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Abstract

We present a simple statistical model of
molecular function evolution to predict pro-
tein function. The model description en-
codes general knowledge of how molecular
function evolves within a phylogenetic tree
based on the proteins’ sequence. Inputs are
a phylogeny for a set of evolutionarily related
protein sequences and any available function
characterizations for those proteins. Poste-
rior probabilities for each protein are used to
predict the molecular function of that pro-
tein. We present results from applying our
model to three protein families, and compare
our prediction results on the extant proteins
to other available protein function predic-
tion methods. For the deaminase family, our
method achieves 93.9% where related meth-
ods BLAST achieves 72.7%, GOtcha achieves
87.9%, and Orthostrapper achieves 72.7% in
prediction accuracy.

1. Introduction

The number of sequenced nucleotide sequences encod-
ing proteins is growing at an extraordinarily fast rate
due to technologies developed in the last decade that
enable rapid sequence acquisition. Such acquisition is
a prelude to the understanding of the molecular func-
tion and tertiary structure of these protein sequences,
and thence to an understanding of the role these pro-
teins play in a particular organism. The experimental
technologies that enable us to understand molecular
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function and structure have, however, not progressed
nearly as fast as those for sequencing. One impor-
tant role of computational biology is to make accurate
predictions for these additional properties of a protein
based on sequence alone.

A standard approach to the prediction of molecular
function is to compare a query sequence to sequences
with known function. The underlying assumption is
that similarity in sequence implies similarity in molec-
ular function. Whether this assumption is warranted
or not, a significant practical problem is that there
are very few annotated sequences, and thus any given
query protein often does not have a significant simi-
larity with any sequences in the database.

Moreover, pure sequence comparison methods fail to
take advantage of one of the most important sources
of constraint in biology, the structure of evolutionary
relationships among biological molecules. In particu-
lar, homologous proteins—proteins that are evolution-
arily related to each other through a single common
ancestor—may have little sequence similarity. And yet
homologous proteins often have a similar function, be-
cause function tends to be evolutionarily conserved.

Phylogenomics is an approach to the study of molecu-
lar function that exploits the observation that protein
function and protein sequence tend to evolve in par-
allel (Eisen, 1998). This observation suggests that a
phylogeny built using protein sequence can accurately
capture the evolution of molecular function within
the homologous proteins, despite the lack of a direct
connection between sequence and function. Indeed,
there is often enough information contained in a set
of aligned homologous sequences to accurately recon-
struct a phylogeny (a bifurcating tree describing the
evolutionary relationships among homologous protein
sequences) using one of the many available methods
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(e.g., (Felsenstein, 1989; Swofford, 2001)).

Phylogenomics also emphasizes the tendency of pro-
teins to mutate function more rapidly after undergoing
a duplication event in a single species than after a spe-
ciation event (Ohno, 1972). A gene duplication event
creates two copies of a gene in a single genome; if both
genes produce protein, then the levels of that protein
are often higher than necessary to perform its func-
tion. This redundancy takes selective pressure off the
individual genes, and one of the copies will often mu-
tate away from the original function; an example rele-
vant to the experiments in this paper is the emergence
of adenine deaminase in the deaminase family (Rib-
ard et al., 2003). In speciation events, on the other
hand, only one copy of the gene is available in the two
genomes. Since no redundancy exists, selective pres-
sure makes a function mutation less likely in this case.

While phylogenomics was developed by Eisen as a
manual procedure, more recent work has attempted to
automate the concepts of phylogenomics, and thereby
to provide tools for phylogenetic-based inference of
molecular function at a genomic scale. Resampled In-
ference of Orthologs (RIO) (Zmasek & Eddy, 2002)
and Orthostrapper (Storm & Sonnhammer, 2002) are
examples of this effort. Both of these methods boot-
strap sequence alignments to produce ensembles of
phylogenies, and extract from the ensemble a set of
pairwise relationships between a query protein and
other proteins. They then use heuristic methods to
determine which annotation to transfer, using some
combination of average distance in the tree and fre-
quency of not having a duplication in the tree path.

