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Abstract
The design of autonomous characters capable of

planning their own motions continues to be a chal-
lenge for computer animation. We present a novel
kinematic motion planning algorithm for character
animation which addresses some of the outstand-
ing problems. The problem domain for our algo-
rithm is as follows: given a constrained environment
with designated handholds and footholds, plan a mo-
tion through the environment towards a desired goal.
Our algorithm is based on a stochastic search proce-
dure which is guided by a combination of geomet-
ric constraints, posture heuristics, and distance-to-
goal measures. The method provides a single frame-
work for the use of multiple modes of locomotion
in planning motions through constrained, unstruc-
tured environments. We illustrate our results with
demonstrations of a human character using walking,
swinging, climbing, and crawling in order to navigate
through complex environments.

Keywords: motion planning, character animation.

1 Introduction
The animation of human figures has been a challenge
that has seen the evolution of many tools, operat-
ing at a variety of levels of abstraction. Many of
the available methods target the creation of specific
motions in structured environments, such as walking
on flat terrain. However, there are remarkably few
methods which tackle the problems involved in mak-
ing human figures navigate in complex, unstructured
environments. Examples of this type of problem in-
clude a climber on a mountain face, a child playing on
a jungle-gym, or a game character crawling through
a tunnel.

The automated synthesis of motion for characters
in unstructured environments is difficult because it
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Figure 1: An example solution for navigating
through an unstructured environment.

requires solving a planning problem subject to mul-
tiple constraints. Obstacles in the environment con-
strain the motion in an obvious fashion, as typified
by a narrow passageway in a cave. Other types of
constraints include a character’s joint limits, the re-
quirements for balance and support throughout the
motion, as well as the character’s natural disposition
for particular postures and motions. This set of com-
plex, heterogeneous constraints motivates our use of
stochastic optimization techniques in addressing this
problem.

Navigation in unstructured environments entails
some particular challenges. Global and local solu-
tions can be strongly linked; the choice of a partic-
ular route towards a goal is predicated on the route
being viable every step along the way. Planning algo-
rithms for such problems thus require the ability to
plan motions across both small and large time scales.
A second challenge is that creating motions involves
both discrete and continuous decisions. An example



1,2,3

4 5

6,7

8
9

Figure 2: The 10-link, 9-joint character model used
by our planner. The numbers in the diagram enu-
merate the joints.

of a discrete decision is that of deciding whether to
step on or over an obstacle, or simply deciding which
of a finite set of possible hand-holds to use. Once the
contact points of a character with the environment
have been chosen, the remaining decisions shaping
the motion can be regarded as being continuous in
nature.

An example of the type of problem that can be
solved by our motion planner is presented in Fig-
ure 1. The diagram illustrates one particular solu-
tion obtained for a simple 10-link, 9-joint character,
which is further depicted in Figure 2. The small
boxes on the obstacle surfaces represent grasp points
which are points at which the character is allowed
to grasp, pull, or step on. These represent part of
the problem specification in our algorithm, as will
be discussed later. This particular environment re-
quires the alternating use of four modes of locomo-
tion in order to navigate towards the goal: walking,
crawling, climbing, and swinging. The solution also
necessitates variations of these basic modes, such as
walking up hills, stepping over obstacles, and duck-
ing the head when necessary.

Our planner uses the randomized path planning
(RPP) methods of Latombe et al.[3, 17] as a point of
departure. This previous work deals with a class of
robot motion planning problems, typified by the ex-
ample shown in Figure 3. The problem statement for
this example is to move the three-link jointed figure
from the initial configuration, A, to the goal configu-
ration, B, without colliding with the constraining en-
vironment. The piano mover’s problem is a strongly
related problem: determine how to move and orient
a piano through a set of rooms and hallways to a
given goal location without getting stuck. As shown
in [3, 17], these types of problems can be effectively
solved using RPP techniques.

