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Abstract—We present a new approach to modeling and processing multimedia data. This approach is based on graphical models that

combine audio and video variables. We demonstrate it by developing a new algorithm for tracking a moving object in a cluttered, noisy

scene using two microphones and a camera. Our model uses unobserved variables to describe the data in terms of the process that

generates them. It is therefore able to capture and exploit the statistical structure of the audio and video data separately, as well as

their mutual dependencies. Model parameters are learned from data via an EM algorithm, and automatic calibration is performed as

part of this procedure. Tracking is done by Bayesian inference of the object location from data. We demonstrate successful

performance on multimedia clips captured in real world scenarios using off-the-shelf equipment.

Index Terms—Audio, video, audiovisual, graphical models, generative models, probabilistic inference, Bayesian inference, variational

methods, expectation-maximization (EM) algorithm, multimodal, multimedia, tracking, speaker modeling, speech, vision, microphone

arrays, cameras, automatic calibrations.
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1 INTRODUCTION

IN most systems that handle digital media, audio, and
video, data are treated separately. Such systems usually

have subsystems that are specialized for the different
modalities and are optimized for each modality separately.
Combining the two modalities is performed at a higher
level. This process generally requires scenario-dependent
treatment, including precise and often manual calibration.

For example, consider a system that tracks moving

objects. Such a system may use video data, captured by a

camera, to track the spatial location of the object based on its

continually shifting image. If the object emits sound, such a

system may use audio data, captured by a microphone pair

(or array), to track the object location using the time delay of

arrival of the audio signals at the different microphones. In

principle, however, a tracker that exploits both modalities

may achieve better performance than one that exploits

either one or the other. The reason is that each modality

may compensate for weaknesses of the other one. Thus,

whereas a tracker using only video data may mistake the

background for the object or lose the object altogether due

to occlusion, a tracker also using audio data could continue

focusing on the object by following its sound pattern.

Conversely, video data could help where an audio tracker

alone may lose the object as it stops emitting sound or is

masked by background noise. More generally, audio and

video signals originating from the same source tend to be

correlated—thus, to achieve optimal performance, a system

must exploit not just the statistics of each modality alone,
but also the correlations among the two modalities.

The setup and example data in Fig. 1 illustrate this point.
The figure shows an audiovisual capture system (left), an
audio waveform captured by one of the microphones (top
right), and a few frames captured by the camera (middle
right). The frames contain a person moving in front of a
cluttered background that includes other people. The audio
waveform contains the subject’s speech but also some
background noise, including other people’s speech. The
audio and video signals are correlated on various levels.
The lip movement of the speaker is correlated with the
amplitude of part of the audio signal (see, e.g., [7]). Also, the
time delay1 between the signals arriving at the microphones
is correlated with the position of the person in the image
(see, e.g., [6], [31], [32]). It is the latter type of correlations
that we aim for in this paper.

However, in order to use these correlations, a careful
calibration procedure much be performed to establish a
correspondence between the spatial shift in the image and the
relative time delay between the microphone signals. Such a
procedure needs to be repeated for each new setup config-
uration. This is a serious shortcoming of current audiovisual
trackers.

The origin of this difficulty is that relevant features in the
problem are not directly observable. The audio signal
propagating from the speaker is usually corrupted by
reverberation and multipath effects and by background
noise, making it difficult to identify the time delay. The video
stream is cluttered by objects other than the speaker, often
causing a tracker to lose the speaker. Furthermore, audio-
visual correlations usually exist only intermittently. This
paper presents a new framework for fusing audio and video
data. In this framework, which is based on probabilisitic
generative modeling, we construct a model describing the
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1. The posterior probability of the time delay in Fig. 1 is based on the
audio correlation and can be computed using (21) with the prior pð� j ‘Þ set
to uniform.
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joint statistical characteristics of the audio-video data.
Correlations between the two modalities can then be
exploited in a systematic manner. We demonstrate the
general concept by deriving a new algorithm for audiovisual
object tracking.An important feature of this algorithm,which
illustrates the power of our framework, is that calibration is
performed automatically as a by-product of learningwith the
algorithm; no special calibration procedure is needed. We
demonstrate successful performance on multimedia clips
captured in real-world scenarios.

2 RELATED WORK

There has been a significant amount ofwork ondetecting and
trackingpeopleandmovingobjects invideo (see, e.g., [4], [20],
[21], [22]). There has also been much work on tracking
speakers using arrays of two or more microphones (see, e.g.,
[5], [30]). In comparison, the area of audiovisual fusion is
relatively new but growing fast. For example, [9], [15] attack
the problem of speaker detection. A time delayed neural
network isusedin[9] to learnaudiovisualcorrelationbetween
a singlemicrophone signal anda camera image, thenuse it for
speaker detection by searching an audio-video sequence for
correlated motion and audio that is indicative of a person
talking. In [15], the authors construct a speaker detector by
fusing multiple audio and video sensors, such as skin color,
mouth motion, and audio silence detector, using dynamic
Bayesiannetworkwhichdetects people in front of kiosks. The
problem of speaker localization using a camera and one or
moremicrophones is treated in [11], [18], [32], [33] in different
contexts, among themvideoconferencinganduser interfaces.

