - .-.-.---*

- at$n
~>

} -1.
serveReq~onArriv~$n: ~ ,

3
---.--pi

St$”
A

r. qsn
*
. ------ ..---*

-0”””$”

}II+
Service$n:

req.$n

-
A

open $n I }

Fig. 4. Final deduction in the proof of Service$rz, n = 1,2,3, {m, k} = {1,2,3}\ {n}, and m < k.

before req $n is false. The next three premises represent a case split. The

invariant in ServeNoConflict$ n establishes the invariant in Service$ n in the

case that req $ m and req $k are both false at the at $ n-point. The invariant in

ServeOrDepart$n establishes Service$rz in the case that req $m or req $k is

true at the at$n-point and at $n holds throughout the future. Finally, the

invariant in ServeReqsOnArrival$n when instantiated at the next 1 at $ n -

point establishes the required invariant in the case that both req$ m or req $k

is true at the at $ n-point and there is some future point at which at $ n is

false.

Figure 5 shows how a complex proof is split into more manageable steps by

case analysis. It represents the last step in the proof of Arrive$n. In the same

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 2, Aprd 1994

148 . L. K. Dillon et al,

WaitService$n:
[)

req$n

*
--------------------------------- .~

1 req$n

A
open $n

Safe$n:

II

[
open$n 1

*
at$n J

ArriveSomeFloor: [
y at$n

7 at$m

~ at$k 1

~

v
at$m

v
at$k 1

Arrive$n-At$m:
[

at$m

req$n }

,}

:1

Arrive$n-At$k:
[

at$k

req$n }

~} 13
Arrive$n:

req$n

~}

‘1

Fig. 5. Final deduction in the proof of Arrive$rz, n = 1,2,3, {n, k} = {1,2,3}\ {n}, and m < k.

style as the previous example, WaitService$n and Safe$n establish the

required invariant when req $ n is false at some future point. The remaining

premises are required when req $ n holds continuously from some point in a

computation. ArriveSomeFloor represents a progress requirement needed to

ensure that the elevator does not remain in transit indefinitely, but arrives

eventually at some floor. This permits the proof to be reduced to the two cases

represented by Arrive$ n-At$ m and Arrive$ n-At$k, which assert, respec-

tively, that the elevator arrives eventually at floor n from floor m and that it

arrives eventually at floor n from floor k.

Proofs of ArriveSomeFloor, Arrive$n-At$ m and Arrive$n-At$k are required

to complete the proof of Service $ n, The requirement ArriveSomeFloor follows

ACM TransactIons on Software Engineering and Methodology, Vol. 3, No, 2, Aprd 1994

A Graphical Interval Logic . 149

directly from the specifications Init, UpFrom$l, UpFrom$2, DownFrom$2,

and DownFrom $3. The high-level strategy used in the proofs of Arrive$ n-

AT$m and Arrive$n-At$k is first to show that the specifications ensure the

elevator does not remain at a floor indefinitely if it is needed at a different

floor. These “departure results” and UpFrom$l ensure Arrive$2-At$ 1. Simi-

larly, the departure results and DownFrom$3 imply Arrive$2-At$3. For the

proof of Arrive$ l-At$2 and Arrive$ l-At$3, the departure results and the

specifications are first used to show that, if the elevator is traveling down

when it arrives at the second floor, it arrives at the first floor eventually.

Arrive$l-At$3 follows easily from this, the departure results, and the specifi-

cations. Finally, we use Arrive$ l-At$3, the departure results, and the specifi-

cations to show that the elevator arrives eventually at the first floor if it is

traveling up when it reaches the second one. The proofs of Arrive$3-At$2 and

Arrive$3-At$l parallel those of Arrive$ l-At$2 and Arrive$l-At$3. The depar-

ture results are established by a straightforward (but tedious) case analysis.

The full proof is given in Dillon et al. [1993] in the form of intermediate

lemmas and annotated proof trees.z

5. THE GRAPHICAL INTERVAL LOGIC TOOL SET

We have built a prototype GIL tool set to demonstrate proof-of-concept and

permit experiments with the logic. The prototype includes a visual editor that

allows specifications to be easily constructed and to be stored in and retrieved

from files, a proof checker that checks mechanically the validity of temporal

inferences, and a model generator that exhibits state sequences over which

formulas hold. This section provides a brief overview of the GIL tool set.

Figure 6 shows the appearance of the interface of the GIL editor (GILED).

Formulas are edited on a canvas, which comprises the main region of the

display. The canvas in Figure 6 contains a template for creating a new

specification. The template consists of an outer context interval and a box,

positioned automatically below the start of the interval, that represents a

formula that has yet to be defined. The designer uses the mouse during

editing to select formulas in the canvas and editing operations; the box is

selected (indicated by shading) in the example. Scroll bars permit the canvas

to be scrolled for viewing large formulas.

The buttons in the panel on the lower left side of the display correspond to

GIL primitives. The Text button allows a box to be replaced with a state

predicate. The remaining buttons in the lower left panel specify GIL opera-

tors that apply to appropriate formulas. First are buttons corresponding to

the four temporal operators: the interval [+, eventuality O, invariant ❑,

and point A operators.3 The last five buttons correspond to the propositional

operators; disjunction v, conjunction A, negation 7, implication * , and

2This technical report can be obtained by anonymous ftp from directory/pub at ftp.cs.ucsb.edu.

3As noted in Section 2, the eventuality, invariant, and point operators are derived from the

interval operator. However, they correspond to common conceptualizations that are distin-

guished by the graphical syntax for visualization purposes.

