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Abstract: We conjecture that in a consistent supergravity theory with non-vanishing
gravitino mass, the limit m3/2 → 0 is at infinite distance. In particular one can write
Mtower ∼ mδ

3/2 so that as the gravitino mass goes to zero, a tower of KK states as well as
emergent strings becomes tensionless. This conjecture may be motivated from the Weak
Gravity Conjecture as applied to strings and membranes and implies in turn the AdS
Distance Conjecture. We test this proposal in classical 4d type IIA orientifold vacua in
which one obtains a range of values 1

3 ≤ δ ≤ 1. The parameter δ is related to the scale
decoupling exponent in AdS vacua and to the α exponent in the Swampland Distance
Conjecture for the type IIA complex structure. We present a general analysis of the
gravitino mass in the limits of moduli space in terms of limiting Mixed Hodge Structures
and study in some detail the case of two-moduli F-theory settings. Moreover, we obtain
general lower bounds δ ≥ 1

3 ,
1
4 for Calabi-Yau threefolds and fourfolds, respectively. The

conjecture has important phenomenological implications. In particular we argue that low-
energy supersymmetry of order 1TeV is only obtained if there is a tower of KK states at
an intermediate scale, of order 108 GeV. One also has an upper bound for the Hubble
constant upon inflation H . mδ

3/2M
(1−δ)
P .
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1 Introduction

In recent years important efforts have been made in order to identify the crucial properties
of the effective field theories (EFT) which may be UV-completed into a consistent theory
of Quantum Gravity (QG). This is the purpose of the Swampland Program [1–5], whose
objective is to extract general properties which may be tested in terms of string theory
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or well understood semiclassical properties of black holes. These general properties are
often stated in terms of Swampland Conjectures which try to capture essential properties
coming from QG. One of the most studied Swampland conjectures is the Swampland
Distance Conjecture (SDC) [6]. It states that for large moduli, an infinite tower of states
becomes massless at an exponential rate m ∼ e−αd, with d the traversed geodesic distance.
In some N = 2 examples this tower has been shown to be populated by charged states
saturating BPS bounds which become massless [7–12]. The value of the constant α has
been computed in different N = 2 systems and has been shown to be related to the
corresponding charges of these towers of states. Certain ranges for the possible values of α
have been found [11–13]. In some limits it is strings which become tensionless as an infinite
distance limit is approached [14–23].

A seemingly different statement is given by the AdS distance conjecture (ADC) [24].
This applies to theories in which changing (flux) parameters one can obtain families of
AdS vacua with vacuum energy going to zero, |Λ| → 0. The statement is that an infinite
tower of massless states must appear in this limit, with m ∼ |Λ|λ. In a strong version λ

was conjectured to be 1/2 for supersymmetric theories and larger for non-supersymmetric
theories. In many AdS string theory examples the existence of these massless towers has
been checked [24–28]. The situation concerning the allowed values of λ is less clear, with
some existing counterexamples.

The connection between the SDC and towers of charged states allows for an under-
standing of the very existence of that tower. For large moduli some gauge symmetry
becomes global, and to avoid conflict with QG, a tower of charged states appears. This
is in agreement with the magnetic Weak Gravity Conjecture (WGC) [2]. In the case of
the AdS distance conjecture the situation is less clear. What precisely goes wrong when
Λ → 0? No obvious direct connection with a WGC argument is apparent in this case.
Also, as already mentioned, it is not yet clear what the range of possible values for the
exponent might be. More generally, a disappointing feature of both distance conjectures is
that, although they may provide interesting tests of Swampland ideas, they do not seem
to give us information on the EFT which could be used in phenomenological applications.

From the point of view of the SDC or the ADC there is no particular direction in
moduli space which should be studied more carefully than any other. Any infinite limit
may be equally interesting to test the conjectures. In this paper we argue that there is a
natural limit which plays a special role, namely the limit in which the gravitino mass goes
to zero. There are several reasons for this to be the case. Unlike other possible asymptotic
field directions, this limit is associated to a unique physical particle, the gravitino, which is
the (super)partner of the graviton. Only along certain field limits the gravitino may become
massless and hence the existence of a gravitino naturally selects particular classes directions
in the space of moduli. Furthermore, the m3/2 → 0 limit corresponds to theories with small
supersymmetry breaking which may have direct phenomenological implications both for
particle physics and cosmology. Thus the possibility of having low-scale supersymmetry
breaking rests on the existence of such moduli directions and whether an EFT in which
the gravitino scale is well separated from the UV scales exists.
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In field theory one can have models with gravitino masses as small as desired with
no apparent contradiction. In this paper we make the conjecture that this is not the case
in an EFT coming from a consistent theory of QG. In particular we argue that the limit
m3/2 → 0 in quantum gravity is at infinite distance. We thus formulate a

Gravitino Distance Conjecture (GDC): in a theory of quantum gravity, in the
limit m3/2 → 0, an infinite tower of massless states appears with lightest
mass scale

m ∼ mδ
3/2 . (1.1)

Hence for δ > 0 the scale of the gravitino cannot be arbitrarily separated from the UV
scale. The fact that there could be a tower of light states in QG associated with such a
fermionic field has been suggested in [29]. Note that in the case of supersymmetric AdS
vacua this directly implies the AdS distance conjecture, since in that case Λ = −3m2

3/2.
However we propose this conjecture to be true also in non-supersymmetric AdS, Minkowski
and dS vacua. Although all our discussion will concentrate in 4d theories, we expect the
conjecture to be true also in higher dimensions in the presence of a massive gravitino.
In the main text we will test this conjecture using as a laboratory 4d N = 1 theories,
from type II compactified on orientifolds of Calabi-Yau threefolds (CY3), as well as from
Calabi-Yau fourfold (CY4) compactifications of F-theory.1

A first question with this proposal is precisely what goes wrong when the gravitino
mass goes to zero, forcing a tower of states to appear. We find that, in the context of flux
type II orientifold vacua, in such a limit a set of strings and membranes become tensionless
and the corresponding gauge coupling of the forms and 3-forms goes to zero as well, in
conflict with general Swampland ideas. In particular, axionic shift symmetries become
continuous. Moreover, in the m3/2 → 0 limit the KK scale is in general lighter than the
scale of those extended objects and it is this scale which becomes lightest first. Thus in
eq. (1.1) m will typically be the KK scale in specific examples.

One can also see that the gravitino mass in general type IIA(B) N = 1 orientifold
AdS and Minkowski minima depends only on the complex structure (Kähler and dilaton)
moduli. Thus in limits of large complex structure (in IIA) a gravitino becomes massless
and in general earlier than any other state in the theory. Thus one expects that the tower of
massless states associated to the gravitino will be related to the towers of states becoming
light (according to the SDC) at large complex structure. Still, large Kähler moduli are also
in general required to remain within the perturbative regime in a consistent EFT. The
parameters δ for the gravitino and α for the SDC are thus expected to be related in general.

For general CY3 orientifolds one finds a lower bound δ > 1/3. To gain more information
we use a class of Z2×Z′2 type IIA toroidal orientifolds with fluxes as a laboratory and explore
the relationship between the gravitino mass and the KK-towers along different directions
in the space of moduli, i.e. the range of values for δ. In the case of AdS vacua that means
along directions determined by the fluxes whereas in Minkowski we deal with no-scale vacua

1In the context of heterotic compactifications, the existence of a tower of gravitinos becoming light in
the vanishing gravitino mass limit was explored in [30].
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in which some of the moduli are undetermined. One finds values in the range 2
3 ≤ δ ≤ 1.

Since m3/2 → 0 limits happen for large complex structure, one can directly connect the
values of α in the SDC of the complex structure to the values of δ. We observe that the
range of δ we find matches with the range of values for α found in the literature for N = 2
systems [11–13]. In the case of examples of dS runaway potentials, there is no minima but
one can study the behavior of the field dependent gravitino mass, m3/2 = eK/2|W |, which
now may depend on all complex structure and Kähler moduli. The connection between
the gravitino mass and the tension of membranes is thus very transparent and, as the
gravitino mass goes to zero, so does the tension of the membranes. Still for large moduli
a tower of KK states also becomes massless. The potentials one finds are consistent with
the asymptotic dS conjecture.

Some more general properties for any CY orientifolds may be studied using the formal-
ism of limiting Hodge structures [7–12, 31–35]. We present a general study of the m3/2 → 0
limit in terms of that formulation within an F-theory general setting. Focusing on the two-
moduli class of examples, we generalize our results from type IIA orientifolds. Moreover,
we show general constraints for the exponents δ which are associated to strings becoming
tensionless as we approach the limit of vanishing gravitino mass. In particular one obtains
again δ ≥ 1/3 for CY3 orientifolds and δ ≥ 1/4 for F-theory flux compactifications on
CY4. This is also consistent with the toroidal orientifold models systematically analysed.
Furthermore, the precise relation between the GDC and the SDC for the case of Minkowski
no-scale vacua is generalized using this mathematical machinery and explicit bounds for δ
in terms of the SDC parameter, α, are given. Matching with the explicit models studied
in this paper is also found.

The possible values for m3/2 have phenomenological implications. Depending on the
value of δ, the gravitino mass decouples from the KK tower or not. As we said, in AdS
and no-scale Minkowski examples one generally finds 1

3 ≤ δ ≤ 1 and maximum decoupling
occurs for δ = 1/3, although for the leading KK towers analyzed in our explicit examples
the minimum we find is δ = 2/3. Phenomenologically interesting values for m3/2 require,
if the GDC holds, values for the UV thresholds well below the standard unification scales.
Thus, assuming e.g. m3/2 = 1TeV, just around LHC reach, it must be that MKK ∼ 108

GeV if δ = 2/3. Hence a large desert from the electro-weak to the unification scale is not
possible. If on the other hand we set m3/2 at an intermediate scale m3/2 ∼ 1010 GeV, as
in certain classes of phenomenologically interesting models, one obtains MKK = 1013 GeV.
Cosmology is also affected by these lower values of UV scales since the Hubble parameter
is then forced to obey H . mδ

3/2 M
(1−δ)
P .

The structure of this paper is as follows. In the next section we review the SDC and
the ADC, which are intimately connected with the GDC proposed here. In section 3 we
define the GDC and how it implies the ADC. We also explain how in the m3/2 → 0 limit
tensionless membranes arise, giving a WGC interpretation to its singular behavior. In
section 4 we present explicit classes of type IIA toroidal orientifolds in which the GDC is
tested, indicating how in AdS and Minkowski vacua the m3/2 → 0 limit is controlled by
the dilaton and complex structure moduli. However, remaining in the perturbative regime
generically requires also large Kähler moduli. A general bound δ > 1/3 is obtained, al-
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though toroidal orientifolds are restricted to 2/3 < δ < 1. We additionally show how the
GDC and the SDC are connected and the exponent δ is proportional to the exponent α
in the SDC. We also describe how tensionless strings also appear in that limit. Section 5
is devoted to the study of the GDC for general CY3 and F-theory compactifications, us-
ing the formalism of limiting Mixed Hodge Structures, which is also briefly introduced.
Constraints on the exponents δ are obtained for this general case, showing how the results
obtained for toroidal orientifolds are generalized. The phenomenological implications of
the GDC are studied in section 6, where some implications on the scale of supersymmetry
breaking and cosmology are briefly discussed. We leave section 7 for some final comments
and conclusions.

Note added. As we were submitting this paper to the arXives, the paper [36] appeared
with some partial overlap with this one.

