
A GRAPillCAL PARALLEL

CO:MPOSITION OPERATOR

FORPROCESSALGEBRAS

Hubert Garavel and Mihaela Sighireanu

INRIA Rhone-Alpes/ VASY team

655, avenue de /'Europe

38330 Montbonnot StMartin

France

hubert.garavel@inria.fr, mihaela.sighireanu@in ria.fr, http:/ fwww.inrialpes.fr fvasy

Abstract Process algebras are suitable for describing networks of communicating

processes. In most process algebras, the description of such networks is

achieved using parallel composition operators. Noticing that the paral

lel composition operators commonly found in process algebras are often

limited in expressiveness and/or difficult for novice users, we propose

a new parallel operator that allows networks of communicating pro

cesses to be described easily, in a simple and well-structured manner.

We illustrate on various examples (token-ring network and client-server

protocol) the theoretical and practical merits of this operator.

Keywords: Concurrency, E-LOTOS, Formal Description Technique, LOTOS, Process

Algebra, Protocol.

1. INTRODUCTION

Process algebras have been designed as a theoretical framework for

the study of concurrency. Classical examples of process algebras are:

ACP [BK84], CCS [Mil80; Mil89], CSP [Hoa85], MEIJE [dS85], etc.

There also exist specification languages combining process algebraic con

cepts with features borrowed from functional or imperative program

ming languages, e.g., the OccAM [Cam89]language based on CSP, the

JLCRL [GP91]language based on ACP, and the LOTOS [IS088]language

which combines the best features of CSP and CCS.

Process algebras have undeniable advantages: expressiveness, compo

sitionality, formal semantics given in terms of Labelled Transition Sys

tems (LTS) [Par81] using structural operational semantics [Plo81; GV92],

verification algorithms based on behavioural equivalences and preorders,

J. Wu et al. (eds.), Formal Methods for Protocol Engineering and Distributed Systems

© Springer Science+Business Media Dordrecht 1999

186

refinement methods, etc. Process algebras have been used successfully

many times to model the behaviour of real systems. In addition, simu

lators, model-checkers, and theorem-provers are aV'.Ulable for analyzing

process algebraic descriptions, e.g., [DG95; CMS95; FGK+96).

In spite of these advantage~:~, the usual process algebras suffer from

limitations in terms of usability (because of their steep learning curve,

they often require a substantial training effort), readability (process al

gebraic descriptions are sometimes difficult to understand), and coverage

(important aspects of system description, such as timing, probabilistic

aspects, and priorities, are not addressed, although various extensions

have been discussed in the literature).

Fortunately, work is going on to extend and impl"Ove the mainstream

process algebras. In particular, the International Standardi~ation Orga

nization (Iso) has been working since 1992 on the definition of a revised

version of the LOTOS language. This revised version, named E-LOTOS

and currently at the stage of Final Committee Draft [Que98), includes

new features suitable for increasing both the expressiveness and user

friendliness of the language. The work onE-LOTOS has generated many

proposals for enhancing both the data type part and the behaviour part

of LoTOS (see, e.g., [GS98) for an overview and a discussion on these

issues).

In this paper, we focus our attention on the improvement of the par

allel composition operators of LOTOS. Although we assume some basic

knowledge of LOTOS, our proposals could certainly be applied to other

process algebras.

The paper is structured as follows. Section 2. introduces basic defi

nitions and notations. Section 3. suggests to replace the binary parallel

composition operators found in most process algebras with a new n-ary

operator, better suitable for an easy description of networks of com

municating processes. Section 4. proposes further enhancements to this

operator, by relaxing the maximal cooperation paradigm used in process

algebras such as CSP or LOTOS. Section 5. illustrates the usefulness

of this parallel operator on a concrete application, the ODP1 trading

function [IS095a]. Finally, Section 6. gives some concluding remarks.

2. BASIC DEFINITIONS AND NOTATIONS

In the sequel, we use the following notations borrowed from the value

passing process algebras (especially, LOTOS) terminology.