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. Z, Aprd 1994

150 . L. K. Dillon et al.

Fig. 6, GILED user interface.

equivalence = . The buttons in the upper left panel provide language-inde-

pendent editing operations. Commands to override the default layout of

formulas and commands for storing and retrieving formulas are found in the

Edit and File pull-down menus. Using commands provided in the Mist pull-

down menu, the proof checker is invoked and models are displayed. Models

are displayed graphically in an accompanying window (not shown in Figure

6).

Briefly, to build the formula UpFrom$l, a designer might begin by select-

ing the New button,4 which produces the template shown in Figure 6, The ❑

and = buttons can then be used to indent (automatically) the box below the

context line and expand it into an implication. This produces the following

template for an invariant implication.

4The New button in the current implementation of GILED does not generate automatically the

right parenthesis. This will be rectified in the next version of GILED.

ACM Transactions on Software Engineering and Methodology. Vol. 3, No 2, April 1994

A Graphical Interval Logic . 151

GILED selects a box to expand next by default; however, the designer may

override the default selection at any time using the mouse.

Selecting the second box and the A butto~ converts the consequent into a

point formula. For this requirement, the designer uses the mouse to position

a single search arrow. GILED then produces a point symbol and a box to

represent the search target, as shown below.

[)

w
*
e-----------

‘M

i 1
1

The designer can continue in this fashion to produce a template with the

required structure.

The interval in this template is created by expanding a box into an appropri-

ate interval template, using the mouse to position the interval and the search

arrow. The [j button produces weak search arrows and weak intervals by

default, so that the designer then clicks the mouse on the appropriate search

arrow and interval to obtain their strong counterparts. To convert the above

template into UpFrom$l, the designer selects the pending boxes in turn,

clicks on the Text button and types the state predicates.

In addition to the editing operations illustrated above, GILED provides

capabilities for cutting and pasting formulas, resizing intervals and search

arrows, repositioning invariants and eventualities, and so on. If a formula

does not fit in the space allocated, GILED indicates an error and highlights

the oversized formula. The designer can correct the error by resizing contexts

and searches and repositioning formulas. Automatically, the editor resizes all

affected subformulas to scale.

GILED interfaces with the GIL proof checker and model generator, allow-

ing the designer to work entirely with graphical formulas. Functions that

access these tool components are provided in the M isc pull-down menu under

ACM Transactions on Software Engineering and Methodology, Vol. 3, No 2, April 1994

152 . L. K. Dillon et al,

the labels Check Proof, which determines if the formula in the canvas follows

from premises designated by the designer, Prove, which checks the formula in

the canvas for validity, and Construct Models, which determines if the

formula in the canvas is satisfiable. Check Proof keeps track of the structure

of each proof and checks for circular reasoning. Once verified, a requirement

need only be reverified if the designer modifies premises used (either directly

or indirectly) in the proof or if the designer wishes to modify the proof

structure. In situations where either proof fails or a formula to be proved is

not valid, a counterexample can be displayed in a separate window. Alterna-

tively, Construct Models permits a model (infinite state sequence) that satis-

fies the formula in the canvas to be displayed.

For example, to verify that Safe$ 1 follows from the specifications for the

elevator system, the designer would create the requirement, or, if Safe$ 1 was

created and saved in an earlier GILED session, load it from a file. The

designer would then invoke Check Proof to begin construction of a proof, or, if

Safe$l was verified previously, to determine if the proof is up to date and

learn the premises used in the proof. If a current proof exists, the designer

can opt to see the proof (i.e., the implication constructed automatically by

GILED to validate the inference). If a new proof is to be attempted, GILED

prompts the designer for the premises to use in the proof. In this case, the

designer would designate Init, SafeOpen$ 1, and SafeLeave$ 1 as premises.

Then, GILED would construct a proof similar to that shown in Figure 3 and

check that it is valid. The designer can also prove Safe$ 1 directly, without

invoking Check Proof, by building an implication representing the inference

and invoking Prove to determine if the implication is valid.

When an attempt to verify a requirement fails, the designer can request to

see a counterexample. Consider, for example, the proof of Arrive$n shown in

Figure 5. If the designer overlooks the premise Safe$ n and attempts to prove

that Arrive$rz follows from the other four premises, GILED generates the

counterexample shown in Figure 7. The model consists of an infinite sequence

of states with the state predicates having the values shown in the rectangles

and the shaded state repeated infinitely. (The absence of a state predicate

indicates that there is no restriction on the predicate’s value in that state.)

GILED displays timing diagrams beneath the state sequence to aid visualiza-

tion. The designer can also invoke Construct Models to generate directly a

model that satisfies the formula in the canvas.5

6. IMPLEMENTATION OF THE TOOL SET

Figure 8 shows the organization of the GIL tools. Rounded rectangles depict

tool components (functions), and square rectangles depict data structures

manipulated by the tools. A designer interacts with the tools through the

mouse-driven interface provided by GILED. As described above, GILED helps

the designer create new graphical formulas and retrieve and modify existing

ones. It stores formulas in Unix files as abstract syntax trees with sufficient

5The GIL tools can be accessed by anonymous ftp from directory /pub/gil at ftp.cs.ucsb.edu.

ACM Transactions on Software Engineering and Methodology, Vol 3, No 2, Aprd 1994.