When applied to character animation, the basic

A B

Figure 3: Moving a simple articulated robot in a
constrained environment.
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Figure 4: Contact-free motion planning

RPP algorithm is capable of generating free motions
through an environment between given start and end
configurations, as shown schematically in Figure 4.
In order to produce more realistic motions, we shall
augment the basic RPP algorithm in several ways.
Grasp points are introduced as a means of represent-
ing possible points of contact with the environment,
such as footholds and handholds. A finite state ma-
chine structure is used to represent particular modes
of locomotion, possible transitions among them, as
well as their relative preference. A posture correction
step is introduced at key points in the solution as a
means of modeling preferences for particular posture
characteristics. Lastly, trajectory filters are added to
ensure the fluidity of the final synthesized motion. In
section 3, we shall expand upon each of these addi-
tions in turn.

The remainder of this paper is structured as fol-
lows. In section 2, we describe related previous work.
Section 3 describes the various elements of the mo-
tion planning algorithm. Our results are presented
in section 4, followed by conclusions and future work
in section 5.

2 Previous Work
Many methods have been brought to bear on the
problem of character animation. This variety stems
in part from the unique requirements of various ap-



plications such as games, film production, and er-
gonomic analysis. The following review of previous
work briefly touches on general character animation
methods and then focusses more closely on character
animation methods which emphasize motion plan-
ning.

While keyframing continues to be the mainstay of
character animation, a variety of alternative kine-
matic and dynamic methods exist. Several kinematic
methods are dedicated specifically to producing hu-
man walking[4] or running[6] gaits. Other walking
and running methods employ a hybrid mixture of
kinematics and dynamics[5, 9]. Lastly, dynamic sim-
ulations have had some success in reproducing hu-
man walking[16] and running[21, 11] gaits. In gen-
eral, all of these methods are thus far restricted to
well-structured environments.

Spacetime constraint methods[27] and their subse-
quent variations offer promise in that they can read-
ily incorporate a mix of hard and soft constraints on
a motion. By using appropriate simplifications for
the physics, it has been shown that the principles of
trajectory optimization can be applied to animating
bipedal[26] and quadrupedal characters[23].

A different set of techniques offer the capability
to make flexible use of motion capture data by al-
lowing various transformations to be applied. In
relatively simple, unconstrained situations, smooth
deformations of trajectories can be used to meet
particular keyframe constraints[28]. More sophisti-
cated methods can further take contact constraints
and character proportions into account[10, 13, 22],
and more recently, also the physical correctness of
the motion transformation[20]. Yet other meth-
ods apply signal processing methods to motion data
in order to capture and modify particular motion
characteristics[1, 7, 25].

The Jack system[2, 19, 18] is a system which aims
to solve motion planning problems closer in nature
to the ones we address. The Jack system is a com-
plex, multi-faceted system designed in part to to per-
form ergonomic studies. It allows the user to perform
field-of-vision analysis, comfort assessment, as well
as testing reachability. It has been further outfit-
ted with strength modeling and collision avoidance,
and is capable of grasping objects. Developed at
University of Pennsylvania, it is now a commercial
product[24].

The Jack system is particularly adept at solv-
ing the local motion planning problems found in er-
gonomic studies. However, to the best of our knowl-
edge, it does not solve the particular problem being

addressed in this work, namely the automatic plan-
ning of global motions through complex unstructured
environments, exploiting multiple modes of locomo-
tion as necessary.

The robot motion planning work of Latombe et
al.[3, 17] proposes the use of the randomized path
planning (RPP) method and is the starting point for
our character motion planning algorithm. The RPP
method has many benefits: it is among the fastest
known methods for solving constrained motion plan-
ning problems, and it scales well with the complexity
of both the object and its environment.

The RPP algorithm has been extended to deal
with 3D manipulation tasks in [14], which focusses
on the cooperative multiarm manipulation of objects
and is suited especially well to tasks which require re-
grasping of the object being manipulated. However,
problems of locomotion are not addressed in this or
previous RPP work.