Audiovisual tracking (see, e.g., [10], [27], [28], [31], [34]) is
a popular topic. Vermaak et al. [31] extend the particle filter-
based approach of [4] which focused on video tracking, to
include audio by modeling cross correlations between
microphone array signals as noisy functions of the speaker’s
location. Particle filtering is one important approach to
dealing with the computational intractability of some
probabilistic models which is based on sequential sampling
techniques. The tracking algorithm of [28] improves on that
approach using the unscented particle filter. Audiovisual
detection and tracking algorithms form major components
of the system for capturing and broadcasting meetings
reported in [10].

Speech enhancement in noisy reverberant environments is
another problem where expoiting audio-video correlations
may result in a significant gain. In particular, “lip reading”
could help disambiguate parts of speech when noise, echoes,
or additional speakers blur the difference between them. The

authors in [16], [17], [19], [29]describealgorithms thataddress
several aspects of such scenarios. We also mention applica-
tions to robotics and human-robot interaction [24], [26],
person verification [3], and vehicle collision avoidance [8].

3 PROBABILISTIC GENERATIVE MODELING

Our framework uses probabilistic generative models (also
termed graphical models) to describe the observed data. The
models are termed generative since they describe the
observed data in terms of the process that generated them,
usingadditionalvariables thatarenotobservable.Themodels
are termed probabilistic because, rather than describing
signals, they describe probability distributions over signals.
These two properties combine to create flexible and powerful
models. Themodels are also termedgraphical since theyhave
a useful graphical representation, as we shall see below.

The observed audio signals are generated by the speaker’s
original signal, which arrives at microphone 2 with a time
delay relative to microphone 1. The speaker’s signal and the
time delay are unobserved variables in our model. Similarly,
the video signal is generated by the speaker’s original image,
which is shifted as the speaker’s spatial location changes.
Thus, the speaker’s image and location are also unobserved
variables in ourmodel. The presence of unobserved (hidden)
variables is typical of probabilistic generative models and
constitutes one source of their power and flexibility.

The delay between the signals captured by the micro-
phones is reflective of the object’s position, as can be seen in
Fig. 1 where we show the delay estimated by signal
decorrelation (bottom right). Whereas an estimate of the
delay can, in principle, be used to estimate the object position,
in practice, the computation of the delay is typically not very
accurate in situations with low signal strength, and is quite
sensitive to background noise and reverberation. The object
position can also be estimated by analyzing the video data, in
which caseproblems canbe causedby the background clutter
and change in object’s appearance. In this paper, we combine
both estimators in a principled manner using a single
probabilistic model.

Probabilistic generative models have several important
advantages that make them ideal for our purpose. First,
since they explicitly model the actual sources of variability
in the problem, such as object appearance and background
noise, the resulting algorithm turns out to be quite robust.
Second, using a probabilistic framework leads to a solution
by an estimation algorithm which is Bayes-optimal. Third,
parameter estimation and object tracking are both per-
formed efficiently using the expectation-maximization
(EM) algorithm.

Within the probabilistic modeling framework, the pro-
blem of calibration becomes the problem of estimating the
parametric dependence of the time delay on the object
position. It turns out that these parameters are estimated
automatically as part of our EM algorithm, and no special
treatment is required. Hence, we assume no prior calibration
of the system and no manual initialization in the first frame
(e.g., defining the template or the contours of the object to be
tracked).This is incontrastwithpreviousresearch in thisarea,
which typically requires specific and calibrated configura-
tions, as in [32], [6]. We note, in particular, the method of [31]
which, while using an elegant probabilistic approach, still
requires contour initialization in video and the knowledge of
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Fig. 1. (Top) audio waveform. (Middle) selected frames from associated
video sequence (120� 160 pixels2). (Bottom) posterior probability over
time delay � (vertical axis, � 2 fÿ15; . . . ; 15g) for each frame of the
sequence; darker areas represent higher probability, and each frame
has been separately normalized. The horizontal direction represents
time along the sequence.



the microphone baseline, camera focal length, as well as the
various thresholds used in visual feature extraction.

Throughout the paper, the only information our model is
allowed to use before or during the tracking is the raw data
itself. The EM algorithm described below learns from the
data the object’s appearance parameters, the microphone
attenuations, the mapping from the object position in the
video frames to the time delay between the audio wave-
forms, and the sensor noise parameters for all sensors.

4 A PROBABILISTIC GENERATIVE MODEL FOR

AUDIO-VIDEO DATA

We now turn to the technical description of our model. We
begin with a model for the audio data, represented by the
soundpressurewaveformateachmicrophone for each frame.
Next,wedescribe amodel for thevideodata, representedbya
vector of pixel intensities for each frame.We then fuse the two
models by linking the timedelay between the audio signals to
the spatial location of the object’s image.

4.1 Audio Model

We model the audio signals x1, x2 received at microphones
1, 2 as follows: First, each signal is chopped into equal
length segments termed frames. The frame length is
determined by the frame rate of the video. Hence, 30 video
frames per second translates into 1=30 second long audio
frames. Each audio frame is a vector with entries x1n, x2n
corresponding to the signal values at time point n. The
number of time points in a frame depends on the sampling
rate. For instance, at a sampling rate of 32kHz, a 1=30s long
audio frame would contain roughly 1,000 samples.

