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Abstract. In this paper we present a three-phase heuristic for the Capacitated Location-

Routing Problem. In the first stage, we apply a GRASP followed by local search 

procedures to construct a bundle of solutions. In the second stage, an integer-linear 

program (ILP) is solved taking as input the different routes belonging to the solutions of 

the bundle, with the objective of constructing a new solution as a combination of these 

routes. In the third and final stage, the same ILP is iteratively solved by column generation 

to improve the solutions found during the first two stages. The last two stages are based 

on a new model, the location-reallocation model, which generalizes the capacitated facility 

location problem and the reallocation model by simultaneously locating facilities and 

reallocating customers to routes assigned to these facilities. Extensive computational 

experiments show that our method is competitive with the other heuristics found in the 

literature, yielding the tightest average gaps on several sets of instances and being able to 

improve the best known feasible solutions for some of them. 
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1 Introduction

In the capacitated location-routing problem (CLRP) we are given a set of potential facilities
I and a set of customers J . To each facility i ∈ I we associate a fixed setup cost fi and a
capacity bi. To each customer j ∈ J we associate a demand dj. An unlimited, homogeneous
fleet must be routed from the open facilities to serve the demand of the customers in J .
To each vehicle is associated a capacity Q, and to every two nodes i and j is associated
a traveling cost cij . The goal is to select a subset of facilities and to design vehicle routes
around these facilities in order to 1) visit each customer once, 2) respect both vehicle and
facility capacities and 3) minimize the total cost.

The CLRP is an NP-hard combinatorial optimization problem since it generalizes two
well known NP-hard problems: the capacitated facility location problem (CFLP) and the ca-
pacitated vehicle routing problem (CVRP). Exact methods for this problem include branch-
and-cut [3, 5] and column generation [1, 6]. These methods are able to solve instances with
up to 200 customers. However, some instances with 100 customers remain unsolved. To
handle large size instances, Prins et al. [15], Prodhon and Prins [18], Prodhon [16, 17] and
Duhamel et al. [9] proposed several metaheuristics. Among these, the method based on
Lagrangean relaxation with cooperative granular tabu search is the most effective for han-
dling large instances of the CLRP. This method combines the solution of an integer-linear
program (ILP) (a CFLP) solved by Lagrangean relaxation (for location decisions) followed
by a granular tabu search (for routing decisions). Pirkwieser and Raidl [12] have introduced
a variable neighborhood search (VNS) algorithm for the periodic CLRP (PLRP) and the
CLRP based on the combination of a pure VNS with the solution of several ILPs. The ILPs
they consider include a location model (a two-index CFLP) and a reallocation model (a set
partitioning model). Hemmelmayr et al. [10] have developed an adaptive large neighborhood
search (ALNS) heuristic for the CLRP. In an ALNS method, several different neighborhoods
are applied and ranked on the run according to their success in improving solutions. In
subsequent iterations, the highest ranked neighborhoods have a larger probability of being
chosen. Their algorithm is capable of improving the best known solutions on several in-
stances. Finally, Yu et al. [21] proposed a simulated annealing heuristic for the problem, in
which CLRP solutions are coded as genes and then modified using mutation and crossover
operators.

The main contributions of this paper are:

i. to introduce a new greedy randomized adaptive search procedure (GRASP) for the
CLRP that is competitive with the GRASP proposed by Prins et al. [14] and Duhamel
et al. [9] and which provides better average gaps on several sets of instances.

ii. to introduce a novel location-reallocation model that takes into account the location
and the routing decisions simultaneously. The proposed model is based on a set-
partitioning formulation that generalizes both the CFLP and the reallocation model of
de Franceschi et al. [8], the first by adding the possibility of inserting customers in the
middle of the routes, and the second by adding the possibility of reallocating whole
routes to different facilities.

iii. to introduce a new technique based on the solution of an ILP, for combining a bundle of
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reasonably good solutions with the objective of eventually producing another solution
of better quality.

The location-reallocation model introduced here can also be seen as a restricted CLRP
in which some routing decisions are fixed, and thus also inherits all of the cuts valid for
the CLRP [3, 5]. The addition of these extra cuts plays an important role in the proposed
heuristic. Indeed, the strength of the model relies on the quality of the root relaxation lower
bound. As a pure branch-and-cut-and-price algorithm is computationally too demanding,
column generation is applied only at the root node, and even there by relying om some simple
pricing heuristics. The resulting ILP is then solved by means of a general-purpose solver.
Therefore, the strength of the linear relaxation lower bound is crucial for the performance
of the algorithm.

The rest of the paper is organized as follows. In Section 2 we give a general description
of our solution approach. In Section 3 we present two of the metaheuristics that are used
in our algorithm, namely a GRASP and a local search procedure used to improve solutions.
In Section 4 we introduce the location-reallocation model. We strengthen it with valid
inequalities and describe the pricing algorithm used to derive columns of negative reduced
cost. In Section 5 we introduce the two hybrid metaheuristics, namely a solution blender
heuristic and a local improvement heuristic, both of which are based on the solution of the
LRM. This is followed by computational results in Section 6 and by conclusions in Section
7.

2 An overview of the complete algorithm

In this section we give a general description of the different parts of our algorithm, and de-
scribe it by means of a pseudo-code. Our algorithm consists of four main procedures, namely
a GRASP, local search (LS), a solution blender (SB) and a local improvement heuristic (LIH).

2.1 GRASP

A GRASP is a metaheuristic based on the randomization of a greedy criterion. In this
paper, we propose a GRASP based on a variation of the extended Clarke and Wright savings
algorithm (ECWSA) introduced by Prins et al. [14].

2.2 Local search

Local search procedures are greedy algorithms applied to a feasible solution to further im-
prove its quality. Here, we use seven different methods that are applied iteratively until no
further improvements are found.

2.3 Solution blender

The solution blender (SB) is a method based on the solution of an integer-linear program,
called the location-reallocation model (LRM). The LRM is a set-partitioning model in which
three types of variables are considered: location variables, assignment variables and routing
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variables. The first two are polynomial in number while there is an exponential number of
the latter. Normally, such models are solved by column generation. However, in the SB the
set of routing variables is restricted to contain a fixed number of columns defined in advance,
and therefore no column generation is applied. We complement this with the use of local
branching constraints used to fix a large number of variables.

