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A Graphical  Representation of the Piezoresistance 
Coefficients in Silicon 

YOZO KANDA 

Abstract-The  longitudinal  and  transverse  piezoresistance  coefficients, 
n(300 K), at room  temperature  are  plotted  as  a  function of the  crystal 
directions  for  Orientations  in  the (loo), (110), and (211) planes, The 
piezoresistance  coefficients n ( N ,  T ) ,  with  an  arbitrary  impurity  concen- 
tration N and at  an  arbitrary  temperature T,  are  expressed  by n(N, T )  = 
P(N, 7') n(300 K), where P(N, T )  is called the piezoresistance  factor 
and is a  function of the  Fermi integral. The P(N, T )  is calculated  by 
assuming  that  the  simple  power law dependence of the  relaxation  time 
on energy is valid. The  graphs of P(N, T )  are  plotted  as  functions of 
impurity  concentration ranging from 10l6 to  lozo cm-3 and  tempera- 
ture ranging from -75 to  175°C with  a 25°C interval. 

S 
I. INTRODUCTION 

INCE C. S. SMITH [ l ]  discovered the piezoresistance 
effect of semiconductors having anisotropic energy band 

structures,  such as silicon and germanium, they have been 
widely used as stress and strain sensors. Recently,  the  knowl- 
edge of the piezoresistance effect has  been  required not  only 
by  sensor  researchers but also by integrated-circuit designers 
and process engineers [ 2 ] ,  [3]. 

The piezoresistance  coefficients, usually required in an 
arbitrarily  oriented  coordinate  system, can be calculated from 
a  tensor  transformation  for  the  particular  orientation. These 
calculations are long, laborious,  and  troublesome. Moreover, 
piezoresistance coefficients  depend  on  impurity  concentration 
and  temperature. 

This  paper gives some of  the typical  piezoresistance  coef- 
ficients of silicon as functions of crystal  direction for  common 
orientations,  impurity  concentrations,  and  temperatures. 
Many good review articles [4] -[7] have been  published on  the 
piezoresistance effect  and  its applications.  This  paper will 
complement these  articles and should be of value to people 
designing piezoresistive sensors and  integrated circuits. 

11. DEPENDENCE ON CRYSTALLOGRAPHIC AXIS 
According to the phenomenological  description [ 6 ] ,  piezo- 

resistance, the  fractional change  in resistivity with small stress, 
is expressed by 

where X, is the  component  of  the stress tensor in  six-com- 
ponent vector notation  and n, is the  component  of  the piezo- 
resistance tensor.  In crystals with  cubic  symmetry,  such as 
silicon and  germanium,  the  tensor is  given by 
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Fig. 1. Euler's angles. 

The  transformation  from  the  crystal axes, xi, to a Cartesian 
system of arbitrary  orientation x;, noting  that subscripts 1, 2, 
3, 4, 5 ,  6 correspond  to 11, 22,  33,  23,  13, 12, respectively, 
can now be expressed 

x! = a. .x. 
1 11 I 

x; = = aijaklxil = aijaklx), 

The  transformation is  given by  direction cosines,  between the 
two axes, which can be expressed in  terms  of Euler's angles 
(shown in Fig. 1) as follows,  where c$ E cos 9, s$ sin $, etc. 

c$cOc$ - s@s$ s$cOc$ -I- c$s$ 

- s$c$  -s$cBs$ +c$c$ 

s$sO CO 

(3) 
Here, two  typical piezoresistance effects will be considered 
when uniaxial  stress is applied  in the material.  One is a longi- 
tudinal piezoresistance coefficient when the  current  and field 
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Fig. 2. Room  temperature  piezoresistance  coefficients in the  (001) 
plane  of n-Si cm2/dyne). 