The audio frames x1, x2 are described in terms of an
original audio signal a. We assume that a is attenuated by a
factor �i on its way to microphone i ¼ 1; 2 and that it is
received at microphone 2 with a delay of � time points
relative to microphone 1,

x1n ¼ �1an;

x2n ¼ �2anÿ� :
ð1Þ

We further assume that the observed audio frames x1, x2

are contaminated by additive sensor noise with precision
matrices ��1, ��2. In this paper, we will assume that the sensor
noise is white and the precision matrices are diagonal with
a uniform diagonal, i.e.,

��m ¼ �mI; m ¼ 1; 2: ð2Þ

To account for the variability of the hidden signal a, it is
described by a mixture model. Denoting the component
label by r, each component has mean zero, a Toeplitz
precision matrix (inverse covariance matrix) ��r, and a prior
probability �r. Viewing it in the frequency domain, the
precision matrix corresponds to the inverse of the spectral
template for each component. This matrix is Toeplitz, i.e., we
assume that the signal is stationary so that the second order
statistics depends only on the distance between samples,

�ri;j ¼ fðjiÿ jjÞ: ð3Þ

Thus, we will index the elements ��r with a single index
corresponding to the column index in the first row, i.e.,

�rk ¼ �ri;j ; iÿ j ¼ kÿ 1: ð4Þ

The first element, �r1 , is the inversepowerof the signalaand it
is repeated along the diagonal of ��r. The inverse of the second
element �r2 which is repeated along the first two side
diagonals of ��r, captures the first-order smoothness proper-
tiesof the signal (orvery low-frequencycontent in the spectral
domain), etc.

Hence, we have

pðrÞ ¼ �r;

pða j rÞ ¼ N ða j 0; ��rÞ;

pðx1 j aÞ ¼ N ðx1 j �1a; ��1Þ;

pðx2 j a; �Þ ¼ N ðx2 j �2L�a; ��2Þ;

ð5Þ

where L� denotes the temporal shift operator, i.e.,
ðL�aÞn ¼ anÿ� . If the model is to be used alone, without the
video components we describe in the next section, the prior
probability for a delay � can be set to a constant, pð�Þ ¼ const.
In this case, the estimation of time delay based on the
posterior for a single-component model would be very
similar to correlation-based speaker tracking [5]. On the
other hand, a multiclass model similar to the one described
here was used in [1] to perform noise removal from speech
signals. In that paper, the joint pða; rÞ served as a speech
model with a relatively large number of components, which
was pretrained on a large clean speech data set. Here, pða; rÞ
has only a few components and its parameters can be learned
from audio-video data as part of the full model.

A note about notation. Nðx j ��; ��Þ denotes a Gaussian
distribution over the random vector x with mean �� and
precisionmatrix (defined as the inverse covariancematrix) ��,

Nðx j ��; ��Þ ¼ j��=2�j
1
2 exp ÿ

1

2
ðxÿ ��ÞT��ðxÿ ��Þ

� �

: ð6Þ

Fig. 2a displays a graphical representation of the audio
model. As usual with graphical models, a graph consists of
nodes and edges. A shaded circle node corresponds to an
observed variable, an open circle node corresponds to an
unobserved variable, and a square node corresponds to a
model parameter. An edge (directed arrow) corresponds to
a probabilistic conditional dependence of the node at the
arrow’s head on the node at its tail.

A probabilistic graphical model has a generative inter-
pretation: according to the model in Fig. 2a, the process of
generating the observed microphone signals starts with
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Fig. 2. (a) A simple graphical model of audio recorded by two
microphones and (b) a simple graphical model of a video sequence.



picking a spectral component r with probability pðrÞ,
followed by drawing a signal a from the Gaussian pða j rÞ.
Separately, a time delay � is also picked. The signals x1, x2

are then drawn from the undelayed Gaussian pðx1 j aÞ and
the delayed Gaussian pðx2 j a; �Þ, respectively.

4.2 Video Model

In analogy with the audio frames, we model the video
frames as follows: Denote the observed frame by y, which is
a vector with entries yn corresponding to the intensity of
pixel n. This vector is described in terms of an original
image v that has been shifted by ‘ ¼ ð‘x; ‘yÞ pixels in the x
and y directions, respectively,

yn ¼ vnÿ‘; ð7Þ

and has been further contaminated by additive noise with
precision matrix   . To account for the variability in the
original image,v ismodeledbyamixturemodel.Denoting its
component label by s, each component is a Gaussian with
mean ��s and precision matrix ��s, and has a prior probability
�s. The means serve as image templates. Hence, we have

pðsÞ ¼ �s;

pðv j sÞ ¼ N ðv j ��s; ��sÞ;

pðy j v; ‘Þ ¼ N ðy j G‘v;  Þ;

ð8Þ

where G‘ denotes the shift operator, i.e., ðG‘vÞn ¼ vnÿ‘. The
priorprobability for a shift ‘ is assumed flat,pð‘Þ ¼ const. This
model was used in [14], [22] for video-based object tracking
and stabilization.