2.4 Local improvement heuristic

The local improvement heuristic (LIH) is a destroy-and-repair method inspired from the
ALNS metaheuristic. In this method, a destroy operator is applied to remove customers
from the current solution. The LRM is then solved by column generation, with the aim of
constructing a new feasible solution of better quality. The LIH uses a parameter Γ ≤ |J | in
the destroy operators to remove a target number Γ of customers from the solution, which
we denote by LIH(Γ).

2.5 The complete algorithm

We now describe by means of a pseudo-code the complete algorithm. For a given solution
T of the CLRP, let v(T ) denote the cost of T . Also, let Γ0 be a parameter representing a
(usually small) number of customers.

Algorithm 1 GRASP + ILP

1: Use GRASP + LS and build solution pool P.
2: Use SB and add the newly found solutions to P.
3: T ← argmin{v(S) : S ∈ P}.
4: Γ← Γ0.
5: repeat

6: Apply LIH(Γ) to T .
7: if it found a solution T ′ /∈ P then

8: P ← P ∪ T ′.
9: if v(T ′) < v(T ) then
10: T ← T ′ and go to 6.
11: end if

12: end if

13: Use SB and add the newly found solutions to P.
14: if a new solution T ′ was found with v(T ′) < v(T ) then
15: T ← T ′ and go to 6.
16: end if

17: Increase Γ by some positive value.
18: until some stopping criterion is met
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3 Pure metaheuristics

In this section we describe two metaheuristic procedures used in our algorithm, namely
a GRASP and a local search (LS) method. We refer to these as pure metaheuristics to
distinguish them from the ILP-based metaheuristics that will be introduced later.

3.1 GRASP

GRASP is a popular metaheuristic which, based on some simple greedy deterministic cri-
terion, includes some randomization to diversify the search of the solution space. This
randomized greedy algorithm is applied many times, thus increasing the likelihood of iden-
tifying a good quality solution. The randomization is usually subject to what is called
a restricted candidate list (RCL), for which a given greedy criterion of the form “pick

x′ = argminx{f(x) : x ∈ X}” is replaced by “Let L contain the κ elements x ∈ X with

smallest value of f(x). Pick x′ randomly in L”. For the CLRP, Prins et al. [14] proposed
a GRASP that they complemented with path relinking. Their method is based on the so-
called extended Clarke and Wright savings algorithm (ECWSA). In this paper we propose a
variant of that method, and explain how we apply randomization at three different levels of
the algorithm. We now describe, by means of a pseudo-code (Algorithm 2), the deterministic
algorithm on which is based the proposed GRASP.

First, let us introduce some notation. For any two routes R, S and for any facility i ∈ I,
s(R, S, i) represents the saving produced when routes R and S are merged to create a new
route T which is assigned to facility i, and such that capacities are respected. Note that
if R and S contain two or more customers, four different mergings are possible, and so the
definition of s implicitly assumes that the resulting route T is the one with the lowest cost.
For details on the merging procedure, the reader is referred to Clarke and Wright [4] and to
Prins et al. [14]. Also, for a Boolean statement p, we define δp to be equal to 1 if p is true,
and 0 otherwise. Finally, F denotes the set of currently open facilities, A denotes the set of
already assigned customers, γ(·) represent the facilities to which customers are assigned (a
customer j /∈ A is such that γ(j) = −1), and l(·) represents the current loads of facilities.
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Algorithm 2 ECWSA

1: F ← ∅, A← ∅, γ(j)← −1 for all j ∈ J , l(i)← 0 for all i ∈ I.
2: while ∃j ∈ J such that γ(j) = −1 do

3: j′ ← argmin{
∑

i∈F cij : j /∈ A}.
4: i′ ← argmin{2cij′ + fiδi/∈F : i ∈ I, l(i) + dj′ ≤ bi}.
5: F ← F ∪ {i′}, A← A ∪ {j′}, γ(j′)← i′, l(i′)← l(i′) + dj′.
6: end while

7: R← {{γ(j), j} : j ∈ J}.
8: repeat

9: (R′, S ′, i′)← argmax{s(R, S, i) : R, S ∈ R, i ∈ I, and merging respects capacities}.
10: s← s(R′, S ′, i′).
11: if s > 0 then

12: Merge R′, S ′ into a new route T ′ and assign it to facility i′.
13: Update R by replacing R′ and S ′ by the merged route T ′.
14: Update F , A, γ and l accordingly.
15: end if

16: until s ≤ 0

In our GRASP, we replace the three optimization problems appearing in the pseudo-code
with some randomized variants. The deterministic statement j′ ← argmin{

∑

i∈F cij : j /∈ A}
is changed to randomly picking a customer j′ among the five customers not in A with
minimum value of

∑

i∈F cij. The statement i′ ← argmin{2cij′ +fiδi/∈F : i ∈ I, l(i)+dj′ ≤ bi}
is decomposed into two random stages. For the set of closed facilities (if any), we compute
the quantity v(F c) = (

∑

i/∈F 2cij′ + fi)/|F c| and assign to this quantity a dummy node iF c ,
and for each facility i ∈ F we compute separately the quantity v(i) = 2cij′ and assign to
it the node i. Now, we put in a list the |F | + 1 quantities defined before (only |F | in case
|F c| = 0) and randomly pick a node i′ among the three which minimize it. If i′ ∈ I, then we
assign customer j′ to this facility. Otherwise, if i′ = iF c we randomly pick a facility i′′ /∈ F
among the k = ⌈|I|/3⌉ that minimize 2ci′′j′ + fi′′ . Facility i′′ is then opened and customer
j′ is assigned to it. Finally, the statement (R′, S ′, i′) ← argmax{s(R, S, i) : R, S ∈ R, i ∈
I, and merging respects capacities} is modified to randomly pick a merging among the five
possibe mergings with maximum saving. We call this algorithm the randomized ECWSA
(RECWSA). The RECWSA is repeated for 300 times, and the solutions are stored in a
solution pool P. For each of the solutions in the pool, we apply local search (detailed in the
next section) to improve its quality. After that, we clean the pool by keeping the 100 best
solutions. These solutions will be the input of the solution blender heuristic which will be
described in Section 5.1.

3.2 Local Search

Local search procedures are simple greedy algorithms applied to a feasible solution to further
improve its quality. They are usually based on simple greedy criteria, which are fast to
compute. In our case, we have implemented seven different local search procedures:

FACILITY OPEN Compute the cost of opening a previously closed facility i and of re-
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assigning routes to this newly open facility. We potentially close a facility if it is
cheaper to move all of its routes to the newly open one. This procedure is performed
using a first-improvement criterion.