R 

a : % '  
Fig. 4.  Room  temperature  piezoresistance  coefficients  in  the  (211) 

plane  of n-Si (10-l2  cm2/dyne). 

are in the  direction  of  the stress noted  by II,. The  other is a 
transverse  piezoresistance coefficient  when  the  current  and 
field  are  perpendicular to  the stress noted  by I7,. 

nil = 17,=n,, - 2(nll - n12 - +mtn:  +ntZ:) 

(4) 

and 

ni2 = 17, = n12 t (nll - n12 - 7 ~ ~ ~ ) ( ~ : 1 , 2  t m t m i  + n t n i ) .  

In an (Zmn) plane, the graph can be obtained  by making the 
axis 3' normal to  the  plane,  that is, 

[ ~ ~ m ~ n ~ ]  = (z2 + m2 t n2)-'I2 [ ~ m n ]  

and  by  rotating  the angle $ from  zero  to n. The graphs of 
room  temperature rIII and II, are plotted as a  function of 
crystal  direction  for  orientations in the (OOl) ,  (Oll), and 
( 2  1 1 )  planes and are shown in Figs. 2-7. The graphs of (1 1 1) 
planes are omitted because of circular symmetry  to  the origin. 
The graphs are shown in units of cm2 /dyne based on 

( 5 )  the  data  of  Smith [ l ]  (shown  in  Table I). The  upper halves of 
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8 8 % -  

Fig. 6 .  Room  temperature  piezoresistance  coefficients  in  the (01 1) 
plane of p-Si cm2/dyne). 

the graphs show positive values of  the piezoresistance coef- 
ficients,  that is, the resistivities increase with tensile stresses. 
The lower halves in the figures show negative values of  the 
piezoresistance coefficients,  that is, the resistivities decrease 
with tensile stresses, 

111. DEPENDENCE ON IMPURITY CONCENTRATION 
AND TEMPERATURE 

The  conductivity  tensor uap is the sum of the  conductivity 
uha of the carriers near each  extremum 

Gap =c d p .  (6 )  
i 

The stress-induced  change  in conductivity is the sum of  the 
stress-induced change in conductivity  of  the carriers near 
each  extremum 

Equation (1) may be rewritten  by  the  conductivity 

where u is the average conductivity. 

carrier  in a degenerate band [7] is 
The  conductivity  for each  ellipsoid or for each species i of 

where fo is the  Fermi  distribution  function 

1 
fo = 1 t exp (Ei - EP/kR T )  

s a % -  
Fig. 7. Room temperature  piezoresistance  coefficients in the (211) 

plane of p-Si cm2/dyne). 

and kB is Boltzmann's  constant. EF is the  Fermi energy, v h  is 
the  group velocity of the carriers 

and r ip  is the  relaxation  time. 

relaxation time is isotropic,  depending  only  on energy 
In  order to make  calculations feasible, it is assumed that  the 

and 

r = roEs. 

Transforming from variables Ki, Ki to  the energy Ei and 
solid angle a, and  noting  the  energy, (9) is rewritten as 

1 

where 
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TABLE I 
PIEZORESISTANCE  COMPONENTS AT ROOM TEMPERATURE IN UNITS OF 

lo-’’ cm2/dyne [l] 

Material  n-Si p-si 

P ( Q  -cm) 7.8 11.7 

” 1 1  +6.6 -102.2 

I I 

is the  Fermi integral [SI, defined  by 

. (kB  T)S+(3/2). 

