
Martijn Kagie ∗, Michiel van Wezel, Patrick J.F. Groenen

Econometric Institute, Erasmus University Rotterdam

A Graphical Shopping Interface based on

Product Attributes

Econometric Institute Report EI 2007-02

Abstract

Most recommender systems present recommended products in lists to the user.
By doing so, much information is lost about the mutual similarity between recom-
mended products. We propose to represent the mutual similarities of the recom-
mended products in a two dimensional space, where similar products are located
close to each other and dissimilar products far apart. As a dissimilarity measure
we use an adaptation of Gower’s similarity coefficient based on the attributes of
a product. Two recommender systems are developed that use this approach. The
first, the graphical recommender system, uses a description given by the user in
terms of product attributes of an ideal product. The second system, the graphical
shopping interface, allows the user to navigate towards the product he wants. We
show a prototype application of both systems to MP3-players.

Key words: Recommender Systems, Multidimensional Scaling, Similarity,
Electronic Commerce, Case-Based Reasoning.

1 Introduction

In most electronic commerce stores, customers can choose from an enormous
number of different products within a product category. Although one would
assume that increased choice is better for customer satisfaction, the contrast
is often the case [17,18]. This phenomenon is known as the paradox of choice:
a large set of options to choose from makes it more difficult for the customer
to find the product that she prefers most, that is, the product that is most
similar to the customer’s ideal product. When the amount of choice options

∗ Corresponding author. Phone: +31 10 4088951. Fax: +31 10 4089031.
Email addresses: kagie@few.eur.nl (Martijn Kagie), mvanwezel@few.eur.nl

(Michiel van Wezel), groenen@few.eur.nl (Patrick J.F. Groenen).

Econometric Instute Report EI 2007-02

increases, customers often end up choosing an option that is further away from
the product they prefer most. Therefore, there is a need to help the customer
to find this product and increase her satisfaction. Often, recommender systems
are used to implement this process. These systems estimate user preferences
and suggest products that match those preferences.

In many product categories, such as real estate and electronics, a consumer
has to choose from a heterogenous range of products with a large amount
of product attributes. Often, the customer has to make a selection based on
a (limited) number of constraints on product attributes. The products that
satisfy these constraints are usually shown in a list. A disadvantage of this
approach is that customers can find these constraints too strict. In addition,
product attributes can substitute each other, that is, a higher value on one
attribute can compensate for a lower value on another. In this way, selection on
pairs of attributes may not allow for attribute combinations that are preferred
by a consumer. For example, a consumer who wants to buy an MP3 player
can be equally satisfied with a cheaper MP3 player with less memory as with
a more expensive MP3 player that has also more memory.

Another approach for creating a list of options to choose from, is to let the
customer describe an ideal product based on her ideal values for the product
attributes. Then, products are chosen such that they are most similar to the
product.

A disadvantage of the usual approach of presenting the products in a list, which
may be ordered on similarity to the ideal product in the second approach, is
that no information is given on how similar the selected products are to each
other. For example, two products that have almost the same similarity to the
ideal product can differ from the ideal product on a completely different set
of attributes and thus differ a lot from each other. Therefore, a recommender
system should not only be based on the similarities of products to an ideal
product, but also on the mutual similarities of the selected products.

In this paper, we propose a graphical recommender system (GRS) that vi-
sualizes the recommended products together with the ideal product in a two
dimensional space using the mutual similarities. To do this, multidimensional
scaling (MDS) [3] will be used. Since a consumer not always wants to specify
her preferences, we also introduce a graphical shopping interface (GSI) that
enables the customer to navigate through the products in a 2D space.

Similar graphical applications, so-called inspiration interfaces, are used in the
field of industrial design engineering [11,19,20]. These applications are used
to explore databases in an interactive way. At first, a small set of items is
shown in a 2D space. Then, the user can click in any point in space and a new
item that is closest to that point is added to the space. Our GSI differs from

2

these systems by recommending more items at a time and doing so using the
similarities and not the distances in the 2D space.

The remainder of this paper is organized as follows. The next section gives
a brief overview of the research in recommender systems. In Section 3, we
give a description of the methodology used with an emphasis on the measure
of similarity and MDS. In Section 4, the graphical recommender system is
introduced and in Section 5 we extend the GRS to the graphical shopping
interface, where the customer does not have to specify an ideal product, but
can search through the product space in a graphical way. In Section 6, an
application of both systems on MP3 Players is given, followed by an evaluation
of our approach. Finally, we give conclusions and recommendations.

2 Recommender Systems

There is a wide literature on recommender systems. For an overview we refer
to [1,15]. Shafer, Konstan, and Riedl [16] define recommender systems as:
“[Systems that] are used by E-commerce sites to suggest products to their
customers and to provide consumers with information to help them decide
which products to purchase” [16, p. 116]. These suggestions can be the same
for each customer, like top overall sellers on a site, but are often dependent
on the user’s preferences. These preferences can be derived in many ways, for
example, using past purchases, navigation behavior, rating systems, or just by
asking her preferences directly.

In this paper, we limit ourselves to the recommender systems where a per-
sonalized recommendation is given. Recent overview papers [1,15] make a
distinction between three types of recommender systems based on how the
recommendation is computed.

• Content-based or knowledge based recommendation [4] systems suggest prod-
ucts that are similar to the product(s) the customer liked in the past.

• Collaborative filtering [9] systems recommend products that other people
with similar taste bought or liked in the past.

• Hybrid approaches [5] combine both content-based and collaborative meth-
ods.

Our systems belong to the category of content-based recommender systems. A
large number of recommender systems in this group, including our approach,
is based on case-based reasoning (CBR) [14]. The recommendation cycle used
by case-based reasoning recommender system (CBR-RS) framework is shown
in Figure 1.