The Motivate 3D game system[8, 15] is a com-
mercial 3D game development system which aims
to address some of the same motion planning issues
as we do. However, as a result of the stringent re-
quirements of games, both the goals and the meth-
ods employed differ from the work we shall present.
The Motivate system, much like many game engines,
places the emphasis on real-time character animation
at the expense of motion continuity and planning so-
phistication, as the real-time requirement is a must
for game playing environments. It also addresses ob-
ject manipulation, which we do not address. Motions
are synthesized in the Motivate system by making
liberal use of a form of motion warping to adapt mo-
tion instances retrieved from a ‘skills’ database to
the specifics of the current situation.

3 The Motion Planner
Our motion planner can be described in terms of five
interacting components, as shown in the block dia-
gram of Figure 5. In this section, each of the com-
ponents of the planner is described in turn, although
we shall on occasion refer the reader to [12] for par-
ticular details and parameter values that will be of
use in precisely reproducing our results.

Grasp points are a fundamental concept through-
out our motion planner. These are an enumerated
set of points of the environment which may be used
as footholds or handholds by the character. Given an
environment, grasp points can be designated manu-
ally, or through an automatic process. Three types
of grasp points exist: load-bearing, pendent, and
hybrid. Generally, the first represents a potential
foothold, the second a potential handhold, and the



edge precondition
database

edge effect
database

heuristic
system

whole body
trajectory filter

FSM
state

precondition
checker

effect
executor

finite state machine

planner core

character motion

backtracker

limb trajectory filter

gradient descent
step

random walk
generator

Figure 5: Motion planner overview.

last can be used as either. The job of the motion
planning algorithm is to find a natural sequence of
grasp points which the character can use to move
towards the goal configuration.

3.1 The Planner Core
As its name would imply, the planner core is central
to the motion planning process. It acts as an arbi-
trator and scribe for three possible sources of motion
sequences: (1) the locomotion finite state machine,
(2) a gradient descent step, and (3) the random walk
generator. The planner decides which of these three
sources should be called upon to generate the next
motion segment. The factors entering into this deci-
sion will be elaborated on in the individual descrip-
tions of these motion sources.

In addition to invoking a motion source and con-
catenating the results to the developing solution tra-
jectory, the planner core can decide to backtrack.
Backtracking is employed in situations where the cur-
rent motion plan is perceived to have reached a dead
end. In this case the planner rolls back the current
motion plan to a chosen backtracking point and then
restarts the planning process from there. The con-
ditions under which the backtracking procedure is
invoked will be described shortly.

3.2 Gradient Descent

The gradient descent process provides the means to
drive the character towards the goal configuration.
Our implementation of this particular process closely
follows that presented in the original work on ran-
domized path planning (RPP)[3, 17]. A single gradi-
ent descent step makes a small change to the configu-
ration of the character such that the character moves
closer to its goal configuration. The configuration, q,
of a character is a complete specification of all the
degrees of freedom, typically consisting of the 2D or
3D location of the root of the character in space, the
Euler angles specifying the subject’s general orienta-
tion, as well as values for all the internal joint angles
of the character.

Computing a motion towards the goal first requires
defining a distance-to-goal metric, which we shall re-
fer to more formally as the configuration-space po-
tential function[17], P (q). P (q) thus computes a
scalar value representing the remaining distance to
the target or goal configuration, qtarget. There are
many possible ways of defining a distance-to-goal
function. One simple possibility is to track the po-
sitions of a collection of control points placed on the
character. The sum of the geometric distances be-
tween each control point in the current configuration,
q, and the target configuration, qtarget then defines
our distance metric. This metric is more meaning-
ful than simply computing a norm on |q − qtarget|,
as such a difference of configurations contains both
linear and angular measures which cannot readily be
combined in an even-handed way. However, this met-
ric does not take the environment into account in any
way. A better solution then is to use the shortest
free-space path between each control point in its cur-
rent and final configurations as a substitute for the
geometric distance. In our implementation, we use
only one control point that is located at the charac-
ter’s center of mass.