FACILITY SWAP Swap an open facility with a closed one, and reassign routes from
the first facility to the next. This procedure is performed using a first improvement
criterion.

GIANT TOUR SPLIT Merge all the routes linked to the same facility into one giant
TSP tour [19]. Split the tour using a shortest path algorithm so as to minimize the
total routing cost. This procedure is performed using a first-improvement criterion.

ROUTE SWAP Swap two routes linked to different facilities. This procedure is performed
using a first-improvement criterion.

2-OPT Swap two customers from different routes [7]. This procedure is performed using a
best-improvement criterion.

2-OPT* Two routes are split and re-merged [13]. This procedure is performed using a
best-improvement criterion.

3-OPT Pick three customers in different routes and evaluate all possible swaps between
them [11]. This procedure is performed using a first-improvement criterion.

Each of these procedures is performed repeatedly until no further improvements are
detected. Also, the order in which each of the procedures is performed is as described above,
and they are cyclically performed until no further improvements are found.

4 A location-reallocation model

In this section we introduce the Location-Reallocation Model (LRM), a new ILP model that
generalizes the CFLP and the reallocation model of de Franceschi et al. [8], the first by
adding the routing decisions to the problem, and the second the location decisions. This
model is the core of the ILP-based heuristics introduced in this paper, namely the solution
blender and the local improvement heuristics. We present a mathematical formulation of
the model, some valid inequalities, and the pricing algorithm used in the column generation.

4.1 Mathematical formulation

Let us consider a feasible solution T of the CLRP. For a given customer subset T ⊆ J let
T (T ) be the truncated solution of the CLRP obtained from T after

i. removing the customers of set T ,

ii. short-cutting the remaining consecutive nodes in the routes,

iii. deleting the edges linking facilities to customers,
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iv. and relinking the two remaining endpoints of every route.

As a result, what we obtain is a set of closed subtours, each of which consisting of at
least two customers. Figure 1 illustrates this procedure. On the left side, circular dots
represent customer locations, whereas square nodes represent facility locations. The nodes
surrounded by dotted circles are the nodes in set T . The right side represents the subtours
resulting from the removal of the customers in set T . Let us denote by R the set of these
subtours and for each r ∈ R and i ∈ I let h(i, r) and t(i, r) be the two consecutive nodes
in r which, after linking r to i using these two nodes as endpoints, produce the route with
the least possible cost. To avoid symmetries, we arbitrarily take h(i, r), t(i, r) satisfying
h(i, r) < t(i, r). Customers in T must be reinserted back into T (T ) and subtours R ∈ R
must be assigned to facilities to construct a (eventually new) feasible solution of the CLRP.
For every subtour r we let E(r), V (r) be the sets of edges and customers in that subtour.
We also let c(r) be the routing cost of the subtour, and q(r) be its load. For every i ∈ I
and e ∈ ∪r∈RE(r) we associate an insertion point p = (i, e), at which customers in T can be
reinserted. Let us denote, for a given facility i, Ii(R) = {p = (i, e) : e ∈ E(r) for some r ∈
R}. Also, for each r ∈ R and for each i ∈ I, p = (i, {i, h(i, r)}) represents an insertion
point from which a subtour can be connected to facility i. For a given i ∈ I, we denote
I(h(i,R)) = {p = (i, e) : r ∈ R, e = {i, h(i, r)}}. Analogously, p = (i, {i, t(i, r)}) represents
the other insertion point from which the subtour is linked to facility i and we denote the set
of insertion points as I(t(i,R)). Finally, the insertion point p = (i, {i, i}) is used for routes
starting and ending at facility i and serving only customers in T . For every facility i ∈ I the
set of insertion points associated with i is defined as

Ii = Ii(R) ∪ I(h(i,R)) ∪ I(t(i,R)) ∪ {(i, {i, i})}. (1)

For every insertion point p = (i, e) ∈ Ii we define i(p) = i, e(p) = e. Also, note that
unless p = (i, {i, i}), e(p) must contain at least one node in a subtour r, and if both nodes
belong to a subtour then it must be the same. Therefore, one can define r(p) equal to r in
that case, and equal to −1 in the case p = (i, {i, i}). For every insertion point p, we denote by
Sp the set of sequences or partial paths that can be inserted in p. Note that all the sequences
that result in a violation of the capacities can be safely removed from Sp. For every s ∈ Sp
we let E(s) be the set of edges defining s, q(s) be the load of s (without considering the two
endpoints) and c(s) be the cost associated to that partial route, computed as follows:

c(s) =

{

∑

e∈E(s) ce − ce(p) if p ∈ Ii(R), s ∈ Sp
∑

e∈E(s) ce otherwise.
(2)

Let us define the following notation. Let zi be a binary variable equal to 1 iff facility i
is selected for opening. For every pair {i, j}, i ∈ I, j ∈ T let yij be a binary variable equal
to 1 iff customer j is served by a single-customer route from facility i. For every subtour
r ∈ R and for every facility i ∈ I let uR

ir be a binary variable equal to 1 iff subtour r is
assigned to facility i. For every facility i ∈ I and customer j ∈ T let uT

ij be a binary variable
equal to 1 iff customer j is served from facility i ∈ I. For every s ∈ S we let ws be a binary
variable equal to 1 iff sequence s (associated to a certain insertion point) is selected. The
location-reallocation model is as follows:
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(a) Complete solution. Set T surrounded by
dotted circles

(b) Incomplete solution after the removal of
nodes in T

Figure 1: Example of node removal from a CLRP solution
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∑

r∈R

c(r) + min
∑

i∈I

fizi −
∑

i∈I,r∈R

ch(i,r)t(i,r)u
R
ir + 2

∑

e∈δ(I)

ceye +
∑

s∈S

c(s)ws (3)

subject to

∑

i∈I

uT
ij = 1 j ∈ T (4)

∑

i∈I

uR
ir = 1 r ∈ R (5)

yij +
∑

p∈Ii

∑

s∈Sp,j∈V (s)

ws = uT
ij i ∈ I, j ∈ T (6)

∑

s∈S(i,{i,h(i,r)})

ws = uR
ir i ∈ I, r ∈ R (7)

∑

s∈S(i,{i,h(i,r)})

ws −
∑

s∈S(i,{i,t(i,r)})

ws = 0 i ∈ I, r ∈ R (8)