2 The Swampland Distance Conjecture and the Anti-de Sitter Distance
Conjecture

In order to set the stage, we review in this section the Swampland Distance Conjecture
(SDC) [6] and the Anti-de Sitter Distance Conjecture (ADC) [24], as they turn to be closely
related to our Gravitino Distance Conjecture (GDC), that we present in the next section.
Roughly speaking, both conjectures state that the regime of validity of any Effective Field
Theory (EFT) which arises as a low energy limit of Quantum Gravity (QG) is limited.
They predict that any particular EFT description breaks down by the appearance of a
infinite tower of states that become light if we insist in describing configurations which are
very far from the original one.

To be precise, consider a gravitational theory with a moduli space whose metric is given
by the kinetic terms. The SDC then states that starting at a point P in moduli space,
and moving towards a point Q an infinite geodesic distance away from P , one encounters
a tower of states whose masses (in Planck units) become exponentially light as

Mtower(Q)
MP(Q) ∼ Mtower(P )

MP(P ) e−αd(P,Q) , (2.1)

where MP(·) is the EFT Planck Mass at the point · in moduli space, and d(P, Q) is the
geodesic distance between the points P and Q.

The SDC is one of the most studied Swampland Conjectures and it has passed numer-
ous non-trivial checks. It has been thoroughly studied at the limits of moduli space of type
II compactifications on CY3, where towers of light BPS states have been identified [7–9].
Moreover, its relation with extended objects (and instanton corrections) becoming light at
infinite distance points has been an essential ingredient since its original formulation and it
has been thoroughly explored in [10, 11, 14–22, 37]. In fact, tensionless strings seem to play
a special role, as emphasized by the Emergent String Conjecture [18], which states that
any infinite distance point is either a decompactification limit or a limit in which a string
becomes tensionless. More recently, the special role of strings has also been revisited in
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the language of 4d supersymmetric EFTs with the Distant Axionic String Conjecture [22],
which states that all infinite distance points of a 4d EFT correspond to a tensionless ax-
ionic string.2

The ADC can be seen as a particular case of a generalized version of the SDC, namely
the Generalized Distance Conjecture [24]. The idea is to generalize the notion of distance
in moduli space to a notion of distance applicable to any (tensor) field configuration, with
a generalized metric given once again by the kinetic terms of the corresponding tensor
fields. The claim is again that an infinite tower of states becomes light exponentially with
the proper distance when the distance diverges. When applied to families of vacua with
different values for the cosmological constant (c.c.), as explained in [24], this implies the
existence of a tower of states becoming light when the c.c. goes to zero, according to

Mtower
MP

∼ |Λ|λ , (2.2)

with λ a positive O(1) number. The strong version of the conjecture states that λ = 1/2
for supersymmetric vacua and for the AdS case it implies the absence of scale separation
between the AdS mass and the mass of a KK tower, which is the one responsible for the
breakdown of the corresponding EFT. Moreover it has also been argued [24] that λ ≥ 1/2
for AdS and λ ≤ 1/2 for dS.

The weak version of the ADC seems to be supported by all known examples. However,
the strong version is in tension with e.g. the class of type IIA vacua found in [38, 39], where
a family of supersymmetric vacua yields λ = 7/18 and therefore exhibits scale separation.
It has also been pointed out that the value λ = 1/D, with D the number of dimensions, also
naturally appears if one imposes stability of the ADC under dimensional reduction [40, 41].
The models in [38, 39] have recently been revisited from a 10d point of view [42, 43] (see
also [26–28] for related ideas about this issue) and no inconsistency has been found, but
a full 10d solution is still missing and it would be required to clarify whether they are a
robust counterexample to the strong ADC.

It is therefore clear that even though the breakdown of gravitational EFTs by the
appearance of light towers of states seems to be ubiquitous in String Theory, this generality
makes it harder to pinpoint the towers that could be more relevant for connecting this to
our Universe. In this regard, we will focus in this article on a particular limit, namely
the one associated with the gravitino mass going to zero. This is particularly interesting
for several reasons. First, the gravitino belongs to the gravity multiplet in supersymmetric
EFTs and it is therefore intrinsically tied to the gravitational character of the theory, as well
as always present in all supersymmetric EFTs. Second, the gravitino mass gives the scale
of supersymmetry breaking in vacua with spontaneously broken supersymmetry, so it is an
interesting quantity to look at from a phenomenological point of view. Third, the gravitino
mass is typically related to the tension of a (codimension-one) membrane, and therefore
its massless limit corresponds to a tensionless membrane limit. In this limit a generalized

2It is interesting to note that whereas the Emergent String Conjecture deals with strings in any number
of dimensions, the relevant objects for the Distant Axionic String Conjecture are codimension-two objects,
which are strings only in four dimensions.
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global symmetry would typically be restored and a tower of states is expected to prevent
this from happening. In some sense, one could say that the Gravitino Distance Conjecture,
that we present in the next section, allows us to unify the SDC and the ADC when the
special limits selected by the vanishing of the gravitino mass are considered. In this sense,
not only are we adding one conjecture to the already rich web of Swampland Conjectures,
but also connecting it to some of the existing ones as well as recovering non-trivial results
for the bounds on their parameters [11–13], as we will explain later.

3 The gravitino distance conjecture

Given the motivations just discussed we propose a

Gravitino Distance Conjecture (GDC): consider a supersymmetric theory with
a non-vanishing gravitino mass m3/2. In the limit m3/2 → 0, a tower of states
becomes light according to

Mtower
MP

∼
(
m3/2
MP

)δ
, 0 < δ ≤ 1 . (3.1)

In the following we will present evidence for the GDC from different perspectives, as well
as several connections to other Swampland Conjectures, but before going into that, some
clarifications are in order. First of all, let us clarify that we are not claiming that vacua
in which the gravitino is exactly massless belong to the Swampland. Instead, our claim is
that one cannot continuously go from a non-vanishing gravitino mass to the limit m3/2 → 0
without encountering an infinite tower of states, that is, the two configurations are at
infinite distance from each other. Note that this is analogous to e.g. the claim in the ADC,
which does not put Minkowski vacua in the Swampland but instead states that they cannot
be approached smoothly from vacua with non-vanishing cosmological constant without an
infinite tower becoming massless. Second, since the gravitino mass typically depends on the
moduli of the theory, we can think of approaching the limit m3/2 → 0 in two qualitatively
different ways. On the one hand, when some of the moduli on which m3/2 depends remain
unfixed and their vevs can be freely adjusted to make the gravitino mass as small as one
desires. On the other hand, considering families of vacua where all the scalars on which the
gravitino mass depends are fixed (e.g. by fluxes that source a potential), and by scanning
the family (e.g. by changing the fluxes) one can make the gravitino mass go to zero. These
two situations are reminiscent of the SDC and the ADC, as we will clarify later. Moreover
one can also have a mixed situation in which the space of moduli consists of a discrete part,
which includes those moduli that are fixed and can still vary with fluxes, and a continuous
part, which includes the unfixed moduli (i.e. flat directions). We thus can define a space
of moduli Msm (rather than a moduli space) which has a direct product structure

Msm =Mdiscrete ⊗ Mcontinuous . (3.2)

We will present examples of all these situations later on. In particular, in this work we
focus on 4d N = 1 compactifications for concreteness, but let us remark that we expect the
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GDC to be equally valid for higher dimensions or more supersymmetries. For the moment,
we recall a few relevant generalities about the gravitino mass in 4d N = 1 supergravity.
First, given a Kähler potential, K, and a superpotential, W , the mass of the gravitino (in
Planck units) takes the form

m3/2 = eK/2 |W | . (3.3)

In Minkowski vacua, a massive gravitino implies that supersymmetry is broken, and there-
fore Λ���SUSY ∼ m3/2. In supersymmetric AdS vacua, the gravitino mass is directly related to
the cosmological constant, which takes the value (in Planck units) Λ=−3eK |W |2 =−3m2

3/2.
In this case, supersymmetry may remain unbroken even if the gravitino gets a mass.3 When
supersymmetry is broken the gravitino mass also sets the overall supersymmetry breaking
scale in AdS and dS vacua, although such a precise equality does not apply.

3.1 Relation with the ADC

It is particularly relevant to examine the GDC in the case of supersymmetric AdS vacua, as
in this setup it can be shown to be equivalent to the ADC. As explained above, considering
an N = 1 theory with an AdS supersymmetric vacuum yields

Λ = −3eK |W |2 = −3m2
3/2 , (3.4)

where K and W are evaluated at the minimum. The GDC then implies

Mtower ∼ mδ
3/2 ∼ |Λ|δ/2 . (3.5)

By comparing with eq. (2.2), the ADC can be stated saying that, as the gravitino mass goes
to zero, necessarily a tower of states becomes massless, and we can identify the parameters
in both conjectures as λ = δ/2. Therefore, all supersymmetric examples that fulfill the
(weak version of the) ADC are also in agreement with the GDC. In non-supersymmetric
AdS vacua this identity between m3/2 and the cosmological constant does not hold in
general, but given that the ADC is supposed to apply also to non-supersymmetric vacua
it is reasonable to conjecture that also in this case

Mtower ∼ mδ
3/2 . (3.6)

We therefore expect that as the gravitino mass goes to zero, there is a tower of states which
becomes massless, also in the non-supersymmetric case.

In the next section we present several type II models in which both supersymmetric
and non-supersymmetric vacua are examined, and all of them agree with our conjecture
(with 1/3 ≤ δ ≤ 1), even in the non-supersymmetric configurations. Furthermore, the
general argument presented in the next subsection, based on 3-forms and membranes is
equally valid in the non-supersymmetric vacua. Still, it would be interesting to check more
examples of non-supersymmetric AdS.

3This is due to the form of the supersymmetry algebra in an AdS background, see e.g. [44].
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3.2 Relation with the WGC

There is an interesting connection between the limit in which the gravitino mass vanishes
and the existence of a membrane with vanishing tension. Consider a flux configuration, with
gravitino mass given by eq. (3.3). A BPS membrane interpolating between a Minkowski
vacuum without fluxes, and the aforementioned flux configuration has a tension given
by [45, 46] (see also [22, 47])

Tmem = 2eK/2|W | , (3.7)

in Planck units. In string compactifications one can interpret this membrane as a bound
state of Dp or NS5 branes wrapping the appropriate cycles in the internal geometry. As a
consequence, the limit in which the gravitino mass goes to zero is also the limit in which
such a membrane becomes tensionless. Let us try to relate this to the WGC for membranes
in 4d, which takes the form [22, 48]

M−2
P γ2

extT
2 ≤ e2Q2 (3.8)

where, e is the gauge coupling associated to the 3-form that couples to the membrane,
and Q is its quantized charge. γext is the charge-to-mass ratio of a extremal solution, that
generically depends on the scalars of the theory. Note that for codimension-one objects,
and due to the strong backreaction that they produce, the notion of extremality is subtler
than for high-codimension states. However, we will take the approach in [22] and consider
extremal membranes as infinite flat membranes, whereas superextremal ones are associated
with bubbles that can mediate transitions. The F-term scalar potential generated by the
fluxes sourced by the membrane can be dualized and expressed in terms of 3-forms, as
shown for string compactifications in [49, 50] and for N = 1 compactifications in [51–55],
yielding the result

V = 1
2Z

ABQAQB, (3.9)

where the r.h.s. is a generalization of the r.h.s. of eq. (3.8) for several 3-forms with kinetic
term Skin ∼

∫
ZABF

A∧?FB, so that ZAB plays the role of the gauge coupling squared and
QA are the quantized charges of the membranes, which can be identified with the fluxes
sourced by them. For N = 1 compactifications the F-term scalar potential can also be
written as

V = eK
{
KIJ̄DIW (DJW )− 3|W |2

}
(3.10)

with KIJ the Kähler metric, and DI = ∂I +KI the Kähler covariant derivative. These two
ways of expressing the scalar potential can be interpreted as a no-force condition between
membranes interpolating between a fluxless Minkowski vacuum and the one with the fluxes
given by QA, with eq. (3.9) giving the electric interaction, and the two terms of eq. (3.10)
describing the scalar and gravitational interactions respectively [56]. We can therefore
identify the scalar potential generated by the membranes as the r.h.s. of the WGC (3.8),
and the l.h.s. being proportional to the gravitational exchange given by the second term in
the F-term scalar potential.