3

Figure 1. The steps in the CBR recommender system framework [14]. Not all steps
have to be implemented by the CBR-RS.

The data used in this kind of systems is stored in the case library. All cases
stored in this case library or case base have the same domain model, that is,
the same feature space. The domain model consists of features describing at
least one of the following submodels:

• Content model: Describes the product using product’s attributes.
• User model: Describes the user by personal information like age, name,

address, and past system usage.
• Session model: This model collects information about the recommendation

session.
• Evaluation model: The evaluation model describes whether the recommen-

dation was appropriate to the customer or not.

In many cases, including our approach, only the content model is part of the
used domain model. The case library is merely the product catalog in this
case.

In a CBR-RS, a recommendation is given based on the similarity between cases
in the case library and the problem at hand. This problem is retrieved from the
input of the customer, for example, an ideal product description or a sample
product. Then, a CBR-RS implements some of the six steps described in [14]
and shown in Figure 1. The two systems, the GRS and GSI, we introduce in
this paper also belong to the CBR-RS family. Therefore, we use this framework
in Sections 4 and 5 to describe our systems.

4

3 Methodology

An important part of the GSI is the similarity measure that is used to find
cases that are recommended to the user. This similarity measure will be used
for the selection of products and for visualizing the similarities between all of
the recommended products. The method used for creating these 2D spaces is
called multidimensional scaling (MDS) [3] and discussed in Subsection 3.1.

To define the measure of similarity between products, we introduce some no-
tation. Consider a data set D, which contains products {xi}n

1 having K at-
tributes xi = (xi1, xi2 . . . xiK). In most applications, these attributes have
mixed types, that is, the attributes can be numerical, binary, or categorical.
The most often used (dis)similarity measures, like the Euclidean distance,
Pearson’s correlation coefficient, and Jaccard’s similarity measure, are only
suited to handle one of these attribute types.

One similarity measure that can cope with mixed attribute types is the gen-
eral coefficient of similarity proposed by Gower [10]. Define the similarity sij

between products i and j as the average of the nonmissing similarity scores
sijk over the K attributes

sij =
K∑

k=1

mikmjksijk

/
K∑

k=1

mikmjk , (1)

where mik is 0 when the value for attribute k is missing for product i and 1
when it is not missing.

The exact way of computing the similarity score sijk depends upon the type of
attribute. However, Gower proposed that for all types it should have a score
of 1 when the objects are completely identical on the attribute and a score of
0 when they are as different as possible. For numerical attributes sijk is based
on the absolute distance divided by the range, that is,

sN
ijk = 1− |xik − xjk|

max(xk)−min(xk)
, (2)

where xk is a vector containing the values of the kth attribute for all n products.
For binary and categorical attributes the similarity score is defined as

sC
ijk = 1(xik = xjk), (3)

implying that objects having the same category value get a similarity score of
1 and 0 otherwise.

5

To use Gower’s coefficient of similarity in our system, three adaptation have
to be made. First, the similarity has to be transformed to a dissimilarity, so
that it can be used in combination with MDS. Second, we want to have the
possibility to make some variables more important than others. Therefore,
we need to incorporate weights into the coefficient. Third, the influence of
categorical and binary attributes on the general coefficient turns out to be too
large. The reason for this is that the similarity scores on binary or categorical
attributes always have a score of 0 or 1 (that is, totally identical or totally
different), whereas the similarity scores on numerical attributes almost always
have a value between 0 and 1. Thus, the categorical attributes dominate the
similarity measure. There is no reason to assume the categorical attributes
are more important than numerical ones and we want to compensate for this.
Therefore, we propose the following adaptations.

Both types of dissimilarity scores are normalized to have an average dissimilar-
ity score of 1 between two different objects. Since the dissimilarity between the
object and itself (δii) is excluded and δij = δji, dissimilarities having i ≥ j are
excluded from the sum without loss of generality. The numerical dissimilarity
score becomes

δN
ijk =

|xik − xjk|(∑
i<j mikmjk

)−1 ∑
i<j mikmjk|xik − xjk|

. (4)

The categorical dissimilarity score becomes

δC
ijk =

1(xik 6= xjk)(∑
i<j mikmjk

)−1 ∑
i<j mikmjk1(xik 6= xjk)

. (5)

Let C be the set of categorical attributes and N the set of numerical attributes.
Then, the combined dissimilarity measure δij is defined as

δij =

√√√√∑
k∈C wkmikmjkδC

ijk +
∑

k∈N wkmikmjkδN
ijk∑K

k=1 wkmikmjk

. (6)

Here, a vector with weights w is incorporated to emphasize attributes differ-
ently. In (6), the overall square root is taken, since these dissimilarities can be
perfectly represented in a high dimensional Euclidean space, when there are
no missing values [10]. We use (6) as dissimilarity measure in the remainder
of this paper.

6

3.1 Multidimensional Scaling

The dissimilarities discussed above are used in the GRS and GSI to create the
2D space where products are represented as points. A statistical technique
for doing this, is multidimensional scaling (MDS) [3]. Its aim is to find a low
dimensional Euclidean representation such that distances between pairs of
points represent the dissimilarities as closely as possible. This objective can
be formalized by minimizing the raw Stress function [12]

σr(Z) =
∑
i<j

(δij − dij(Z))2, (7)

where the matrix Z is the n×2 coordinate matrix representing the n products
in two dimensions, δij is the dissimilarity between objects i and j forming the

symmetric dissimilarity matrix ∆, and dij(Z) =
(∑2

s=1(zis − zjs)
2
)1/2

is the
Euclidean distance between row points i and j.