∑

s∈Sp

ws ≤ uR
ir i ∈ I, p ∈ Ii(R) (9)

∑

i∈I

∑

p∈Ii,r(p)=r

∑

s∈Sp

q(s)ws ≤ Q− q(r) r ∈ R (10)

∑

j∈T

dju
T
ij +

∑

r∈R

q(r)uR
ir ≤ bizi i ∈ I (11)

z, y, u, w binary. (12)

The objective function (3) contains two parts: a constant term given by the first ex-
pression, which takes into account the cost of the remaining part of the solution after the
removal of the nodes in set T ; and a linear term, combining setup costs with routing costs.
Constraints (4)-(5) are the assignment constraints of customers to facilities. Constraints (6)
are the degree constraints which ensure that customers in T will be reinserted. Constraints
(7)-(8) ensure that partial routes r ∈ R will be linked to a facility. Constraints (9) ensure
that for every insertion point p ∈ Ii(R) at most one column will be assigned. Moreover, if a
route r is not assigned to a certain facility i, then all of the sequences s ∈ Sp with i(p) = i
and r(p) = r are automatically set to 0. Constraints (10) are the vehicle capacity inequal-
ities. They make sure that the final routes will not exceed vehicle capacities. Constraints
(11) are the facility capacity inequalities. They make sure that the total demand assigned
to every facility will not exceed its capacity, while at the same time no load will be assigned
to closed facilities.

Note that the minimum sizes of the sequences s may vary. Indeed, a sequence s partic-
ipates in the construction of multiple-customer routes, so every time we have to make sure
that only routes containing two or more customers are generated. Thus, for p ∈ Ii(R), the
minimum size of s ∈ Sp (defined as the number of nodes visited other than those of e(p))
is 1. If p = (i, {i, i}) then the minimum size is 2. Finally, if p ∈ I(h(i,R)) ∪ I(t(i,R)) for
some i, then the minimum size is 0.
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4.2 Valid inequalities

The location-reallocation problem described above includes a polynomial number of con-
straints and can be solved by means of branch-and-price. However, it is possible to include
all the valid inequalities from the three-index formulation [6] after the inclusion of the fol-
lowing flow and assignment variables. For every facility i ∈ I and edge e ∈ E, let us define
a flow variable xi

e as follows:

xi
e =











uR
ir −

∑

s∈S(i,e)
ws if e ∈ E(r) \ {{h(i, r), t(i, r)}} for some r ∈ R

1− uR
ir if e = {h(i, r), t(i, r)} for some i ∈ I, r ∈ R

∑

p∈Ii

∑

s∈Sp,e∈E(s)ws otherwise.

(13)

Also, for every facility i ∈ I and customer j ∈ J let us define the following assignment
variables:

uij =

{

uR
ir if j ∈ V (r), r ∈ R

uT
ij if j ∈ T .

(14)

Finally, for every facility i ∈ I and j ∈ J \ T we set yij = 0.
It suffices to use identities (13)-(14) to include the valid inequalities from the three-index

vehicle-flow formulation. In particular, it is useful to include the following four families
of inequalities: y-capacity cuts (y-CC), y-strengthened effective facility capacity inequali-
ties (y-SEFCI), y-location-routing generalized large multistar inequalities (y-LRGLM), and
disaggregated co-circuit constraints (DCoCC). For details on the inequalities, we refer to
Belenguer et al. [3] and Contardo et al. [5]. Moreover, it is possible to strengthen the y-CC
and the y-ESFCI to hybrid forms of the y-strengthened capacity cuts (y-SCC) and y-set-
partitioning strengthened effective facility capacity inequalities (y-SP-SEFCI), which have
been developed by Contardo et al. [6] for solving the CLRP by branch-and-cut-and-price.

4.3 Column generation

The reduced cost of a column ws will be computed differently depending on the position of
its insertion point p. Let T (s) ⊆ T be the set of customers in T that are served by column s.
Suppose that no additional inequalities have been added to the problem, and let α, β, σ, γ, θ
be the dual variables associated with constraints (6)-(10). The reduced cost associated to a
column s with an insertion point p ∈ Ii will be given by

c(s) =























c(s)−
∑

j∈T (s) αj −
∑

j∈T (s) djθr(p) − γp if p ∈ Ii(R)

c(s)−
∑

j∈T (s) αj − βir(p) − σir(p) if p ∈ I(h(i,R))

c(s)−
∑

j∈T (s) αj + σir(p) if p ∈ I(t(i,R))

c(s)−
∑

j∈T (s) αj if p = (i, {i, i}).

(15)

If valid inequalities have been added during the solution of the problem, the reduced
costs are modified accordingly using the dual variables associated to these inequalities. Our
pricing algorithms take into account the different expressions in (15) (modified by the dual
information associated to valid inequalities) but they work along the exact same principle.
The complete pricing is performed in two stages.

A GRASP + ILP-Based Metaheuristic for the Capacitated Location-Routing Problem

10 CIRRELT-2011-52



First, we use a simple tabu search heuristic starting from a column containing a single
customer. That customer is chosen in such a way that the reduced cost of the resulting
column is as small as possible. We consider four neigborhoods to inspect the solution space
around a given sequence. An ADD neighborhood picks a customer not in the sequence and
inserts it into the sequence. A DROP neighborhood is used to perform the opposite move.
A SWAP neighborhood picks a customer inside the current sequence and one outside, and
swaps them. Finally, a SWITCH neighborhood takes two customers inside the sequence
and swaps them. We combine neighborhoods ADD, DROP, SWAP and SWITCH using the
customers in set T . The neighborhoods are sorted and applied in the following order: ADD
- DROP - ADD - SWAP - ADD - SWITCH. Indeed, preliminary experiments showed that
the ADD neighborhhod is often the most useful, and thus it is the one that is performed the
most. The movements use a best-improvement criterion, and a tabu list forbids movements to
positions previously visited during the last three iterations. The algorithm stops whenever a
column of negative reduced cost has been detected or when a maximum number of iterations
has been reached. The maximum number of iterations at the beginning is set to 100. In
order to accelerate the pricing algorithms, after seven rounds of cut generation, we lower
this threshold to 20.

When the tabu search procedure finishes with success (i.e., after having identified a
column with negative reduced cost), starting from that column we apply a greedy insertion
algorithm, similar to the one presented by de Franceschi et al. [8]. We evaluate the insertion
of every single customer in a list L initially containing the customers in T not yet inserted
into the column at every possible position. If the resulting column has negative reduced
cost, then it is added to a pool and the same algorithm is recursively applied to it. This
dynamic programming algorithm is applied until it reaches a depth of 5 from the starting
column (the one obtained by the tabu search procedure).

