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Abstract—We present an idea of grating-based plasmon biosensor
utilizing phase detection to realize high resolution in finding a refractive
index of a material put on the surface of a metal grating. Considering
a trade-off between high resolution and experimental practicability,
we show a table of recommended setup that covers a wide range of
the index. Keeping the diffraction efficiency no less than 10−3 and
assuming the resolution in phase detection to be 2.5 × 10−2 degrees,
we estimate the resolution of the biosensor as 7.5×10−7 refractive index
units. We also discuss the possible improvement to realize a predicted
superior limit of resolution around 10−8 refractive index units.

1. INTRODUCTION

A metal grating has an interesting property known as the resonance
absorption [1]: partial or total absorption of incident light energy
occurs at a specific angle of incidence (resonance angle). This is caused
by excitation of plasmon surface waves and is accompanied by an
abrupt change of diffraction efficiency [1–5]. For a grating placed in
planer mounting (ϕ = 0◦ in Fig. 1) the excitation can be seen in TM
incidence alone. While in conical mounting (ϕ 6= 0◦) this occurs in
both TM and TE incidence.

We know that the resonance absorption occurs when a phase-
matching condition is satisfied: the phase constant of an evanescent
order coincides with the real part of an eigenvalue of surface plasmons.
This means that the resonance angle is determined by the grating
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Figure 1. Schematic representation of diffraction by a layered metal
grating and definition of the polarization angle.

parameters, the incident wave, and the refractive index of a material
over the grating surface. Hence, if we measure the resonance angle by
observing the TM-wave efficiency, we can find the index of the material
by making comparison with results of computer simulation. This is a
grating-based plasmon index sensor or a biosensor.

According to our prevenient research, we can easily determine
the refractive index of the material with an accuracy of five digits
by measuring the zeroth-order efficiency alone [6]. The five-digit
resolution, however, is not sufficient for practical applications, for
example, in clinical medicine or physiology where a 7-digit resolution
is usually required [7, 8]. Hence, we have an urgent issue to increase
the resolution in the index determination.

A promising solution to our issue is to employ phase detection to
measure the phase modulation accompanying the plasmon excitation.
This is because the Fresnel models of surface plasmon excitation
predict an obvious change in the reflected phase as the material index
changed [7]. The phase detection has already been employed in prism-
based biosensors and works to improve the resolution of the sensors to
10−7 refractive index units (RIU) [7, 9–11].

In the following sections we examine the possibility of the phase
detection employed in the grating-based plasmon biosensor. In
Section 2, we will formulate the problem of diffraction by a metal
grating placed in conical mounting and describe the method of solution
employed [12, 13]. In Section 3, we will show the numerical results and
will make discussions from the viewpoint of sensor applications.
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2. FORMULATION OF THE PROBLEM AND THE
METHOD OF SOLUTION

2.1. Statement of the Problem

Figure 1 shows the schematic representation of diffraction by a layered
grating made of a metal and having an over-coating made of another
metal. The grating is uniform in the Y direction and is periodic in X.
The surface profiles are given by

S1 : z1 = η1 (x) = h sin (2πx/d) (1a)
S2 : z2 = η2 (x) = h sin (2πx/d)− e (1b)

where h, d, and e are the amplitude (half depth) of the surface
modulation, the period, and the thickness of the coating. Note that
the small letters (x, y, z) denote a point on the surfaces.

The surfaces separate the whole space into three regions:

V1 : Z > η1 (X)
V2 : η1(X) > Z > η2(X)
V3 : η2(X) > Z

(2)

We assume that V1, V2, and V3, respectively, are filled with a dielectric
(with a positive refractive index n1), a metal (having a complex-
valued index n2), and another metal (with n3). The capital letters
(X, Y, Z) show the coordinates of a point in these regions. A convention
P = (X,Y, Z) will be used as well.

The electric field of an incident light is given by

Ei (P) = ei exp
(
iki ·P− iωt

)
(3)

where
ki = (α, β,−γ) (4)

with α = n1k
i sin θ cosφ, β = n1k

i sin θ sinφ, γ = n1k
i cos θ, and

ki = 2π/λ. As shown in Fig. 1, θ is the polar angle between the Z-
axis and the incident wave-vector, ϕ is the azimuth angle between the
X-axis and the plane of incidence, and λ is the wavelength in vacuum.