A Graphical Interval Logic . 153

(NIYI at$k)

(NJ at$m)

(NOI at$n)

req$n

at$m

I
:..,:.,,,.,:,::.:.:,:.::::.:::.:,:.:...................::::::::::::.::.:,:,:,:,:,:,:::,::::,;,: Fig. 7. Countermodel generated if Safe$n is omitted

,,, ,.,, ,,,:::::,:,:,,,,,,,,,,,,,,,,:
in the proof of Arrive$ n shown in Figure 5.

at$n

representational information to recreate the layout specified by the designer

when creating them. GILED also provides the interface to the proof checker

and model generator, both of which make use of an intermediate representa-

tion of a formula as a semantic tableau. The procedure that constructs the

tableau requires leaner abstract syntax trees in which productions reflect the

semantics, and not merely representational variations in formula. Both the

proof checker and model generator communicate results back to GILED,

which displays them to the designer. The tools run under the X-window

system and are written in Common Lisp using the Garnet graphics toolkit

[Myers et al. 1990]. The implementations of the GIL tools are discussed in

Dillon et al. [1994], Kutty [1993], and Kutty et al. [1993].

7. RELATED WORK

Graphical representations of computer systems have been common in soft-

ware engineering practice, but have lacked a rigorous formal basis and, thus,

have tended to be illustrative and documentary rather than an integral part

of the software development process. Some notable exceptions include the

statechart visual formalism of Harel [1987], a pictorial version of Milner’s

CCS, called IDCCS [Giocalone and Smolka 1988], and the V-automata of

Manna and Pnueli [1987]. Environments supporting the specification and

verification of concurrent systems have been built around both Statecharts

[Harel et al. 1990] and IDCCS. These languages are oriented toward the

depiction of states and state transitions, whereas GIL focuses on showing the

evolution of properties in time.

Timing Diagrams [Schlor and Damm 1993] is a graphical notation for

expressing precedence and causality relationships between events in a com-

putation. Like GIL, Timing Diagrams can be created using a graphical editor

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 2. April 1994.

154 . L. K. Dillon et al.

o0
I

r \

GILED
—

Rcpresentmon Level

—
(GIL Editor)

Abstract Syntax Trees

f- \

F+wf Checker Model Generatm

\ J

Fig. 8, The GIL tools.

and checked for validity. The semantics of Timing Diagrams is defined by

translation to a subset of temporal logic that can be decided very efficiently.

Allen’s logic for expressing temporal relationships between intervals of

time is the foundation for the TIMELOGIC temporal reasoning system

[Koomen 1989]. The logic is textual, but graphical representations are used to

show relationships among intervals more clearly.

Moszkowski’s Interval Temporal Logic [Halpern et al. 1983] provides an

interval-like “chop” operator &. Informally, ~fYg is true of a context if there

exists a point that partitions the context into a prefix (subcontext) satisfying

f and a suffix (subcontext) satisfying g. While the intuitive semantics of chop

is appealing, the decision problem for formulas with chop is nonelementary in

the depth of nested alternations of chop and negation. In contrast, intervals

in GIL have a more operational semantics, but do not increase the complexity

of the decision problem as severely. GIL can express a stronger version of

chop, which suffices for expressing the properties of interest for the systems

we have considered.

GIL is closest to the IntervalLogic (IL) of Schwartz et al. [1983], from which

it is largely inspired. However, there are several presentational and semantic

differences between the two logics, which we discuss briefly below.

ACM Transactions on Software Engineering and Methodology, Vol. 3, No, 2, Aprd 1994.

A Graphical Interval Logic . 155

Both IL and GIL provide explicit construction of intervals using search

operations. However, they differ in the way that they construct intervals by

the composition of searches. In IL, every search restricts a context, and

intervals are obtained by nesting searches, yielding increasingly narrower

contexts. In GIL, the start and end of an interval are located independently

by means of a sequential composition of searches. Searches in IL are to

intervals, rather than to states at which formulas hold, as in GIL. There is no

loss or gain in expressiveness in either approach, but we feel that the

state-based semantics of GIL are easier to define and understand. Moreover,

searching to intervals requires the introduction of event intervals, represent-

ing positive transitions of formulas, and of “begin” and “end” operators,

which are used to indicate how intervals located by searching further restrict

a context. IL permits searches into the past as well as into the future.

Allowing unrestricted searches into the past makes the decision procedure for

GIL nonelementary [Ramakrishna 1993]. This is a major difference from IL,

where the presence of both future and past searches does not appear to affect

the complexity of the decision procedure.

Plaisted [1983] demonstrated a decision procedure for IL, obtained through

translation to an o-regular expression-like language with a nonelementary

decision problem. PSPACE-completeness of IL was later established by Aaby

and Narayana [1988], where they give a translation of IL to an elementary,

but nonlogical, fragment of a nonelementary logic. The reduction is tedious

and unnatural, and it points out the need for a simpler semantics that retains

the advantages of being able to reason within intervals. The proof checker for

GIL is based on a direct automata-theoretic decision procedure for the textual

interval logic described in the Appendix. The complexity of the automaton

construction is 2 ~ where m is 0(nk) for a formula of size n and depth k of

interval nesting [Ramakrishna et al. 1992].

An experiment with a graphical representation of an IL specification for

the alternating-bit protocol [Melliar-Smith 1988] demonstrated that a visual

representation results in more intuitive and natural specifications. The leaner

semantics of our logic makes it more amenable than IL, to a clean graphical

representation.