The change  in conductivity  under stress is given by 

= -e2  (2 rut * .)dK 

= -e2 [ l2 (” r) vivi AE dK 
aE aE 

7 - 1 (-- aAE vi t vi) dK] . 
aE h aki a kj 

Integrating  by  parts,  the  second  term of the above equation 
it is given by 

From (6), (7), (lo), and (1   1)  we obtain 

TABLE I1 

EXPONENTS S USED IN THE FERMI INTEGRAL CALCULATION 
DENSITY-OF-STATES  EFFECTIVE  MASSES md/m AND SCATTERING 

~~~ ~~~ 

Materials  n-Si p-s i  

md/m 
a) 

0.33 0.55 

Number of 

Equivalent 6 

Valleys 

s -112 
b )  

-112 

aR. A. Smith [ 9 ] ,  
N. Tufte and E. L. Stelzer [ lo] .  

AU 1 1 (S + i)Fs-(1,21 (EF/kBT) _--- 
(3 kBT $ Fs+(i/z) (EF/kBT) 

- _-- 1 1 F g + ( 1 / 2 )  (EF/kBT) 
kBT $ F s + ( 1 / 2 )  (EF/kBT) 

(12) 

where  a  prime indicates derivative of  the  Fermi integral with 
respect to EF/kB T ,  and if s = - 4 

Fs+( l /2 )  (EF/kBT) = In (1 t 

Smith’s data used in  the  calculation  of  the graphs  in the  pre- 
vious section are  in the range of Boltzmann  distribution  and 
were measured at 300 K. In this case, fo = e(E-EF)/kBT and 
(12) tends to 

A5 1 
- N -  I_ a: I’I(300 K). 
u kBT s t $  

Therefore, in general, the piezoresistance coefficient n(N, T )  
with an impurity  concentration N and  at a temperature T 
can  be rewritten  in  the  form 

n(N, T )  =P(N, T )  n(300 K) (14) 

where P(N, T )  is the piezoresistance factor  and 

The  Fermi integral is the  function  of  temperature  and  the 
Fermi energy. The  Fermi energy is determined  from N by 
using the following relation: 

where rn; is the  density-of-state effective mass and v is the 
number  of valleys. The graphs of P(N, T )  are calculated  by 
using the  data [ 9 ] ,  [lo] tabulated in  Table I1 and are shown 
in Figs. 8 and 9. 

According to Herring and  Vogt [ l l ]  , let  us consider the 
physical aspect of the piezoresistance effect  for a special case. 
The  conduction ellipsoids lie on  the (100) and equivalent 
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Fig. 8. Piezoresistance factor P(N,  2“) as a  function of impurity  concentration  and  temperature  for 

n-Si. 
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Fig. 9. Piezoresistance  factor P(N,  T )  as a  function of impurity  concentration  and  temperature  for 
p-Si. 
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axes. The  conductivity  of  an ellipsoid is 
0' = niep' (16) 

where pi is the  mobility,  and  n is the carrier concentration. 

ni = 2 ( 2 ~ r n z k ~ T / h ' ) ~ ~ ~  e (EF-Ei)/kBT (1 7 )  

Assuming that pi is independent of stress, the change in  the 
conductivity is 

A d  = An'ep'. (18) 

It is  given by 

An' = - - (AE' - AEF). 
ni 

kB T 
Since the  total  number of electrons  n is unchanged, we have 

Equations  (7),  (18),  (19),  and  (20) give [4] ,   [7 ] ,   [ l l ]  

The energy shift  at  the band-edge point of the  ith ellipsoid 
for  an  arbitrary  homogeneous  strain is given by [ 1 11 , [ 121 

AE1((100))=AE4((i00))=z:d(exx +eyy  + f z z ) + ~ u e x x  

AE2((010)) = AE5((OiO)) = 8:d(fxx + eyy + ezz) + 8 : , ~ y y  

~ ~ ~ ( ( 0 0 1 ) )  = A E ~ ( ( o o ~ ) )  = zd(exx t eyy t ezz) f - 1  zuezz 

(22) 
where Ed is the  shift  due  to  a  dilation in the  two directions 
normal  to  the ellipsoid  axis, and 8, is the  shift  due  to  a shear 
compounded  of  a  stretch along the ellipsoid  axis and  a  con- 
traction in the  two  normal  directions [ l l ]  , f a p ' s  are the 
components of strain tensor,  Now, consider the case when 
a uniaxial compressive stress X is applied in a [ 1001  direction. 
The  form  for  the  strain  components is expressed by [ 121 

s12 s12  0 0 

s11 s12 0 0 0 

(23) 