We denote with B1, B2, ••• the algebraic terms constructed using the

standard behavioural operators (inaction, action prefix, choice, etc.);

these terms are called behaviou1·s or p1"0cesses2• For our purpose, an

187

exact syntactic definition of behaviours is not required. We denote with

"B1 = B2" the syntactic identity of termsB1 and B2 •

We denote with Gt, G2, ... the identifiers corresponding to communi

cation points; these identifiers are called gates. We define two particular

gates: T, which denotes a non-observable event, and 6, which is used

to express the synchronized termination of concurrent behaviours. We

denote with~~ G;, ... the· sets of gates.

We denote with L1, L2, ... the tuples of the form (G, v1, ... , vn}, where

G is a gate and v1, ... , Vn a (possibly empty) list of typed values; these

tuples are called actions or labels. We denote with gate(L) the gate

corresponding to the first element of the tuple L.
Structural operational semantics defines how a behaviour is translated

into a (possibly infinite) labelled transition system (Par81], which repre

sents all the possible evolutions of the behaviour. The labelled transition

system "is defined by a transition relation noted "B1 ...!:.... B2", which ex

presses that. B1 can perform an aCtion L and mute to B2 afterwards.

3. FROM BINARY TO N-ARY PARALLEL

COMPOSITION OPERATORS

In LOTOS and most process algebras, parallel composition operators

play a central role in the description of concurrent systems. Basically,

there are two main uses of parallel composition:

• Parallel composition is the natural mean to describe a set of dis

tributed components that execute concurrently and communicate
with each other by message passing: in such an approach, the

operands of a parallel composition operator correspond to physi

cally distributed entities. In the taxonomy proposed by [VSS88},

this use of parallel composition is called the resource-oriented spec
ification style.

• Parallel composition can also be used for refinement purpose. Typ

ically; a given (possibly sequential) component can be divided

into a set of sub-components, each of which expresses tempo

ral constraints on the occurrences of certain events. These sub

components are combined together using parallel composition,

which acts as the logical conjunction of the corresponding tempo

ral constraints, thus leading to a constrained behaviour. In such

case, parallel composition expresses neither physical distribution

nor concurrency, but rather a logical modularization of a complex

component. In the taxonomy of [VSS88}, this use of parallel com

position is called the constraint-oriented specification style.

lRR

Because of this double use of parallel composition, we believe that

a suitable parallel composition operator must support multiu1ay syn

chronization, i.e., rendezvous synchronization involving more than two

behaviours:

• As far as resource-oriented style is concerned, rnultiway synchro

nization is not really necessary: two-way synchronization is suf

ficient to describe the communication between an emitter and a

receiver. Most process algebras allow such handshaking synchro

nization, with some differences with respect to the form of value

exchanges that take place during the synchronization.

• But, as far as constraint-oriented style is concerned, multiway syn

chronization is mandatory. For instance, a controller for a robot

with n degrees of freedom can be expressed as the parallel compo

sition of n sub-processes, each sub-process controlling the motion

of the robot with respect to a given degree of freedom; to perform a

given mission (e.g., moving the robot from one location to another

one), all sub-processes have to synchronize.

With the notable exception of CCS, most process algebras (ACP, CSP,

MEIJE, LOTOS ...) support multiway synchronization, which is clearly

a desirable feature. Yet, many process algebras rely on (associative) bi

nary parallel composition operators to express multiway synchronization

between n processes. This can be explained by the fact that the original

motivation behind the design of process algebras was the search for a

"minimal" model of concurrency.

For instance, LOTOS has three parallel operators, noted

"Br I [GJ I B2", "Br I I I B2", and "Br I I B2", respectively.

The first operator is the most general: it expresses that Br and B2

execute concurrently and synchronize only on the gates of G U {15}.