8. CONCLUSION

This article describes a visual logic for specifying concurrent software sys-

tems that aids formal reasoning about temporal properties of system. Experi-

ments with the logic have produced graphical specifications for the sliding-

window protocol [Kutty et al. 1994], a readers/writers database system

[Dillon et al. 1992], a protocol to commit transactions on a shared database

[Kutty et al. 1993] and a fair mutual-exclusion algorithm [Dillon et al. 19941,

in addition to the elevator system. A prototype tool set supporting the

analysis of GIL specifications has been developed.

Current research is addressing issues relating to the display of GIL formu-

las and the specification of temporal properties. In particular, we are experi-

menting with vertical spacing and with scaling the size of operator symbols to

ACM Transactions on Software Engineering and Methodology, Vol. 3, No 2, April 1994.

156 . L. K. Dillon et al

improve the visual appearance of complex formulas and make their structure

more visually evident. We are also investigating issues relating to the align-

ment of formulas to reflect known constraints on the partial ordering of

points. A recent extension to GILED allows the designer to specify con-

straints on the ordering of points within a specification. Heuristics for

recognizing search patterns that occur commonly in specifications and that

impose an ordering on points in the specifications are being investigated. In

such cases, GILED could aid the designer by aligning points accordingly.

Methods for using a counterexample to realign the points of graphical formu-

las that constitute an invalid proof as also being explored. This would assist

the designer in revising and correcting the proof and specifications.

GIL is very general and certainly admits formulas that lack, the immediate

visualization of the sample specifications presented in Section 3. For exam-

ple, the semantics of searching to a formula with nested intervals is subtle

and difficult to visualize, even when the search is represented graphically.

However, we have not found a need for such searches in the specifications of

the concurrent systems that we have considered. Our experiments indicate

that most temporal properties of interest for concurrent systems can be

specified in a natural and visually appealing manner using the derived

operators introduced in this article. On-going research is attempting to

identify syntactic restrictions that permit inferences to be checked more

efficiently and still allow natural specifications of concurrent systems.

A real-time extension of GIL [Ramakrishna et al. 1993a; 1993b] provides

primitives for bounding the duration of intervals. Recently we have modified

the GIL proof checker to validate deductions in the extended logic and are

currently experimenting with its use. We are also investigating the integra-

tion of the GIL decision procedure with an automated reasoning system that

provides decision procedures for other useful theories, such as linear inequal-

ities and Presburger arithmetic, and that provides better support for the

management of proofs.

The GIL tool set is a prototype. It was developed to demonstrate proof-of-

concept and to facilitate experiments with the logic and its graphical repre-

sentation. Both the logic and the display of formulas have evolved based on

our experience with the tools. We expect this process of experimentation and

revision to continue as we refine the current tool set into a working environ-

ment for specification, validation, and design of concurrent software systems.

A robust, user-friendly environment will permit empirical studies needed to

determine whether software designers find a visual logic, such as GIL, easier

to use than a textual logic.

APPENDIX A

A.1 Semantics

A model-theoretic semantics for our interval logic is presented below. For

convenience, the semantics makes use of a textual version of the logic, called

ACM Transactions on Software Engmeerlng and Methodology, Vol. 3, No. 2, April 1994,

A Graphical Interval Logic . 157

Future Interval Logic (FIL).G The semantics of GIL is then obtained by

translation from GIL to FIL.

A. 1.1 Syntax of FIL. The language of FIL, like that of GIL, is defined

relative to a set @ of state predicates. The definition below makes use of the

following generic symbols.

State Predicates: p, PI, Pz,

Primitive search patterns: q, ql, qz,

General search patterns: Q, QI, Qz,

Intervals: 1,11, IZ,... .

Formulas: F, Fl, Fz,. . . . G.

The textual syntax of FIL is defined as follows.

F ::=p II F, V F, II 1 F1 l\(F1)\l IF,

1::= [QIIQZ)

Q::= q II q,Q1

~::=+Fll+

For convenience, we extend FIL with several abbreviations. As usual,

F1 A Fz = v (~ F1 V ~ Fz). The temporal Henceforth and Eventually opera-

tions are also defined: ❑ F’ = [~ ~ 3’ +)false and OF = ~ [- I’ ~)false.

The shorthand - denotes the trivial search ~ true. The brackets [[and))

signify a strong interval, which is defined

[[QIIQ,))F= [QIIQZ)FA ([Q, I +) false v [Q21 -) false v =[QllQ2)false).

Finally, we define a strong search to a target F, denoted -+ * F, as follows:

{Q,, + *F, Q, IQ3}G = {Q,, +J’, Q,IQJG A [Qll --)OF

{QIIQZ, + *F, Q3}G = {Q,IQZ, + F, Q3}G A ([QII -) fazse v [Qzl +) OF)

where the brackets { and } may be replaced by either pair of interval bracket

delimiters: [and) or [[and)). The rules that define strong searches and

strong intervals can be shown to be semantically confluent, so that strong

searches and strong intervals can be expanded in any order.

A. 1.2 Semantics of FIL. A model (s, i) for an FIL formula consists of a

context s and an index i. A context is either an infinite sequence of states

s = s(0), s(l), . . . or the null context L . A state s(i) in a nonnull context s

assigns valuations to the state predicates in 9. We identify a state S(i) L @

with the collection of state predicates true in that state. The index i in a

model is a (finite) nonnegative integer. We denote by FI ~,, the value of a

formula F in the model (s, i).

For the definitions below, we extend the set of nonnegative integers with

an infinite element co, satisfying i < w for all finite i, and define addition

6“Future” because searches used in the interval constructions are always into the future.