To minimize σr(Z), we use the SMACOF algorithm [6,7,8] based on majoriza-
tion. One of the advantages of this method is that it is reasonable fast and that
the iterations yield monotonically improved Stress values which is important
to visualize the iterations to the user by a smooth dynamic GRS and GSI.

4 Graphical Recommender System

To discuss our graphical recommender system (GRS), we first give a specifi-
cation of the GRS and then implement the system.

The input in the GRS is the ideal product described by the customer in terms
of product attributes. The customer also can provide weights to the different
attributes based on how important she finds them. With the user’s input a
new problem is constructed, that is, a sample case. In the retrieval phase, a
set of cases from the case library that is most similar to the input is selected
and these are directly reused as solutions and shown in the 2D space to the
customer. When the results are not satisfying to the user, she can adapt her
product description or the weights of the attributes to start the process again
in the iterate step. The recommendation cycle of the GRS is visualized in
Figure 2. Note that not all steps of the CBR-RS approach are implemented
in our GRS, in particular, the revise, review, and retain step.

As mentioned before, the input of the GRS is the vector of product attributes
of the ideal product, x∗, and the weights of the attributes, w. Further, we use

7

Figure 2. The CBR-RS steps implemented by the graphical recommender system.

the case library, that is, data set D. The implementation of the GRS is as
follows.

We start by computing the weighted dissimilarities δi∗ between x∗ and all
the products xi in data set D using the dissimilarity measure introduced in
Section 3. This step leads to n values δi∗.

Then, p− 1 products are selected that are most similar to x∗, by sorting the
δi∗’s and selecting the first p products. We combine x∗ and the p− 1 selected
products in one data set D∗. We use (6) again to compute all the mutual
dissimilarities of the selected objects and the ideal product and gather the
dissimilarities in the symmetric matrix ∆∗ of size p × p. This dissimilarity
matrix ∆∗ is the input for the multidimensional scaling algorithm discussed
in Section 3.1. The algorithm returns the p× 2 coordinate matrix Z which is
used to create the 2D space.

5 Graphical Shopping Interface

To facilitate selection of products by costumers who do not have a clear idea
about what they are looking for, we propose the graphical shopping interface.
The idea is to let the customer navigate through the complete product space,
and each time a set of products is represented in a two dimensional space.
The user can select a product and then a new set of products, including the
selected product, is produced and visualized by MDS. First, a specification of
this system is given and followed by its implementation.

The input of the GSI is a product selected by the user in the 2D space cre-
ated in the previous iteration. Based on this previous selected product a new
problem is constructed (that is, a sample case). In the retrieval phase, a large
set of cases from the case library that is most similar to the input is selected
and these are directly reused as solutions. In the revise stage, a smaller subset
of products is chosen from the larger set specified in the previous steps. This

8

Figure 3. The CBR-RS steps implemented by the graphical shopping interface.

step can be implemented by, for example, random selection or clustering. This
smaller set is shown in the 2D space. Then, the user can select the product
that she likes most and this product will be the input for the next iteration.
The recommendation cycle of the GRS is visualized in Figure 3. Also in this
case the review and retain step are not implemented in the system.

The implementation of the GSI is not straightforward. The reason is that
the revise step is not trivial and different implementations are possible. We
analyze three different approaches: the random system, the clustering system,
and the hierarchical system.

The random system uses random selection as its revise phase. The first it-
eration of the GSI is an initialization iteration. We refer to this iteration as
iteration t = 0. The input of the user is unknown in this iteration, because
the first input of user will be given after this iteration. Therefore, the product
set Dt in this iteration will contain the complete case library, that is, D0 = D.
Then, p products are selected at random (without replacement) from D0 and
stored in the smaller set D∗

0. Using the dissimilarity metric proposed in Section
3, we compute the dissimilarity matrix ∆∗

0, given D∗
0. With the use of MDS

we then create a 2D space Z0 containing these random selected products and
show this to the customer.

The process starts when the customer selects one of the shown products. In
every iteration, the selected product is treated as the new input x∗t . Then, we
compute the dissimilarities between x∗t and all other products in D. Based
on these dissimilarities we create a set Dt with the max(p− 1, αtn− 1) most
similar products, where the parameter α with 0 < α ≤ 1 determines how fast
the data set selection is decreased each iteration. The smaller set D∗

t shown to
the user, consists of product x∗t and p−1 products that are randomly selected
from the large product set. We again compute dissimilarity matrix ∆∗

t and
create the 2D space Zt using MDS. The procedure terminates when D∗ does

9

not change anymore. This happens when the size of D∗ has decreased to p
and the same product is chosen as was chosen in the last iteration.

When we set α = 1, the system always returns a complete random selection
at each stage and the user’s input is almost completely ignored, that is, only
the selected product is kept and p − 1 new random products are positioned
in a new 2D space together with the kept product. When α is lower, we have
more confidence in the selection of the user, but we also more quickly decrease
the variance in Dt. The random system is summarized in Algorithm 1.

Algorithm 1 GSI implementation using random selection
procedure random gsi(D, p, α)

D0 = D.
Generate random D∗

0 ⊂ D0 with size p.
Compute ∆∗

0 given D∗
0 using (6).

Compute Z0 given ∆∗
0 using MDS.

t = 0.
repeat

t = t + 1.
Select a product x∗t ∈ D∗

t−1.
Get Dt ⊂ D containing max(p − 1, αtn − 1) products most similar to x∗t

using (6).
Generate random D∗

t ⊂ Dt with size p− 1.
D∗

t = D∗
t ∪ x∗t .