In recent work we have presented an alternative ap-
proach to automated phylogenomics that we refer to
as Sifter (Statistical Inference of Function Through
Evolutionary Relationships) (Engelhardt et al., 2005).
In the current paper we present a novel model for
which we retain the name Sifter, but which pro-
vides a more fully statistical methodology for phyloge-
nomics. In particular, the earlier approach was based
on a noisy-OR model with user-specified parameters;
here we develop an alternative model in which the pa-
rameters are learned from data via an EM procedure.

The paper is organized as follows. In Section 2 we
briefly outline the phylogenomic method and describe
the specific probabilistic approach behind Sifter.
Section 3 presents a set of experiments comparing
three state-of-the-art methods (BLAST, Orthostrap-
per and GOtcha) to Sifter in the context of three pro-
tein families (secretins, deaminases and aminotrans-
ferases). We present our conclusions in Section 4.

2. Methodology

The basic phylogenomic flow diagram underlying
Sifter is shown in Figure 1. The first four steps are
generic and we briefly describe their implementation in
Sifter in Section 2.1. Step 5 (Function overlay) and
Step 6 (Infer function) are more specific to Sifter

and we describe them in detail in Section 2.2 and Sec-
tion 2.3, respectively.

2.1. Query to Phylogeny

A query protein sequence can be matched to a set
of homologous sequences using, for example, the HM-
MER program (Durbin et al., 1999), which finds the
best single domain alignment based on Pfam domain
profiles. The Pfam database (Bateman et al., 2002)
stores over 8000 manually-curated, aligned, homolo-
gous protein domains (functional segments of proteins)
with their associated species phylogeny, and builds a
sequence profile for each one. Once we find that the
query protein has one or more Pfam domains, we ob-
tain a set of homologous proteins and an alignment of
those sequences using the domain profile.

Given a set of aligned proteins, we perform sequence-
based phylogeny reconstruction and reconciliation us-
ing standard methods. Reconciliation labels internal
nodes of a phylogeny with speciation or duplication
events based on reconciling the structure of the pro-
tein sequence phylogeny with the structure of a species
phylogeny, which are inconsistent based on the loca-
tions of duplication and deletion events in the his-
tory of the protein family (Goodman et al., 1979).
Our implementation uses Paup* version 4.0b10 (Swof-
ford, 2001), using parsimony with the BLOSUM50 ma-
trix for phylogeny reconstruction, and Forester version
1.92 (Zmasek & Eddy, 2001) for reconciliation. The re-
sult is a rooted phylogenetic tree with branch lengths,
where each internal node is labeled with either a du-
plication or speciation event.

2.2. Molecular Function: Terms and Data

Protein function is defined here as the action of a pro-
tein in vivo. Molecular function includes the ability of
a protein to bind to or transport a molecule, or cat-
alyze a reaction. To provide a basic set of terms that
capture these concepts, we make use of the Gene On-
tology (GO) (Ashburner et al., 2002). GO not only
provides a vocabulary of basic terms for Sifter, it
also organizes these terms into a directed acyclic graph
(DAG), a feature that Sifter exploits. A four node
subgraph of the GO DAG for molecular function (con-
taining 7395 nodes total) is shown in Figure 2.
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Figure 1. Flow diagram for phylogenomic methodology.

Another virtue of GO is that it is accompanied by a
database (the GOA database (Camon et al., 2004))
of function annotations. These annotations are la-
beled with evidence codes, including IDA (Inferred
from Direct Assay), TAS (Traceable Author State-
ment), IMP (Inferred from Mutant Phenotype), NAS

(Non-traceable Author Statement) and IEA (Inferred
from Electronic Annotation). The first three codes are
those for which an experimental assay was performed;
they tend to be correct. The latter two codes are those
for which no experimental assay was performed; they
are often incorrect. In Sifter, these annotations are
treated as likelihoods, and we associate expert-elicited
probabilities with each of the codes. Specifically, we
use likelihoods of 0.9 for IDA and TAS annotations,
0.8 for IMP, 0.3 for NAS and 0.2 for IEA.