The second and third operators are garticular cases of the former:

"Ill" corresponds to the case where G is empty (fully asynchronous

execution) and "I I" to the ease where G is the set of all visible gates

(fully synchronous execution). From our experience in describing

complex, industrial systems using LoTos, we believe that expressing

parallel composition using binary operators has major drawbacks:

• For a given network of concurrent processes, there are usually sev

eral different algebraic terms representiuK this network. For in

stance, the network shown on Figure 1.1 can be described using

two (equivalent) LOTOS terms, e.g.,

189

Figure 1.1

or

The absence of a canonical form is practically unfortunate, as an

algebraic description will strongly depend on the style adopted by

its author, thus leading to a lack of uniformity. Moreover, the

problem of determining whether two terms are equivalent (for all

possible sub-terms B1 , B2, etc.) is decidable, but not immediate

in the general case, as it implies to solve a system of boolean

equations [Kar94; Kar97].

• There are some process networks that can not be expressed as

algebraic terms. For instance, the network on Figure 1.2 can not

be expressed using LOTOS parallel composition, because it involves

two-by-two synchronization on the same gate G, whereas LOTOS

would force all three processes to synchronize on G using a three

way rendezvous (this is called the maximal cooperation paradigm).

Sufficient conditions for a process network to be translated into

a LOTOS behaviour expression are studied in [Bol90]. Although

the example of Figure 1.2 may seem somehow artificial, Section 5.

will show that networks involving two-by-two synchronization are

useful for describing client-server architectures.

Besides these theoretical issues, there are also pragmatic considera

tions against binary parallel composition operators. The main argument

is that binary operators create a discrepancy between the graphical rep

resentation of process networks (always present in the designer's mind)

190

Figure 1.2

and the textual representation as an algebraic term. On the one hand,

it is not easy for novice users to write an algebraic term corresponding

to a given network of concurrent processes. On the other hand, given

an algebraic term, it is not always immediate to infer the corresponding

network.

Figure 1.3

Some network topologies are particularly tricky to express using bi

nary operators. For instance, the simplest algebraic term for represent

ing the token-ring network shown on Figure 1.3 is:

which is particularly non-intuitive because the circular symmetry of the

network cannot be preserved during the translation to an algebraic term.

In this respect, the difficulties inherent to the process algebraic approach

have to be compared with graphical formalisms such as SDL [IT92] or

191

Statecharts [Har87], in which the user simply has to draw the desired

network.

For these reasons, we suggested to introduce in E-LOTOS a new n-ary

parallel composition operator that would replace the bi"nary operators

of LOTOS. Based on an early suggestion by [Bri88], we made several

iterative proposals [Gar95; SG96], before our proposal was accepted for

being included in E-LOTOS. The basic syntax of the n-ary parallel

composition operator is:

par

I I Ch-+ B2

II
I I ff:.-+ B,.

end par

This operator describes a network of n ~ 1 concurrent behaviours

B1, ... , Bn. We define I to be the set {1, ... , n }. To each behaviour Bi is

associated an interface consisting of a set of gates fh on which Bi must

synchronize. Each fh can be empty; in such case the arrow before Bi
can be omitted.

We later discovered that such an extended parallel composition op

erator had been already proposed in, at least, two occasions: [Bol90J

suggests that process networks could be described using an n-ary oper

ator (noted MaxCoop) and gives rules for translating process networks

into strongly equivalent LOTOS behaviour expressions ; [DS92; DS95]

include in CsP a similar operator, the semantics of which is expressed

in terms of traces.

Instead, we define the n-ary parallel composition operator by means

of two rules of structured operational semantics. The first rule expresses

that any behaviour Bt can execute asynchronously any action L whose

gate G does not belong to the interface fh and is different from the

termination gate c (this encompasses the case where L = r), while the

other behaviours B; with j =f:. i do not evolve:

(3L) (3i E I) B; __!:_. B~ A gate(L) ~ (J; U {6} A ('</j E I\{i}) Bj = B;
.-... .-. L ..-.... .-..

par Gt -+ BJ ... G,. -+ B,. endpar-+ par Gt -+ B~ ... G,. -+ B~ endpar

The second rule expresses that a behaviour Bi wanting to execute an

action L labelled by a gate G E fh U { 6} must synchronize with all the

other behaviours B; such that G E Gj U {6}:

(3L) (Vie I) (if gate(L) e G; u {6} then B, .2:.... Br else B~ = B;)
_.......- L .-. .-..

par Gt-+ BJ ... G,.-+ B,. endpar-+ par G1-+ Bi ... G,.-+ B:. endpar

192

This operator solves the aforementioned problems of binary operators

by establishing a direct mapping between process networks and their

textual representation, thus paving the way for tools that automatically

perform the translation from graphical networks to algebraic terms and

vice versa. For instance, the networks of Figures 1.1 and 1.3 can be

expressed as follows:

and:

respectively.

par

G1, G3-+ B1

II G1,G4-+B2

II G1,G2,G3,G4-+ B3

II G2,G3-+ B4

II G2,G4-+ Bs

end par

par

G1, Gs-+ B1

II G1,G2-+ B2

II G2,G3-+ B3

II G3,G4-+ B4

II G4,Gs-+ Bs

end par

As far as expressiveness is concerned, it is obvious that the general

parallel operator "I [G] I" of LOTOS can be obtained as a particular case

of the n-ary operator:

par G ---+ B1 I I G ---+ B2 endpar

Reciprocally, the n-ary operator is strictly more expressive than the

"I [G] I" operator of LOTOS. We prove this proposition using the pro

cess network shown on Figure 1.4 (which does not satisfy the sufficient

conditions of [Bol90] because, for instance, the three processes can access

gate G1 but do not synchronize altogether on this gate). This process

can easily be described using the n-ary operator:

par

G2,G3-+ B1

II G1,Ga-+B2

II G1,G2-+ B3

end par

but cannot be expressed using the LOTOS binary parallel operators: to

describe this network, one must first synchronize two processes together,

193

Figure 1.4

then synchronize the result with the third process; assuming that B1 and

B2 are to be synchronized first (which can be done without loss of gener

ality because the network is symmetric), it is mandatory to synchronize

them on gate G3; then, the resulting term "B1 I [G3] I B2" has to be

synchronized with B3 on gates G1 and G2. But the term obtained does

not correspond to the network of Figure 1.4 where process B1 can per

form actions on gate G1 independently from process B3.

As a side remark, it is worth noticing that t_!le network of Figure 1.4

can only be expressed by combining the "I [G] I" operator of LOTOS

together with process instantiation. Technically, this can be done by

defining an auxiliary process P with auxiliary gates GJ., G2, G3, and by

a clever instantiation of this process so as to rename the auxiliary gates

into G1, G2, G3 respectively:

P(G1, Gz, G3, G1, G2, G3]
where

process P(G1, G2, G3, G~, G~, G~] :=

(B![Gi,G2,G3] I [G3] I B2[G1,G~,G3]) I [G1,G2J I B3(G1,G2,G~]

endproc

The same result could be achieved using the relabelling operator ex

isting in other process algebras, such as ACP or CSP (in LOTOS, the

process instantiation performs relabelling implicitly). However, this so

lution is probably too tricky for most users; in any case, the n-ary parallel

operator is simpler and more intuitive.

Finally, we slightly extend the n-ary operator by allowing to specify

a set Go of synchronization gates common to all processes Bi (assuming

that Go n ffi = 0 for each i E J). This extension is practically helpful

194

for avoiding redundant lists of gates; it is simply defined as a syntactic
shorthand (where "l±J" denotes disjoint union of sets):

par Go in

G';-+ B1

II G;-+ B2

II

II G;.-+ Bn
end par

par

Go l±J G;-+ B1

II Go l±J G;-+ B2
II

II Go l±J G;.-+ Bn
end par

4. FROM MAXIMAL TO "M AMONG N"

COOPERATION

Although superior to the LOTOS parallel composition operator, then
ary operator described in Section 3. is not expressive enough to represent
certain process networks, such as the one of Figure 1.2. This limitation is

unfortunate, because it precludes several networks of practical interest

from being modelled, especially the case where a pool of n processes

synchronize two by two on the same gate. Although CCS permits such

"2 among n" synchronization, other process algebras, such as CSP or

LOTOS, do not allow it, because they rely on the maximal cooperation

paradigm.