Compute ∆∗
t given D∗

t using (6).
Compute Zt given ∆∗

t using MDS.
until D∗

t = D∗
t−1.

end procedure

A disadvantage of the random system is that is very hard to find a small group
of products that are very different from all other products. There is only a
small probability of selecting such a product in D∗

0 and it is likely that this
product is not in Dt the second time. For this reason, it can be advantageous
to have the products selected in D∗

t represent the different groups of products
in Dt. By decreasing the size of Dt each time these groups will become more
similar to each other and finally become individual products.

The clustering system is quite similar to the random system, the only dif-
ference being that the random selection procedure is replaced by a clustering
algorithm. In principle, every clustering algorithm can be used that can cluster
a dissimilarity matrix. We use the average linkage method (see for example
[21] or [13]) that is a hierarchical clustering method, yielding a complete tree
(dendrogram) T of cluster solutions. Since this clustering method is based on
a dissimilarity matrix, the dissimilarity matrix ∆t based on Dt is computed
first using (6). Then, the average linkage algorithm is performed on ∆t result-
ing in dendrogram Tt. The system only uses the solution with p clusters Dc

t .

10

Each of the p clusters is then represented by one prototypical product in the
product set D∗

t . For an easy navigation, the product selected in the previous
iteration will always represent the cluster it belongs to. For the other clusters,
we determine the product with the smallest total dissimilarity to the other
products in the cluster. Define ∆c as the dissimilarity matrix (with elements
δc
ij) between all products in cluster Dc, nc as the size of this cluster, and ic as

the index of the prototypical product, we can define this ideal index as follows

ic = arg min
i

nc∑
j=1

δc
ij. (8)

The resulting product set D∗
t is used in the same way as in the random system

to compute ∆∗
t and Zt. The clustering system is summarized in Algorithm 2.

Algorithm 2 GSI implementation using clustering
procedure clustering gsi(D, p, α)

D0 = D.
Compute ∆0 given D0 using (6).
Compute Tt given ∆0 using average linkage.
Find p clustering solution in T0.
Determine prototypical products of clusters using (8).
Store prototypical products in D∗

0.
Compute ∆∗

0 given D∗
0 using (6).

Compute Z0 given ∆∗
0 using MDS.

t = 0.
repeat

t = t + 1.
Select a product x∗t ∈ D∗

t−1.
Get Dt ⊂ D containing max(p − 1, αtn − 1) products most similar to x∗t

using (6).
Compute ∆t given Dt using (6).
Compute Tt given ∆t using average linkage.
Find p clustering solution in Tt.
Determine prototypical products of clusters using (8).
Store prototypical products in D∗

t .
Compute ∆∗

t given D∗
t using (6).

Compute Zt given ∆∗
t using MDS.

until D∗
t = D∗

t−1.
end procedure

Clustering (and especially hierarchical clustering) becomes quite slow as the
product space gets larger. Since Dt is interactively selected each time the clus-
tering has to be done each time as well. Therefore, our third implementation,
the hierarchical system, does not create a set Dt each time, but uses only
one hierarchical clustering result. We start with performing the average link-
age algorithm to the complete case library D. To do this, we first compute
dissimilarity matrix ∆ using (6). We will use the dendrogram T , created by

11

this clustering algorithm, to navigate through the product space. In the first
iteration (the initialization), we start by setting T0 = T . An iteration starts
at the root of Tt. We will go down Tt until we find the p cluster solution. If
this clustering does not exist, the largest possible clustering solution is chosen
which is equal to the number of products in the previous selected cluster. This
solution exists of p clusters Dc

t , where each of the p clusters is represented by
one prototypical product in the product set D∗

t . The procedure for determin-
ing the prototypical products is the same as in the clustering system. Then,
the dissimilarity matrix ∆∗

t of D∗
t is computed using (6) and used as input for

the MDS algorithm to compute the two dimensional representation Zt. When
a product x∗t is selected from this space, the cluster it represents is used as
the root of Tt+1. The procedure is terminated when a selected cluster only
contains a single product. This product is the final recommendation of the
system.

Note that there is no convergence parameter α in this approach. Since a cluster
is selected every step and products outside this cluster are not considered
anymore in the remainder of the recommendation procedure, this approach
converges quickly to a recommended product. As a consequence, it may lead to
worse recommendations. The hierarchical system is summarized in Algorithm
3.

Algorithm 3 GSI implementation using hierarchical clustering.
procedure hierarchical gsi(D, p)

Compute ∆ given D using (6).
Compute T given ∆ using average linkage.
T0 = T .
t = 0.
nc = size(D).
repeat

Find min(nc, p) clustering solution in Tt.
Determine prototypical products of clusters using (8).
Store prototypical products in D∗

t .
Compute ∆∗

t given D∗
t using (6).

Compute Zt given ∆∗
t using MDS.

Select x∗t ∈ D∗
t en determine cluster Dc

t it represents.
nc = size(Dc

t).
Dc

t is root of Tt+1.
t = t + 1.

until nc ≤ p.
end procedure

12

Table 1
Description of the MP3-player data set. The data set describes 321 MP3-players
using 22 product attributes.

Categorical Characteristics Missing Levels (frequency)

Brand 0 Creative (53), iRiver (25), Samsung (25), Cowon (22),

Sony (19), and 47 other brands (207)

Type 11 MP3 Player (254), Multimedia Player (31) USB key (25)

Memory Type 0 Integrated (231), Hard Disc (81), Compact Flash (8),

Secure Digital (1)

Radio 9 Yes (170), No (139), Optional (3)

Audio Format 4 MP3 (257), ASF (28), AAC (11), Ogg Vorbis (9),

ATRAC3 (5), and 4 other formats (6)

Interface 5 USB 2.0 (242), USB 1.0/1.1 (66), Firewire (6), Bluetooth (1),

Parallel (1)

Power Supply 38 AAA x 1 (114), Lithium Ion (101), Lithium Polymeer (45),

AA x 1 (17), AAA x 2 (4), Ni Mh (3)

Remote Control 9 No (289), In Cable (13), Wireless (10)

Color 281 White (7), Silver (5), Green (5), Orange (4), Purple (4),

Red (4),Pink (4), Black (4),Blue (3)

Headphone 15 Earphone (290), Chain Earphone (8), Clip-on Earphone (2),

Earphone With Belt (2), No Earphone (2),

Minibelt Earphone (1), Collapsible Earphone (1)

Numerical Characteristics Missing Mean Stand. Dev.