Computing the shortest free-space path between
two points in a complex environment remains a non-
trivial subproblem. For this, RPP relies on a discrete
approximation which can be efficiently computed as
follows[17]. First, a binary-valued occupancy map is
created by using an axis-aligned grid to uniformly di-
vide the environment into a set of rectangular cells.
A cell in the occupancy map is marked as unoccu-
pied if more than half of the cell is free space. Other-
wise, it is marked as occupied. The occupancy map is
then used to compute a corresponding distance map,
which for each cell stores the Manhattan distance
through freespace to the cell containing the target



control point. The distance is measured as the num-
ber of free-space cells that need to be traversed, using
4-connectivity, in order to reach the target cell. The
distances can be efficiently computed using a sim-
ple form of dynamic programming, which manifests
itself as a wavefront expansion algorithm in this case.

Given the potential field P (q) as computed above,
we need a means to take a step in the direction of the
gradient of this field, ∇P , in order to move our char-
acter towards its goal. Because of the high dimen-
sionality of the configuration space and the numer-
ous possible ways in which collisions can occur with
the environment, using an analytic computation for
∇P is infeasible. Instead, the RPP method evaluates
P (q+ ∆q) for a number of stochastic choices for ∆q.
The choice associated with the largest collision-free
decrease in value of the potential field, P , is accepted
and the next gradient descent step can proceed. As
will be described shortly, additional mechanisms pro-
vide means to escape local minima.

The gradient descent step as described thus far
cannot be directly applied to character animation,
given that any kind of locomotion requires maintain-
ing contact foothold and handhold constraints with
the environment. To address this for single contact
configurations, we reroot the skeletal description of
the character at the grasping point, allowing the con-
tact constraint to be trivially enforced. Additional
contact constraints can be maintained by invoking
inverse kinematics to reinstate the given constraints
after each stochastic choice of ∆q.

3.3 Random walk generator
The gradient descent process is prone to becoming
trapped in local minima, given the potential com-
plexities of a human figure moving in its environ-
ment. As in [3, 17], we employ random walks to
escape these local minima by applying Brownian mo-
tion to the character’s configuration for a prespeci-
fied duration. Given that the first such attempt may
not lead to success, the random walk may be per-
formed a number of times. For a thorough discussion
of Brownian motion in the context of RPP we refer
the reader to [17, 3]. Our implementation of the ran-
dom walk is as follows: at each step of the walk the
current character configuration q = (q1, ..., qj , ..., qn)
is modified such that each coordinate j has a uni-
form chance ( 1

3 ) of being either increased, decreased,
or left unaltered. If the resulting configuration re-
sults in a collision with the environment then we dis-
card this choice of q and try again. The amount
of increase or decrease in each coordinate j is uni-
formly distributed over [0,∆qj), where ∆qj are pre-
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Figure 6: Backtracking example

computed maxima that ensure that the the charac-
ter does not penetrate obstacles in the transition be-
tween the two configurations.

In the case of deep local minima this tactic can
sometimes still prove ineffective. We therefore re-
sort to backtracking, as outlined in the RPP algo-
rithm [3, 17] to deal with this situation. Backtrack-
ing consists of restarting the planner at an earlier
point along the solution trajectory computed so far.
The restart point is chosen randomly with a uniform
distribution over the domain of all randomly gener-
ated configurations in the current solution, i.e., ones
derived from a previous random walk. The rationale
for choosing from these is that the complement of this
set consists of configurations generated by a gradient
descent; these are more likely to lie near local minima
as each gradient descent unfailingly ends in one. By
choosing from the randomly generated set we there-
fore increase the probability of a successful escape.
If no random walks have yet been undertaken, we
use the whole solution as the domain for randomly
choosing a restart point. Once the character is placed
in the restart configuration, a new random walk is
performed. The purpose of this is to increase the
likelihood of placing the character on an alternative
slope of P , one which will ultimately lead to a differ-
ent path taken towards the goal. The probability of
difficult-to-escape local minima is a function of the
frequency of sub-character-sized inter-obstacle gaps,
as well as the degree of environment confinement.