Fig. 2b displays a graphical representation of the video
model. Like the audio model, our video model has a
generative interpretation. According to the model in Fig. 2b,
the process of generating the observed image starts with
picking an appearance component s from the distribution
pðsÞ ¼ �s, followed by drawing a image v from the
Gaussian pðv j sÞ. The image is represented as a vector of
pixel intensities, where the elements of the diagonal
precision matrix define the level of confidence in those
intensities. Separately, a discrete shift ‘ is picked. The image
y is then drawn from the shifted Gaussian pðy j v; ‘Þ.

Notice the symmetrybetween theaudioandvideomodels.
In eachmodel, theoriginal signal ishiddenanddescribedbya
mixturemodel. In thevideomodel, the templatesdescribe the
image and, in the audio model, the templates describe the
spectrum. In eachmodel, the data are obtained by shifting the
original signal, where in the video model the shift is spatial
and in the audio model the shift is temporal. Finally, in each
model, the shifted signal is corrupted by additive noise.

4.3 Fusing Audio and Video

Our task now is to fuse the audio and video models into a
single probabilistic graphical model. One road to fusion
exploits the fact that the relative time delay � between the
microphone signals is directly related to the object position
‘. This is the road we take in this paper. In particular, as the
distance of the object from the sensor setup becomes much
larger than the distance between the microphones, which is
the case in our experiments, � becomes linear in ‘. We
therefore use a linear mapping to approximate this
dependence and model the approximation error by a zero
mean Gaussian with precision !,

pð� j ‘Þ ¼ N ð� j �‘x þ �0‘y þ �; !Þ: ð9Þ

Note that, in our setup (see Fig. 1), the mapping involves
only the horizontal position, as the vertical movement has a
significantly smaller affect on the signal delay due to the
horizontal alignment of the microphones (i.e., �0 � 0). The
link formed by (9) fuses the two models into a single one,
whose graphical representation is displayed in Fig. 3.

5 PARAMETER ESTIMATION AND OBJECT TRACKING

Here, we outline the derivation of an EM algorithm for the
graphical model in Fig. 3. As usual with hidden variable
models, this is an iterative algorithm. The E-step of each
iteration updates the posterior distribution over the hidden
variables conditioned on the data. The M-step updates
parameter estimates.

We start with the joint distribution over all model
variables, the observed ones x1;x2;y and the hidden ones
a; �; r;v; ‘; s. As Fig. 3 shows, this distribution factorizes as

P ðx1;x2;y; a; �; r;v; ‘; s j �Þ ¼ pðx1 j aÞ pðx2 j a; �Þ

� pða j rÞpðrÞ pðy j v; ‘Þ pðv j sÞ pðsÞ pð� j ‘Þ pð‘Þ;
ð10Þ

where each term is conditioned on the model parameters �,
but in a more compact notation we omit this condition. In
the rest of the paper, all probability distributions depend on
the model parameters, even when it is not explicitly stated.
The model parameters are

� ¼ f�1; �1; �2; �2; ��r; �r;   ; ��s; ��s; �s; �; �
0; �; !g; ð11Þ

i.e., the microphone attenuation and noise parameters �i; ��i;
the spectral characteristics ��r and prior distribution over the
audio components �r; video observation noise parameters
  , video templates ��s, their precision parameters ��s, and the
prior distribution over the templates �s; and, finally, the
audio-video calibration parameters �; �0 that define the
mapping between the object position and audio delay, as
well as the uncertainty of this mapping !.

These model parameters control the joint probability
distribution over the observed and hidden variables in the
model: audio class index r, generated latent audio signal a,
the time delay � , the audio signals x1;x2 received by the two
microphones, the video class s, the latent image v, the
transformation index ‘ ¼ ð‘x; ‘yÞ defining a horizontal ‘x,
and vertical ‘y shift applied on the latent image to produce
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Fig. 3.Graphicalmodel for the joint audio-video data. Thedotted rectangle
denotes i.i.d. frames and has the following meaning: everything it
encompasses, i.e., all model variables, has value that is framedependent;
everything it leaves out, i.e., themodel parameters, is frame independent.



the video frame y. In the rest of the paper, we will use a
single variable ‘ to denote image transformation whenever
possible to shorten the notation, except when the compo-
nents ‘x; ‘y are treated differently in equations, for example,
due to the dependence between ‘x and � .

Ultimately, we are interested in tracking the object based
on the data, i.e., obtaining a position estimate ‘̂‘ at each
frame. In the framework of probabilistic modeling, one
computes more than just a single value of ‘. Rather, the full
posterior distribution over ‘ given the data, pð‘ j x1;x2;yÞ,
for each frame, is computed. This distribution provides the
most likely position value via

‘̂‘ ¼ argmax
‘
pð‘ j x1;x2;yÞ; ð12Þ

as well as a measure of how confident the model is of that
value. It can also handle situations where the position is
ambiguous by exhibitingmore than onemode.An example is
when the speaker is occluded by either of two objects.
However, in our experiments, thepositionposterior is always
unimodal.