When ϕ = 0◦, the incident light comes from a direction orthogonal
to the grooves and the diffracted waves propagate in directions in the
plane of incidence. This arrangement is called the planer mounting
(or classical mounting). While if ϕ 6= 0◦, as shown in Fig. 1, the
directions lie on a cone centered at the origin. This is termed the
conical mounting.

Let us decompose the amplitude ei appeared in (3) into a TE-
and a TM-component, where TE (or TM) means the absence of the
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Z-component in the relevant electric (or magnetic) field. To do this,
we first define two unit vectors that span a plane orthogonal to ki:

eTE = (sinϕ, − cosϕ, 0) (5a)

eTM = (cos θ cosϕ, cos θ sinϕ, sin θ) (5b)

Apparently, eTE has no Z-component. The fact that the magnetic
amplitude accompanying eTM cannot have any Z-component is seen
by direct manipulation. In addition, they are perpendicular to each
other, and both of them make a right angle with ki. Hence, they are
the unit vectors in the direction of the TE- and TM-component in the
sense above. The amplitude ei is decomposed as

ei = eTE cos δ + eTM sin δ (6)

where δ, which is termed a polarization angle, is the angle between
eTE and ei (see Fig. 1). In particular, δ = 0◦ means TE incidence and
δ = 90◦ stands for TM incidence. Thus the incident light is specified
by the wavelength λ, the polar angle θ, the azimuth angle ϕ, and the
polarization angle δ.

We consider the problem to seek the diffracted electric and
magnetic fields in Vj (j = 1, 2, 3). Note that they consist of both
TE- and TM-components because we assume the conical mounting.
The solutions should satisfy the following requirements:

(D1) the Helmholtz equations in each region;
(D2) a radiation condition in the Z-direction that the diffracted
waves in V1 (or V3) propagate or attenuate in positive (or negative)
Z direction;
(D3) a periodicity condition that the relation f (X + d, Y, Z) =
exp (iαd) f (X, Y, Z) holds and the phase constant in Y is β for
any component of diffracted light;
(D4) the boundary conditions on S1 and S2 that the tangential
components of the electric and magnetic fields must be continuous
across the boundary.

2.2. Method of Solution

Because the diffracted fields have both TE- and TM-components,
we need TE and TM vector modal functions to construct the
solutions. The modal functions are derived from the Floquet
modes (separated solutions of the Helmholtz equation satisfying the
periodicity condition; and the radiation condition if necessary) and
are defined by

ϕQ
jm

(
⇀

P
)

= eQ
jm exp (ikjm ·P) (7)
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for Q = TE, TM; j = 1, 2, 3; m = 0, ±1, ±2 . . .. Here, the unit vectors
in (7) are defined by

eTE
jm = kjm × iZ/ |kjm × iZ | (8a)

eTM
jm = eTE

jm × kjm/
∣∣eTE

jm × kjm

∣∣ (8b)
and

k1m = (αm, β, γ1m) (9a)
k2m = (αm, β, −γ2m) (9b)
k3m = (αm, β, −γ3m) (9c)

with
αm = α + 2mπ/d (10)

and
γ2

jm = (njk)2 − (
α2

m + β2
)

(11)

Note that the modal functions given in (7) are used to construct
diffracted electric fields. For the magnetic fields, the modal function
can be obtained from (7) though Maxwell’s equations as:

ψQ
jm (P) = kjm ×ϕQ

jm (P) / (ωµ0) (12)
Note further that the approximate solutions in V1 are defined as

finite linear combinations of up-going modal functions with unknown
modal coefficients. Likewise, the solutions in V3 are finite sums of
down-going modal functions. However, the solutions in V2 must have
both up- and down-going modal functions. To distinguish the traveling
direction of a modal function in each region, we use superscripts +
and − representing up- and down-going waves. All the solutions,
of course, should consist of TE- and TM-components unless ϕ = 0
(planer-mounting case).