Memory Size (MB) 0 6272.10 13738.00

Screen Size (inch) 264 2.16 1.04

Screen Colors (bits) 0 2.78 5.10

Weight (grams) 66 83.88 84.45

Radio Presets 9 3.06 7.84

Battery Life (hours) 40 18.63 12.56

Signal-to-Noise Ratio (dB) 247 90.92 7.32

Equalizer Presets 0 2.60 2.22

Height (cm) 28 6.95 2.48

Width (cm) 28 5.57 2.82

Depth (cm) 28 2.18 4.29

Screen Resolution (pixels) 246 31415.00 46212.00

6 A Prototype Application to MP3 Players

In this section, we show a prototype of the graphical shopping interface on a
data set containing MP3 players. This data set consists of 22 attributes of 321
MP3-players collected from the Dutch website http://www.kelkoo.nl during
June 2006. The data set is of a mixed type, which means that we have both
categorical and numerical attributes and contains quite some missing values.
An overview of these data is given in Table 1.

13

http://www.kelkoo.nl

Figure 4. Screenshot of the graphical user interface of the prototype of the GSI for
MP3-players

A prototype of our GUI is shown in Figure 4. A version of this prototype imple-
menting the random GSI is available at http://people.few.eur.nl/kagie/
gsi.html. The prototype is implemented as a Java Applet, which means that
can be used in a web environment. The interface uses three tabs, each con-
taining a 2D space and some buttons: The Navigate tab implementing the
graphical shopping interface (GSI), the Direct Search tab implementing the
graphical recommender system (GRS), and a Saved Products tab to save prod-
ucts in. In a 2D space, each product is shown as a point in the space and rep-
resented by a thumbnail picture. To add a selected product to the shopping
basket the user presses the Save button represented by a shopping cart in
the GSI or the GRS tab. The Recommend (or play) button uses the selected
product for the next step in the GSI and by pressing the same button in the
GRS tab recommendations are given based on the ideal values for the product
attributes and weights specified by the user. The ideal product is represented
by the symbol ⊗ in the GRS space. The products in the Saved Products space
are also represented using MDS like in the two other spaces. With the Delete
button saved products can be removed from this space. A panel at the right
shows the product attributes of a selected product together with a picture of
this product.

The transition between two steps in the GSI is implemented in a smooth way.
After the selection of a product by the user, the new products are added to
the space at random positions. Then, the space is optimized using MDS. This
optimization is shown to the user. When the optimization has converged, the
old products are gradually made less important (using a weighted version of
MDS) until they have no influence anymore. Finally, the old products are
removed and the space of new products is optimized. This implementation
yields smooth visual transitions, which are important for an effective GUI.

14

http://people.few.eur.nl/kagie/gsi.html
http://people.few.eur.nl/kagie/gsi.html

Figure 5. An example of the GRS.

Figure 5 shows an example of a 2D space created by the GRS. The description
of the ideal product is shown in Table 2. The MP3-players closest to the ideal
product specification are the Samsung YH-820 and the Maxian MP2220 posi-
tioned above and below the ideal product respectively. It is maybe surprising
that the distance between these two products is one of the largest in the space.
However, when we have a closer look, we see that although both MP3-players
are quite similar to our ideal product description, they are quite different from
each other. The Samsung YH-820 is a small and light MP3 player with limited
memory size and a smaller screen than we wanted. On the other hand, the
Maxian has a large screen and memory size, but it is also larger and heavier
than our ideal product. The Samsung YH-925 and the 20GB versions of the
Cowon iAudio and the Samsung YH-J70 are all MP3-players having a memory
of 20GB as we wanted, but having worse screens than the Maxian. Conversely,
these players are somewhat smaller and lighter than the Maxian. The 30GB
versions of the Cowon iAudio and the Samsung YH-J70 only differ in mem-
ory size from the 20GB versions. Therefore, these MP3-players are visualized
somewhat further from the ideal product than the 20GB versions.

7 Evaluation of the Graphical Shopping Interface

To test our approach, the MP3 players data introduced in the previous section
are used. We study the quality of the 2D spaces by considering the Stress
values. Through a simulation study we evaluate how easily a customer can
find the product she wants using the GSI.

15

Table 2
Description of ideal product used in Figure 5.

Characteristic Value Characteristic Value

Brand Samsung Screen Size 1.8 inch

Type Multimedia Screen Colors 18 bits

Memory Type Hard-disk Weight 100 grams

Radio No Radio Presets 0

Audio Format MP3 Battery Life 12 hours

Interface USB2.0 Signal-to-Noise 95 dB

Power Supply Lithium Ion Equalizer Presets 5

Remote Control No Height 8 cm

Color Black Width 4 cm

Headphone Earphone Depth 1 cm

Memory Size 20 GB Screen Resolution 60000 px

Representing recommended solutions in a 2D space only improves the system
when the 2D representations are of a sufficient quality, that is, information is
added to a regular list. Although this is largely a subjective matter, we can
say something about the Stress of the obtained solutions. Solutions with a low
Stress value represent, at least technically, the products in a good way. Since
we also like to compare solutions with a different number of products, Stress
is normalized by dividing by the sum of squared dissimilarities, that is,

σn =

∑
i<j(δij − dij(Z))2∑

i<j δ2
ij

. (9)

This normalized Stress can be interpreted as the proportion of the unexplained
sum-of-squares of the dissimilarities [3].