ACM Transactions on Software Engineering and Methodology, Vol. 3, No 2, April 1994.

158 . L, K, Dillon et al,

and subtraction on nonnegative integers (including co) in the usual manner.

For a nonnull state sequence s and indices 1 and r satisfying 1< r and

r < co, we define further a sequence s<l,, ~ as follows.

s(l,,~(k) =
(

s(k+l) for O<k<r– 1+1

s(r) forr–l+l<k<w

Thus, S(Z,,) denotes the context obtained from s by extracting the subse-

quence from state s(1) through state s(r) and stuttering the final state.

The following rules provide an inductive definition for the truth value of an

FIL formula. They make use of the function Construct for constructing the

subcontext specified by an interval. Assuming s # L , we define

—Fll,l = true.

—pI,,, = true if and only if p ● s(i).

—(F1 V F2)I.,, = true if and only if Fll,,, = true or F21.,, = true.

—(~ Fl)l,,, = true if an only if F1l.,, = false.

–(FI)I,,, = true if and only if F1 I~,, = true.

—lF1ls,, = true if and only if Fll ,,0 = true, where s’ = Construct(s, i, 1).

The definition of Construct makes use of the function Locate for locating

the state specified by a search pattern. Locate is defined as follows.

-Locate(~ , s, i) = co

—Locate(~ F, s, i) =

(

rein(K) ifK+ O

E otherwise

where K = {k Ico > k > i and Fl,, k = true} and the special error value ~

signifies a failed search

—Locate((q, Q), s, i) =

{

Locate(Q, s, Locate(q, s, i)) if Locate(q, s,i) # ●

E otherwise.

Given a context, an index, and an interval, Construct produces the subcon-

text represented by the interval:

{

—construct(s, Z, [QllQz~~ = s~l,,,
ifr<l, l=eorr=e

otherwise

where 1 = Locate(Ql, s, i), r = Locate(Qz, s, i) – 1,and e – 1 = ●.

A. 1,3 Formal Syntax for GIL and Translation Rules. The syntax of GIL is

specified Using a generalization of the attributed multiset grammar model
described in Golin and Reiss [1989]. A multiset grammar differs from a

context-free grammar in that productions do not impose any order on the

symbols in their right-hand sides. A multiset grammar defines a set of

multisets (unordered collections of terminal symbols, possibly containing

repeated elements) rather than a set of strings. An attributed multiset

grammar augments a multiset grammar with

—a set of attributes, which play an integral role in parsing an input

—semantic functions, which define the values of the attributes, and

—constraints, which indicate when a production can be applied.

ACM TransactIons on Software Engineering and Methodology, Vol 3, No 2, Aprd 1994

A Graphical Interval Logic . 159

In the attributed multiset grammar model of Golin and Reiss [1989],

parsing attributes are restricted to synthesized attributes. For defining the

syntax of GIL, however, we require a more general grammar model, which

permits both synthesized and inherited attributes to be used for parsing. The

grammar given below can be viewed as belonging to the index set grammar

model described in Gillet and Kimura [1986].

In the sequel, therefore, an attributed multiset grammar consists of

—a finite set of terminal symbols

—a finite set of nonterminal symbols

—a finite set of attributes

—a mapping that associates sets of attributes with the terminal and nonter-

minal symbols and

—a finite set of productions.

Attributes are classified as synthesized or inherited, and attributes associ-

ated with terminal symbols are restricted to synthesized attributes. A produc-

tion specifies a rewrite rule, which can be used to expand the nonterminal on

the LHS into the multiset of symbols on the RHS, and associates a finite set

of semantic functions and a finite set of constraints with the rule. Each

semantic function defines an attribute of one of the rule’s nonterminal

symbols as a function of the values of other attributes of symbols in the rule.

A production provides semantic functions for each synthesized attribute of

the nonterminal on a rule’s LHS and for each inherited attribute of the

nonterminals on the rule’s RHS. As is customary, the rewrite rules and

semantic functions in a grammar must not admit derivations in which

attribute values are defined circularly. The constraints associated with a rule

are defined over inherited attributes of the nonterminal on the rule’s LHS

and synthesized attributes of symbols on the rule’s RHS. The constraints

specify conditions that must be satisfied in order to apply the rule.

The terminal symbols in our grammar for GIL correspond to the GIL

operators, search arrows, interval symbols, and brackets, which are de-

scribed, in Section 2, and to state formulas, which we denote by the special

terminal symbol state-form.7 The nonterminals are defined as follows.

—F, representing GIL formulas

—Qq, representing a pair of search patterns

—Q, representing a single search pattern

—Qu, representing the continuation of a search pattern8

—L, representing a line segment denoting an interval

—Ai, representing a search arrow that begins a search pattern and

—Av, representing a search arrow that is embedded in a search pattern.

7State formulas are parsed using a context-free grammar. We omit the details, which are

standard.

8For simphcity, we do not permit the horizontal shorthand for composing searches used in

Section 2.

ACM Transactions m Software Engineering and Methodology, Vol 3, No. 2, April 1994.

160 . L. K. Dillon et al

We regard each instance of a terminal or nonterminal symbol as enclosed

by a bounding box. Synthesized attributes associated with the symbols give

the position and dimensions of this box:

—t gives the y-coordinate of the top of the box.

—b gives the y-coordinate of the bottom of the box.

—1 gives the x-coordinate of the left side.

—r gives the x-coordinate of the right side.