Let us first consider BPS membranes interpolating between the fluxless Minkowski
vacuum and a supersymmetric AdS one. This is the only interesting supersymmetric
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solution for us here as it is the only one that allows a non-vanishing gravitino mass. In this
case, we have DIW = 0, and hence V = −3eK |W |2. The physical charge of the membranes
is then proportional to the gravitino mass, and in the limit in which it goes to zero so does
the corresponding 3-form gauge coupling. Therefore we can see the gravitino mass going to
zero as a consequence of the WGC for membranes, and we expect a tower of states becoming
massless in that limit to prevent this higher-form symmetry from becoming global. In fact,
this is nothing but the fact that for a BPS membrane its charge is proportional to its
tension, and therefore as its tension goes to zero so does its charge, saturating the WGC.

In a more general case, we can consider a flux configuration with spontaneously broken
supersymmetry. In particular, for an elementary saxionic membrane [22], that is, a mem-
brane which is only charged under one 3-form in the asymptotic splitting induced by the
corresponding asymptotic field direction (e.g. a single Dp or NS5-brane wrapping a (p− 2)
or a 3-cycle respectively in a toroidal orientifold, as the ones in table 1), one obtains that
V ∼ eK |W |2 = m2

3/2 (see [19, 22] for details). Once more, the limit in which the gravitino
mass goes to zero implies that the potential also vanishes, and therefore the physical charge
of the corresponding membrane goes to zero and the WGC requires its tension to do the
same. The appearance of an infinite tower of states that become light may then be under-
stood in terms of preventing this higher-form symmetry from becoming global once again.
Note that, apart from giving a supportive argument for the GDC presented in this paper,
this connection between membranes and the scalar potential (both for the supersymmetric
and the non-supersymmetric vacua) equally applies to support the ADC.

4 Evidence for the GDC in type IIA vacua

In this section we will consider several examples in which the GDC can be analysed in
detail. In particular, we will see that as the gravitino mass goes to zero there is a tower
of KK states that becomes light and the corresponding values of δ can be determined. In
fact, we will explain that requiring validity of N = 1 supergravity as an effective field
theory constrains the range of δ. After showing that the gravitino mass can be written
purely in terms of complex structure moduli, we will be able to compare the mass scales
of KK states and other massive objects, such as strings and membranes, depending on the
field direction that becomes large. We will also describe some runaway dS examples which
display a field-dependent gravitino mass directly related to the tension of membranes.

Let us begin with a succint review of basic results. We will work in the framework of
type IIA CY3 orientifolds which give rise to a 4d N = 1 supersymmetric theory containing
massless chiral multiplets corresponding to the dilaton, plus complex structure and Kähler
moduli. The Kähler potential takes the form [57]

K = KK +KQ, KK = − log(8V), KQ = 4φ4 . (4.1)

Here V is the volume of the internal manifold whereas φ4 is the 4d dilaton. The 10d dilaton
φ and φ4 are related by eφ4 = eφ/

√
V.
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The mass scale of the various objects that we will consider is set by the Planck mass
MP. In particular, the string and KK scales can be written as (see e.g. [19])

Ms = eKQ/4 MP , MKK = Ms
V1/6 = Ms e

KK/6 . (4.2)

Here MKK is the KK scale estimated in terms of the overall volume of the CY3 compacti-
fication.

We now specialize to simple type IIA toroidal orientifolds. We take the internal torus
to be factorized, i.e. T 6 = (T 2)3, and isotropic. Thus, besides the dilaton S, there is only
one Kähler modulus T and one complex structure modulus U . For this reduced set of
moduli the Kähler potential K = KK +KQ has

KK = −3 log(T + T̄ ), KQ = − log(S + S̄)− 3 log(U + Ū) . (4.3)

Notice that the internal volume is V = t3, where t = ReT . We will also denote s = ReS
and u = ReU .

Fluxes are turned on to generate masses for the moduli. The general superpotential
induced by R-R, NS-NS and geometric fluxes is found to be

W = e0 + 3ieT + 3cT 2 + imT 3 + ih0S − 3ihU − 3aST − 3bTU . (4.4)

Here we are using the conventions of [39]. The fluxes m, c, e and e0 are R-R, while h0 and
h are NS-NS. The terms mixing T with S and U arise from geometric fluxes denoted a and
b. Since the theory has N = 1 supergravity, the F-term scalar potential has the standard
expression given in (3.10).

In the following we will need the string and KK scales written in terms of the toroidal
moduli. Each T 2 is generically non-isotropic, having t = RxRy and τ = Ry/Rx as in [19].
The radii can be expressed in terms of the saxions t, s and u using that s = e−φ4τ−3/2 and
u = e−φ4τ1/2 [39]. From (4.2) we then obtain

Ms = MP
(su3)1/4 , MKK = MP

(su3t2)1/4 . (4.5)

Since Rx and Ry are not necessarily equal there are actually two separate KK scales defined
as Mx

KK = Ms/Rx and My
KK = Ms/Ry. It is easy to see that

Mx
KK
MP

= 1
(stu)1/2 ,

My
KK
MP

= 1
ut1/2

. (4.6)

Notice that M2
KK = Mx

KKM
y
KK. The expressions for Ms and the different KK masses are

collected in table 1.

4.1 The gravitino mass and KK towers in type IIA models

From the tests of the ADC we know that in supersymmetric AdS vacua there are towers
of KK states that become light as the cosmological constant Λ goes to zero. Since in such
vacua |Λ| ∼ m2

3/2, the GDC holds and moreover δ = 2λ as discussed before. We further
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expect the GDC to be valid for non-supersymmetric vacua in analogy with the ADC. As
we said, we will propose that

MKK ' mδ
3/2 (4.7)

for some δ ≤ 1. Moreover, the proposal applies to non-supersymmetric AdS and Minkow-
ski vacua.

In the following we will verify that in a class of type IIA flux vacua the KK states indeed
satisfy (4.7). We will consider models with universal moduli S, T and U , whose Kähler
potential is given in (4.1). The superpotential induced by R-R, NS-NS and geometric
fluxes has the form (4.4). We will discuss AdS and Minkowski vacua, obtained by turning
on suitable subsets of fluxes.

4.1.1 AdS vacua

We will present two AdS examples. The first one, dubbed DGKT-CFI, belongs to a class
of type IIA models with only NS-NS and R-R fluxes studied originally in [38, 39]. The
second example will include metric fluxes.

The DGKT-CFI model. The superpotential reads

W = 3ieT + imT 3 + ih0S − 3ihU . (4.8)

Without loss of generality we take m > 0. It is easy to show that there exists a supersym-
metric AdS minimum only if e < 0. With this choice the moduli are fixed at

ImT = 0, h0ImS − 3hImU = 0 ,

ReT = t =

√
5|e|
3m , ReS = s = − 2e

3h0
t, ReU = u = 2e

3ht .
(4.9)

Since e < 0, necessarily h < 0, and h0 > 0. There are non-zero tadpoles of C7-form,
proportional to mh and mh0, that can be cancelled by D6-branes and O6-planes [39].

At the minimum
Λ
M4

P
' −m

5/2h0|h|3

|e|9/2
' −mh0

u3 , (4.10)

where we dropped numerical constants. Substituting the moduli in (4.6) gives the KK
masses

Mx
KK
M2

P
' m3/4(h0|h|)1/2

|e|7/4
' m1/6h

1/2
0

|h|2/3u7/6 ,
My

KK
M2

P
' m3/4h

|e|7/4
' m1/6

|h|1/6u7/6 . (4.11)

The overall scale is M2
KK = Mx

KKM
y
KK. The various KK masses have the same dependence

on the flux e, which is not constrained by tadpole cancellation and can be taken large to
ensure the validity of the approximation. Thus we will not distinguish them. Since this is
a supersymmetric AdS vacuum, Λ = −3m2

3/2 in Planck units. Therefore

MKK ' |Λ|7/18 ' m7/9
3/2 . (4.12)
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Thus, with the definition in (4.7) we have δ = 7/9. This is the previously mentioned
example that violates the (strong) ADC. As already remarked, there is some contro-
versy on whether this model is a consistent 10d compactification (see e.g. [3] for a review
and [26–28, 42, 43] for recent assessments). If the model is inconsistent, all the AdS exam-
ples in the literature would have δ = 1 and no separation between gravitino and KK scales.

We now turn to non-supersymmetric vacua. In [39] it was found that in the model
with superpotential (4.8) such vacua arise depending on the parameter γ = me. Up to now
we have taken γ < 0 to have a supersymmetric solution. The general situation is much
richer though. For starters, there is an AdS non-supersymmetric stable minimum in which
the moduli are still given by (4.9) but changing the sign of e. Therefore, the KK scales are
again given by (4.11). Concerning m3/2, it is no longer given by m2

3/2 = |Λ|/3 but it only
departs by a numerical prefactor from the supersymmetric value. We then conclude that
this case satisfies again the GDC, leading to a value of δ of 7/9.

When γ > 0 there is a second branch of stable non-supersymmetric AdS vacua in
which the vev of the axion Im T is different from zero while the vevs of the saxions have
essentially the same form as before. Concretely, hu = −h0s, 2h0s = mt3 and 3m2t2 = 4γ.
The KK scales will clearly depend on the unconstrained flux e as in the supersymmetric
case and it is easy to show that so does m3/2. Thus, the GDC remains valid for this case
with δ = 7/9,

It is interesting that all the (perturbatively) stable non-supersymmetric AdS vacua
studied above violate the strong ADC in that λ < 1/2. It is also remarkable that the
GDC holds although without supersymmetry Λ 6= −3m2

3/2. So far the vacua belong to
the DGKT-CFI family with m 6= 0 and no metric fluxes. In the next example these two
conditions are relaxed.

Example with metric fluxes. Our discussion here will rely heavily on the analysis of
section 4.4 in [39]. The superpotential now has the form

W = 3ieT + 3cT 2 + ih0S − 3aST − 3ihU − 3bTU . (4.13)

Notice that the Roman mass m has been set to zero. The metric fluxes, as well as the
NS-NS fluxes are taken to be non-zero and to satisfy h0 = −3ha/b.