The parameters � of the system can be estimated based
on the entire audio-video sequence by maximizing the
average log-likelihood of the data

Fð�Þ ¼ hlog pðx1; x2; y j �Þi

with respect to the model parameters. The brackets denote
the averaging operator, hfi ¼ 1

T

P

t ft, where t ¼ 1; . . . ; T
enumerates the observed data samples.

Note that optimizing the average log-likelihood is equiva-
lent to optimizing the sum of log-likelihoods for all audio-
visual samples.Using this cost implies that thedatapoints are
considered as independently generated from the generative
model. Obviously, in practice, the position of the object
changes slowly through time and this observation can be
used to further constrain the generative process bymodeling
the evolution of the higher-level hidden variables through
time (see, for example, [22]). However, this turns out to be
useful onlywhen thedata is verynoisy.Usually, however, the
audio and, especially, visual observations provide such
strong clues about the hidden variables that the time series
model does not improve the tracking over the i.i.d model.
Modeling dependencies through time will probably prove
important in case of tracking jointly multiple audiovisual
objects in presence of significant intermittent mutual occlu-
sions in both audio and video signals.

Instead of the average log-likelihood, it is possible to
focus instead on the negative of a free energy of the model,
defined in terms of an auxiliary probability distribution
over hidden variables Qða; � ; r;v; ‘; sÞ as

�

ÿ

Z

Qða; �; r;v; ‘; sÞ log
Qða; � ; r;v; ‘; sÞ

P ðx1;x2;y; a; � ; r;v; ‘; s j �Þ

�

;

where the integration is performed over the hidden
variables (a; � ; r;v; ‘; s).

It turns out [25] that this quantity is a lower bound on the
average log-likelihood of the data, with the bound becoming
tight when Q for each data sample is equal to the exact
posterior distribution over the hiddenvariables. This justifies
a number of iterative optimization algorithms that improve
this bound in each step and which are often more tractable
than direct optimization of the log likelihood. For example,

variational methods use parameterized functions Q of
constrained forms [23]. The parameters of Q functions for
all data samples are estimated as to increase the above bound
(generalized E step) and then keeping the Q functions fixed,
the parameters � are found that further increase the bound
(generalized M step). These steps are iterated until conver-
gence and, in case of aQ function formwhich captures the full
posterior, this procedure is equivalent to the exact EM
algorithm. As the Q function plays the role of the posterior,
the tracking comes as a byproduct of parameter optimization.
(For more details on various algorithms for minimizing free
energy, the reader can also see [13].)

We note again that an iterative EM algorithm makes it
possible to avoid prior calibration of the system and to
automatically adapt to changes in physical configuration of
microphones and cameras. This is done by iterating the
inference (E step) andmodel parameters estimation (M step),
where the latter includes updating the audiovisual link
parameters. Thus, the tracker is provided only with the raw
videoandaudiomeasurementsand themodelparametersare
learned automatically, startingwith random initialization.Of
themodel parameters listed above, the only set of parameters
that would be useful to learn separately from this procedure
are the spectral templates captured in precision matrices ��r.
These could be trained on a large corpus of speech data in
order to specialize themodel to speaker tracking.However, in
ourexperiments,weassume that even the templatesarewhite
noise, i.e., we set ��r ¼ I, as even such a simple audio model
tendstobootstrapthepropertrackinginthevideocomponent,
pushing it out of the local maxima that is not consistent with
the audio evidence. Thus, although we demonstrate only
speaker tracking, it is likely that the algorithmwouldworkon
any object in video that produces sound.

5.1 E-Step

Generally, the posterior over the hiddens is computed from
the model distribution by Bayes’ rule,

pða; � ; r;v; ‘; s j x1;x2;y; �Þ ¼
pðx1;x2;y; a; � ; r;v; ‘; s j �Þ

pðx1;x2;y j �Þ
;

where pðx1;x2;y j �Þ is obtained from the model distribu-
tion by marginalizing over the hiddens. To describe the
posterior distribution over the hidden variables, we switch
to a notation that uses q to denote a posterior distribution
conditioned on the data. Hence,

pða; � ; r;v; ‘; s j x1;x2;y; �Þ ¼

qða j �; rÞqðv j ‘; sÞqð� j ‘; rÞqð‘; r; sÞ ¼ Q:
ð14Þ

The q notation omits the data, as well as the parameters.
Hence, qða j �; rÞ ¼ pða j �; r;x1;x2;y; �Þ, etc. For practical
reasons, we use the same factorization that we assumed in
the model distribution, (10), as the free energy defined
above breaks into a sum of terms that involve subsets of
variables. However, note that this form of a posterior is still
a full joint distribution over all hidden variables and, thus,
we can express any probability distribution over hidden
variables in this form.