An additional synthesized attribute is associated with interval symbols that

denote eventualities:

—p gives the x-coordinate of the center of the diamond.

The remaining attributes are inherited. Two inherited attributes are associ-

ated with the nonterminal Qq representing a pair of search patterns:

—lm gives the x-coordinate of the point that the first search pattern locates.

—rm gives the x-coordinate of the point that the second search pattern

locates.

Finally, the grammar associates an inherited attribute with each of the

non-terminals Q, QU, and L:

—m gives the x-coordinate of the point that a search pattern Q or Qv locates

or gives the x-coordinate of the formula that modifies an interval L.

Figure 9 illustrates the relationships between the attributes for nontermi-

nal symbols. It also illustrates the conventions we use when drawing nonter-

minals. Lines show order relations between attribute values (vertical lines for

y-coordinates and horizontal lines for x-coordinates), with strict ordering

denoted by solid lines and nonstrict ordering denoted by broken lines. Thus,

for example, the attributes associated with Qq are subject to the following

constraints: b < t, 1 < lm, lm < rm, and rm < r.

Productions are shown in Tables I–VI. The last column of the tables also

defines the translation of GIL to FIL. Table I gives sample productions and a

translation scheme for the root nonterminal F’.g Each row in Table I repre-

sents a production for F and the corresponding translation rule. The second

column shows the RHS of the rewrite rules, which are named, in the first

column, for reference purposes below. Rewrite rules are shown graphically

using a two-dimensional format so that relationships among attribute values,

which are formally expressed by the semantic functions and constraints, are

visually apparent. We use a broken line for the right side of a box when the

right side need not coincide with the right side of the box enclosing the LHS

nonterminal. The third and fourth columns give the constraints and semantic

functions, respectively. Unsubscripted attribute names refer to attributes of

the LHS nonterminal, and subscripted attribute names refer to attributes of

9For bremty, we have omitted productions for some of the propositional operators. Productions

and translations for the missing operators are similar to those ~ven for implication.

ACM Transactions on Software Engineering and Methodology, Vol. 3, No 2, Aprd 1994

A Graphical Interval Logic . 161

1 . I m ,

1 lm .na P 1 . r 1 T

Fig. 9. Nonterminal symbols and their attributes.

Table I. Translation Rules for a GIL Formula F

Rule I F I Constraints

“ h “=’2’’2’”

1‘7 = ,4,’3,’,:’4,
tz<tl, ts<bz,

‘k

[z~ls,l’s<rz,

{~ = (13 + r3)/2,
1

max{ P, }, <11,

‘8 .state-for?lq

t(F)

“m(’’t(F’)’’)”

‘<(’’’(F,)”) A (“t(F2)”)”

“(’’t(F,)’$

“(’’’(F,)’<

+’ (“t(F’2)”)”

,,

t,,(Ls)t(Qq2)t.t (&)

tmd(L3)” “t(F4)’C

t~~(&)’’ (’’t(F3)”)”

“ [“t(Q,)’$ l+) (“t(F,)”) “

stat e-foTml

ACM Transactions on Softwars Engineering and Methodology, Vol. 3, No, 2, April 1994.

162 . L. K. Dillon et al.

Table II. Translation Rules for a Search Pair Qq

Table III. Translation Rules for a Search Pattern Q (vertical layout)

‘ule m Constraints Sem. Functions t(Q)

“1 m r-l < m, t+tl>b+bs, l-l,; t(Ail)t(Fz) ’’>’’t(Qv3)

m

r, = [Z = 13, r+-max{ r,}, ,rn3+-rn

tz < h, ts < h)

m ‘“3

“2 m rl =m, /2=n, t+tl;b+bz,lt-ll; t(Ail)t(Fz)

m
tz < bl r“--r~

Table IV. Translation Rules for the Continuation QU of a Search Pattern (vertical layout)

‘“’e m
Constraints Sem Functions t(Qu)

“vI m r, < m, t+tl,b+bs,l-11, t(AVI)t(Fj)<’ , “t(Qv3)

~ j@,Tj<’2 ‘-max{r’}’; m3-m

F: ‘2’3 ‘

“,2 m rl =m, Jz=rl, t+tl, b+ bz, l-il, t(Au,)t(Fz)

m

tz < bl 7 -7-2

the symbols on the RHS. The fifth column of Table I defines the translation of

F into a string t(~) representing a FIL formula. For simplicity, we give a

fully parenthesized translation.

Tables II, III, and IV provide productions and translation rules for Qq, Q,

and QU, respectively. As shown, Q and QU differ only in the type of arrow

ACM TransactIons on Software Engineering and Methodology, Vol. 3, No. 2, Aprd 1994.

A Graphical Interval Logic . 163

Table V. Translation Rules for a Line Segment L

R“l’ ~ Constraints Sem Functions tit(I) t,,(L) trod(L)

L1 ~) t-tl; b+bl, “[” “ “) if II < m: “0”

l+ll;rtr~ if 11 = m: “ “

1.2 E=====+ t+tl; b+bl; “ “II “)) “ if [~ < m: “D”

l+l,; r+-rl if II = m: 1’ “

L3 ++---+ m=pl t.-tl; b+bl; “[” “ “) “o”

l+l,; rtr,

L4 ~) rn=pl t+tl; b+bl; “ “[“)) “
u~>,

l+ll; r+rl

Table VI. Translation Rules for the Arrows Ai and Au

Rule m Rule B Sem. Functions tat

Ail ‘--~, Avl ‘--~1 t~tl; b+bl; “ -+ “

l+ll; r+rl

Ai2
*--+ Av2

l--+
1 1 t+tl; bi--bl; ‘<+*”

/tll; rtrl

with which an instance begins. Table V defines three translation functions for

line segments: tltgenerates a left interval-delimiter: t,tgenerates a right

interval-delimiter; and tn ~ generates a Henceforth or Eventually symbol or,

when the formula that modifies the interval is positioned at the first state of

the interval, an empty string. Table VI gives the productions and translations

of both types of search arrows. The rewrite rules for the two kinds of arrows

do not require any constraints, and their semantic functions and translations

are identical.