To estimate the average quality of a fit in the GSI is practically impossible,
because of the interactivity and randomness in the system. However, we can
say something about the goodness of the representations in the GRS. Since
the user has much freedom in specifying her ideal product, there is a very
large number of possible plots in practice. We use a leave-one-out method to
approximate the quality of the plots. Each time, we pick one product from
the data set as the ideal product of the user and we use the other products
as our case library. All attributes are used to compute the dissimilarities and
all weights are set to 1. Then, the p − 1 most similar products to this ideal
product are selected and a 2D space of these p products is created using MDS.
This procedure is repeated, until each product has functioned once as an ideal
product description. This overall procedure is done for p = 2 until p = 10.
The results for the average normalized Stress values are shown in Table 3.

It is no surprise that solutions with only two products have a Stress of (almost)
zero, since there is only one dissimilarity in that case that can always be
perfectly scaled on a line. Also the solutions with three points have an average

16

Table 3
Normalized Stress values for the experiments to determine the quality of the 2D
representations in the GRS.

p Mean Normalized Stress

2 3.36 · 10−32

3 3.13 · 10−4

4 5.77 · 10−3

5 1.21 · 10−2

6 1.96 · 10−2

7 2.63 · 10−2

8 3.16 · 10−2

9 3.62 · 10−2

10 4.05 · 10−2

Stress value very close to zero. When we increase p, the Stress values increase,
as may expected because the problem gets more difficult. Since this increase
seems almost linear, it is hard to identify the ideal product set size. If one wants
near perfect solutions, p should be set to 3, but a space of three products is
not very informative. For larger p, the Stress values are still acceptable, even
for p = 10, 96% of the sum-of-squares in the dissimilarities is explained by the
distances in the 2D space.

Apart from the quality of the 2D representations, the navigation was tested
in the different implementations of the GSI. In an ideal system, the user will
always find the product she likes most in a small number of steps. We expect
that there will be a tradeoff between the number of steps that is necessary to
find the product and the probability that the customer will find the product
she likes.

To evaluate the navigation attributes of the different systems in a simulation,
some assumptions need to be made about the navigation behavior of the user.
First, we assume that the customer implicitly or explicitly can specify what
her ideal product looks like in terms of its attributes. Second, we assume that
the user compares products using the same dissimilarity measure as the system
uses. Finally, it is assumed that in each step the customer chooses the product
that is most similar to the ideal product of the customer. Note that we only
evaluate the search algorithm in this way and not the complete interface, since
the results would have been the same when the results were shown in a list.

We use a leave-one-out procedure to select the ideal product descriptions of the
user. A random ideal product description is not used, since such a procedure
will create a lot of ideal products that do not exist in reality. Each time, one
product is selected as the ideal product of the customer and all other products
are used as the case library. We repeat this until every product is left out once.
We evaluate the three different implementations (the random, the clustering,
and the hierarchical system) with p set to 4, 6, 8, and 10. For the random

17

Table 4
Results for different specifications of the random system.

p α Successes In 5 Steps Average number of Steps

4 0.2 16.8% 16.8% 5.02

0.4 29.3% 19.3% 6.38

0.6 41.7% 10.0% 9.12

0.8 56.1% 5.9% 15.99

6 0.2 29.3% 28.7% 4.77

0.4 42.7% 34.9% 5.83

0.6 52.7% 17.1% 8.01

0.8 70.1% 10.9% 13.12

8 0.2 43.0% 42.7% 4.34

0.4 47.0% 43.6% 5.29

0.6 66.4% 30.5% 6.96

0.8 80.1% 16.2% 11.22

10 0.2 46.4% 46.4% 4.09

0.4 58.9% 56.7% 4.82

0.6 70.4% 37.1% 6.27

0.8 83.8% 19.9% 9.92

and clustering system we also vary the parameter α by setting it to the values
0.2, 0.4, 0.6, and 0.8. Before starting a single experiment, we determine which
product in the case library is most similar to the product we left out. During
each step in a single experiment, we use the assumptions above to compute
the product the user will select. We stop when the most similar product is in
D∗

t that is shown to the user or when the system terminates.

For the different systems and specifications Tables 4, 5, and 6 show the per-
centages of success, the percentage of successes during the first five steps of
the process, and the average number of steps the system uses before it stops.
The random system in Table 4 performs better for larger p as expected: the
percentage of successes is higher and the average number of steps lower. As
the quality of MDS representations reduces with increasing p, it becomes more
difficult for the user to get an overview of the product space. Also, there is
a tradeoff between the number of steps necessary to find a product and the
probability to find the product. For example, a random system with p = 10
and α = 0.8 finds in 84% of the cases the correct product, but needs on average
almost 10 steps to find it. In this case, after 5 steps only in 20% of the cases
the correct product is found. However, a system with p = 10 and α = 0.4 has
a success after 5 steps in 57% of the cases, but the total success rate is 59%.
The average number of steps for this system is also 4.8.

The clustering system perform overall worse than the random systems and
seem, therefore, not to be an alternative. However, the hierarchical systems,
especially the one with p = 10, show similar performance as the random
systems with a small α.