Based on our practical experience, we suggest to extend the n-ary
operator in order to allow "m among n" synchronization, i.e., when a
set of n processes synchronize m by m on the same gate (with m ~ n).
Our extended operator is based on our previous proposals [Gar95; SG96]
submitted to the E-LOTOS standardization Committee. This operator
has the following syntax:

par 91 #m1, g2#m2, ... , gp#mp in

G';-+ B1

II G; -+B2

II

II G;.-+ Bn

end par

where 91, ... , 9p is a (possibly empty) list of gates and where m1, ... , mp

are natural numbers in the range 1, ... , n associated to these gates.

Each clause "#m;" is optional: if omitted, m; has the default value

n. We define Go to be the set of gates {91> ... ,9p} and we require that

Go n ffi = (/) for i E I. Notice that we do not require the gates 91, ... , 9p

to be pairwise distinct.

195

Informally, the semantics of this operator is the following. AB regards
the gates of (ft. U ... U ~ U { 6'}, this operator behaves exactly as the one

described in Section 3 .. AB regards the gates of Go, this operator specifies
that processes B1, ... , Bn can perform m3 among n synchronization on
each gate 93. Two special cases are of interest: if m3 = 1, each process Bi
can execute asynchronously a.n action on ·gate 9j; if m3 = n, all processes

Bi have to synchronize on gate 93·
To provide a formal semantics, we introduce a predicate noted "Gr>J",

where J ~I, that is true iff the processes in {Bi I i E J} can synchronize
together on gate G. Obviously, for·a given gate G, there may be several
subsets J such that G t> J. This predicate is defined as follows:

• 6 t> I, meaning that all concurrent processes must synchronize on
the termination gate 8, as in LoTos;

• (Vj E {1, ... ,p}) (V.T ~ I I card(J) = m3) 93 t> J, meaning that
each gate 93 achieves m3 among n synchronization;

• ('VG E G1 U ... U Gn) G t> {i E I I G E ~}, meaning that all
processes having Gin their interfaces must synchronize on G;

• (Vi E J) ('VG f/. Go U ~ U { 8}) G t> { i}, meaning that each process

Bi can perform asynchronously any gate neither mentioned in Go
nor in its interface ~ (8 excepted and r included).

Using this predicate, the operational semantiCs of our parallel operator

can be defined with a single semantic rule:

(3L} (3J ~I) (gate(L) t> J) A ((Vie J) B; ~ BD A ((Vi e. I\J) B; = Bi)

·- L -par gi#mi··· in G;-+ B; ... endpar- par gi#mi··· in G;-+ B~ ... endpar

Using this operator, the process network of Figure 1.2 can be specified
using 2 among 3 synchronization:

par Gt2 in

B1 I I B2 II B3

end par

More complex process networks, such as the one on Figure 1.5, in
which the same gate G has various degrees of synchronization, can also
be described:

par Gt2, Gl3 in

B1 I I B2 I I B3

end par

196

Figure 1.5

5. APPLICATION

In this Section, we illustrate the application of our parallel operator

to the description of the ODP trading function. ODP [IS095b] is a

standard framework for distributed applications. Within ISO, E-LOTOS

has been developed in the same working group as ODP, with the intent

of being the formal description technique for distributed applications.

This explains that ODP-related problems have been a constant source

of inspiration forE-LOTOS designers.

Our proposals for introducing "2 among n" synchronization in

E-LOTOS [Gar95; SG96] was motivated by the highly dynamic nature

of ODP systems: processes can be created and destroyed dynamically,
and binary communications between processes can be established dy

namically. Although it has been argued that such behaviours could only

be described by means of mobile process calculi, such as the rr-calculus

[MPW92a; MPW92b], we believe that the most salient aspects of ODP

systems can be captured in the framework of an usual process algebra,

such as LOTOS, extended with our new parallel operator. A comparative

study of both approaches can be found in [FNLL96].