Given a query protein, we gather a list of candidate
molecular functions for the corresponding family of
proteins by taking the union of all experimental GO
annotations associated with the proteins in this fam-
ily (e.g., the subgraph in Figure 2). We prune this list
so that only the function terms at the leaves of the

DAG are left in the list and call this set of terms can-

didate functions (e.g., the double ovals in Figure 2).
This choice of terms distinguishes Sifter from many
other protein function prediction methods. We view
the most specific terms as being the hardest to pre-
dict and of the greatest utility for biologists. In Fig-
ure 2, for example, biologists may be able to readily
infer that a query protein is a G-protein-coupled re-
ceptor (GPCR) based on an annotation from a dis-
tant homolog. However, often attention will center on
the more difficult problem of differentiating glucagon
receptor activity from parathyroid hormone receptor
activity in a single protein. Many fewer annotations
are available for transfer at this level of specificity;
moreover, mutations occur more rapidly at this level.
Furthermore, the first function is involved in insulin
regulation where as the second regulates bone growth.
Although they are nearby ontologically, it is impor-
tant for biological research to assess which of the two
different roles a query protein performs in vivo.

Annotations at nonterminals in the DAG provide ev-
idence for the leaves below those nonterminals. This
is achieved by treating evidence at an ancestor node
as evidence for all possible combinations of its descen-
dants, according to the distribution Q(S) = 1/η|S|,
where S is an arbitrary non-empty subset of the de-
scendant nodes, |S| is the cardinality of that sub-
set, and the value η is fixed by the requirement that
∑

S Q(S) = 1. Annotations are combined at a given
node by taking one minus the product of their errors
(where error is one minus their probabilities).

G-protein coupled receptor activity

GO:0004930

secretin-like receptor activity

GO:0001633

glucagon receptor activity

GO:0004967

parathyroid hormone 

receptor activity

GO:0004991

Figure 2. A segment of the GO DAG representing terms
used in the secretin protein family. The double circles rep-
resent the candidate functions used in Sifter. The arrows
here represent “is a” relationships between the terms, with
the more general terms as the ancestors.
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2.3. Model Specification

Classical phylogenetics uses probabilistic methods to
model the evolution of states along the branches of a
tree and to infer ancestral states in that tree. Sifter

borrows this machinery in the service of a procedure
for inferring molecular function. Specifically, having
assembled the candidate functions for a query protein,
we treat that list as a Boolean state vector for phy-
logenetic analysis. Note in particular that the repre-
sentation of function as a Boolean vector implies that
multiple functions can be asserted as present in a single
protein; there is no assumption of mutual exclusivity.

Given a Boolean vector of functions at a given node in
the phylogeny, we modeled the conditional probability
of a single function at a child node as follows. Let Xi

denote the Boolean random vector of candidate func-
tions associated with protein i. Let M denote the num-
ber of components of this vector; this is the number
of candidate functions. The conditional probability of
protein i having a function m present (represented by
Boolean random variable Xm

i = 1) conditioned on its
parent protein πi and the branch length bi is modeled
as follows:

θi,m = p(Xm
i = 1 |Xπi

= xπi
, bi, σ, φ) (1)

= 1
[

Xm
πi

= 0
]

(1− e−biσ)
M
∏

n6=m

e−φn,mxn
πi (2)

+ 1
[

Xm
πi

= 1
]

(1− e−φm,m(1− e−biσ)), (3)

where the model parameters are a symmetric, nonneg-
ative matrix of parameters φ = {φ1,1, φ1,2, . . . , φM,M}
and a nonnegative rate parameter σ. Overall, the

model has M(M−1)
2 + 2 parameters.

To interpret this probability model, consider the case
in which the immediate parent of Xm

i (Xm
πi

) has value
0. From Equation 2, we see that the probability of
Xm

i being 1 is the probability of mutating at least
once within time interval bi, (1 − e−biσ), scaled by
the product of the probabilities that all functions n
that are 1 in the ancestor protein mutate to function
m. When Xm

πi
has value 1, Equation 3 shows that the

probability of Xm
i being 1 is the probability of not

mutating within time interval bi (e−biσ) scaled by the
probability of retaining function m (e−φm,m).

In this model, the parameter σ captures the rate of
mutation. There are actually two different rate pa-
rameters in the model, which we henceforth denote
as σspeciation and σduplication. That is, the mutation
rate is indexed by the type of the internal node in the
phylogeny—speciation versus duplication.