Figure 6 illustrates backtracking, using a free-
space motion for illustrative purposes. The charac-
ter starts at configuration #1. It flies towards the
cave, passing through configuration #2, and ends up
stuck in a deep local minimum at configuration #3.
A number of random walks followed by gradient de-
scents still do not yield any progress. The solver then
backtracks, randomly choosing configuration #2. A
random walk is performed which happens to succeed
in escaping the local minimum of the cave (resulting
in configuration #4). The character continues using
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Figure 7: The walking cycle; a) starting posture; b)
after a few gradient descent steps; c) IK used to reach
the next grasp point; d) grasp switched to other leg
and gradient descent continued

gradient descent until it arrives at the goal, configu-
ration #5.

3.4 The Locomotion FSM and Heuristics
All modes of locomotion, including walking, must
continually acquire and release grasp points. Com-
ing up with an appropriate model for this process
is critical to the success of the motion planning al-
gorithm. A simple model for acquiring new grasp
points would be to do so whenever the opportunity
arises, i.e., when a hand or foot is sufficiently close to
a new grasp point. In order to release grasp points,
an appropriate rule could be defined as to when a
grasp point is no longer needed to support the char-
acter’s motion. Figure 7 illustrates how this process
works for a representative walking step.

The simple regrasping procedure described above
is problematic in several respects, however. First,
the motion produced is largely unnatural, resembling
that of a shaky-yet-nimble contortionist leaning for-
ward against the wind. The forward lean is a result
of the configuration potential field P , which rewards
any motion of the center of mass towards its goal
position. Thus, the motion displays little regard for
gravity and balance. Second, the character will typi-
cally move towards its goal in a haphazard fashion as
a result of the randomized nature of the path plan-
ner. For example, the character may readily use an
alternating mix of hands and feet to ‘walk’ across
flat terrain. As unnatural as this is for locomotion
across flat terrain, it is worthwhile noting that this
kind of unstructured motion may be precisely what
is needed in the case of some complex, unstructured
environments.

The problems of unnatural and unorthodox
motions are addressed through the use of heuristics
and a locomotion mode finite-state machine (FSM),
respectively. We first discuss the locomotion FSM.

Locomotion FSM
Figure 8 shows the FSM, which enumerates the

currently available modes of locomotion and defines

climb

swing

walk

crawl

Figure 8: The locomotion mode finite state machine

transitions and preferences among the various modes
of locomotion. The edges of the FSM, which repre-
sent transitions between modes of locomotion, have
associated with them a number of preconditions
which must be met in order for the traversal to take
place. The preconditions typically consist of a num-
ber of geometric constraints that must be satisfied.
The edges further specify a set of actions that are to
be performed in the event of a transition. These can
be as simple as a single change of grasp (acquisition
or release), or in more complex cases can consist of
a sequence of regrasps and posture corrections. In a
limited number of situations, a form of backtracking
may be invoked. In all cases, the actions and their
resulting motion consists of the required changes to
the character’s posture needed to bring it into com-
pliance with the dominant characteristics of the new
mode of locomotion.

Of particular note are the self-loops in the graph.
Even though these transitions return to the same
locomotion mode, they provide the necessary re-
grasping operation which allows the character to
keep advancing using that particular mode. The full
details of the locomotion FSM are available in [12].