5 ILP-based metaheuristics

In this section we describe two hybrid metaheuristics based on the solution of the LRM
described earlier. We first describe a solution blender heuristic (SB), a method based on
the existence of a pool of reasonably good solutions. We then describe a local improvement
heuristic (LIH) based on the iterative solution of the LRM and solved by column and cut
generation.

5.1 Solution blender

We present a heuristic procedure based on the solution of a particular case of the LRM. We
refer to this method as the solution blender (SB). Given a pool of solutions P, we apply the
following procedure to every solution S ∈ P. LetR(S) be the set of routes describing solution
S. For every route R ∈ R(S) we first consider the subtour produced by disconnecting R
from its facility and then reconnecting its two endpoints. This tour is then reconnected to
every facility i using as endpoints the pair of consecutive nodes in the subtour that produces
the route with minimum cost. This procedure creates, for every route R ∈ R(S), |I| routes,
each connected to a different facility. We refer to this procedure as the replication step.
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At the end of the replication step, we will potentially have
∑

S∈P |R(S)| × |I| routes
(some repeated routes might be discarded). The LRM is then solved using T = J and
by restricting the set of columns to contain those constructed during the replication step,
without applying any column generation. The optimal solution of this restricted problem is
then likely to combine routes from different solutions. Indeed, in many cases in which the
GRASP procedure was not able to find a near optimal solution, the blending phase performed
substantially better. In our case, the input for the solution blender is the solution pool P
containing the 100 best solutions found by the GRASP combined with local search. Every
new solution found is also subject to local search. Note also that the blending procedure is
a generalization of the procedure introduced by Prins et al. [15] in which the size of the pool
is fixed to one. Moreover, in that case this method also coincides with the solution of the
CFLP.

5.1.1 Local branching

At the end of the root node relaxation, we perform a local branching heuristic to guide the
search towards promising directions during the branch-and-bound search. We fix to 1 the
location variables whose values are greater than or equal to 0.9. For the location variables
that are smaller than or equal to 0.1, we pick at most two variables zi1 , zi2 with the smallest
reduced costs. For these variables we impose the following constraint:

zi1 + zi2 ≤ 1.

The remaining location variables satisfying zi ≤ 0.1 are all fixed to zero. In particular,
note that this method gives preference to the variables taking strictly positive values at the
root relaxation, over the variables that are at their lower bound 0. In the case where three
or more location variables take positive values (all of which having the same reduced cost
equal to zero), we give preference to the ones taking the largest values.

5.2 Local improvement heuristic

Let T be the solution with minimum cost resulting from the previous heuristic procedures.
Let ρ = ⌈0.1|J |⌉ be a parameter. For different values of k > 0, we let Γ = kρ be the
target size of customer set T to be removed from and reinserted back in T (T ). The local
improvement phase starts with T and k = 1, and successively solves the LRM using sets T
of target size kρ. Each time a better solution is found, the algorithm is restarted with the
same value of k. When no more improvement can be detected, k is increased by one unit and
the algorithm is restarted. The value of k is increased at most twice, and each update of this
value corresponds to a major iteration of the local improvement heuristic. Note that every
newly found solution is subject to local search. In what follows we describe the different
parts of this procedure, namely the choice of the customer set T , the inclusion of an initial
pool of columns as well as some local branching rules.

5.2.1 Choice of set T

The set T of customers to be erased from T is selected by following similar rules to those
explained in de Franceschi et al. [8] and Pirkwieser and Raidl [12]. We first define the
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following notion of relatedness between two customers. Let u, v ∈ J be two customer nodes.
Let cmax = max{chj : h, j ∈ J} be the maximum distance between any two customers. We
define the relatedness between u and v as r(u, v) = 1 − cuv/cmax. If u and v belong to the
same route then r(u, v) is multiplied by 0.75, and if they belong to the same facility then
r(u, v) is multiplied by 0.85. The idea is to penalize the choice of customers belonging to
the same route or being served by the same facility, as the local search makes it unlikely
that these customers will switch places. The two rules that we have implemented can be
summarized as follows:

NEIGHBORHOOD rule Given a pivot customer u, we make T = {u} and iteratively
insert into T the customer u /∈ T such that

∑

v∈T r(u, v) is maximal.

RANDOM rule We randomly pick a subset of customers and insert it into T .

We first apply the NEIGHBORHOOD rule five times. Each time, we save into a list NT

the customers that have participated in T in the previous iterations. For the next iteration,
we use as pivot node the customer u /∈ NT such that

∑

v 6=u,v/∈NT
r(u, v) is maximal. When

the NEIGHBORHOOD rule has been used five times without success, we use the RANDOM
rule five more times.

5.2.2 Initial set of columns

We have found it is beneficial to start the column generation algorithm with a small, but
likely useful set of initial columns. For every insertion point p, we let V (p) ⊆ T be the subset
of customers of size at most five containing the closest nodes to e(p), in terms of the sum
of the distances to the two endpoints of e(p). Then, we add to the master problem all the
sequences obtained as combinations of the nodes in V (p).

5.2.3 Local Branching

Let Io, Ic the subsets of facilities that are open or closed in solution T . From the beginning
of the optimization we let

∑

i∈Io

zi −
∑

i∈Ic

zi ≥ |I
o| − η.

Depending on the value of Γ, the parameter η is set either to 2 (if Γ = ρ) or 0 (if Γ ≥ 2ρ).
In the first case, we let at most two location variables change their values, while in the
second case the location variables are actually fixed to their current values in T . When
the root node relaxation has been solved with success and no more columns with negative
reduced cost or violated inequalities are detected, we also consider the same local branching
constraint as for the solution blender.

6 Computational experiments

We have run our method on an Intel Xeon E5462, 3.0 Ghz processor with 16GB of memory.
The code was compiled with the Intel C++ compiler v11.0 and executed on Linux, kernel 2.6.