This model admits supersymmetric and non-supersymmetric AdS minima related by
a sign flip in some fluxes. In both cases Im T = h0/3a while only a linear combination of
ImS and ImU is fixed. The saxions are found to be stabilized at

± 9ct2 = −h0e

a
− h2

0c

3a2 , s = 2c
a
t, u = 6c

b
t . (4.14)

Observe that the metric fluxes a and b must have the same sign. On the other hand, in
the expression for t2 choosing either sign gives an extremum solution. A supersymmetric
minimum is obtained by taking the plus sign, but we can also choose the minus sign and
still get a consistent solution, depending on the fluxes. In this latter case supersymmetry
is broken. The minimum is still AdS and it is typically stable [39]. The grativino mass
turns out to be

m2
3/2 = ab3

384c2u3 , (4.15)

– 13 –



J
H
E
P
0
8
(
2
0
2
1
)
0
9
2

while the KK scales can be obtained by direct substitution of the saxions in (4.6). The im-
portant point for us is that they both give the same dependence (modulo a flux-dependent
coefficient) on the modulus t. Specifically

Mx
KK 'M

y
KK 'MKK ' m3/2 = 1

t3/2
. (4.16)

Hence we see explicitly that this class of non-supersymmetry vacua would give a value
of 1 for δ in the GDC, provided t can be consistently taken to infinite distance. The
question is, however, if the large volume limit can be indeed accomplished within the
perturbative regime. Since the flux e coming from the 4-form is unconstrained by tadpole
cancellation, its absolute value can be taken arbitrarily large to guarantee large t. In this
way the resulting 4d dilaton is small. However, the 10d dilaton grows with t and to keep
it small requires choosing fluxes appropriately, e.g. letting c to be large enough. However,
this seems difficult to realize because the fluxes a, b and c are strongly constrained by
tadpole cancellation.

4.1.2 Minkowski vacua

The case of Minkowski vacua is compelling because obviously Λ = 0 is fixed and cannot be
varied, so the GDC goes beyond the ADC. We are not aware of simple explicit Minkowski
flux vacua with all moduli fixed but there are many known examples of no-scale models
with vanishing cosmological constant. Below we will check that the GDC is fulfilled in
such models.

Several no-scale examples were presented in [39] and others may be designed, both
with and without metric fluxes. In those models, with universal moduli S, T , and U , both
MKK and m3/2 turn out to depend on a single no-scale modulus to some power. So there
is always a ratio of powers of MKK and m3/2 which only depends on fluxes, and indeed
one can write a GDC expression like eq. (4.7). There are however no-scale examples with
more than one no-scale direction, in which one rather obtains a certain range of values for
δ. Below we will analyse two models, the first with metric fluxes and the second only with
R-R and NS-NS fluxes.

Minkowski example with metric fluxes. The model is defined by the superpotential

W = 3cT 2 + imT 3 + ih0S − 3aST . (4.17)

This model is of type NS-4 in section 4.2 of [39]. The scalar potential is positive definite
since W does not depend on U and K is of no-scale type. There is an extremum with
DTW = DSW = 0. Supersymmetry is broken because necessarily W 6= 0 so DUW 6= 0.
The generic vevs were found in [39]. We take the particular solution

ImT = 0, ImS = 0, t =
√
−h0c

ma
, s = − c

a
t . (4.18)

The complex structure field U remains undetermined. This solution exists for ac < 0 and
h0m > 0. We choose a > 0 for concreteness. Since the mass matrix has four positive and

– 14 –



J
H
E
P
0
8
(
2
0
2
1
)
0
9
2

two zero eigenvalues (from the flat directions) this non-supersymmetric Minkowski solution
is stable.

The various scales are straightforward to compute. In particular,

m2
3/2 = a|c|

32u3 (ν + 9) M2
P, M2

KK =
(
a2

c2ν3

)1/4
M2

P
u3/2 , (4.19)

where ν = h0|c|/am. Apparently the GDC is obeyed with δ = 1/2. However, we must be
careful to also take into account the scales Mx

KK and My
KK which are found to be

Mx
KK
MP

=
(

a

|c|νu

)1/2
,

My
KK
MP

= 1
ν1/4u

. (4.20)

Then one rather has (in Planck units)

Mx
KK ' m

1/3
3/2

(
a1/3

|c|2/3(ν + 9)1/6

)
; My

KK ' m
2/3
3/2

(
ν−1/4

[a|c|(ν + 9)]1/3

)
. (4.21)

As m3/2 → 0, it is My
KK which becomes light faster and hence that should be the tower

which is really relevant for the GDC. So in this type IIA example the result is δ = 2/3,
rather than 1/2.

Note that one can play somewhat with the flux coefficient in the KK scales, but the
fluxes in ν and c are strongly constrained by tadpole cancellation. Since tadpoles come in
the combination (h0m−ac), none of the fluxes can be parametrically large so the coefficients
of the GDC are of order one. Another interesting result in this example is that the sum of
the 4 eigenvalues of the masses of S and T , i.e. the moduli masses, satisfy∑

mod
M2

mod = a|c|
16u3 6ν M2

P . (4.22)

For large ν (which means here large t), the sum tends to 12m2
3/2. Thus, the gravitino

follows the pattern of the moduli, rather than that of the KK states.

Minkowski example without metric fluxes. In our last example there are no metric
fluxes at all while all R-R fluxes appear. Besides, the NS-NS flux h is set to zero so that
W is independent of the modulus U . The superpotential is then

W = e0 + 3ieT + 3cT 2 + imT 3 + ih0S . (4.23)

This example is adapted from the NS-1 model in section 4.2 of [39].
As in the previous model, there is a non-supersymmetric Minkowski solution with

DTW = DSW = 0 but DUW 6= 0. One finds the following vevs for the real and imaginary
parts of the moduli

ImT = c

m
, ImS = e0m

2 + c3

h0m2 , h0s = mt3 . (4.24)

Observe that only a combination of the saxions t and s is fixed, as expected from the
absence of mixing between S and T in the superpotential. Necessarily h0m > 0, so that
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the flux contribution to tadpoles is positive. Moreover, this solution exists provided m 6= 0,
h0 6= 0, and γ = me+ c2 = 0. Regarding the stability of the solution, one can readily show
that this extremum must be a minimum because the scalar potential is positive definite.
Indeed it can be verified that the mass matrix has three positive and three zero eigenvalues,
the latter due to the flat directions.

Let us now examine the scales. For the gravitino mass we find

m2
3/2
M2

P
= h0m

32u3 . (4.25)

The main novelty now is that the KK scales

Mx
KK
MP

=
(
h0
mu

)1/2 1
t2
,

My
KK
MP

= 1
t1/2u

(4.26)

turn out to depend not only on u but also on t (or equivalently on s) because in this case
there is an extra modulus which is not fixed by the vacuum condition.

In order to test the GDC we must limit ourselves to directions in moduli space along
which the supergravity approximation is reliable. Concretely, we must check that both
coupling constants eφ and eφ4 are small enough to remain within the string perturbative
regime, and are also compatible with the large volume limit of the internal space. Using
eφ4 = eφ/

√
V, eK = e4φ/(2V)3 and V = t3 we obtain

eφ4 =
(
h0
m

)1/4 1
(tu)3/4 , eφ =

(
h0
m

)1/4 t3/4
u3/4 . (4.27)

Hence, naively one could say that in order to have t� 1, and eφ, eφ4 � 1, it is enough to
let u tend to infinity while we move in moduli space directions parametrized by the simple
power law expression t ∼ uq, with 0 < q < 1. However, as discussed further in section 4.3,
we see that this range is actually restricted to the interval 1/5 < q < 1/2. This follows
because the fundamental string scale Ms must be larger than both Mx

KK and My
KK, and we

should also ensure that the gravitino scale is below the KK scale (δ ≤ 1) for the effective
field theory to be meaningful.

Substituting t ∼ uq in the KK masses implies the behavior

Mx
KK
MP

∼ 1
u

1
2 +2q

,
My

KK
MP

∼ 1
u1+ q

2
. (4.28)

To extract the value of the GDC parameter δ we should distinguish two cases here, for
depending on whether q is greater or smaller than 1/3 the lightest mass tower appears to
be the one for the x or y direction, respectively. In particular, one can check that for the
limiting cases when q . 1/2 (q & 1/5) the GDC holds for δ . 1 (δ & 11/15). Also note
that when the two directions x and y give identical KK scales (i.e. when q = 1/3), the
conjecture is fulfilled for δ = 7/9, as in the DGKT-CFI AdS model (4.12).
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4.2 The gravitino mass and the IIA complex structure sector

We are interested in the limit in which the gravitino mass goes to zero and we want to
identify in which directions in moduli space that happens. Examining the examples above
one observes that in all cases the gravitino mass can always be written in the form

m2
3/2 ∼

(tadpole)
u3 . (4.29)

By tadpole here we mean a bilinear in integer fluxes contributing to the RR tadpole like
e.g. (hIm) or (ac), etc. Thus the limit of small gravitino mass in these minima corresponds
to the limit with large complex structure.

This is not a particular property of these toroidal vacua but it is always the case for any
CY3 orientifold in which fluxes contribute to the R-R tadpole. Indeed it is known [49, 50]
that for a general type IIA 4d N = 1, CY3 orientifold the flux scalar potential may be
written in the form

V = V3-form + Vloc . (4.30)

The first term above comes from the contribution of the different R-R and NS-NS fluxes and
is positive definite whereas Vloc corresponds to the tensions of the localized O6 orientifolds
(and possibly D6-branes). The latter provides for the only negative contribution to the
scalar potential and imposing tadpole cancellation it may be written as (see e.g. [50])

Vloc = −eK(V)(mhJuJ) ∼ −eKQ(mhJuJ), (4.31)

e.g. in the case in which only m,hJ contributes to tadpoles. Recall that V above denotes
the volume of the CY3. We see from here that the local term depends only on the complex
structure moduli, and not on the Kähler moduli. This is expected since the tension of O6,
D6 is proportional to the volume of the wrapped 3-cycles in the CY3. Given this fact, the
value of the gravitino mass at the minima will only depend on the complex structure fields.
The argument is as follows: if a minimum is obtained there will be a partial cancellation
between the positive terms and the local term. For a minimum to be reached, the potential
at the minimum V0 should scale in the moduli as the piece of the potential coming from
the O6-planes. But the tension of the orientifold only depends on the complex structure,
and hence, at the minimum, V0 may be written in terms of the vevs of complex structure
moduli only and one expects (if it is non-zero) that V0 =∼ ± eKQ(mhJuJ). Consider now
the case of N = 1 AdS vacua. In this case V0 = −3m2

3/2 in Planck units and hence

m2
3/2 ∼ −e

KQ(mhJuJ) . (4.32)

This is in fact true for non-supersymmetric AdS and Minkowski vacua since the same
cancellation between the positive definite terms and the local term has to occur in order to
get a minimum. Summarizing, in AdS and Minkowski vacua of type IIA CY3 orientifolds,
the (on-shell) gravitino mass depends only on the complex structure and the limit m3/2 → 0
which we are studying corresponds to the large complex structure limit. Nevertheless let
us emphasize that, unlike the case of flux-less N = 2 vacua, the minimization conditions
of the scalar potential may force the Kähler moduli also to be driven to large values.

– 17 –



J
H
E
P
0
8
(
2
0
2
1
)
0
9
2

4.3 The gravitino mass and asymptotic moduli limits

4.3.1 General constraints on δ from EFT conditions

According to the GDC we want to study those limits in the moduli space in which the
gravitino mass becomes light and the corresponding towers of states. For those limits to
make sense we need the gravitino mass to be smaller than the towers of states involved, so
that we can use the formalism of N = 1 supergravity as an effective field theory (EFT).
We also need to have the KK scales of the theory to be lighter than the extended objects
in the theory, in particular the fundamental string scale Ms. Thus we will require

m3/2 .MKK .Ms . (4.33)

Here MKK is the KK scale estimated in terms of the overall volume of the CY3 compacti-
fication. Now, from the expressions (4.2) one sees that for large moduli the KK scale will
always be lighter than Ms.