We show some steps in the translation of ArriveDown below. Annotations

over a derivation arrow indicate the translation rules used at each step.

t(m u tmd(L1)’’(’’t(F1)”)”

L1
+ “ ❑ (“t(FI) ’’)”

F3, F8
“ ❑ ((at $3) -

F5
+ “ ❑ ((at$3) =

L4

“ ❑((at$3) -

Qq2

“ ❑ ((at$3) ~

Q2, Ail, F8
“ ❑ ((czt$3) +

Qv2, Avl, F8

“ ❑ ((at $3) =

ACM Transactions on Software Engineering and Methodology, Vol. 3, No 2, April 1994.

(“to’’))”

(“tl,(L,)t(Qql) t,t(L,)tn&Y’(’’ t(F4)’’)))”

([[’’t(Qq,Y’))Wt(F4)“)))”

([[''t(Q1y''t(Q1)``,''t(Qul)``))O('' t(F'A)``)))''

([[+ at$21 ~ at$2,’’t(Qu1)’’))Ot(FJ’’)))”))”

([[=’ d$.2 + at$Z + arriuew))o(T at$z)))”

164 . L. K. Dillon et al.

The GIL tool set does not include a parser. Formulas are constructed using

a syntax-directed editor. Currently, we are investigating the effects of charac-

teristics of attributed multiset grammars on the efficiency of parsing.

ACKNOWLEDGMENT

The authors would like to thank Ron Dolin for implementing several last

minute modifications to GILED to improve the appearance of formulas.

REFERENCES

AABY, A. A., AND NARAYANA, K. T. 1988. Propositional temporal interval logic in PSPACE

complete. In Proceedings of the 9th In ternutional Conference on Automated Deduction. Lecture

Notes in Computer Science, vol. 193. Springer-VerIag, Berlin, 218-237.

BARRINGER, H., KUIPER, R., AND PNUELI, A. 1984. Now you may compose temporal logic

specifications. In proceedings of the 16th ACM Symposwm on Theory of Computmg. ACM,

New York. 51-63.

DILLON, L. K., KUTTY, G., MELLIAR-SMITH, P. M., MOSER, L. E., AND RAMAKRISHNA, Y. S. 1994.

Visual specifications for temporal reasoning. J. Vis Lang. Comput. 5, 1,61-81.

DILLON, L. K., KUTTY, G., MOSER, L. E., MELLIAR-SMITH, P. M., AND RAMAKRISHNA, Y. S. 1993. A

graphical interval logic for specifying concurrent systems. Tech. Rep. TRCS 93-16, Computer

Science Dept., Univ. of California, Santa Barbara, Calif.

DILLON, L. K., KUTTY, G., MOSER, L. E., MELLIAR-SMITH, P. M. AND RAMtimmmv.&, Y. S. 1992.

Graphical specifications for concurrent software systems. In Proceedings of the 14th IEEE

International Conference on Software Engzneermg. IEEE, New York, 213-224.

GABBAY, D. M. 1987. The declarative past and imperative future. In proceedings of the

Conference on Temporal Logtc m Specification. Lecture Notes in Computer Science, vol 398,

Springer-Verlag, 409-448.

GIACALONE, A., AND SMOLKA, S. A. 1988. Integrated environments for formally well-founded

design and simulation of concurrent systems. IEEE Trans. Softw. Eng. 14, 6 (June), 787-801.

GILL~TT, W. D., AND KIMURA, T. D. 1986. Parsing two-dimensional languages. In Proceedings

of the IEEE 10th Internatz onal Conference of Camp uter Software and Applications. IEEE, New

York, 472-477.

GOLIN, E. AND REISS, S P. 1989. The specification of visual language syntax. In Proceedings of

the IEEE Workshop on Vtsual Languages, IEEE, New York, 105-110.

H~LPERN, J. Y.. AND SHOHAM, Y. 1991. A propositional modal logic of time intervals. J. ACM

38, 4 (Oct.), 935-962.
HALPERN,J. Y., MANNA, Z., AND MOSZKOWSKI,B. 1983. A hardware semantics based on

temporal intervals. In Proceedings of the 10th International Conference on Automata, Lan-

guages and Programming. Eur. Assoc. for Theoretical Computer Science, 278-291.

HAREL, D. 1987. Statecharts: A visual formalism for complex systems Su. Comput. Program.

8, 3 (June), 231-274.

HAREL, D., LACHOVER, H., NAAMAD, A., PNUELI. A., POLITI, M., SHERMAN, R., SHTULL-TRAURING, A.,

AND TRM.ZITENBRQT, M. 1990. STATE MATE; A working environment for the development of

complex reactive systems. IEEE Trans. SofLw. Eng. 16, 4 (Apr.), 403–4 14.