The ODP trading function is a typical example of ODP systems: this

function is defined informally in an ISO standard [IS095a]. A formal de

scription in E-LOTOS of the essential features of the trading function can

be found as an appendix of the E-LOTOS definition document [Que98,

Annex A.3]. In this paper, we focus on the architectural description of

the trading function, so as to explain how our parallel operator can be

used to describe dynamic communication patterns.

The ODP trader is a computer process that establishes a relationship

between a pool of objects within an open and dynamically changing

distributed system. For simplicity, we assume that there is an upper

bound n on the number of objects in the system. Each object can act

either as a service provider (or server), as a client, or even as both.

197

On the one hand, a server must inform the trader of the services it

is ready to offer. Advertising a service offer is called export. The trader

keeps in a database all the export requests sent by the servers. On

the other hand, a client may ask the trader about available services.

Requesting knowledge about a particular service is called import. The

trader matches the clients' service requests with its database of service
offers and, if possible, selects an appropriate server. The identification

of this server is sent back to the client, which can then contact directly

the server without further interaction with the trader.

The interesting issue in this architecture is that a client can even

tually communicate with a server the identity of which was unknown

to him before asking the trader. In mobile process calculi, this sit

uation can be described using a dynamic creation of mobile gate(s)

and/or agent(s). However, alternative approaches are possible, which

avoid the complexity of dynamic gate/agent creation. We can model

the behaviour of the whole system by the following parallel composi

tion. Let E (export), I (import), and W (work) be three gates used

for server-trader, client-trader, and client-server communication respec

tively. Let "O[E, I, W](i)" and "T[E, I]" be two processes representing

the ith object and the trader, respectively. The whole architecture can

be described by the following term:

par E,I in

T[E,IJ II par W#2 in

O[E, I, W](l) II ... II O[E, I, W](n)

end par

end par

It is worth noticing that the pool of n objects could be expressed in

a more concise way using an extended parallel operator that iterates

over a finite set of values (such an operator was proposed in [Gar95] and

introduced in E-LOTOS).

The behaviour of the trader can be described with the following

LOTOS process, where request and reply are two enumerated values in

dicating the direction of the messages exchanged on gates I and W
(according to the syntax of LOTOS, "[]" denotes the choice operator,

"? x : s" denotes the receipt of a value of type s to be stored in variable

x, and "! v" denotes either the transmission of value v or the receipt of
a value that has to be equal to v):

198

process T[E,I](d: DataBase): noexit :=

E ? j: Object ? s: SertJice;
T[E, I](add_to_database(d,j, s))

[)

I ?i: Object ! request ? s : Service;
I !i ! reply ! search_sertJer_in_database(d, s)

T[E,I](d)
endproc

Assuming that the ith object is a client asking the trader for some

service s provided by the jth server, and then requesting this server

directly, its behaviour can be described as follows (we assume that there

is always a server available for the requested service):

process O[E, I, W](i: Object): noexit :=

I ! i ! request ! s ;
I ! i ! reply ?j: Object;

W !j !i ! request ! s ... ;

W ! j ! i ! reply ! s ... ;

endproc

Similarly, assuming that the jth object is a server advertising a given

service s to the trader, then answering a client request, its behaviour
can be described as follows:

process O[E, I, W](j : Object) : noexit : =

E !j !s;

W ! j ?i: Object ! request ! s ... ;
W ! j ! i ! reply ! s ... ;

endproc

6. CONCLUSION

Taking into account that the binary parallel composition operators

found in usual process algebras (such as ACP, CCS, J.LCRL, LOTOS, and

the early versions of CSP) are not fully appropriate for describing com

plex synchronization architectures, we suggest to extend the LOTOS par
allel composition operator "I [G] I" in two directions:

• First, we propose to replace the binary operator with an n-ary

operator that directly reflects the graphical structure of process

networks. From the examples given, it is clear that the n-ary op

erator is simpler to use by novice users, easier to read {because the

199

structure of process networks is preserved), strictly more expres

sive, and appropriate for an automatic translation from graphical

networks to algebraic terms and vice-versa.