18

Table 5
Results for different specifications of the clustering system.

p α Successes In 5 Steps Average number of Steps

4 0.2 14.6% 14.6% 4.85

0.4 20.3% 12.2% 6.68

0.6 19.3% 8.7% 8.90

0.8 13.7% 10.0% 7.83

6 0.2 22.1% 21.2% 4.83

0.4 32.7% 27.1% 6.17

0.6 44.9% 19.0% 8.30

0.8 25.9% 11.5% 9.10

8 0.2 31.5% 29.9% 4.57

0.4 38.9% 35.5% 5.38

0.6 60.4% 25.6% 7.34

0.8 45.8% 13.7% 10.20

10 0.2 39.6% 38.9% 4.34

0.4 50.5% 45.5% 5.04

0.6 72.6% 29.6% 6.40

0.8 68.2% 16.2% 11.02

Table 6
Results for different specifications of the hierarchical system.

p Successes In 5 Steps Average number of Steps

4 47.4% 11.5% 8.03

6 47.7% 18.4% 5.69

8 48.9% 24.6% 5.02

10 52.3% 38.0% 4.10

Tables 4, 5, and 6 only showed the success rates, but did not say anything
about the cases where the most similar product was not recommended to the
user. Therefore, we have also counted how many times the second, third etc.
most similar product was recommended. This information is summarized for
the random and hierarchical system in Tables 7 and 8. They show that many
misrecommendations of the systems are recommendations of products that
are quite similar to the ideal product. Looking at the top 5 of most similar
products, these products are recommended in up to 94% of the cases to the
customer. In many systems that desire only a small number of steps, like the
hierarchical system, products 2 until 5 are recommended in one fifth of the
cases to the user. In many cases, these products have a not much higher dis-
similarity than the most similar product and in some cases their dissimilarity
is the same. Therefore, recommending one of these products instead of the
most similar one, will not make the recommendation much worse.

19

Table 7
Proportions of cases that the ranking of the recommended product was in the spec-
ified ranges for the random system.

ranking ranges

p α 1 ≤ 2 ≤ 3 ≤ 5 ≤ 10 ≤ 25 ≤ 50 ≤ 100

4 0.2 16.8% 24.6% 29.9% 36.5% 47.0% 66.7% 84.4% 95.0%

0.4 29.3% 36.5% 42.4% 49.5% 60.1% 78.5% 91.0% 99.4%

0.6 41.7% 50.5% 58.9% 64.2% 75.7% 87.9% 94.4% 100.0%

0.8 56.1% 67.3% 73.2% 80.4% 89.4% 96.0% 98.4% 99.7%

6 0.2 29.3% 40.8% 45.2% 49.2% 60.4% 75.1% 86.6% 96.0%

0.4 42.7% 50.5% 57.9% 64.5% 74.1% 88.5% 96.0% 97.8%

0.6 52.7% 64.8% 69.2% 75.7% 84.1% 91.9% 96.9% 97.8%

0.8 70.1% 80.1% 82.2% 86.3% 94.1% 97.8% 99.7% 100.0%

8 0.2 43.0% 54.8% 59.5% 64.5% 75.4% 89.1% 95.3% 98.8%

0.4 47.0% 58.6% 63.9% 71.3% 77.3% 90.0% 94.7% 98.1%

0.6 66.4% 76.0% 79.4% 84.7% 91.0% 96.6% 97.5% 98.8%

0.8 80.1% 87.2% 91.0% 93.2% 97.5% 99.4% 99.4% 99.4%

10 0.2 46.4% 56.1% 60.8% 67.0% 79.8% 92.5% 96.6% 99.1%

0.4 58.9% 70.4% 74.8% 80.4% 91.0% 95.3% 98.8% 100%

0.6 70.4% 76.0% 81.6% 87.5% 93.2% 97.2% 98.4% 98.8%

0.8 83.8% 89.7% 92.2% 93.8% 96.0% 98.8% 99.1% 99.1%

Table 8
Proportions of cases that the ranking of the recommended product in the specified
ranges for the hierarchical system.

ranking ranges

p 1 ≤ 2 ≤ 3 ≤ 5 ≤ 10 ≤ 25 ≤ 50 ≤ 100

4 47.4% 56.4% 64.2% 71.3% 77.6% 85.4% 89.7% 95.6%

6 47.7% 55.1% 62.3% 70.1% 76.0% 85.4% 90.3% 95.6%

8 48.9% 56.4% 62.3% 70.4% 77.3% 86.9% 94.1% 97.5%

10 52.3% 58.6% 67.9% 74.8% 81.6% 90.0% 93.8% 98.8%

8 Conclusions

In this paper, we presented two recommender systems which both use two
dimensional spaces to represent products in. Products that are similar to each
other, based on their product attributes, are represented close to each other
in the 2D representation. The difference between both systems is that the
GRS uses explicit input from the user, where the GSI can be used to navigate
through the product space. Both were combined in a prototype application for
MP3 players. Some simulation tests were performed to evaluate the quality
of the 2D representations and the navigation behavior in the different imple-
mentations of the GSI. The first type of tests showed that the quality of the
2D representations in the GRS is acceptable at least up to 2D spaces with
10 products, but as expected the quality of the representations became less
when p was increased. The navigation tests showed that there is a tradeoff

20

between the number of steps a user needs to find the best product in a certain
implementation of the GSI and the probability that the user will find the best
product. Results of the implementation with a clustering in each step were
worse than both the random system and the hierarchical system, implying
that the clustering method is not good enough to be applied in practice. To
be quite certain that the best product eventually will be found, the random
system with a high value for α should be preferred. If a high probability of
successes in the first few steps is preferred, then one should choose a random
system with a low α or a hierarchical system.

Both systems show that it is possible to combine 2D product representations
with recommender systems. However, there still are several possibilities to
extend and possibly improve the systems.