We will also impose that the 10d and 4d dilatons remain smaller than one, so that we
stay in a perturbative regime. This is

eφ = eKQ/4 e−KK/2 . 1 , eφ4 = eφ√
V

. 1 . (4.34)

Here we have used (4.1) and eK = e4φ/(2V)3. Note that in the large volume regime the
4d theory remains perturbative as long as the 10d theory does. Substituting the definition
of the overall KK scale, cf. (4.2), one can then obtain a general bound on the exponent δ
which defines the GDC. Indeed, one can write

m2
3/2 = eK |W |2 = M6

KK e−KQ/2 |W |2 > M6
KK , (4.35)

since eφ4 . 1. From this result one concludes that in a type IIA CY3 orientifold at large
moduli there is a general constraint

1
3 < δ < 1 , (4.36)

where the upper limit comes from the EFT condition m3/2 < MKK. This general bound
is important because it tells us that the possible separation of the gravitino scale from the
UV scales is bounded.

4.3.2 Asymptotic limits of the gravitino mass in toroidal orientifolds

To gain intuition on the behavior of the towers which become massless in the limitm3/2→ 0,
in this section we will consider the class of toroidal type IIA orientifold models studied
in [38, 39] and more recently in [58, 59]. As in section 4.1, we will concentrate for simplicity
in the isotropic case with the overall moduli being S, T and U with real parts (saxions) s, t
and u. Since the gravitino mass depends on the complex structure modulus u, we will take
general large moduli limits parametrized as

s ∼ ur , t ∼ uq . (4.37)
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Scales Ms MKK Mx
KK My

KK

(su3)−1/4 (su3t2)−1/4 (stu)−1/2 (ut1/2)−1

Tstrings D4(B0) D4(BI) NS5a

s−1 u−1 t−1

Tmem Dp NS50 NS5I

(su3t(5−p))−1/2 (s−1u3t3)−1/2 (st3u)−1/2

Table 1. Masses and tensions of KK states and branes in an isotropic Z2 × Z′
2 type IIA orbifold

in Planck units.

r

s ⇠ ur

1

2

3

q

t ⇠ uq

1/3 2/3 1

non� pert
� =

7

9

� = 1

My
KK > Ms

m3/2 > Mx
KK

� =
11

15

Mx
KK > Ms

� =
2

3

�r�1 =
1

3
(1 + r + q)

�r1 =
1

3
(2 + q)

Figure 1. Scales in the asymptotic limit u → ∞ with s ∼ ur, t ∼ uq. Each point in the plane
(r, s) means one possible field direction.

General expressions for the masses of KK scales as well other massive objects (particles,
strings and membranes) were given in [19] and are displayed in table 1.

Here we have taken into account that directions in which s/u 6= 1 correspond to
situations (in a square torus) in which the tori radii Rx and Ry are not equal and hence
there are two separate KK scales Mx

KK and My
KK given in (4.6). Let us study first which

are the field directions in which there is a well defined perturbative EFT, which requires
eφ . 1 and the constraints eq. (4.33). It is easy to check that to stay within the perturbative
regime requires r ≥ 6q− 3. The general constraints for these STU models are summarized
in figure 1. The possible exponents r, q are constrained to be inside the depicted triangle.
For r > 1 it is Mx

KK which provides the lightest KK tower whereas for r < 1 it is My
KK.

This triangle is purely kinematical and the moduli directions in any flux compactification
of this type should be confined to lie inside in order to get a consistent EFT.
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Let us now make contact with the examples described in section 4.1. In general the
gravitino mass at the minima scales like m3/2 ∼ 1/u3/2 and imposing that it is lighter than
the KK scales cuts the triangle in the middle (line marked δ = 1). Then one can write
general expressions for the exponent delta, namely

δr≥1 = 1
3(1 + r + q) , δr≤1 = 1

3(2 + q) . (4.38)

Looking at the triangle constraints one sees that any model in this class (either AdS or
Minkowski) has δ in the range 2/3 ≤ δ ≤ 1. Here we have defined δ in terms of the lightest
of the two KK scales (either Mx

KK or My
KK). If one rather considers the δ corresponding to

the subleading tower, lower values like δ = 1/2 may be reached. Concerning the examples
discussed in section 4.1, the DGKT-CFI AdS model corresponds to the black dot with
δ = 7/9. The Minkowski examples without metric fluxes in section 4.1.2 correspond to
the dotted red line which has 11/15 ≤ δ ≤ 1. The AdS examples with metric fluxes in
section 4.1.1 correspond to the blue dot, which is outside the perturbative regime.

4.3.3 Relating the GDC with the SDC

The goal of this section is to point out the relation between the original SDC [6] and our
GDC for Minkowski vacua, in a similar way to the connection between the ADC and the
GDC for AdS vacua discussed above. Minkowski vacua are typically characterized by the
presence of flat directions associated to the subset of the moduli which are not fixed, as
it occurs in the no-scale examples discussed above. Therefore, there is a subspace of the
original moduli space which remains flat, i.e. with vanishing potential (at least classically),
so that one can freely move within that subspace. The claim is then that as we move in
the aforementioned subspace of the moduli space in order to make the gravitino mass tend
to zero, we also approach an infinite distance point. The presence of the tower of states
which is predicted by the GDC is then guaranteed by the SDC too. Recall the precise form
of the SDC (see section 2 for more details). If we now identify the tower predicted by the
SDC and the one from the GDC, we can calculate the coefficient α in the SDC from the δ
in the GDC (and viceversa). Writing

Mtower = c mδ
3/2 = c′e−αd, (4.39)

and taking logarithms we obtain

log c+ δ log(m3/2) = log c′ − αd. (4.40)

Asymptotically, both sides tend to −∞ when the gravitino mass vanishes and the field
distance diverges and we can therefore neglect the constant contributions coming from the
first term in each side. Therefore we obtain

α = −δ
log(m3/2)

d
, (4.41)

On the other hand we have shown that in general in this class of models m3/2 ∼ 1/u3/2

whereas the proper distance in the one-dimensional subspace spanned by u takes the form

d =
∫ √

2KUŪ du =
√

3
2 log u+ const. u→∞−−−→

√
3
2 log u. (4.42)
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Therefore we see that the point at which the gravitino mass vanishes is indeed at infinite
distance, as

m3/2 ∼ e−
√

3
2 d , α =

√
3
2 δ . (4.43)

It is important to remark that whereas the prefactor in the exponential of the SDC,
α, is related to the value of δ, the fact that the gravitino mass is exponentially light with
the proper distance is guaranteed as long as δ > 0. One could then say that the GDC in
Minkowski space is guaranteed to hold if the SDC (with a positive α) is fulfilled.

Note that the general range we have found for δ, 1/3 ≤ δ ≤ 1 then translates to a
range for the exponent α of the SDC

1√
6
≤ α ≤

√
3
2 . (4.44)

This inequality is consistent with results of [7, 9, 11, 13] which studied a different class of
asymptotic limits of N = 2 theories in which the towers studied are BPS states becoming
massless in the large Kähler (rather than complex structure) limit in type IIA.

4.3.4 The gravitino mass and tensionless strings and membranes in toroidal
type II orientifolds

As we mentioned, the limit m3/2 → 0 not only drives towers of KK states exponentially
massless. Different types of both fundamental and emerging strings, as well as membranes,
also become tensionless. The above class of toroidal orientifold is a good laboratory to
explore which extended objects become tensionless when the gravitino gets massless, as
well as the rate at which they do.

Let us start with strings. In addition to the fundamental strings, CY3 type IIA orien-
tifolds feature a number of emergent strings which come from branes wrapping cycles in
the CY3, see e.g. [14, 15, 17–19]. In particular there are strings coming from D4-branes
wrapping (unprojected) 3-cycles in the CY3 and others from NS5-branes wrapping even 4-
cycles. In the case of the toroidal orientifold the 4-branes wrap the invariant 3-cycles which
we call B0 and BI , I = 1, 2, 3 with tensions given in table 1. Defining the δ parameter for
string particles as T 1/2

string ∼ mδ
3/2 it is easy to check that these exponents in this class of

isotropic s, t, u orientifolds are given by

δF = 1
2(1 + r

3) , δD4BI = 1
3 , δD4B0 = r

3 , δNS5 = q

3 , (4.45)

where the subindex F stands for the fundamental string. From these values it is clear that as
m3/2 → 0 both the fundamental strings and the emergent strings from D4-branes wrapping
the I = 1, 2, 3 cycles become tensionless. Concerning the other strings coming form D4B0

and NS5-branes also typically become tensionless except for some field directions with r = 0
or q = 0 respectively. We will further comment on the role of tensionless strings at large
moduli in section 5.

As we already remarked, the m3/2 → 0 limit also drives some membranes tensionless.
In particular membranes are obtained from Dp-branes, p = 2, 4, 6, 8 wrapping (p − 2)
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cycles in the CY3. There are also membranes from the NS5 brane wrapping the B0, BI 3-
cycles. The effect of tensionless membranes is less clear from the point of view of towers of
states. One point to remark though is that, as explained in [22], tensionless strings appear
as boundaries of these membranes and their presence is required by consistency in these
compactifications. Looking at table 1 and defining now the δ exponent as T 1/3

mem = mδ
3/2,

one obtains for the exponents

δDp = 1
3

(
1 + r

3 + (5− p)
3 q

)
, δNS50 = 1

3

(
1− r

3 + q

)
, δNS5I = 1

9(1 + r + 3q) . (4.46)

All these membranes become tensionless as the gravitino mass goes to zero, in agreement
with the general arguments that we gave in section 3.

4.3.5 The GDC and dS runaway vacua

In the previous discussion we have considered AdS and Minkowski vacua, with the gravitino
mass defined at the minima or determined by a flat direction in the case of Minkowski
vacua. What about dS vacua? We do not have any classical dS vacua other than runaway
examples to make a test. Still in those vacua one can define a field-dependent gravitino
mass in terms of the EFT as m2

3/2 = eK |W |2 and formally explore the GDC in those
models, studying the connection between the massless gravitino limit and towers of states.

Unlike the case of AdS and Minkowski minima, the field-dependent gravitino mass de-
pends in general in all moduli through the eK factor, since there is no minima and hence no
cancellation of the positive definite terms in the scalar potential with the orientifold contri-
bution to the potential. The fluxes in general will not contribute to tadpole cancellation in
the class of vacua we are considering. Thus the moduli dependence of the gravitino mass
will reflect the particular form of the superpotential W . Still, it is interesting to consider
some simple examples of such runaway flux potentials to compare the gravitino mass scale
with the towers of states appearing asymptotically. We will take again as a laboratory the
class of toroidal type IIA orientifolds considered in previous sections.