A GRASP + ILP-Based Metaheuristic for the Capacitated Location-Routing Problem

CIRRELT-2011-52 13



Linear and integer programs were solved with CPLEX 12.2. The algorithm has been tested
on four sets of instances from the literature, containing a total of 89 instances. The first set
of instances (F1) has been developed by Belenguer et al. [3] and contains 30 instances with
capacitated vehicles and facilities. The second set of instances (F2) has been introduced by
Tuzun and Burke [20] and contains 36 instances with capacitated vehicles and uncapacitated
facilities. The third set of instances (F3) has been adapted from other vehicle routing
problems by Barreto [2] and contains 19 instances with capacitated vehicles, mixing some
instances with capacitated and uncapacitated facilities. The fourth and last set of instances
(F4) has been introduced by Baldacci et al. [1] and contains four instances with limited
vehicle capacities and uncapacitated facilities. The dimensions of the instances vary from
very small instances with 12 customers and two facilities up to very large instances with 200
customers and 20 facilities.

For the parameter setting, several runs have been performed on the four sets of instances.
At the end, however, we use the same parameters for all instances and the average values
reported correspond to those obtained on a total of 10 runs for each instance. In Tables 1-4
we report the results obtained by our algorithm on all sets of instances. In these tables, z∗BKS

corresponds to the best known solution as reported by previous authors, z∗avg is the average
cost obtained by our solution method, stdev is the standard deviation (in %) of the cost over
the 10 runs, gapavg is the average relative gap (in %), computed as 100×(z∗avg−z

∗
BKS)/z

∗
BKS,

Tavg is the average CPU time, in seconds, over the 10 runs, and z∗best is the best solution
found in these 10 runs. This value does not necessarily correspond to the best known
solution found by our method during the parameter setting phase, which is reported later
in Table 10. Finally, gapbest is the relative gap (in %) of the best solution found, computed
as 100× (z∗best − z∗BKS)/z

∗
BKS. As the results show, our solutions are 0.22% above the best

known solution on average for the instances of set F1, 0.59% for the instances of set F2,
0.61% for the instances of set F3 and 0.34% for the instances of set F4. Moreover, we are
able to improve these values in 11 out of the 89 instances considered in our study. Regarding
the CPU times, they lie around 45 minutes on average, and usually stay below 3 hours.

In Tables 5-8 we report the evolution of our algorithm during the different stages. In
these tables, instances are grouped according to their size. The headers GRASP, SB, LIH 1,

2, 3 stand for the different parts of our algorithm, including the three major iterations of the
local improvement heuristic. The sub-headers gapavg and Tavg stand for the average relative
gap (in %, computed as before) and the average CPU time spent in seconds. In general, the
SB is a very effective method for reducing the gap with respect to the solutions found during
the GRASP. However, the GRASP should not be underestimated, since the behaviour of the
SB depends on the good quality of the routes found by the GRASP. For the LIH, it is worth
observing that for instances of set F1 the first improvement alone is able to reduce the gap
by one half. Subsequent iterations of the improvement stage are able to reduce the gap by
smaller margins. Depending on the needs of the decision maker, the improvement phase can
be extended to more iterations or reduced to fewer, compensating the time saved or added
with the quality of the solutions obtained.

In Table 9 we compare our algorithm against several of the most recent heuristics devel-
oped for the CLRP. The algorithms considered are: GRASP+PR [14], MA|PM [18], LRGTS
[15], GRASP+ELS [9], VNS+ILP [12], SALRP [21] and ALNS [10]. Note that average results
are not available for all these methods, some of them reporting results on single runs or the
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best results after several runs. Therefore, direct comparisons may be in many cases biased.
In the last three rows of this table we report average results obtained by our method. Row
GRASP correspond to our GRASP, GRASP+SB to the addition of the SB and GRASP+ILP
to the whole method, including the three major iterations of the LIH. The set of instances
F4 has not been considered by any of the previous heuristics and is therefore not included
in this table. As shown in the table, our algorithm is able to obtain the tightest average
gaps for sets F1 and F2, and competitive average gaps on instances of set F3, getting better
average results than GRASP+PR, MA|PM and LRGTS but outperformed by SALRP and
ALNS. On the other hand, algorithms LRGTS and VNS+ILP take much less CPU time,
but they seem to be less robust than our method in terms of solution quality. Additionally,
our GRASP is able to obtain better solutions than that developed by Prins et al. [14] for
instances of families F1 and F2. Finally, note that by only applying our GRASP algorithm
and the SB, we already obtain very competitive gaps, usually better than the previous ap-
proaches except for SALRP on instances of set F1 and for SALRP and ALNS on instances
of set F3. In this discussion we have omitted comparisons against GRASP+ELS [9] since
they only report best results after 5 runs, therefore any comparison to their method would
be biased.

Finally, in Table 10 we report the new best known feasible solutions found by our al-
gorithm. Note that these solutions were not necessarily found during the 10 runs of our
method, but rather during the calibration of several parameters. In total, our algorithm was
able to improve the solutions on 17 out of the 89 instances considered in this study.

7 Concluding remarks

In this paper we have introduced a new heuristic method for the CLRP based on a GRASP
followed by the iterative solution of a new ILP model, the location-reallocation model (LRM).
The GRASP introduced in this paper provides better solutions than the previous approach
of Prins et al. [14] for most of the instances considered in this study. We have introduced
the location-reallocation model that generalizes the CFLP and the RM of de Franceschi
et al. [8] by simultaneously determining the locations of facilities as well as the reallocation
of customers and routes to those facilities. We have introduced a new heuristic method,
the solution blender (SB), that takes as input a set of solutions for the CLRP and solves
the LRM to find near optimal solutions. Indeed, by only applying our GRASP followed by
the SB we obtain gaps that are competitive with the methods found in the literature. We
complement this by applying a local improvement heuristic based on the iterative solution
of the LRM solved by column and cut generation. This local improvement heuristic was
found to be very effective in tightening the optimality gap. Finally, we were able to improve
the best known feasible solutions on 17 out of the 89 instances considered in this study. As
an avenue of future research, we believe that this heuristic can be adapted to solve some
generalizations of the CLRP, such as the two-echelon capacitated location routing problem
(2E-CLRP), an important problem arising in the operation of city-logistics systems.
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Instance z∗BKS z∗avg stdev gapavg Tavg z∗best gapbest