Although similar proposals can be found elsewhere [Bol90; DS92;

DS95], which is a sign of soundness, our approach is slightly dif

ferent because our n-ary operator can describe process networks

not tackled in [Bol90] (for instance, the one of Figure 1.4) and be

cause we adopted structured operational semantics (as in [IS088]),

rather than traces (as in [DS92; DS95]).

• Second, we increased the expressiveness of this new operator by re

laxing the maximal cooperation requirement of CSP and LOTOS, in

order to support "m among n" synchronization. Taking the ODP

trading function as an example, we show that the new operator is

user-friendly, intuitive, and practically useful for the description of

networks with mobility and dynamic reconfiguration capabilities.

Our research benefited from discussions with our colleagues in the

framework of the E-LOTOS standardization Committee. The parallel

operator presented in this paper is a refined version of a previous pro

posal, which we submitted to ISO [Gar95; SG96] and which has been

integrated in the current version of E-LOTOS [Que97].

Notes

1. Open Distributed Processing

2. Here, we slightly deviate from the meaning of process in LOTOS

References

J. A. Bergstra and J. W. Klop. Process Algebra for Synchronous Com

munication. Information and Computation, 60:109-137, 1984.

T. Bolognesi. A Graphical Composition Theorem for Networks of Lotos

Processes. In IEEE Computer Society, editor, Proceedings of the 10th

International Conference on Distributed Computing Systems, Wash

ington, USA, pages 88-95. IEEE, May 1990.

Ed Brinksma. On the Design of Extended LOTOS, a Specification Lan

guage for Open Distributed Systems. PhD thesis, University ofTwente,

November 1988.

J. Camillieri. An Operational Semantics for OCCAM. International

Journal of Parallel Programming, 18(5):149-167, October 1989.

200

Rance Cleaveland, Eric Madelaine, and Steve Sims. A Front-End Gen
erator for Verification Tools. In Uffe H. Engberg, Kim G. Larsen, and
Arne Skou, editors, Proceedings of TACAS'95 Tools and Algorithms
for the Con#ruction and Analysis of Systems (Aarhus, Denmark),
May 1995. Also available as INRIA Research Report RR-2612.

D. Dams and J. F. Groote. Specification and Implementation of Com
ponents of a J.LCRL Toolbox. Technical Report Logic Group Preprint
Series 152, Utrecht University, December 1995.

Robert de Simone. Higher-level synchronising devices in MlmE-SCCS.
Theoretical Computer Science, 37:245-267, 1985.

J. W. Davies and S. A. Schneider. A Brief History of Timed CSP. Tech
nical Monography PRG-96, Oxford University, 1992.

J. W. Davies and S. A. Schneider. A Brief History of Timed CS. Theo
retical Computer Science, 138(2):243-271, February 1995.

Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Radu
Mateescu, Laurent Mounier, and Mihaela Sighireanu. CADP
(ClESAR/ALDEBARAN Development Package): A Protocol Valida
tion and Verification Toolbox. In Rajeev Alur and Thomas A. Hen
zinger, editors, Proceedings of the 8th Conference on Computer-Aided
Verification (New Brunswick, New .Jers-ey, USA}, volume 1102 of Lec
ture Notes in Computer Science, pages 437-440. Springer Verlag, Au
gust 1996.

A. Fevrier, E. Najm, G. Leduc, and L. Leonard. Compositional
Specification of ODP Binding Objects. In Proceedings of the 6th
IFIP /ICCC Conference on lnfonnation Network and Data Commu
nication, INDC'96, Trondheim, Norway, June 1996.

Hubert Garavel. A Wish List for the Behaviour Part of E-LOTOS. Rap
port SPECTRE 95-21, VERIMAG, Grenoble, December 1995. Input

docmnent [LG5] to the ISO/IEC JTC1/SC21/WG7 Meeting on En
hancements to LOTOS (1.21.20.2.3}, Liege (Belgium), December, 18-
21, 1995.