The overall probability model for protein i is obtained

by taking a product over the M possible functions:

p(xi|θi,m) =

M
∏

m=1

θ
xm

i

i,m(1− θi,m)1−xm
i ,

which reflects a conditional independence assumption
for the functions under consideration.

We estimate the parameters φ and σ in this model
using a generalized expectation maximization (GEM)
algorithm. Noting that a phylogeny is a tree in which
the nonterminal nodes are unobserved, the E step of
the algorithm is simply a standard graphical model
inference procedure in which messages are propagated
upward and downward in the tree (Felsenstein, 1981).
As for the M step, there is no closed-form solution for
the maximizing values of the parameters Θ = {φ, σ};
thus, we implement a generalized M step via gradient
ascent. The gradient for this model is presented in Ap-
pendix A. In practice, we take a single gradient step for
each iteration of GEM. We stop EM iterations when
the sum of the absolute value of the change in param-
eters is less than some cutoff c. For our experiments,
we set the step size ρ to 0.01, and the cutoff c to 0.005.
We initialized all of the parameters in the φ matrix to
2.0, and initialized σspeciation = 1.5, σduplication = 2.0.
We found that the convergence of the algorithm was
robust across a range of initializations.

3. Results

We tested the performance of Sifter on three dif-
ferent protein family sequences and alignments from
the Pfam database downloaded October 7, 2005 (Bate-
man et al., 2002). The annotations are from the GOA
database downloaded October 7, 2005 (Camon et al.,
2004).

In two of the families below (deaminases and amino-
transferases), we use an additional set of experimental
annotations, besides those found in the GOA database,
derived from manual literature searches, and include
them as TAS annotations.

We conducted cross validation experiments, which in-
volved removing each protein’s annotations from the
training set and running EM, then checking whether
the maximum posterior probability for that protein us-
ing the estimated parameters agrees with the original
held-out annotation. If the held-out annotation was
not a member of the candidate functions (e.g., the
annotations for GPCR in the secretin family, which
is an ancestor term of both candidate terms), we did
not use that protein for comparison. For each family
we ran cross validation with experimental annotations,
and also with both experimental and electronic anno-
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tations. We used the experimental cross validation
result as the gold standard and in our comparisons.

We chose the three protein families because they are
fairly well studied due to their biological importance
and roles in human disease. Despite this, the prob-
lem of predicting protein function for the unannotated
members of the families involves sparse data. For the
most part, the experiments that we ran on each of the
three protein families are identical. But each family
posed unique challenges to function prediction, and we
discuss each family below focusing on those challenges.

3.1. Methods for Comparison

Before we present results on the three families, we de-
scribe the three methods we use for comparison and
how they were run. BLAST and GOtcha are both
methods that transfer function annotations based on
sequence comparisons; Orthostrapper comes from a
family of methods that rely on phylogenomic assump-
tions to transfer annotations based on a pairwise sim-
ilarity heuristic.

3.1.1. BLAST

The BLAST version 2.2.4 (Altschul et al., 1990) assess-
ment was performed on the non-redundant (nr) set of
proteins from swiss-prot downloaded from the NCBI
website on April 27, 2005. We ran BLASTP with an
E -value cutoff of 0.01.

For each query protein in the selected families we
searched the BLAST output with the most significant
E -value (probability of the alignment score based on
an extreme value distribution for aligning protein se-
quences at random) removing any exact matches from
the same species to ensure that the query protein did
not receive its own database annotation. We used a
keyword search with 265 GO terms to extract a set of
annotations for each query protein ranked by E -values,
facilitated by BioPerl (Stajich et al., 2002). The high-
est ranked candidate term for a particular family was
considered the function prediction.

In practice, BLAST does not select from a set of candi-
date functions, but transfers a term from the entire set
of annotation terms in its protein library. Often, either
the most significant non-identity hit or the most sig-
nificant non-identity annotated hit is used to transfer
annotation onto the query protein. Here we transfer
annotation from the most significant hit with a can-
didate term, which increases the accuracy of BLAST,
and enables a comparative ROC-type analysis.