KOOMF,N) J. A. G. M. 1987. The TIMELOGIC temporal reasoning system. Tech. Rep., Dept. of

Computer Science, Umv. of Rochester, N.Y. (Revised March 1989).

KUTTY, G. 1993. A tool for the interactive generation of Graphical Interval Logic formulas.

Tech. Rep , 9307, Dept. of Electrical and Computer Engineering, Univ. of California, Santa

Barbara, Cahf.

KUTTY, G., MOSER, L. E., MELLIAR-SMITH, P. M., DILLON, L. K., AND RAMAKRISHNA, Y S. 1994.

First-order future interval logic. In Proceedings of the Ist International Conference on Tempo-

ral Logw. Lecture Notes in Artdicial Intelligence, vol. 827. Springer-Verlag, Berlin, 195–209.

KUTTY, G., RAMAKRISHNA, Y. S , MOSER, L. E., DILLON, L. K., AND MELLIAR-SMITH, P. M. 1993. A

graphical interval logic toolset for verifying concurrent systems. In Proceedings of the 4th

ACM TransactIons on Software Engineering and Methodology, Vol 3, No 2, Aprd 1994

A Graphical Interval Logic . 165

Conference on Computer Aided Verification. Lecture Notes in Computer Science, vol. 697.

Springer-Verlag, Berlin, 138-153.

LAMPORT, L. 1990. A temporal logic of actions. Tech. Rep. 57, DEC Systems Research Center,

Palo Alto, Calif.

LAMPORT, L. 1983. What good is temporal logic? In Proceedings of the ZFZP Congress. IFIP,

Washington, D. C., 657-668.

LANDIN, P. J. 1966. The next 700 programming languages. Commun. ACM. 9, 3 (Mar.)

157-166.

MANNA, Z., AND PNUELI, A. 1987. Specification and verification of concurrent programs by

V-automata. In Proceedings of the Conference on Temporal Logic in Specification. Lecture

Notes in Computer Science, vol. 348, Springer-VerIag, Berlin, 124-187.

MANNA, Z., AND PNUELI, A. 1981. Verification of concurrent programs: The temporal frame-

work, In The Correctness Problem in Computer Sczence, R. S. Bayer and J. S. Moore, Eds.

Academic Press, New York, 215-273.

MELLIAR-SMITH, P. M. 1988. A graphical representation of interval logic. In Proceedings of the

Znternatzonal Conference on Concurrency. Lecture Notes in Computer Science, vol. 335,

Springer-Verlag, Berlin, 106-120.

MYERS, B. A., GUISE, D. A., DANNENB~~G, R. B., VANDER ZAN~EN, B., KOSBIE, D. S., PERVIN, E.,

MICKISH, A., AND MARCHAL, P, 1990, Garnet: Comprehensive support for graphical highly

interactive user interfaces. IEEE Comput. 18, 11 (Nov.), 7 1–85.

PLAISTED, D. 1983. A low level language for obtaining decision procedures for classes of

temporal logics. In Proceedings of the CMU Workshop on Loglcs of Programs. Lecture Notes in

Computer Science, Vol. 164. Springer-Verlag, Berlin, 403-420.

PRATT, V. 1986. Modeling concurrency with partial orders. Int. J. Parall. Program. 15, 1,

33-71.

RAMARRISHNA, Y. S. 1993. Interval Log-its for Temporal Specification and Verification. Ph.D.

thesis, Dept. of Computer and Electrical Engineering, Univ. of California, Santa Barbara,

Calif.

RAMAKRTSHNA, Y. S., DILLON, L. K., MOSER) L. E., MELLIAR-SMITH, P. M., AND KUTTY, G. 1993a.

A real-time interval logic and its decision procedure. In Proceedings of the 13th Conference on

the Foundat~ons of Software Technology and Theoretical Computer Science. Lecture Notes in

Computer Science, vol. 761. Springer-Verlag, Berlin, 173-192.

RAMARRISHNA, Y. S., MELLIAR-SMITH, P. M., MOSER, L. E., DILLON, L. K., AND KUTTY, G. 1993b.

Really visual temporal reasoning. In Proceedings of the 14th IEEE Real-Time Systems Sympo-

sium, IEEE, New York, 262–273.

RAMAKRISHNA, 1’. S., DILLON, J. K., MOSER, L. E., MELLIAR-SMITH, P. M. AND KUTTY, G. 1992.

An automata-theoretic decision procedure for future interval logic, In Proceedings of the 12th

Conference on the Foundations of Software Technology and Theoretical Computer Science.

Lecture Notes in Computer Science, vol. 652. Springer-Verlag, Berlin, 51-67.

SCHLOR) R., AND DAMM, W. 1993. Specification of system-level hardware designs using timing

diagrams. In proceedings of the European Conference on DesLgn Automation and European

Event in ASIC Design. IEEE Computer Society Press, Los Alamitos, Calif., 518-524.

SCHWARTZ,R. L., MELLIAR-SMITH, P. M., AND VOGT, F. H. 1983. An interval logic for higher-level

temporal reasoning. In Proceedings of the 2nd ACM Symposium on the Principles of Dis-

tributed Computing. ACM, New York, 173–186.

WOLPER, P. 1987. On the relation of programs and computations to models of temporal logic.

In Proceedings of the Conference cm Temporal Logic in Specification. Lecture Notes in

Computer Science, vol. 398. Springer-Verlag, Berlin, 75-123.

Received June 1992, revised October 1992; accepted March 1994.

ACM TransactIons on Software Engineering and Methodology, Vol. 3, No 2, April 1994.