Heuristics
In order to achieve more natural motions, we em-

ploy a system of heuristics to guide the character to-
wards desired postures at key points in the solution.
We define these key points to be the time instances
at which any change of grasp occurs, this being man-
dated by the finite state machine. Each heuristic an-
alyzes the character’s posture and provides feedback
on one particular property or characteristic, return-



ing a value ranging from 1 to +∞, 1 being optimal
and +∞ being unacceptable. Multiple heuristics are
combined into a single discomfort function in a mul-
tiplicative fashion. To correct a character’s posture
we employ a stochastic gradient descent procedure,
much like that employed for the configuration po-
tential. Table 1 describes which heuristics are used
for which modes of locomotion. The details of these
heuristics can be found in [12].

walk climb swing crawl
balance • •

upright spine •
limb counter •
comfy limbs • •

head up • • • •
hand down • •
knees down •

Table 1: Heuristic usage by locomotion modes.

3.5 Smoothing / Motion Filters
The system described thus far produces results which
still have a serious flaw. The character’s motion re-
mains irregular as a result of the stochastic processes
used to optimize the character’s configuration with
respect to both the distance to the goal and the set
of posture heuristics. In short, the motion embodies
the history of the search process used to produce it,
and as a result, does not exhibit the degree of an-
ticipation required to achieve natural fluid motions.
A separate process is therefore introduced in order
to cull any unwanted motion segments as well as op-
timize the subsequent trajectory, thereby making it
more fluid. We refer to this process as “smoothing”
or “motion filters”, and it is carried out on the in-
termediate solution produced by the planner. The
smoothing algorithm we present is borrowed from
the work on RPP[3], with modifications necessitated
by the addition of grasps, as we shall now explain.

The smoothing process works by attempting to
replace portions of the trajectory with a linear in-
terpolation between the starting and ending config-
urations of that trajectory segment. This strategy
works well in smoothing the motion of a free object
through a constrained environment, but linear in-
terpolation of joint angles leads to direct violation
of grasp constraints in the case of character anima-
tion. Our smoothing process copes with this in three
ways. First, smoothing is only applied to portions of
the motion trajectory which have no change in grasp

configuration. Second, inverse kinematics are used in
order to maintain the grasp constraints throughout
the interpolated motion. Third, a second smoothing
pass is applied independently to each limb, one that
only modifies the configuration coordinates which re-
late to the joint angles of that particular limb. This
ensures that the motion of a limb exhibits the de-
sired anticipation in leaving one grasp point and ap-
proaching another. Because the second pass treats
limb motions independently, changes in grasp config-
urations for the other limbs are irrelevant, which is
not the case for the first pass.

4 Results
Our implemented system is capable of planning mo-
tions in complex constrained environments such as
that shown in Figure 1. The problem specification
for that particular example consists of the starting
configuration, located in the bottom left; the target
configuration, located in the top right; the character
model, as shown in Figure 2; and the polygon-based
description of the environment, populated with a
large number of grasp points. The planned motion
requires 10–15 minutes2 to compute on a 266MHz
Pentium II machine, resulting in about 1400 frames.

Figure 9 shows snapshots from additional motion
plans computed by our algorithm and then rendered
with a more complex 3D character model. These
were rendered with the Poser 4 package, after im-
porting the motion from our planner in BVH format,
and applying it to the default character. It should
be noted that due to some obvious fundamental dif-
ferences between the geometries of the two models
involved, as well as some difficulties presented by
importing environment geometry into Poser, the re-
sulting animations exhibit some obstacle penetration
and minute skating problems which are not present
in the original motion exported from our planner.

MPEGs depicting a sample of obtained solu-
tions for various problems can be viewed online at
http://www.dgp.toronto.edu/~mac/thesis.

As Figure 1 shows, our results to date have been
obtained for scenarios which pose 2D motion plan-
ning problems. This is not a general restriction of
the planning algorithm, but rather a restriction of
our current implementation. The randomized path
planning algorithm upon which our planner is based
has been shown to generalize well to planning mo-
tions in 3D environments[3, 17]. We expect that our
character motion planning algorithm will scale in a

2Note that the compute time can vary significantly due to
the non-deterministic nature of the motion planner.



Figure 9: Snapshots from several animations.
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Figure 10: Climbing example

similar fashion. The current 2D implementation is
still applicable to many interesting scenarios, given
the 2D nature of climbing a planar mountain face
with grasp points, or moving through an environ-
ment such as that illustrated in Figure 1.