The functional forms of the posterior components q also
follow from the model distribution. As our model is
constructed from Gaussian components tied together by
discrete variables, it can be shown that the audio posterior
qða j �; rÞ and thevideoposterior qðv j ‘; sÞ are bothGaussian,
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qða j �; rÞ ¼ N ða j ��a�;r; ��
a
�;rÞ;

qðv j ‘; sÞ ¼ N ðv j ��v‘;s; ��
v
‘;sÞ;

ð15Þ

while the rest of the posterior is assumed to be a discrete
distribution over ‘; �; s; r, which is true for all but � .
However, since the time in the audio signal is already
discrete and the possible discrete time delays fall typically
into a set of 30 or so values, a discrete approximation of �
tends to be nearly exact. This makes the inference described
in this section variational, although the resulting distribu-
tion would almost perfectly match the exact posterior. (See
the discussion at the end of the section).

To compute the posterior, we can optimize the
KL divergence between so parameterized q distribution
and the posterior for the model. Since the logarithm of the
posterior satisfies

log pða; �;r;v; ‘; s j x1;x2;y; ��Þ ¼

log pðx1;x2;y; a; � ; r;v; ‘; s j �Þ þ const;
ð16Þ

optimizing the KL divergence is equivalent to optimizing
the free energy

F ¼

Z

h

Q log
Q

P ðx1;x2;y; a; �; r;v; ‘; s j �Þ
; ð17Þ

where the integration is done with respect to all hidden
variables h ¼ a; � ; r;v; ‘; s (see [23], [25], or the tutorial paper
[13] in later issue). (The free energy F is equal to the negative
log likelihood of the data when Q is the exact posterior and,
thus, both E and M steps will be based on minimizing F .)
Since all component distributions inQ are either Gaussian or
discrete, the integration can be done in a closed form which
turns out to be quadratic in the parameters of the Guassians
and linear in the parameters of the discrete distributions.

By minimizing F, we obtain the following expressions for
the mean and precision of the video posterior:

��v‘;s ¼ ð��vsÞ
ÿ1ð��s��s þG>

‘   yÞ;

��vs ¼ ��s þ   :
ð18Þ

Note the precision matrices are diagonal, and   further has
a uniform diagonal which resulted in the precision matrix
independent of the transformation index ‘.

The mean and precision of the posterior over the hidden
audio signal a are

��ar ¼ ��r þ �21��1 þ �22��2 ð19Þ

��ar;� ¼ ��ÿ1
x ð�1��1x1 þ �2��2L

>
� x2Þ: ð20Þ

Note that the posterior precision ��ar inherits its Toeplitz
structure from ��r, since ��1 and ��2 are uniform diagonal.

Another component of the posterior is the conditional
probability table qð� j ‘; rÞ ¼ pð� j ‘; r; x1; x2; y; �Þwhich turns
out to be

qð� j ‘; rÞ ¼
1

Z
pð� j ‘Þ expð�1�2�1�2c�;rÞ; ð21Þ

where

c�;r ¼
X

i

X

j

x1;iÿ�x2;j=�
a
rjiÿ�ÿjjþ1

ð22Þ

is a generalized cross correlation coefficient that takes into
account the expected spectral characteristics. Note that

when ��r ¼ I, then ��ar is a uniform diagonal matrix and the
generalized cross correlation coefficient becomes propor-
tional to the standard cross correlation coefficient

c� ¼ ð�ar1Þ
ÿ1

X

i

x1;iÿ�x2;i: ð23Þ

Thus, the posterior over the delay � will directly depend on
the cross correlation between the observed audio frames,
but through the constant Z it will also depend on the
posterior over the position of the object. This constant is a
part of the rest of the posterior over the discrete variables,

qðs; r; ‘x; ‘yÞ ¼
1



gðs; rÞhðs; ‘x; ‘yÞZ; ð24Þ

where the constant 
 normalizes the posterior and

ln gðs; rÞ ¼ ÿ
1

2
ln j��vsj þ

1

2
ln j�sj þ ln�s þ ln�r

ÿ
1

2
��>s �s ÿ �sð�

v
sÞ

ÿ1�s

� �

��s ð25Þ

lnhðs; ‘x; ‘yÞ ¼
1

2
 2e‘;s þ  d‘;s; ð26Þ

with

e‘;s ¼ y>G‘ð�
v
sÞ

ÿ1G>
‘ y; ð27Þ

d‘;s ¼ ��>s �sð�
v
sÞ

ÿ1G>
‘ y: ð28Þ

Using the above equations, the posterior distribution over
all discrete variables qð‘; �; s; rÞ ¼ qð� j‘; rÞqðs; r; ‘Þ can be
computed up to a multiplicative constant and then normal-
ized to add up to one. In this process, the posterior is
evaluated for all possible combinations of the discrete
random variables. As there is only a small number of
physically possible delays � that are a multiple of the
sampling period, the major computational hurdle here is
the computation of the terms in (27) and (28). However,
these can be efficiently computed in the FFT domain [12],
making the inference process very fast.