ppw-20x5-1a 54793 54793 0.00 0.00 1.28 54793 0.00
ppw-20x5-1b 39104 39104 0.00 0.00 2.25 39104 0.00
ppw-20x5-2a 48908 48908 0.00 0.00 1.21 48908 0.00
ppw-20x5-2b 37542 37542 0.00 0.00 2.28 37542 0.00
ppw-50x5-1a 90111 90111 0.00 0.00 12.18 90111 0.00
ppw-50x5-1b 63242 63248 0.03 0.01 17.40 63242 0.00
ppw-50x5-2a 88298 88332 0.12 0.04 14.77 88298 0.00
ppw-50x5-2b 67308 67554 0.34 0.37 18.53 67373 0.10
ppw-50x5-2bis 84055 84055 0.00 0.00 17.72 84055 0.00
ppw-50x5-2bbis 51822 51898 0.02 0.15 24.06 51883 0.12
ppw-50x5-3a 86203 86203 0.00 0.00 14.76 86203 0.00
ppw-50x5-3b 61830 61836 0.03 0.01 20.16 61830 0.00
ppw-100x5-1a 274814 275626 0.06 0.30 188.51 275406 0.22
ppw-100x5-1b 213615 214699 0.12 0.51 178.81 214308 0.32
ppw-100x5-2a 193671 194118 0.17 0.23 106.96 193769 0.05
ppw-100x5-2b 157095 157238 0.05 0.09 94.29 157157 0.04
ppw-100x5-3a 200079 200341 0.02 0.13 86.76 200277 0.10
ppw-100x5-3b 152441 152737 0.26 0.19 95.87 152441 0.00
ppw-100x10-1a 287983 293117 2.79 1.78 1840.90 288415 0.15
ppw-100x10-1b 231763 233416 0.79 0.71 2329.90 230989 -0.33
ppw-100x10-2a 243590 244022 0.11 0.18 211.45 243695 0.04
ppw-100x10-2b 203988 204200 0.17 0.10 242.75 203988 0.00
ppw-100x10-3a 250882 252371 0.36 0.59 2576.34 250882 0.00
ppw-100x10-3b 204317 204996 0.14 0.33 1005.74 204602 0.14
ppw-200x10-1a 477248 476674 0.12 -0.12 3785.47 475344 -0.40
ppw-200x10-1b 378065 378781 0.27 0.19 3646.74 377043 -0.27
ppw-200x10-2a 449571 449469 0.05 -0.02 5215.70 449152 -0.09
ppw-200x10-2b 374330 375053 0.13 0.19 2831.53 374469 0.04
ppw-200x10-3a 469433 471218 0.13 0.38 4356.16 469706 0.06
ppw-200x10-3b 362817 363755 0.18 0.26 4936.13 362743 -0.02

Average 0.22 0.22 1129.22 0.01

Table 1: Results on instances of set F1
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Instance z∗BKS z∗avg stdev gapavg Tavg z∗best gapbest

P111112 1467.7 1475.4 0.24 0.52 171.94 1468.2 0.03
P111122 1449.2 1454.2 0.35 0.35 474.10 1449.2 0.00
P111212 1394.8 1405.0 0.36 0.73 161.80 1396.6 0.13
P111222 1432.3 1445.4 0.45 0.92 505.91 1432.9 0.04
P112112 1167.2 1178.3 0.15 0.95 225.19 1176.3 0.78
P112122 1102.2 1106.0 0.25 0.34 415.47 1102.8 0.05
P112212 791.7 796.9 0.50 0.67 196.60 791.9 0.03
P112222 728.3 728.4 0.03 0.02 370.49 728.3 0.00
P113112 1238.5 1241.9 0.21 0.28 224.21 1239.4 0.08
P113122 1245.3 1246.4 0.07 0.09 471.62 1245.5 0.02
P113212 902.3 902.5 0.06 0.02 177.30 902.3 0.00
P113222 1018.3 1019.6 0.11 0.13 496.25 1018.3 0.00
P131112 1866.8 1934.7 0.24 3.64 1073.37 1928.0 3.28
P131122 1823.5 1834.2 0.32 0.58 2020.47 1823.2 -0.02
P131212 1965.1 1978.2 0.34 0.66 781.64 1969.8 0.24
P131222 1796.5 1800.2 0.23 0.21 1646.47 1792.8 -0.20
P132112 1443.3 1452.5 0.26 0.64 757.08 1447.5 0.29
P132122 1434.6 1448.1 0.34 0.94 2863.10 1443.8 0.64
P132212 1204.4 1206.1 0.05 0.14 958.65 1204.9 0.04
P132222 931.0 932.3 0.07 0.15 2466.29 931.7 0.08
P133112 1694.2 1711.7 0.43 1.03 991.68 1700.3 0.36
P133122 1392.0 1401.7 0.07 0.70 2016.18 1400.1 0.58
P133212 1198.3 1200.5 0.12 0.19 895.12 1198.2 -0.01
P133222 1151.8 1159.0 0.08 0.62 2640.94 1157.7 0.51
P121112 2251.9 2258.8 0.27 0.30 2094.06 2249.0 -0.13
P121122 2159.9 2161.4 0.18 0.07 4911.06 2153.8 -0.28
P121212 2220.0 2223.9 0.35 0.17 2304.13 2212.4 -0.34
P121222 2230.9 2238.6 0.17 0.34 5175.85 2232.5 0.07
P122112 2073.7 2094.5 0.31 1.00 3520.46 2085.0 0.54
P122122 1692.2 1709.0 0.24 1.00 7177.74 1703.8 0.69
P122212 1453.2 1469.2 0.18 1.10 4162.82 1465.9 0.87
P122222 1082.7 1087.2 0.17 0.41 7194.32 1083.9 0.11
P123112 1960.3 1971.7 0.23 0.58 3060.73 1966.7 0.33
P123122 1918.9 1941.6 0.23 1.18 9341.61 1932.7 0.72
P123212 1762.0 1769.8 0.18 0.44 3813.81 1765.8 0.22
P123222 1391.7 1393.9 0.11 0.16 5422.38 1392.4 0.05

Average 0.22 0.59 2255.02 0.27

Table 2: Results on instances of set F2
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Instance z∗BKS z∗avg stdev gapavg Tavg z∗best gapbest