In qualitative terms, the motion planner must
solve several types of problems. All locomotion
modes must make the necessary accommodations to
cope with the available grasp locations and varia-
tions in the environment. The planner must deter-
mine when a change of locomotion mode is justified.
The planner must then also synthesize the necessary
transitions from one mode of locomotion to another.
The planning algorithm as described in the previous
sections serves as a single framework for all of these
problems.

Figure 10 is an illustrative example for the syn-
thesis of a motion transition. The transition from
climbing to walking is an interesting problem, as the
motion is highly constrained throughout the transi-
tion. As the solution shows, the planner can suc-
cessfully plan a plausible motion which satisfies the
required constraints.

5 Conclusions
The motion planning algorithm described in this pa-
per provides a novel method for automated character
animation. It is particularly well suited for planning
motions in unstructured, constrained environments
and for generating plausible transitions between var-
ious modes of locomotion.



Our work integrates configuration-space planning
methods[3, 17] with the requirements of character
animation. At the heart of this problem is the ques-
tion of how to efficiently exploit knowledge of a char-
acter’s motion preferences while solving potentially
complex global motion planning problems. The use
of grasp points serves to explicitly model key aspects
of the motion, while a collection of heuristics implic-
itly model motion preferences. A finite state machine
is used to imitate the polarization of human motion
into distinct locomotion modes.

What makes the algorithm interesting is that it
must tread the line between discrete and continu-
ous optimization problems, given that the choice of
grasps is discrete while the remainder of the motion
is continuous. Yet, because choices in the continuous
domain affect the discrete domain and vice versa, the
algorithm must optimize a combined set of discrete
and continuous choices. The algorithm also exploits
both deterministic and stochastic methods; the FSM
and heuristics are deterministic, while the core of the
planning algorithm has a significant stochastic com-
ponent.

The most serious limitation of our planner is the
restriction of the current implementation to motion
in two-dimensional environments. The main compo-
nents requiring adaptation for the 3D problem are
the procedure for computing and evaluating the con-
figuration potential field, and the heuristics-based
procedure for posture optimization. Both of these
procedures would need to cope with the higher di-
mensionality of the configuration space, thereby im-
pacting their expected run time. However, given the
stochastic search procedures already employed, we
expect our existing techniques will remain effective.
Lastly, we hope to find alternatives to the use of a
3D distance map, which is a last potential obstacle.

The animations generated so far still occasion-
ally exhibit unstable or gravity-defying postures.
This necessitates further work in constructing bet-
ter heuristics for the imitation of gravitational pull
on suspended characters, as well as a method for pri-
oritizing the various heuristics to give them varying
importance.

Given that our planner has no explicit notion of
time nor speed, we perform a one-to-one mapping
between the configurations of the solution path and
the keyframes used in playback. This results in un-
desirable discontinuities in the speed of the motion.
The results could be made more fluid by varying the
mapping such that the playback speeds change in a
manner appropriate to the situation.

A limitation in our planner is that only the hands
and feet are allowed to grasp. Although this is typi-
cally sufficient, there are motions which require more
complex grasps. Two examples of this are using the
posterior as a support when sliding on the floor, and
leaning the back of one’s shoulders against a wall
also as a means of support. These types of motions
cannot be employed by the planner at this point in
time.

Further improvements in the planner could per-
haps be obtained by the judicious application of ma-
chine learning algorithms in parts of our method. A
prime candidate for their use would be the heuristic
system.

References
[1] Kenji Amaya, Armin Bruderlin, and Tom

Calvert. Emotion from motion. In Graphics
Interface ’96, pages 222–229, May 1996.

[2] Norman I. Badler, Cary B. Phillips, and Bon-
nie L. Webber. Simulating Humans: Computer
Graphics Animation and Control. Oxford Uni-
versity Press, 1993.
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