3.1.2. GOtcha

We ran the first publicly available version of the
GOtcha software (Martin et al., 2004) on each of
the three protein families. GOtcha predicts protein
function using a statistical model applied to BLAST
searches on a manually-constructed database contain-
ing complete GO annotations of seven genomes, in-
cluding GO evidence codes. Because the annotation
database is precompiled for fast querying we could not
ensure that a query protein was not being annotated
from its own annotation in the database. For one set
of experiments (labeled GOtcha), we gathered results
using annotations with both experimental and elec-
tronic evidence codes. For another set of experiments
(labeled GOtcha-exp), we gathered results given only
annotations with experimental evidence codes. The
output is a ranked list of GO terms; we extracted the
ranked list of candidate functions from this complete
set, breaking ties in favor of the correct term.

3.1.3. Orthostrapper

We ran Orthostrapper (Storm & Sonnhammer, 2002),
version from February 6, 2002, on each of the three
families. We split the proteins in each family with ex-
perimental GO annotations into proteins from eukary-
otes and non-eukaryotes respectively. We clustered the
bootstrapped analysis according to the cluster pro-
gram in Orthostrapper, using a bootstrap cutoff of
750 and then using a cutoff of 1, resulting in statisti-
cally significant clusters (Orthostrapper-750) and non-
statistically significant clusters (Orthostrapper-1). In
each cluster, we transferred all experimental annota-
tions from member proteins onto the remaining pro-
teins without experimental annotations. If a protein
was present in multiple clusters, it would receive an-
notations transferred within all of those clusters. This
method yields an unranked set of predictions for each
protein; multiple annotations were resolved in favor of
the correct one. We perform cross validation for each
protein by removing its annotations and transferring
the remaining annotations to make a prediction for the
held out protein. The ROC analysis was performed
by determining true positive and false positive anno-
tations for all clusters generated by bootstrap cutoffs
between 1000 and 0.

3.2. Secretin Proteins

We applied our model to a small subset of secretin
proteins (within PF00002) with 14 proteins. This
subset was selected by using a strict PSI-BLAST
search (Altschul et al., 1997) with seed protein
GLP2R HUMAN. We removed all duplicate sequences
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from this original set.

The activity of all secretin proteins is mediated by
G-proteins. The glucagon receptor secretin proteins
(GO:0004967) regulate blood glucose by controlling
the rate of hepatic glucose production and insulin se-
cretion. The parathyroid hormone receptor secretin
proteins bind and regulate the parathyroid hormone
(GO:0004991). This family plays a role in many hu-
man diseases such as osteoporosis. The GO terms as-
sociated with these proteins are shown in Figure 2, and
their associated phylogeny and annotations from the
GOA database are shown in Figure 3.

Cross validation using both electronic and experimen-
tal annotations yields 71.4% correct (5 of 7) (Fig-
ure 3), with the two proteins producing prediction
errors when held out of parameter estimation be-
ing GLR HUMAN and Q5IXF8 MOUSE. When we
use only experimental proteins, cross validation yields
100% correct (4 out of 4), where after convergence of
the parameters, 100% (15 of 15) of the three held-out
electronic annotations are correct in each of the five it-
erations. This example shows how using a much larger
proportion of one function may skew the estimated pa-
rameters towards the more highly represented function
through the φm,m parameters.

Of the related methods, GOtcha-exp, Orthostrapper-
750, and Orthostrapper-1 failed to annotate any of the
three electronic annotations. GOtcha achieved 25%
accuracy (1 of 4), whereas BLAST achieved 100% ac-
curacy (4 of 4).

3.3. Adenosine/AMP Deaminase Proteins

We applied Sifter to the Pfam adenosine/AMP
deaminase family (PF00962), containing 251 proteins.
This family is responsible for removing an amine group
from the purine base of three possible substrates.
Determining which substrate (adenosine, adenine, or
AMP) the protein acts on is critical to understand-
ing its role in the cell, as each of the three substrates
are a part of different biological processes. The GOA
database contained experimental annotations for 13
proteins, and we found experimental annotations for
20 additional proteins through a manual literature
search.