The first extension that can be made is to extend the domain model with other
submodels, like the user model or the evaluation model. In the user model,
some user account information can be stored, what means that the similarity
between users is used in the recommendation process. In the evaluation model,
rating information could be incorporated. The ratings can be given directly
by the user or can be based on saved or purchased products. To extend the
domain model in this way, more CBR steps should be implemented by the
system, that is, the reuse step and the retain step. The reuse step has to be
implemented, since not all information should be shown to the user and the
selection can contain duplicate products. In the retain step, the combination
of the recommended product, user information, and rating can be stored. If
the domain model is extended, the dissimilarity metric should be adapted. For
example, the rating cannot be directly used as a dissimilarity score. Also, the
dissimilarity metric should be flexible, because the user should not be forced
to rate products or to have a user account.

An important issue for the computation of the dissimilarities is the weighting
of the different features. When an evaluation model is incorporated in the
recommender system these weights can be learned by the system for the total
customer population or even for individual customers. In a CBR-RS for trav-
eling [2], for example, a weighting approach based on frequencies of features
previously used in a query was used.

The GSI can also be further improved by not only allowing the customer to
select a product, but also by allowing the customer to select any point in
the space. With the use of external unfolding [3] an invisible product can be
found that is closest to the selected point and used in the next iteration. This
technique is, for example, used in an application to compare roller skates in
[20].

21

References

[1] G. Adomavicius, A. Tuzhilin, Towards the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions, IEEE
Transactions on Knowledge and Data Engineering 17 (6) (2005) 734–749.

[2] B. Arslan, F. Ricci, N. Mirzadeh, A. Venturini, A dynamic approach to feature
weighting, Management Information Systems 6 (2002) 999–1008.

[3] I. Borg, P. J. F. Groenen, Modern Multidimensional Scaling, Springer Series in
Statistics, 2nd ed., Springer, New York, 2005.

[4] R. Burke, Knowledge based recommender systems, in: J. E. Daily, A. Kent,
H. Lancour (eds.), Encyclopedia of Library and Information Science, vol. 69,
Supplement 32, Marcel Dekker, New York, 2000.

[5] R. Burke, Hybrid recommender systems: Survey and experiments, User
Modelling and User-Adapted Interaction 12 (2002) 331–370.

[6] J. De Leeuw, Applications of convex analysis to multidimensional scaling, in:
J. R. Barra, F. Brodeau, G. Romier, B. van Cutsem (eds.), Recent Developments
in Statistics, Noth-Holland, Amsterdam, The Netherlands, 1977, pp. 133–145.

[7] J. De Leeuw, Convergence of the majorization method for multidimensional
scaling, Journal of Classification 5 (1988) 163–180.

[8] J. De Leeuw, W. J. Heiser, Convergence of correction-matrix algorithms for
multidimensional scaling, in: J. C. Lingoes, E. E. Roskam, I. Borg (eds.),
Geometric representations of relational data, Mathesis, Ann Arbor, MI, 1977,
pp. 735–752.

[9] D. Goldberg, D. Nichols, B. M. Oki, D. Terry, Using collaborative filtering to
weave an information tapestry, Communications of the ACM 35 (12) (1992)
61–70.

[10] J. C. Gower, A general coefficient of similarity and some of its properties,
Biometrics 27 (1971) 857 – 874.

[11] I. Keller, MDS-i for 1 to 1 e-commerce: A position paper, in: Proceedings of the
CHI 2000 Workshop on 1-to-1 E-commerce, 2000.

[12] J. B. Kruskal, Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis, Psychometrika 29 (1) (1964) 1–27.

[13] J. Lattin, J. D. Carrol, P. E. Green, Analyzing Multivariate Data, Duxbury
Applied Series, Brooks/Cole, Pacific Grove, CA, 2003.

[14] F. Lorenzi, F. Ricci, Case-based recommender systems: A unifying view,
in: B. Mobasher, S. S. Anand (eds.), Intelligent Techniques for Web
Personalization, vol. 3169 of Lecture Notes in Computer Science, Springer,
Berlin/ Heidelberg, 2005, pp. 89–113.

22

[15] B. Prasad, Intelligent techniques for e-commerce, Journal of Electronic
Commerce Research 4 (2) (2003) 65–71.

[16] J. B. Schafer, J. A. Konstan, J. Riedl, E-commerce recommendation
applications, Data Mining and Knowledge Discovery 5 (2001) 115–153.

[17] B. Schwartz, The Paradox of Choice: Why More Is Less, HarperCollins, New
York, 2004.

[18] B. Schwartz, Can there ever be too many flowers blooming?, in: W. Ivey, S. J.
Tepper (eds.), Engaging Art: The Next Great Transformation of America’s
Cultural Life, Routledge, New York, in press, available at http://www.
swarthmore.edu/SocSci/bschwar1/SchwartzCulture.pdf.

[19] P. J. Stappers, G. Pasman, Exploring a database through interactive visualised
similarity scaling, in: M. W. Altom, M. G. Williams (eds.), Human Factors in
Computer Systems. CHI99 Extended Abstracts., 1999.

[20] P. J. Stappers, G. Pasman, P. J. F. Groenen, Exploring databases for taste
or inspiration with interactive multi-dimensional scaling, in: Proceedings of
the XIVth Triennial Congress of the International Ergonomics Association
and 44th Annual Meeting of the Human Factors and Ergonomics Association,
’Ergonomics for the New Millennium’, 2000.

[21] A. R. Webb, Statistical Pattern Recognition, 2nd ed., John Wiley & Sons, West
Sussex, 2002.

23

http://www.swarthmore.edu/SocSci/bschwar1/SchwartzCulture.pdf
http://www.swarthmore.edu/SocSci/bschwar1/SchwartzCulture.pdf

	Introduction
	Recommender Systems
	Methodology
	Multidimensional Scaling

	Graphical Recommender System
	Graphical Shopping Interface
	A Prototype Application to MP3 Players
	Evaluation of the Graphical Shopping Interface
	Conclusions
	References