where the sfj 's are the  appropriate stiffness coefficients. We 
are considering n1 1 ,  that is, the  current flows  along [ 1001 
direction. 

From  (21),  (22),  and  (23) we obtain 

Equations (6 ) ,  (8), and (24) give 

where 

Similarly, we have 

7144 = 0. (26) 

We can  get the  relation  between  the phenomenological and  the 
solid-state  physical  description from  (4), ( 9 ,  (14),  (15), 
(25),  and (26). 

IV. DISCUSSION 
The  longitudinal  and transverse piezoresistance  coefficients 

at  room  temperature in the main  crystal planes are given in 
Figs. 2-7.  The  relationship  between  the  longitudinal piezo- 
resistance coefficient II, and  the strain gauge factor G will be 
considered, where G is normally used to characterize the strain 
sensor. G is defined as the  fractional change in resistance 
AR/Ro per unit strain and is  given by 

G = (AR/Ro)/e = 1 t 2 X t Ynl (27) 

where e is the  strain, X is Poisson's ratio  (the  ratio of the 
magnitude of transverse strain to longitudinal strain  resulting 
from  the simple tension), and Y is Young's modulus.  The first 
two  terms  represent  the change  in  resistance due  to dimen- 
sional  changes while the last term represents the change  in 
resistivity due to  the  strain.  Fortunately, since the h and Y 
in the  crystal planes were calculated by  Wortman  and Evans 
[ 131 , the G can be obtained. 

The  dependence  of  the piezoresistance  coefficients on im- 
purity  concentration  at  a given temperature can be given by 
multiplying  the piezoresistance factor P(N, T ) ,  shown in Figs. 
8 and 9, by the  room  temperature piezoresistance coefficient 
II(300 K). The values of  the piezoresistance factor P(N, T )  
were calculated by assuming that  the  scattering  exponent s = 
- for n-Si and p-Si. This assumption gives good results  in 
n-Si [ l o ] .  

For  p-type silicon, the calculated values of the P(N,  T) 
were compared  quantitatively  with  the  experimental values 
obtained by Mason et al. [ 141 . The deviations of the cai- 
culated values from  the  experimental ones are tabulated in 
Table I11 in terms  of  percent of the  experimental value. Al- 
though  the deviations are zero for  the samples with  con- 
centration less than 10" ~ m - ~ ,  the deviations  increase with 
increasing concentration;  namely,  about t 1 2  percent  for  the 
sample with N = 5 X 10l8 ~ m - ~ ,  and  about -20 percent  for 
N = 3 X 10l9 ~ m - ~ .  Since the  scattering mechanism varies 
with  impurity  concentration  and  the scattering exponent S 
might not be uniquely  determined over the wide impurity 
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TABLE I11 
THE  DEVIATION OF CALCULATED PIEZORESISTANCE FACTOR P(N, T) 

FROM THE EXPERIMENTAL ONE’ IN p-TYPE  SILICON  (PERCENTAGE) - 
\oncentration 

5X1018 3X1Ol9 

\ I 1 

25 l o  I f13 I 
-21 

50 I 0 1 +13 1 -20 

100 

f 13  I -9  0 150 

-19 f14 0 

aW. P. Mason, J. J. Forst,  and L. M. Tornillo [14] .  

concentration range, the calculated values deviate from  the 
experimental  ones  with increasing impurity  concentration. 
The  scattering  exponent s = - 3 used in the  calculation  cor- 
responds to  the  lattice scattering. More accurate  calculation 
including  various scattering mechanism  remains as a future 
problem. 

According to  Tufte  and  Stelzer [ 151 , the average piezore- 
sistance coefficients of diffused  layers will be only slightly 
larger than  the piezoresistance  coefficients  in the  uniformly 
doped  material having an  impurity  concentration  equal  to  the 
surface concentration of the diffused layer, 
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