We will consider three simple monomial examples with superpotentials W1 = e0,
W2 = eT and W3 = hU . Taking the asymptotic directions again as s ∼ ur, t = uq,
one finds for the gravitino masses

m1
3/2 = 1

u(3+r+3q)/2 , m
2
3/2 = 1

u(3+r+q)/2 , m
3
3/2 = 1

u(1+r+3q)/2 , (4.47)

and correspondingly for the δ exponents

δ1
r≥1 = 1

3
(1+r+q)

(1+r/3+q) , δ2
r≥1 = 1

3
(1+r+q)

(1+r/3+q/3) , δ3
r≥1 = 1

3
(1+r+q)

(1/3+r/3+q) , (4.48)

δ1
r≤1 = 1

3
(2+q)

(1+r/3+q) , δ2
r≤1 = 1

3
(2+q)

(1+r/3+q/3) , δ3
r≤1 = 1

3
(2+q)

(1/3+r/3+q) . (4.49)

Comparing to the case of AdS and Minkowski minima in eq. (4.38) one observes that the δ
exponents are in general smaller, so that the corresponding KK towers are driven to zero
but in a milder way.
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It is interesting to observe that in these monomial examples the implication that mem-
branes become tensionless as m3/2 → 0 is very explicit since one can write

m1
3/2 = |e0|

T (D2)
M2

P
, m2

3/2 = |e|T (D4)
M2

P
, m3

3/2 = |h|T (NS5I)
M2

P
, (4.50)

in terms of membranes obtained by wrapping appropriate cycles in the internal manifold,
as expected.

For completeness, let us mention here that the models discussed in this section are
all compatible with the (refined) de Sitter conjecture [60, 61] (see also [62–65] for different
arguments against the existence of dS in QG). In the present case of runaway examples
one only has to check that |∇V | ≥ cV , with c a positive constant of order 1 (in Planck
units). The explicit form of the potentials in each case is

V 1 = 4eK |e0|2, V 2 = 4eK |e|2
[1

3 t
2 + (Im T )2

]
, V 3 = 4eK |h|2

[1
3u

2 + (Im U)2
]
. (4.51)

Thus we can compute the norm |∇V | of the potential gradient by using the metric on field
space given by the kinetic terms of the moduli, i.e.

|∇V | = [2(
∑
I,J

KIJ̄∇IV ∇J̄V )]1/2, (4.52)

where KIJ̄ is the inverse Kähler metric in moduli space. In the asymptotic regime, with
u → ∞, s ∼ ur, t ∼ uq, where also the contribution to the scalar potential from their
axionic partners can be neglected, one can check this to be proportional to V , with a
flux independent constant c equal to (

√
14,
√

26/3,
√

26/3) for the examples 1), 2) and
3), respectively. Note that this basically amounts to restrict ourselves to the “vacuum”
condition, which fixes Im T = 0 or Im U = 0. However, it is also interesting to mention
that even though the dS conjecture seems to be fulfilled asymptotically, this also holds
even when considering the axions outside the minima, since |∇V | will be greater than that
of the minimum, and thus |∇V |/V > c is still satisfied. Hence, the constants ci computed
above really give a lower bound for the constant appearing in the dS conjecture. Also
note that these bounds agree with some general no-go theorems in type IIA geometric
compactifications [66], which state that in such compactifications in string theory with
fluxes and orientifolds any V > 0 satisfies |∇V |/V ≥

√
54/13.

Let us end this section by making a couple of comments regarding the Higuchi
bound [67, 68]. This is a consistency condition that must be satisfied when considering
dS backgrounds. Unitarity of massive representations of higher spin particles imposes a
bound, which implies that the lightest KK replica of the graviton must obey

M2
KK ≥ 2H2 = 2 V0

M2
P
. (4.53)

On the other hand if the GDC is fulfilled by the KK compactification scale, then by
inserting (3.1) into the relation above one would have

m2δ
3/2

MP
2(δ−1) ≥ 2 V0

M2
P
. (4.54)
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This means that as the gravitino mass goes to zero, V0 → 0 also, which is consistent with
the expectation that one should recover supersymmetry when the gravitino approaches the
massless limit, and hence Minkowski. Note also that then a dS distance conjecture applies
since, when the limit V0 → 0 is taken, it comes along with a tower of massless states, which
is the one of the GDC.4

Note that in the previous runaway examples the Higuchi bound is obeyed although,
being non-stable vacua, it is not obvious that the conditions of unitarity on which it is based
should apply. However, if one insists in any case in the Higuchi bound to be satisfied in
these examples, one can see that our previous requirement of δ ≤ 1 for the EFT to be under
control is actually in agreement with this unitarity bound in dS. Thus, if one has V0 → 0,
eqs. (4.53) and (4.54) above, combined with the fact that our runaway potentials (4.51)
satisfy m2

3/2 ' V0, require δ < 1. Thus, in this sense, the Higuchi bound is compatible with
the GDC and moreover imposes no further restrictions to its most relevant parameter δ.

5 The gravitino mass in the limits of moduli space

The analysis presented up to this point in order to show evidence in favour of the GDC
has focused mostly on type II compactifications to 4d in some specific toroidal orientifold
models. We have discussed examples of vacua in the large volume approximation in IIA
(large complex structure in IIB) and weak coupling limit so as to remain within the regime
of applicability of the effective supergravity action. Hence, the following question arises
quite naturally: can we be more general in our assertions to include a broader class of
vacua obtained through generic CY3 orientifold compactifications and still be able to give
explicit values of the relevant parameters appearing in the GDC? If this is to be case, we
could then perhaps give some model-independent constraints on the parameter δ in the
GDC, or extend our results to other infinite distance points in moduli space apart from
the commonly explored ones.

In this section we will try to address these questions by using the machinery of limiting
Mixed Hodge Structures (MHS). In the next subsection we will present the main results
and formulae to be used in the upcoming ones. This formalism will give us some tools to
treat (some of) our type II asymptotic vacua examples of section 4 in a unified way and
extract the general features appearing in those simple but instructive models. However,
before jumping straight into the discussion that is to follow, a cautionary note is in order.
The framework of asymptotic Hodge theory is well adapted to discuss independently the
complex structure [8] and (the mirror) Kähler structure sectors [9] of type II string com-
pactifications. However, we have seen in our examples that the on-shell gravitino mass
does not seem to depend on the Kähler moduli in type IIA (complex structure in type
IIB). Still, in order for the aforementioned mass to approach zero while having the effec-
tive description under control, we saw that we needed to sample directions in moduli space
with both sectors taken to the boundary.

The focus will be therefore to study those models that can be lifted to flux compact-
ifications in F-theory on CY4, in the spirit of [32]. This will be briefly reviewed in the

4We thank D. Lüst and C. Vafa for discussions on this issue.
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next subsection. The reason for concentrating on F-theory compactifications is that it let
us study examples in type IIA supergravity (after taking the suitable limits and making
proper identifications through mirror symmetry) where both the dilaton and Kähler mod-
uli are taken to infinity. Moreover, we will restrict ourselves to codimension-two loci in
the boundary of moduli space. The reason for this is twofold. First, these cases were
extensively analysed in [32], and we can then apply their results directly to our setting.
Second, by relaxing some constraints on the asymptotic scalar potential in the dual type
IIA theory, they showed that the only possible AdS vacua were precisely the infinite family
studied in [38, 39], which we have discussed earlier in section 4.1.

5.1 Rudiments of asymptotic Hodge theory

The raison d’etre of this section is to provide the reader with the main results and ap-
plications of Asymptotic Hodge Theory to string compactifications and the Swampland
Program [7–10, 12, 31–35]. This will serve us to set also the notation that will be used in
the discussion that is to follow.

One of the main observations about the moduli space of CY compactifications, denoted
here as Mmod, was that it is neither smooth nor compact. In fact, it was shown [69]
that there are special loci where the compactification manifold becomes singular. Those
points were seen to lay at both finite (e.g. the conifold [70, 71]) and infinite distance
(measured with the metric defined in moduli space). The latter are the main goal of some
of the most recently studied Swampland Conjectures, as the SDC (see section 2), and thus
one of the main focus in this work. Locally, each singular locus can be described as the
intersection of several divisors. One can thus construct a set of local (complex) coordinates
in moduli space, T a = ta + iba, with a = 1, . . . , dimC(Mmod), such that this intersection is
characterized by some subset of them having infinite real part, i.e.

T j = tj + ibj , T j →∞ (5.1)

where the index j = 1, . . . , n̂ (with n̂ ≤ dimC(Mmod)) denotes the subset of the moduli
which are taken to infinity. Notice that the real (imaginary) part tj (bj) corresponds here to
the saxion (axion) of the associated 4d field. For definiteness we will refer henceforth to the
complex structure moduli space,Mcs, of a general CY d-fold (CYd), but one should note
that similar arguments let one analyse singular limits in other sectors, such as the Kähler
structure sector of its mirror compactification [9]. Hence, all the relevant information is
encoded in the holomorphic (d, 0)-form Ω(T a), which depends on the complex structure
local coordinates. This form belongs to the middle cohomology Hd(CYd,C) of the internal
(complex) manifold, such that for fixed complex structure, it can be decomposed into a
direct sum as follows

Hd(CYd,C) = Hd,0 ⊕ . . .⊕H0,d . (5.2)

As a consequence of being at the singularity, though, the above splitting breaks down.
However, one can still extract some refined mathematical structure captured by the so-
called Deligne splitting [72], Hd(CYd,C) = ⊕d

p,q=0 I
p,q. Each of these subspaces I(p,q) has
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I3,3

I2,3

I1,3

I0,3

I0,2

I0,1

I0,0

I1,0

I2,0

I3,0

I3,1

I3,2

I2,2

I2,1 I1,2

I1,1

Figure 2. Limiting Hodge diamond for the middle cohomology H3(CY3,C) of an unspecified CY3.

dimension ip,q = dimC(Ip,q), which are related to the usual Hodge numbers hp,q by the
following expression ∑

q

ip,q = hp,d−p. (5.3)

This may be depicted by the limiting Hodge diamond displayed in figure 2.
To build this splitting we need some local information near the singular locus. The

central element in this respect is the monodromy matrix, which captures the behaviour
of the holomorphic (d, 0)-form when one encircles the singularity, i.e. under the axionic
shift T j → T j + i. It is convenient at this point to look at the period vector, usually
denoted as Π, that comprises the coefficients of Ω when expanded on an integral basis µI ,
I = 1, . . . , 2hd−1,1 + 2, of Hd(CYd,Z), that is

Ω = ΠIµI . (5.4)

The periods are not uniquely determined and undergo some transformation Π(T j + i) =
Rj Π(T j) via the aforementioned shift, which is encapsulated by the monodromy matrix
Rj . However, the interesting object is not the monodromy matrix itself but its logarithm,
Nj = log(Rj), which can be seen to be nilpotent,5 i.e. that there exists some mj ∈ Z
such that Nmj

j 6= 0 and N
mj+1
j = 0. What is most striking about this is the fact that

the nilpotent matrix captures a great deal of information about the singularity. Hence, by
means of the Nilpotent orbit theorem [73] one can write the above period vector as

Π(T j) = e−iT
jNj a0 +O

(
e−2πT j

)
(5.5)

where both Π and a0 may additionally depend on the non-divergent moduli. Several com-
ments are in order. First, it should be noted that the nilpotent orbit lets us extract the
singular part of the period vector, which explicitly depends on the nilpotent matrix Nj

5Strictly speaking one has to first extract the unipotent part of the monodromy matrix, which can be
reached after a change of basis [7].
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(notice that under the shift T j → T j + i, the above formula states that Π transforms by
the monodromy matrix Rj). The order O

(
e−2πT j

)
terms are subleading in the asymp-

totic expansion, and thus can be neglected when approaching the singular locus T j →∞.
Finally, one should note that by the nilpotency property of Nj , the exponential in (5.5)
only contains a finite number of terms, leading to a polynomial dependence on the diver-
gent moduli.