Before wemove on to the parameter update rules in theM
step,we note again that the calculation of qð� j ‘; rÞ involves a
minorbut somewhat subtlepoint. Since throughout thepaper
wework indiscrete time, thedelay � in ourmodel is generally
regarded as a discrete variable. In particular, qð� j ‘; rÞ is a
discrete probability table. However, for reasons of mathema-
tical convenience, themodel distribution pð� j ‘; rÞ (9) treats �
as continuous. Hence, the posterior qð� j ‘; rÞ computed by
our algorithm is, strictly speaking, an approximation, as the
true posterior in thismodel must also treat � as continuous. It
turnsout that this approximation is of thevariational type (for
a review of variational approximations see, e.g., [23], [13]). To
derive it rigorously, one proceeds as follows: First, write
down the form of the approximate posterior as a sum of delta
functions,

qð� j ‘; rÞ ¼
X

n

qnð‘Þ�ð� ÿ �nÞ; ð29Þ

where the �n are spaced one time point apart. The
coefficients qn are nonnegative and sum up to one, and
their dependence on ‘ is initially unspecified. Next,
compute the qnð‘; rÞ by minimizing the Kullback-Leibler
(KL) distance between the approximate posterior and the
true posterior. This produces the optimal approximate
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posterior out of all possible posteriors which satisfy the
restriction (29). In this paper, we write qð� j ‘; rÞ rather than
qnð‘; rÞ to keep notation simple.

5.2 M-Step

The M-step updates the model parameters � (11). The
update rules are derived, as usual, by considering the
objective function

Fð�Þ ¼ hlog pðx1; x2; y j �Þi; ð30Þ

knownas theaverageddata likelihood.Weuse thenotation h�i
to denote averaging with regard to the posterior (14) over all
hiddenvariables that donot appear on the left-hand side and,
in addition, averaging over all frames.Hence,F is essentially
the log-probability of ourmodel for each frame,where values
for the hidden variables are filled in by the posterior
distribution for that frame, followed by summing over
frames. Each parameter update rule is obtained by setting
the derivative of F with regard to that parameter to zero.

As noted above, a useful way to express the data
likelihood is as the negative of the free energy and, so, the
objective function can be written as

Fð�Þ ¼

�

ÿ

Z

h

Q log
Q

P ðx1;x2;y; a; � ; r;v; ‘; s j �Þ

�

; ð31Þ

where the Q distribution is computed for each audio-video
frame as described in the previous section. Equating the
derivatives of this objective function to zero provides the
update rules for model parameters.

For example, for the video model parameters �s, �s, �s,
we have

��s ¼
h
P

‘ qð‘; sÞ��
v
‘;si

hqðsÞi
;

��ÿ1
s ¼

h
P

‘ qð‘; sÞð��
v
‘;s ÿ ��sÞ

2 þ qðsÞð��v‘;sÞ
ÿ1i

hqðsÞi
;

�s ¼ hqðsÞi;

ð32Þ

where the qs are computed by appropriate marginalizations
over qð‘; r; sÞ from theE-step.Notice that here, the notation h�i
implies only average over frames. Update rules for the audio
model parameters ��r, �r are obtained in a similar fashion.

For the audio-video link parameters �, �, we have,
assuming for simplicity �0 ¼ 0,

� ¼
h‘x�i ÿ h�ih‘xi

h‘2xi ÿ h‘xi
2

� ¼ h�i ÿ �h‘xi

!ÿ1 ¼ h�2i þ �2h‘2xi þ �2 þ 2��h‘xi ÿ 2�h�‘xi ÿ 2�h�i;

where, in addition to averaging over frames, h�i here implies
averaging for each frame with regard to qð�; ‘Þ for that
frame, which is obtained by marginalizing qð� j ‘Þqð‘; r; sÞ
over r; s.

Anoteaboutcomplexity.Accordingto(32),computingthe
mean ð�sÞn foreachpixeln requires summingoverallpossible
spatial shifts ‘. Since the number of possible shifts equals the
number of pixels, this seems to imply that the complexity of
our algorithm is quadratic in the number of pixels N . If that
were the case, a standard N ¼ 120� 160 pixel array would
render the computation practically intractable. However, as

pointed out in [12], a more careful examination of (32), in
combinationwith (18), shows that it canbewritten in the form
of an inverse FFT. Consequently, the actual complexity is not
OðN2Þbut ratherOðN logNÞ. This result,whichextends to the
corresponding quantities in the audio model, significantly
increases the efficiency of the EM algorithm.

For brevity, we omit the update rules for other parameters
in themodel, such asmicrophone gain and noise parameters.
These are straightforward to derive, andwe should note that,
except for ��r, whichwe set to I, in our experiments we jointly
optimize for all parameters in the model.

5.3 Tracking

Tracking is performed as part of the E-step using (12), where
pð‘ j x1; x2; yÞ is computed from qð�; ‘Þ above by margin-
alization. For each frame, the mode of this posterior distribu-
tion represents themost likelyobjectpositionand thewidthof
the mode a degree of uncertainty in this inference.

6 RESULTS

We tested the tracking algorithm on several audio-video
sequences captured by the setup in Fig. 1 consisting of low-
cost, off-the-shelf equipment. The video capture rate was
15 frames per second and the audio was digitized at a
sampling rate of 16 kHz. This means that each frame
contained one 160� 120 image frame and two 1,066 samples
long audio frames.2 No model parameters were set by hand
and no initialization was required; the only input to the
algorithm was the raw data. The algorithm was consistently
able to estimate the time delay of arrival and the object
position while learning all the model parameters, including
the calibration (audio-video link) parameters. Theprocessing
speed of our Matlab implementation was about 50 audio-
video frames per second per iteration of EM. Convergence
was generally achieved within just 10 iterations. This means
that our Matlab script processes a minute of video in about
three minutes.