The approximate solutions in each region, hence, can be expressed
as:(
Ed

1N

Hd
1N

)
(P)=

N∑
n=−N

ATE+
1n (N)

(
φTE+

1n

ϕTE+
1n

)
(P)+

N∑
n=−N

ATM+
1n (N)

(
φTM+

1n

ϕTM+
1n

)
(P)

(
Ed

2N

Hd
2N

)
(P)=

N∑

n=−N

ATE−
2n (N)

(
φTE−

2n

ϕTE−
2n

)
(P)+

N∑

n=−N

ATM−
2n (N)

(
φTM−

2n

ϕTM−
2n

)
(P)

+
N∑

n=−N

ATE+
2n (N)

(
φTE+

2n

ϕTE+
2n

)
(P)+

N∑

n=−N

ATM+
2n (N)

(
φTM+

2n

ϕTM+
2n

)
(P)

(
Ed

3N
Hd

3N

)
(P)=

N∑

n=−N

ATE−
3n (N)

(
φTE−

3n

ϕTE−
3n

)
(P)+

N∑

n=−N

ATM−
3n (N)

(
φTM−

3n

ϕTM−
3n

)
(P)

(13)
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where N is the number of truncation. Since the approximate solutions
satisfy the requirements (D1), (D2), and (D3), the modal coefficients
should be determined in order that the solutions satisfy the boundary
condition (D4) in an approximate sense. According to Yasuura’s
theory [12], we determine the coefficients by the least-squares method.

In (13), we see that there are 8 (2N + 1) unknown coefficients
in total. It is known that the sufficient number of equations in
the least-squares approximation is twice as many as the number
of unknowns [13]. Hence, locating J = 2(2N + 1) equally-spaced
sampling points on one period of both S1 and S2 and describing
the boundary conditions at these points, we have 16(2N + 1) linear
equations for the coefficients. This over-determined set of equations is
solved approximately by the QR-decomposition.

3. NUMERICAL RESULTS AND DISCUSSION

In this section, we show numerical results obtained by the method
above and discuss the possibility of high resolution.

3.1. Preparation for Calculation

In the following, we assume the use of a commercial grating made
of aluminum with an gold over-coating, whose parameters are 2h =
0.072µm, d = 0.556µm and e = 0.778µm. The incident light is
a monochromatic plane wave from a laser diode with a wavelength
of 0.633µm. As for the value taken in our computation, we assume
that the refractive indices of Al and Au at this wavelength are n2 =
0.1594+ i3.2166 and n3 = 1.2078+ i7.0148 [14]. However, it should be
noted that the index of a metal film depends not only on the wavelength
but also on the thickness of the film when the film is extremely thin. It
may take unusual values if circumstances require. When dealing with
a thin metal structure, hence, we should be careful in using the index
value given in the literature.

The efficiency of the zeroth-order TM diffracted mode in V1 is
defined as the per period power carried away by the zeroth mode
normalized by the per period incident power, the efficiency of the
zeroth-order TM mode is then given by

ρTM
0 = (γ0/γ)

∣∣ATM
0

∣∣2 (14)

3.2. Numerical Results

Figure 2 shows the efficiency of TM0 mode as a function of the incident
polar angle θ for different azimuth angles while V1 is filled with a
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dielectric of refractive index n1 = 1.330. Each curve in the figure
shows a resonant incident polar angle θ for a given azimuth angle.

Correspondingly, Fig. 3 shows the phase shift of TM0 mode while
the refractive index n1 changes around 1.330. The phase shift curve has
a steep slope over a limited range of refractive index. We also notice
that the slopes of phase shift curves are related with the strength of
the resonance absorption. That is, the strongest resonance with almost
total absorption observed at θ = 20.5◦ and ϕ = 11.2◦ is accompanied
with the most abrupt slope of the phase shift curve.

Figure 3 shows greater potential of a grating-based biosensor with
phase detection than one with efficiency-alone measurement for the
purpose of high resolution. In an experimental design, the light from a
light source is first separated into a signal and a reference beam. The
former illuminates the grating through a material with an index n1

and a part of the incident power is reflected after exciting the plasmon
surface wave. Note that the phase of the reflected beam is modulated
and the magnitude of the modulation depends on n1 as we have seen
above. Comparison of the phase of the modulated signal beam with
that of the reference beam finds the phase shift caused by the resonance
absorption, the phase shift which is on the ordinate of Fig. 3. As a
result, the refractive index of the material over the grating surface can
be accurately determined by the curve.

Obviously, the resolution of such a sensor design is related to the
slope of a curve chosen from the curves in Fig. 3. Although a steeper
slope means higher resolution, the steepest curve in Fig. 3 (θ = 20.5◦
and ϕ = 11.2◦) is difficult to be employed in practice because of an
extremely low efficiency far less than 10−3. We, hence, have to consider
the optical setting in accordance with experimental limits.