Moreover, the nilpotent matrix can be used to give a classification of the allowed
singularities within the moduli space under consideration [7, 8, 31]. This is done by studying
the degree of the above polynomial, i.e. which dj ∈ Z≥0 fulfills the condition

(Nj)dj a0 6= 0, and (Na)dj+1a0 = 0. (5.6)

The latter is usually indicated by referring to the corresponding singularity as one of
type I for dj = 0, type II for dj = 1, etc. For CY3 and CY4 this classification is further
refined adding some subindices to the singularity type (see e.g. [8, 32]).

Interestingly, when several moduli are sent to infinity (i.e. for codimension greater
than 1 singular loci), path dependence becomes important, and one has to specify the
order in which one approaches the boundary. Hence, one obtains a different limiting
Hodge diamond at each step of the (accumulated) singularity. This provides us with an
enhancement chain [8] characterized again by the nilpotent matrix N(j) = N1 + . . . + Nj ,
as shown below [8]

t1→∞−−−−→ Type X(1)
t2→∞−−−−→ Type X(2)

t3→∞−−−−→ . . .
tn̂→∞−−−−→ Type X(n̂) (5.7)

The nilpotent orbit leaves an expression for the period vector which is still difficult to deal
with. In order to simplify further one can introduce a growth sector, which amounts to
divide the local patch around the singularity into disjoint sectors by introducing a specific
ordering, namely

R1,2,...n̂ =
{
T j = tj + ibj | t

1

t2
> γ,

t2

t3
> γ, . . . ,

tn̂−1

tn̂
> γ, tn̂ > γ, bj < δ

}
γ�1,δ>1

. (5.8)

The analysis that follows will be valid for any path belonging to the specified growth sector.
As long as one stays inside it, the results from the sl(2)-orbit can be applied as in [8].

Recall that the nilpotent orbit approximation discarded exponential corrections to the
period vector Π(T a). The sl(2)-orbit further neglects subleading polynomial corrections
in tj/tj+1, which are obviously suppressed within the chosen growth sector. Moreover,
one can construct a particular splitting of the real cohomology from the R-split Deligne
splitting (see [8])

Hd(CYd,R) =
⊕

r=(r1,...,ra)
Ar, (5.9)

where −d ≤ rj ≤ d. Note that to make this splitting one has to restrict oneself to the real
cohomology as shown in figure 3.
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r = 3

r = 2

r = 1

r = 0

r = −3

r = −2

r = −1

Figure 3. Limiting Hodge diamond displaying the rj levels in which generic d-forms live in the
singularity. For definiteness, we have particularized here to the case d = 3.

Finally, another important concept is that of the Hodge norm. This is inherited from
the inner product between forms in the internal manifold

||α||2 = 〈α, α〉 =
(∫

Xd

α ∧ ∗α
)
, (5.10)

where Xd denotes the compactification manifold and ∗ the Hodge-star operator associated
to its metric. We will have special interest in the Hodge norm of forms belonging to the
middle cohomology Hd(CYd,R), the reason being that the holomorphic form Ω(T a) (and
also the 4-form fluxes that we will consider later in next section) enter in this category.
Moreover, the Hodge star operator acts within this space as a multiplicative factor [8].
The point here is that this norm also gets simplified if we use the sl(2)-orbit approximation
within a given growth sector. Hence, if α ∈ Ar, then the Hodge norm reduces simply to

||α||2 ∼
(
t1

t2

)r1 (
t2

t3

)r2

. . . (tn̂)rn̂ , (5.11)

where again not only exponential but also polynomial corrections in the divergent moduli
have been neglected, and ∼ indicates that we are not paying attention to finite prefactors.
It is worth mentioning too that the Ar subspaces are ‘orthogonal’ in the sense that for
α ∈ Ar, β ∈ Ar′ we have 〈α, β〉 = 0 unless r + r′ = 0. This turns out to be a key property
to approximate quantities asymptotically, such as Kähler potentials that take the form
K = −log

〈
Π, Π̄

〉
' −log

(
(t1)d1(t2)d2−d1 . . . (tn̂)dn̂−dn̂−1

)
.

5.2 Application to F-theory flux compactifications

Here we want to briefly recall how flux compactifications of 11d supergravity (low energy
limit of M-theory) on (smooth) CY4 relate to some type IIB/A orientifold compactifications
in special limits, following closely the exposition in [32] (see also e.g. [74, 75] for more
details). Readers familiar with this material may jump to section 5.3.

Consider M-theory compactified on a CY4 dubbed X4, leading to 3d N = 2 super-
gravity. We allow for some G4 flux along some internal four cycles on the CY4. This leads
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to a scalar potential of the form

VM = 1
V 3

4

(∫
X4
G4 ∧ ∗G4 −

∫
X4
G4 ∧G4

)
, (5.12)

with V4 the volume of X4. Additionally, there is a consistency relation linking the flux
G4 and the curvature of the internal manifold [76]. We will be mostly concerned with
vacua determined by the complex structure moduli zJ , J = 1, . . . , h3,1(X4) of the internal
manifold. Hence, we further restrict to 4-form fluxes satisfying the primitivity condition
J ∧G4 = 0 (i.e. G4 ∈ H4

p(X4,R)). As a consequence, VM will depend only on the complex
structure moduli and the overall volume factor, rendering the potential positive definite
due to its no-scale condition. In supergravity language, the potential can be then rewritten
in terms of a Kähler potential K, and a superpotential W as follows

VM = eKKIJ̄DIW (DJW ), (5.13)

where, as usual, DIW = ∂IW+KIW andKIJ̄ is the Kähler metric in the complex structure
moduli spaceMcs of X4. For completeness, we recall here the usual expressions both for
the Kähler potential,

K = Kcs(z, z̄)− 3 log (V4), Kcs(z, z̄) = − log
(∫

X4
Ω(z) ∧ Ω̄(z̄)

)
, (5.14)

and the Gukov-Vafa-Witten superpotential [45]

W =
∫
X4
G4 ∧ Ω(z). (5.15)

We proceed now sketching the chain of dualities that lets us relate this potential to an
analogous one in type II orientifold compactifications. One can see that the above potential
lifts almost directly to an F-theory scalar potential if X4 is taken to be an elliptically fibered
CY4 (with base denoted by B3) by shrinking the volume of the torus fibre to zero. Hence
one obtains the following scalar potential in F-theory

VF = 1
V 3
b

(∫
X4
G4 ∧ ∗G4 −

∫
X4
G4 ∧G4

)
, (5.16)

where Vb denotes the volume in the 10d Einstein frame of a type IIB compactification
over B3.

Finally, one can take Sen’s weak coupling limit [77], to describe a type IIB CY3 orien-
tifold compactification over the threefold base B3. If one further goes to the string frame
and makes use of mirror symmetry, the following type IIA orientifold (in the mirror X̃3
CY3) scalar potential can be obtained [32]

VIIA = 1
4s3 |ΩA|4

(
s

t3

∣∣∣ΩA
∣∣∣2 ∫

X̃3
H3 ∧ ∗H3 + 1

st3

∑
p even

∫
X̃3
Fp ∧ ∗Fp −

∫
O6/D6

F0H3 + . . .

)
.

(5.17)
Note that, as customary, we have labelled the saxion corresponding to the dilatonic chiral
multiplet as s, and the Kähler modulus t. From the above formula it is obvious that it
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correctly reproduces the contributions to the scalar potential arising from the NS-NS H3
form flux and R-R Fp form fluxes considered in e.g. [39], while the dots denote some extra
contributions coming from geometric and non-geometric fluxes which will be taken into
account later on.

Before proceeding we should make a couple of important observations. First of all,
from duality with M-theory we recover also the piece coming from the tensions of the
localised sources, i.e. O6 planes and D6 branes. This last term will be the only negative
contribution. Second, since this potential is dual to the one introduced in (5.13), which
as we said was manifestly positive-definite, there must exist some correlation between the
local term and the fluxes. However, as was argued in [32], one can relax this correlation
between the flux parameters so that more general potentials in type IIA, with the same
dependence on the two moduli that will be sent to the limit (i.e. s, t), can be described.
Thus non-positive definite potentials can also be analysed, as required to recast our AdS
vacua within this framework. However, in order to do that we will have to take s ∼ u in
our examples (which is indeed compatible with the vacuum conditions, see section 4.1), so
as to have an effective two-moduli problem.

Two-moduli limits in F-theory. Henceforth we will restrict ourselves to the two-
moduli case, as anticipated before. We will also make use of the main tools of MHS
reviewed in section 5.1. Along the way we will see that the form that the type IIA poten-
tial adopts in the asymptotic limits can be readily identified with the ones we have used
in this paper, provided we set s ∼ u and a new “free” parameter η that will be introduced
later on in this subsection equal to 3 [32].

Hence consider the complex moduli space of a CY4 with h3,1 = 2 and send both coor-
dinates to a singular limit (see [35] for more details), which can be locally parametrized as

S = s+ ib1, T = t+ ib2, (5.18)

such that the singularity is reached if s, t→∞. Also we fix a growth sector (cf. (5.8))

Rs,t =
{

(s, t) | s
t
> γ, bi < δ

}
γ�1,δ>1

. (5.19)

Note that we could exchange the coordinates so as to consider the alternative growth
sector. However, we will be more interested in this particular ordering for reasons that will
become clear in next subsection. It is important to keep in mind that we are taking γ to
be very large so as to be able to use the strict asymptotic approximation (see discussion
above (5.9)), in which one discards exponential and subleading polynomial (in s/t) cor-
rections, which in this context can be interpreted as perturbative and/or non-perturbative
α′ corrections.

Recall that we could classify the singularity type as well as the allowed enhancement by
studying the corresponding monodromy matrix. For a complete list in this two-moduli limit
case we refer the reader to tables 5.1, 5.2 in [32] (and the original work [78]). Regarding
the R-split of (5.9), one is interested in this case in the one corresponding to the primitive
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part of the middle cohomology, H4
p (X4,R), of the CY4, as the G4 flux belongs to this class

H4
p (X4,R) =

⊕
r=(r1,r2)∈Γ

Ar1r2 , (5.20)

where the set Γ of possible (r1, r2), with −4 ≤ r1, r2 ≤ 4, depends on all this data.
A crucial concept for us will be that of unbounded asymptotically massless (UAM)

fluxes [32]. These denote those components in Ar1r2 above which have the following
properties

• 〈Ar1r2 , Ar1r2〉 = 0,

•
〈
Ar1r2 , G

rest
4
〉

= 0,

• ‖Ar1r2‖ → 0 on every path with s, t→∞ ,

where Grest
4 above refers to the rest of the components of the 4-form flux which are

not unbounded. The significance of these UAM fluxes is that they do not contribute
to the tadpole cancellation condition and hence, at least from this perspective, are not
bounded, and also their contribution to the potential asymptotically vanishes (they produce
a mild backreaction).

5.3 Type II vacua in codimension-two boundaries

Now it is time to apply these results to gain some information about the asymptotic scalar
potential in type II orientifold compactifications. Recall that we are particularizing to the
two-moduli case here. Thus, we have two scalar fields, which in type IIA are taken to be
the dilaton s and the (universal) Kähler structure modulus t, both becoming large as we
approach the boundary. We also need to specify a growth sector in order to apply the strict
asymptotic approximation, which in our case will be Rs,t, whose paths are characterized
by s growing faster than t. Note that the motivation for this becomes clear once one
takes s ∼ u, as happened in our AdS examples, and asks for the supergravity theory to
stay within the string perturbative regime. Indeed by substituting in (4.34), we see that
the 10d dilaton vev goes like eφMP ∼ MP

t3/2

s , justifying our choice (see discussion in
section 4.3.2).