J. F. Groote and A. Ponse. Proof theory for J.L-CRL. Technical Report
CS-9138, CWI Amsterdam, 1991.

Hubert Garavel and Mihaela Sighireanu. Towards a Second Generation
of Formal Description Techniques - Rationale for the Design of E
LOTOS. In Jan,.Friso Groote, Bas Luttik, and Jos van Wamel, editors,
Proceedings of the !ird International Workshop on Formal Methods
for Industrial Critical Systems FMICS'98 (Amsterdam, The Nether
lands}, pages 187-230, Amsterdam, May 1998. CWI. Invited lecture.

201

J. F. Groote and F. W. Vaandrager. Structured Operational Semantics

and Bisimulation as a Congruence. Information and Computation,
100(2):202-260, October 1992.

D. Harel. StateCharts: A Visual Formalism for Complex Systems. Sci
ence of Computer Programming, 8(3):231-274, 1987.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,

1985.

ISO /IEC. LOTOS - A Formal Description Technique Based on the

Temporal Ordering of Observational Behaviour. International Stan

dard 8807, International Organization for Standardization- Informa

tion Processing Systems - Open Systems Interconnection, Geneve,

September 1988.

ISO fiEC. ODP Trading FUnction. Draft International Standard 13235,

ISO- Information Processing Systems, Geneve, June 1995.

ISO /IEC. Open Distributed Processing - Reference Model. Inter

national Standard 10746, ISO - Information Processing Systems,

Geneve, 1995.

ITU-T. Specification and Description Language (SDL). ITU-T Recom

mendation Z.100, International Telecommunication Union, Geneve,

1992.

Pim Kars. Representation of Process-Gate Nets in LOTOS and Veri

fication of LOTOS Laws: the Boolean Algebra Approach. In Dieter

Hogrefe and Stefan Leue, editors, Proceedings of the 7th International
Conference on Formal Description Techniques for Distributed Sys
tems and Communication Protocols FORTE'94 (Bern, Switzerland),
October 1994.

P. Kars. Pmcess-Algebro.ic Transformations in Context. PhD thesis, Uni
versity of Twente, June 1997.

Robin Milner. A Calculus of Communicating Systems, volume 92 of Lec
ture Notes in Computer Science. Springer Verlag, 1980.

Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes I.

Information and Computation, 100(1):1-40, September 1992.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes II.

Information and Computation, 100(1):41-77, September 1992.

David Park. Concurrency and Automata on Infinite Sequences. In Peter

Deussen, editor, Theoretical Computer Science, volume 104 of Lecture

202

Notes in Computer Science, pages 167-183. Springer Verlag, March
1981.

G. D. Plotkin. A structural approach to operational semantics. DAIMI
FN-19 FN-19, Computer Science Department, Aarhus University,
1981.

Juan Quemada, editor. Committee Draft on Enhancements to LOTOS
(E-LOTOS). ISO/IEC JTC1/SC21/WG7 Project 1.21.20.2.3, Jan
uary 1997.

Juan Quemada, editor. Committee Draft on Enhancements to LOTOS
(E-LOTOS). ISO /IEC FCD 15437, April 1998.

Mihaela Sighireanu and Hubert Garavel. E-LOTOS User Language.
Rapport SPECTRE 96-06, VERJMAG, Grenoble, October 1996. In
ISO /IEC JTC1/SC21 Third Working Draft on Enhancements to LO
TOS (1.21.20.2.3). Output document of the edition meeting, Kansas
City, Missouri, USA, May, 12-21, 1996.

C. Vissers, G. Scollo, and M. van Sinderen. Architecture and Specifica
tion Style in Formal Descriptions of Distributed Systems. In S. Ag
garwal and K. Sabnani, editors, Proceedings of the 8th International
Workshop on Protocol Specification, Testing and Verification (Atlantic
City, NJ, USA}, pages 189-204. IFIP, North-Holland, 1988.