Combining Figs. 2 and 3, we find the setting that causes the
highest resolution also shows the lowest reflection intensity in the
simulation parameters that we have assumed. Depending on the
amplitude sensitivity of photo-detectors, the diffraction efficiency of the
zeroth-order TM wave should have a lower limit. Therefore, we have a
trade-off between high resolution and a sufficient diffracted power. For
example, we can choose the secondary tilted current (θ = 20.3◦ and
ϕ = 5.6◦) in experiment to ensure that the signal beam is strong enough
to be detected. If we choose these parameters, and if we refer to an
experimental design whose instrumental resolution in phase detection
is 2.5×10−2 degrees [15], then we can expect the resolution in refractive
index should be about 7.5× 10−7 RIU.

Next, we move on to another issue of extending the measurement
range. Because the magnitude of a phase shift cannot be more than
180◦, high resolution (i.e., the steep curves in Fig. 3) means a narrow
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Figure 2. Diffraction efficiency
as a function of polar angle for
given azimuth angles.

Figure 3. Phase response for
different incident angles.

Table 1. Workspaces and recommended settings for polar angle θ and
azimuth angle ϕ.

Workspace
(index range)

θ ϕ
Workspace

(index range)
θ ϕ

1.271 ∼ 1.274 15.6◦ 6.4◦ 1.329 ∼ 1.332 20.3◦ 5.6◦

1.274 ∼ 1.277 15.8◦ 6.5◦ 1.332 ∼ 1.335 20.5◦ 5.7◦

1.277 ∼ 1.280 16.0◦ 6.4◦ 1.335 ∼ 1.338 20.7◦ 5.6◦

1.280 ∼ 1.283 16.3◦ 6.4◦ 1.338 ∼ 1.341 21.0◦ 5.5◦

1.283 ∼ 1.286 16.5◦ 6.4◦ 1.341 ∼ 1.344 21.2◦ 5.5◦

1.286 ∼ 1.289 16.8◦ 6.3◦ 1.344 ∼ 1.347 21.4◦ 5.4◦

measurement range in refractive index. For example, a setting with
θ = 20.5◦, ϕ = 5.6◦ is available in a range 1.329 < n1 < 1.332,
which will be called a workspace below. Table 1 shows an example of
recommended settings for an index range 1.271 < n1 < 1.347 obtained
through a systematic computer simulation, the settings which keep the
efficiency no less than 10−3 and remain 100◦ phase shift throughout
corresponding workspaces. This means the expected resolution in n1,
again, is 7.5×10−7 throughout the table. With such a range, this index
determination method can fit a metal grating to measure refractive
indices of either gas or liquid samples.

We observe in this table that the workspace can be shifted from
low to high index range by increasing the polar angle θ. It is worth
noting that for a fixed polar angle, the resonance moves also from low
to high index along with decrease of the azimuth angle ϕ. By setting
the incident angles properly, the strength of the absorption and the
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extent of the workspace, which is related to the resolution, can be
controlled.

3.3. Deeper Discussion

High resolution is the main aim that we are pursuing. To achieve the
aim we employed the phase detection of the zeroth-order diffracted TM
mode and faced a trade-off between the resolution and the sensitivity of
a detector. This was because the steepest curve in Fig. 3 corresponds
to the almost total absorption in Fig. 2 and the TM component of
the diffracted beam cannot be detected. One may doubt why we do
not observe the TE0 component because it does not couple with the
plasmons and the efficiency in the TE mode should be much greater
than that of the TM mode. Although the prediction of the greater
efficiency is usually correct, we cannot employ the phase modulation
of the TE mode. This is because the TE components have been
excited just to fit the boundary conditions in the conical mounting
but not to participate in the resonance absorption. In fact, in our
simulation results, the phase of the TE0 component floats no more
than 1 or 2 degrees within a large refractive index range. Thus, it is
quite difficult to pick up useful information from the phase of the TE0

component. In practical experiments, we employ a phase detection
scheme using a photo-elastic modulator (PEM) [16, 17], for example,
in which the signal from the PEM is stable enough as a reference in
phase modulation measurement.