We present the results on two sequences that had
substantial background audio noise and visual distractions.
In Fig. 4, we compare the results of tracking using the audio
only model (Fig. 2a), full audio-video model (Fig. 3), and the
video onlymodel (Fig. 2b) on themultimodal data containing
a moving and talking person with a strong distraction
consisting of another two people chatting and moving in the
background (see Fig. 1). For tracking using the audio only
model, a link between � and ‘ was added, and the link’s
parameters are set by hand, to allow computing the posterior
qð‘Þ, without connecting the rest of the video model. This
allowsus to plot the inferredposition based only on the audio
model that tracks time delay. The left two columns in Fig. 4
show the learned image template and the variance map. (For
the audio model, these images are left blank.) Note that the
model observing only the video (third main row) failed to
focus on the foreground object and learned a blurred
template instead. The inferred position stayed largely flat
and occasionally switched as the model was never able to
decidewhat to focus on. This is indicated in the figure both by
thewhite dot in the appropriate position in the frames and in
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2. As the audio sampling rate is not exactly a multiple of the video
sampling rate, there is a variable number of audio frames that could be
captured for each video frame. We simply take the first 1,066 audio samples
that are captured during the duration of the video frame.



the position plot (see figure caption). The model observing
only the audio data (first main row) provided a very noisy
estimate of ‘x. As indicated by the white vertical lines, no
estimate of ‘y could be obtained, due to the horizontal
alignment of the microphones.

The full audiovisual model (second main row) learned
the template for the foreground model and the variance
map that captures the variability in the person’s appearance
due to the nontranslational head motion and movements of
the book. The learned linear mapping between the position
and delay variables is shown just below the template
variance map. The tracker stays on the object even during
the silent periods, regardless of the high background audio
noise, and as can be seen form the position plot, the tracker
had inferred a smooth trajectory with high certainty,
without need for temporal filtering.

In Fig. 5, we illustrate the parameter estimation process by
showing the progressive improvement in the audiovisual
tracking through several EM iterations. Upon random
initialization, both the time delay and location estimates are
very noisy. These estimates consistently improve as the
iterations proceed and even though the audio part never
becomes fully confident in its delay estimate, mostly due to
reverberation effects, it still helps the video part achieve near

certainty by the tenth iteration. In Fig. 6, we show another
example of tracking using the full audio-video model on the
datawith strong visual distractions. Onemight note the step-
like trends in the position plots in both cases, which really
does follow the stepping patterns in the walk of the subjects.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new approach to
building models for joint audio and video data. This
approach has produced a new algorithm for object tracking,
which is based on a graphical model that combines audio
and video variables in a systematic fashion. The model
parameters are learned from a multimedia sequence using
an EM algorithm. The object trajectory is then inferred from
the data via Bayes’ rule. Unlike other methods that require
precise calibration to coordinate the audio and video, our
algorithm performs calibration automatically as part of EM.

Beyond self calibration, our tracker differs from the state
of the art in two other important aspects. First, the tracking
paradigm does not assume incremental change in object
location, which makes the algorithm robust to sudden
movements. At the same time, the estimated trajectories are
smooth as the model has ample opportunity to explain
noise and distractions using data features other than the
position itself. This illustrates the power of modeling the
mechanism that generates the data.

Second, the paradigm can be extended in several ways.
Multiobject situations may be handled by replicating our
single object model. Such cases typically involve occlusion,
which may be approached using models such as the one
proposed in [21]. Multiobject situations also pose the
problem of interfering sound from multiple sources. This
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Fig. 4. Tracking results for the audio only (first row), audio-video (second row), and video only (third row) models. Each row consists of the inference
for ‘x (bottom), and selected frames from the video sequence (top), positioned in time according to the vertical dotted lines. Note that while the
subject moves horizontally, the bottom row of each plot depicts ‘x inference on its vertical axis for clarity. The area enclosed by the white dots, or
between the white lines in the case of the audio only model (first row), represents the region(s) occupying the overwhelming majority of the
probability mass for the inferred object location.

Fig. 5. Learning the combined model with EM iterations. (Left)
uncertainty in � represented by the posterior distribution qð�Þ, with
darker areas representing more certainty (� 2 fÿ15; . . . ; 15g). Right
uncertainty in horizontal position represented by the posterior distribu-
tion qð‘xÞ, similar shading. The four rows correspond to the inference
after 2 (top), 3, 4, and 10 (bottom) iterations, by which point the
algorithm has converged. In particular, note how the final uncertainty in �
is a considerable improvement over that obtained by the correlation
based result shown in Fig. 1. Fig. 6. Tracking results on a data set with significant visual noise.



aspect of the problem may be handled by source separation

algorithms of the type developed in [2]. Such models may

be incorporated into the present framework and facilitate

handling richer multimedia scenarios.
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