Perl-12x2 203.98 203.98 0.00 0.00 0.16 203.98 0.00
Gas-21x5 424.90 424.90 0.00 0.00 1.24 424.90 0.00
Gas-22x5 585.11 585.11 0.00 0.00 2.54 585.11 0.00
Min-27x5 3062.02 3062.02 0.00 0.00 2.68 3062.02 0.00
Gas-29x5 512.10 512.10 0.00 0.00 4.53 512.10 0.00
Gas-32x5 562.22 562.25 0.03 0.00 5.04 562.22 0.00
Gas-32x5b 504.33 504.33 0.00 0.00 6.05 504.33 0.00
Gas-36x5 460.37 460.37 0.00 0.00 6.91 460.37 0.00
Chr-50x5ba 565.62 575.60 3.14 1.76 14.13 570.03 0.78
Chr-50x5be 565.60 580.98 10.20 2.72 15.26 565.60 0.00
Perl-55x15 1112.06 1112.66 0.54 0.05 42.14 1112.32 0.02
Chr-75x10ba 844.40 848.34 2.71 0.47 74.14 844.40 0.00
Chr-75x10be 848.85 853.87 1.38 0.59 84.97 850.93 0.24
Chr-75x10bmw 802.08 809.78 3.16 0.96 86.13 803.10 0.13
Perl-85x7 1622.50 1626.01 1.26 0.22 65.78 1623.86 0.08
Das-88x8 355.78 356.12 0.44 0.09 164.40 355.78 0.00
Chr-100x10 833.43 851.00 6.47 2.11 350.88 841.68 0.99
Min-134x8 5709.00 5816.73 66.78 1.89 1188.96 5719.25 0.18
Das-150x10 43963.60 44321.33 83.83 0.81 1311.31 44179.00 0.49

Average 9.47 0.61 180.38 0.15

Table 3: Results on instances of set F3

Instance z∗BKS z∗avg stdev gapavg Tavg z∗best gapbest

M-n150x14a 1352.93 1354.73 1.38 0.13 1089.83 1353.46 0.04
M-n150x14b 1212.46 1219.44 4.16 0.58 942.44 1215.14 0.22
M-n199x14a 1644.35 1645.97 1.74 0.10 3107.52 1644.35 0.00
M-n199x14b 1480.43 1488.37 2.53 0.54 3050.01 1483.55 0.21

Average 2.45 0.34 2047.45 0.12

Table 4: Results on instances of set F4

Instances
GRASP SB LIH 1 LIH 2 LIH 3

gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg

ppw-20x5 0.03 0.42 0.00 0.53 0.00 0.68 0.00 1.00 0.00 1.75
ppw-50x5 0.70 7.76 0.14 8.58 0.12 10.34 0.08 12.93 0.07 17.45
ppw-100x5 1.52 67.56 0.38 81.93 0.35 88.86 0.30 100.19 0.24 125.20
ppw-100x10 3.51 78.92 2.33 376.89 1.01 815.67 0.81 1033.83 0.62 1367.85
ppw-200x10 1.57 1036.77 0.60 1704.85 0.25 2633.61 0.19 3133.39 0.15 4128.62

Average 1.51 238.78 0.70 435.09 0.35 710.48 0.28 857.06 0.22 1129.22

Table 5: Algorithm evolution for instances of set F1

Instances
GRASP SB LIH 1 LIH 2 LIH 3

gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg

100x10 2.24 93.71 0.72 100.64 0.64 118.31 0.56 146.15 0.53 192.84
100x20 1.82 147.23 0.40 165.46 0.36 220.71 0.34 297.23 0.31 455.64
150x10 3.11 490.65 1.24 543.03 1.13 626.82 1.10 716.21 1.05 909.59
150x20 2.71 678.91 0.67 771.96 0.60 1202.04 0.57 1533.36 0.53 2275.57
200x10 3.29 1591.95 1.02 1836.23 0.81 2409.46 0.71 2602.60 0.60 3159.34
200x20 3.63 2253.24 0.71 2540.08 0.59 4072.30 0.57 4732.70 0.53 6537.16

Average 2.80 875.95 0.79 992.90 0.69 1441.61 0.64 1671.38 0.59 2255.02

Table 6: Algorithm evolution for instances of set F2
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Instances
GRASP SB LIH 1 LIH 2 LIH 3

gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg

≤ 50 custs 1.18 2.41 0.65 2.56 0.57 3.06 0.50 4.13 0.45 5.85
> 50 custs 2.93 91.68 1.21 97.85 1.01 144.40 0.88 221.50 0.80 374.30

Average 2.01 44.69 0.91 47.70 0.78 70.01 0.68 107.09 0.61 180.38

Table 7: Algorithm evolution for instances of set F3

Instances
GRASP SB LIH 1 LIH 2 LIH 3

gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg

150 custs 5.42 677.23 0.43 759.88 0.40 817.56 0.36 892.03 0.35 1016.14
199 custs 6.15 2078.87 0.44 2362.29 0.35 2530.13 0.33 2689.19 0.32 3078.77

Average 5.78 1378.05 0.44 1561.08 0.38 1673.85 0.35 1790.61 0.34 2047.45

Table 8: Algorithm evolution for instances of set F4

Method
F1 F2 F §

3

gap T gap T gap T

GRASP+PR1 3.60 96.5 3.42 159.56 1.49 21.15
MA|PM1 1.38 76.7 1.78 203.13 2.01 37.8
LRGTS1 0.74 17.5 1.76 21.24 1.64 18.21
GRASP+ELS2 1.07 65.2 1.22 606.6 0.02 187.7
VNS+ILP3 0.86 6.7 – – – –
SALRP1 0.41 422.4 1.41 826.4 0.27 140.46
ALNS 0.70 451.0 0.81 830.0 0.15 174.75

GRASP 1.51 238.78 2.80 875.95 1.90 54.87
GRASP+SB 0.70 435.09 0.79 992.90 1.01 57.74
GRASP+ILP 0.22 1129.22 0.59 2255.02 0.64 254.98
§ Subset of instances considered by all authors reporting results for F3

1 Results reported on a single run

2 Best results after 5 runs

3 Instances in F2 and F3 not tested

Table 9: Comparison against other heuristics

Instance z∗BKS z∗NEW Instance z∗BKS z∗NEW

ppw-100x10-1a 287983 287695 P111222 1432.3 1432.2

ppw-100x10-1b 231763 230989 P113212 902.3 902.2

ppw-200x10-1a 477248 475294 P113222 1018.3 1018.2

ppw-200x10-1b 378065 377043 P131122 1823.5 1823.2

ppw-200x10-2a 449571 449115 P131222 1796.5 1792.7

ppw-200x10-2b 374330 374280 P133212 1198.3 1198.2

ppw-200x10-3b 362817 362653 P121112 2251.9 2248.9

P121122 2159.9 2153.8

P121212 2220.0 2212.4

P121222 2230.9 2222.9

Table 10: New best known solutions
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