Next, let us consider a superior limit of resolution assuming the use
of the steepest curve in Fig. 3 (θ = 17.2◦ and ϕ = 12.6◦). Although
this setting is not practical under the assumptions in this work, we
mention the limit because there are a couple of possible ways to avoid
the experimental problem. For example:

Figure 4. Phase response for θ = 17.2◦, ϕ = 12.6◦.
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(1) By modifying the grating shape, we can control the TM0 efficiency
to get a sufficient power in the TM0 reflected beam;

(2) By using the coupling of the second-order evanescent mode and
observing the zeroth- and the first-order diffracted TM mode, we
have a chance to get sufficient power for phase detection;

(3) Technical development may allow us to detect the phase of an
extremely small signal beam.

Even in the case if (1), (2), or (3) works successfully, we think that
the practical limit of resolution cannot exceed one predicted from the
steepest curve. Fig. 4 is a magnification of the curve with the most

Table 2. Workspaces and recommended settings for polar angle θ and
azimuth angle ϕ.

Workspace ( index range ) θ ϕ Phase shift
1.2705 ∼ 1.2710 15.6◦ 13.0◦ 155◦

1.2710 ∼ 1.2715 15.6◦ 12.4◦ 105◦

1.2715 ∼ 1.2720 15.7◦ 13.4◦ 129◦

1.2720 ∼ 1.2725 15.7◦ 13.0◦ 151◦

. . . . . .
1.2890 ∼ 1.2895 17.1◦ 12.6◦ 176◦

1.2895 ∼ 1.2900 17.1◦ 12.2◦ 121◦

1.2900 ∼ 1.2905 17.2◦ 13.1◦ 119◦

1.2905 ∼ 1.2910 17.2◦ 12.6◦ 178◦

. . . . . .
1.3230 ∼ 1.3235 19.9◦ 11.8◦ 140◦

1.3235 ∼ 1.3240 19.9◦ 11.1◦ 118◦

1.3240 ∼ 1.3245 20.0◦ 11.9◦ 135◦

1.3245 ∼ 1.3250 20.0◦ 11.4◦ 149◦

. . . . . .
1.3305 ∼ 1.3310 20.5◦ 11.2◦ 148◦

1.3310 ∼ 1.3315 20.5◦ 10.5◦ 112◦

1.3315 ∼ 1.3320 20.6◦ 11.2◦ 130◦

1.3320 ∼ 1.3325 20.6◦ 10.7◦ 147◦

. . . . . .
1.3400 ∼ 1.3405 21.3◦ 10.8◦ 143◦

. . . . . .
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obvious slope in our simulation works. We observe a steep slope over
a limited range of n1 from 1.29061 to 1.29062, which is the workspace
defined by the parameters θ = 17.2◦ and ϕ = 12.6◦. The phase shift in
this workspace is 176 degrees and we predict the resolution to be 10−9

RIU.
Strong resonance absorption similar to above also occurs for

different values of n1 provided that the polar and azimuth angle are
chosen appropriately. Table 2 shows examples of recommended angles
for each workspace having a common width of 0.0005 RIU. In each
workspace the phase shift is more than 100◦, which is needed to keep
a 5× 10−8 RIU resolution while the smallest efficiency is no less than
10−7.

4. CONCLUSION

Since the sample index n1 has large influence on the phase modulation
of the diffracted TM mode, the phase detection is a strong way to find
the index. The resolution of the possible grating-based biosensor with
phase detection will be 7.5 × 10−7 RIU in the state-of-the-art today.
This means more than 7-digit determination of the index and can be
employed for medical and physiological applications.

In addition, we made discussion on the possibility of achieving
higher resolution and stated that the superior limit should be 10−9

RIU. Because the light velocity in vacuum is a constant having 9
significant figures, this limit is more than enough. Hence, a grating-
based biosensor with phase detection has potential in determining the
index to any accuracy having physical meaning.

So far we have indicated a possible system with ultrahigh
resolution and measurement of relative values of refraction. Of
course in achieving such ultrahigh resolution to measure precisely an
absolute value of refractive index of environment medium, we should
control every factor in experimental environment precisely: the grating
parameters including the indices n2 and n3, the angles of incidence, the
wavelength, the room temperature, and so on. Because the refractive
index of a metal, in particular, if it is a thin film, is not easy to be
determined, it is worth to note that we can find the indices n2 and n3 by
comparing the experimental data with simulation results [18] provided
the other parameters are sufficiently correct. In addition, some other
phenomena, such as rotation of polarization caused by optically active
molecules, birefringence or double refraction seen in anisotropic media,
etc., are possible factors that may affect the performance in high
resolution. We would like to examine these issues in our future works
towards realization of ultrahigh resolution.
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