This family has the added difficulty of a subset of pro-
teins with multiple functions. The second function is
growth factor activity, conferred through an additional
domain not found in proteins without this activity. Re-
sults here are based on the number of proteins with
the correct annotation; if a protein had two different
types of experimental annotations we considered a pre-

473.0

4991 candidate

4930 

4967 candidate

Experimental

Electronic

Figure 3. Secretin family dataset. The annotations from
the GOA database are represented to the right of the phy-
logeny. The white and black annotations are in the set
of candidate functions and make up the seven annotations
used for cross validation; the gray annotations are ances-
tors of both candidate functions, and are too general to use
for prediction. Branch lengths are on each edge. The red
squares in the internal nodes represent duplication events;
the blue ones speciation events.

diction correct if it was correct for one of the two.

Cross validation on experimental annotations yields
93.9% accuracy (31 out of 33). Cross validation
on experimental and electronic annotations yields
96.3% accuracy (156 of 162). The comparison
on the experimental annotations show that BLAST
and GOtcha-exp achieve 66.7% accuracy (22 of 33),
GOtcha achieves 87.9% accuracy (29 of 33), and
Orthostrapper-1 achieves 78.8% accuracy (26 of 33).
For GOtcha-exp, we broke ties in favor of the correct
function 14 times over the 33 proteins.

The ROC analysis in Figure 4 uses a cutoff to deter-
mine the correct functions. It is a better method for
comparison in this multifunction family because it ac-
counts for accuracy in predicting both functions when
multiple functions exist, by including them in the true
positive and false negative count. In the figure, Sifter

outperforms all of the methods on this family.
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Figure 4. ROC figure comparing the five different methods
on the deaminase family experimental annotations. There
were 33 proteins annotated, with a total of 38 annotations
(five proteins had multiple function annotations). In the
axes, TP denotes true positives, FP denotes false positives,
TN denotes true negatives, and FN denotes false negatives.
Note that the X-axis is on log scale.

3.4. Aminotransferase Proteins

We applied Sifter to a subset of the Pfam amino-
transferase family (PF00155) containing 90 proteins.
This subset of the family was chosen using an itera-
tive SATCHMO alignment (Edgar & Sjolander, 2003)
to AATC PIG of all Swiss-Prot proteins with “amino-
transferase” in their annotations, and selecting the
aminotransferase group Ia based on that alignment.
This family is responsible for catalyzing the trans-
fer of a nitrogenous group from a donor to an ac-
ceptor. There are two aminotransferases (ATases) in
this family: aspartate aminotransferases (AATases;
GO:0004069) and tyrosine aminotransferase (TATases;
GO:0004838). In the GOA database, there are three
experimental annotations supporting AATase pro-
teins, but none supporting TATase proteins. We used
five additional AATase and four TATase experimen-
tal annotations, based on manual literature curation,
making 12 experimental annotations.

This family is difficult for function prediction using
evolutionary assumptions because it contains a signif-
icant amount of homoplasy. Homoplasy occurs when
a feature arises independently in different locations on
the phylogeny; here it appears that the TATases have
arisen multiple times in the phylogeny.

Because of the large amount of homoplasy, cross vali-
dation with only experimental annotations yields 75%
correct (9 of 12); one of the errors was a TATase pro-
tein whereas two were AATase proteins. The cross
validation with both experimental and electronic an-
notations yields 92.6% correct (50 of 54), getting the
single TATase electronic annotation correct.

Neither BLAST nor either version of GOtcha predicted
TATases for any of the experimental annotations.
Hence, BLAST, GOtcha, and GOtcha-exp achieve
66.7% accuracy on the experimental annotations (8
of 12) by predicting only AATases. Orthostrapper-1
has a single cluster with all but one of the 12 exper-
imental annotations; every correct annotation was a
result of a tie broken in favor of the correct annota-
tion. Orthostrapper-750 was not able to annotate any
of the 12 proteins with experimental annotations.

4. Conclusions

We have described a methodology to predict pro-
tein molecular function given sequence and available
molecular function annotations from homologous pro-
teins. Evolutionary information and molecular func-
tion terms are incorporated in a graphical model of
molecular function evolution. We use GEM to esti-
mate the parameter values. We compare our method
to state-of-the-art methods and outperform them in
prediction on three diverse real world protein families.

We are involved in ongoing work to investigate the ap-
propriateness of applying this method to predict other
characteristics of a protein sequence that may evolve in
parallel with protein sequence, such as transmembrane
region boundaries or other tertiary protein structure
characteristics.
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cretin family) at UC Berkeley for their generous help.
BEE was funded through the Google Anita Borg
Scholarship. MIJ was funded through NIH grant
R33 HG003070. SEB was funded through NIH K22
HG00056.

References

Altschul, S. F. et al. (1990). Basic local alignment
search tool. J Mol Biol, 215, 403–410.

Altschul, S. F. et al. (1997). Gapped BLAST and PSI-



Graphical Model to Predict Protein Molecular Function

BLAST: a new generation of protein database search
programs. Nucleic Acids Res, 25, 3389–3402.

Ashburner, M. et al. (2002). Gene ontology: Tool for
the unification of biology. the gene ontology consor-
tium. Nat Genet, 25, 25–29.

Bateman, A. et al. (2002). The Pfam protein families
database. Nucleic Acids Res, 30, 276–280.

Camon, E. et al. (2004). The gene ontology annotation
(GOA) database: sharing knowledge in uniprot with
gene ontology. Nucleic Acids Res, 32, 262–266.

Durbin, R. et al. (1999). Biological sequence analysis:

Probabilistic models of proteins and nucleic acids.
Cambridge University Press.

Edgar, R., & Sjolander, K. (2003). SATCHMO: se-
quence alignment and tree construction using hid-
den Markov models. Bioinformatics, 19, 1404–1411.

Eisen, J. A. (1998). Phylogenomics: improving func-
tional predictions for uncharacterized genes by evo-
lutionary analysis. Genome Res, 8, 163–167.

Engelhardt, B. E., Jordan, M. I., Muratore, K., &
Brenner, S. E. (2005). Protein molecular function
prediction by Bayesian phylogenomics. PLoS Comp

Biol, 1, e45.

Felsenstein, J. (1981). Evolutionary trees from DNA
sequences: a maximum likelihood approach. JME,
17, 368–376.

Felsenstein, J. (1989). PHYLIP – phylogeny inference
package (version 32). Cladistics, 5, 164–166.

Goodman, M. et al. (1979). Fitting the gene lineage
into its species lineage: a parsimony strategy illus-
trated by cladograms constructed from globin se-
quences. Syst Zool, 28, 132–168.

Martin, D. M. A. et al. (2004). GOtcha: a new method
for prediction of protein function assessed by the
annotation of seven genomes. BMC Bioinformatics,
5, 178–195.

Ohno, S. (1972). Evolution by gene duplication.
Springer-Verlag.

Ribard, C. et al. (2003). Sub-families of alpha/beta
barrel enzymes: a new adenine deaminase family. J

Mol Biol, 334, 1117–1131.

Stajich, J. E. et al. (2002). The BioPerl toolkit: Perl
modules for the life sciences. Genome Res, 12, 1611–
1618.

Storm, C. E., & Sonnhammer, E. L. (2002). Au-
tomated ortholog inference from phylogenetic trees
and calculation of ortholog reliability. Bioinformat-

ics, 18, 92–99.

Swofford, D. (2001). Paup∗: Phylogenetic analysis us-

ing parsimony. Sinauer Associates.

Zmasek, C. M., & Eddy, S. R. (2001). A simple algo-
rithm to infer gene duplication and speciation events
on a gene tree. Bioinformatics, 17, 821–828.

Zmasek, C. M., & Eddy, S. R. (2002). RIO: Analyz-
ing proteomes by automated phylogenomics using
resampled inference of orthologs. BMC Bioinfor-

matics, 3, 14.

Appendix A: Gradient Updates

The update equations for gradient ascent have the fol-
lowing form: for each m = (1, ...,M), n = (1, ...,M),
and letting T be the number of nodes (besides the
root) in the tree,

φ(t+1)
n,m ← φ(t)
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,

for ρ > 0, where 〈·〉 is the expectation under Θ(t) com-

puted in the expectation step, pm =
∏

n6=m e−φn,mxn
πi ,

qi = bie
−biσ, ri,m =

1−xm
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1−θi,m
, and ym

i = 1− xm
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