We start then from the generic asymptotic potential for the codimension-two limit

VIIA = 1
sη

 ∑
(r1,r2)∈Γ

Vr1r2 s
r1tr2−r1 − Vloc

 , (5.21)

where (r1, r2) are the corresponding weights of the two sl(2,C)-triplets in the intersection
locus of the singular point. The different values than can happen depend on the type of
singularities (and enhancement) that is realized in each specific case. Recall that the coeffi-
cients Vr1r2 represent the different components of the G4 flux in the limiting Hodge splitting
of H4

p (X4,R) (actually an axion dependent combination thereof), and we have loosen the
correlation between them so as to eliminate the positive definiteness constraint and accom-
modate more generic vacua. Also note that we’ve introduced a general dependence on the
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exponent of the dilaton s in the prefactor. This intends to capture the different limits one
can approach in the type IIA setting. Henceforth, though, we will stick to the case η = 3,
as this is the one corresponding to the weak coupling and large volume limit, where our
classical vacua reside. It was shown in [32] that this limit (which is the dual of the type
IIB orientifold arising from Sen’s weak coupling limit in F-theory) actually corresponds to
a singularity enhancement (in the CY4) of the type II0,1 → V2,2. This means that the al-
lowed values of the pairs (r1, r2) can be read directly from table 5.4 in [32]. Let us mention
also here that the possible UAM fluxes that appear in this particular enhancement can be
found in table 5.5 of [32].

All in all, the most generic asymptotic flux potential we can get at this singularity is
of the form

VIIA = 1
s3

(
VF0t

3

s
+ VF2t

s
+ VF4

st
+ VF6

st3
+ Vh0s

t3
+ Vas

t
+ Vg1st+ Vg2st

3 − Vloc

)
, (5.22)

where the naming of the different components has been done such that one can identify
them with the contribution coming from the R-R fluxes Fp, NS-NS flux h0, metric fluxes
a, and non geometric ones g1, g2 (cf. eq. (4.4)). Notice that this discussion is not restricted
only to the case in which we have just two moduli. Indeed, it is still valid even when
our moduli space has more dimensions but we choose some flux configuration such that
the vacuum condition fixes some of them to be proportional to others, leaving us with an
effective two-moduli problem.

With all this information we can understand using this language the results in our
supersymmetric and non-supersymmetric AdS vacua discussed in section 4.1.1, and also the
Minkowski no-scale vacuum without metric fluxes of 4.1.2. We will discuss in the following
each of them in turn. Note also that this formalism does not capture our Minkowski
no-scale with metric fluxes example in type IIA of section 4.1.2. The reason for this is
that, as will become clear later, to have a minimum at parametric control within our fixed
growth sector, it is crucial that there is at least one flux component that is unbounded and
asymptotically massless, as discussed below (5.20). However, as was demonstrated in [32]
the only ones that fulfill this condition at weak coupling and large volume correspond to
the R-R fluxes F6 (e0 in our notation) and F4 (e in our notation). Thus, given that this
model contain none of these special fluxes (see eq. (4.17)), we expect the moduli to be
fixed in terms of fluxes constrained by tadpole cancellation and hence bounded. This is
indeed what happens. Those examples moreover cannot be made to treat s and u somewhat
symmetrically (as is evident from (4.18)) and thus cannot be translated to this new setting.

Before discussing each of these cases it is necessary to comment on the strategy to
look for vacua at parametric control. Thus recall that we are looking for vacua obtained
by minimizing (5.22)) which result in an asymptotic stabilization of s, t. For this to be the
case (even when taking s, t→∞), it is necessary that the different terms in the potential
scale asymptotically in the same way. Otherwise some terms will gain more importance
than others in the limit and we loose control on the solution. Hence we look for solutions
of the form s ∼ ρr, t ∼ ρq. Thus, each component Vr1r2 of the potential will scale as follows

Vr1r2 ∼ ρ(r1−3)r+(r2−r1)q (5.23)
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Note that this does not need to be the case for the class of unbounded fluxes (if any), as
they can be made to scale the desired way to contribute as the other terms in the potential.
Thus we need to include those pairs (r1, r2) and fix a relation between r, q such that every
term included in VIIA yields the same asymptotic scaling. However, it is important to keep
in mind that for the results of the strict asymptotic approximation to apply we need also
to be sure that we stay in the growth sector Rs,t, as discussed at the beginning of this
subsection. This boils down to the necessity of having r > q.

AdS vacua. Let us look at the DGKT-CFI model of section 4.1.1. By staring at the
superpotential (4.8) we see that this includes an unbounded flux (the one coming from
F4) and components coming from H3 flux (h0 in (5.22)) and F0 (Roman’s mass). Recall
that our vacuum conditions, both in the supersymmetric (4.9) and non-supersymmetric
(see discussion after (4.12)) vacua, fixed the complex structure u to be proportional to
s. Thus, effectively we have a two-moduli problem, the one presented and discussed in
previous subsections, and we can readily apply the results. First of all, we see that for the
terms to scale the same way asymptotically and give a minimum at parametric control we
need r = 3q, i.e. s ∼ t3, which can be seen to be the case in all of our AdS vacua (see
e.g. (4.9)). With this relation, one can check that all the terms appearing in VIIA (including
Vloc) yield to the same scaling, and also (since r > q) we keep ourselves within the fixed
growth sector, so that we can trust our minima in the limit. This reinforces the discussion
in section 4.2, where it was argued that the potential at the minima, V0, should scale as
the contribution from the localised sources Vloc yielding to a dependence exclusively on the
scalars in the underlying quaternionic space (i.e. dilaton and complex structure). Notice
that this is valid both for the supersymmetric and non-supersymmetric cases. In the former
V0 = −3m2

3/2, and this last statement extends immediately to the gravitino mass. For the
non-supersymmetric case even though we don’t have this explicit relation between the c.c.
and the gravitino mass, its square is still proportional (see eq. (3.3)) to the unique negative
summand in the Cremmer et al. formula (3.10) for the N = 1 supergravity potential and
hence should have the same scaling as the other summands.

Recall that we also had AdS extrema by including metric fluxes. This is discussed
around (4.13). There we were looking specifically for non-supersymmetric solutions and
we specialized to the case were no constant moduli-independent contribution to W was
included, i.e. we set e0 = 0 (see eq. (4.13)). We could, in principle, have included such a
contribution, and the analysis for the vacua with metric fluxes would have proceed anal-
ogously (see [39] for more details). In the following, we will consider this latter situation,
which simply amounts to change the value of the Kähler structure saxion t in the vacuum
from (4.14) to the following one [39]

± 9ct2 = e0 −
h0e

a
− h2

0c

3a2 (5.24)

The vacuum conditions fixed again s ∼ u, so that we can discuss these vacua within this
context as well. Note that to have indeed a solution we had to set m = 0. This means that
we are considering again a flux potential with two unbounded and asymptotically massless
fluxes (those coming from F4 and from F6) and some other components which are bounded
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by the tadpole condition. Moreover, in order to have a solution at parametric control, it
is convenient (although not essential in this case) to turn off the contribution of the h0
flux (which can be seen to be consistent with (5.24) above and with the vacuum condition,
as discussed after (4.13), leading to both supersymmetric and non-supersymmetric vacua
depending on the sign of e0), as this induces a term in the scalar potential (5.22) that
scales differently than the others (indeed it grows more slowly), and hence gets “diluted”
with respect to those in the asymptotic limit. One can then see that this case is exactly
the other unique AdS solution obtainable through (5.22), as was discussed in [32]. There it
was shown that one can get an AdS vacuum at parametric control if r = q is satisfied and
contributions both from metric fluxes a and the R-R 2-form F2 are included. In this case,
every component scales the same way as the local potential Vloc, validating the arguments
in section 4.2. The problem with this possibility is that, as was pointed out in [32], the
relation r = q implies that even though we are in the asymptotic limit, we do not approach
it by staying in the growth sector Rs,t, and hence the analysis is not valid. In our case
this is seen by the fact that we cannot stay within the string perturbative regime, as was
mentioned after (4.16) (it corresponds to the blue dot in figure 1).

Minkowski no-scale without metric fluxes. To end this section we recast our second
no-scale Minkowski example in section 4.1.2 in terms of this language. To make contact
with the analysis presented here we will further set c = e = 0 in (4.23), which can be seen to
be compatible with the solution. The reason for doing this is that, after this has been done,
we see that the potential we get contains contributions from an unbounded flux (the one
coming from F6), and two other bounded fluxes F0, h0. Note that here again we can make
u ∼ s, as the complex structure is not fixed by the potential. This is entirely analogous to
the case of AdS vacua without metric fluxes of the last subsection, where in order to have a
minimum at parametric control we needed s ∼ t3 to be satisfied, so that every term in the
potential, including the one from localised sources, scales the same way. This solution is
thus seen to be the one presented in section 4.1.2 (modulo this identification of the complex
structure modulus and the restriction imposed on the fluxes).

The parameter δ in the two-moduli limit. This formalism also lets us understand
why the δ parameter in the GDC was 7/9 for the supersymmetric and non-supersymmetric
AdS examples discussed in section 4.1.1, and also for the type IIA Minkowski no-scale
vacuum of section 4.1.2 when Mx

KK ∼ My
KK ∼ MKK (see discussion after (4.28)). The

reason for this is that in these models we can relate the naive compactification scale with the
gravitino mass in our parametrically controlled vacua, by exploiting the scaling arguments
discussed before. Thus, given the KK mass in a generic type IIA CY3 compactification
presented in (4.2), which we recover here for completeness

MKK ∼
Ms

(VA)1/6 ∼
MP
st1/2

, (5.25)

and recalling that in the two-moduli case the only possibility to get (perturbative) vacua
at parametric control forced us to satisfy s ∼ t3 so that Vloc ∼ s−3, one thus sees that the
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KK mass grows as s−7/6. Hence, by the arguments explained in the previous section one
obtains

MKK ∼ mδ
3/2 ⇒ δ = 7/9 , (5.26)

in agreement with our results (cf. figure 1). Let us mention once again that the Minkowski
no-scale model with metric fluxes in type IIA (4.17) did not enter in our discussion in this
section. Recall that the reason for this was that both t and s were fixed at a finite value
in terms of quantized fluxes constrained by tadpole restrictions (see (4.18)), leaving the
(universal) complex structure modulus U undetermined, on which the on-shell m3/2 solely
depends. Thus, even though one could let u grow to infinity (which is indeed necessary
if one wants to maintain string perturbativity), it is not possible to reach the asymptotic
regime in the Kähler plus dilaton sector, and hence the model cannot be recast within the
lines of this section. However, it is interesting to see that this example lead to a different
δ in the GDC, which was 2/3 if one focuses on the leading KK tower of (4.21).

5.4 The GDC, tensionless membranes and tensionless strings

In this section we explore some possible implications for the breaking of the EFT of having
a membrane that becomes tensionless. In particular, we use the unavoidable appearance of
tensionless axionic strings in the same limit, in the spirit of [22, 23], to give an upper bound
for the mass scale of the leading tower that arises as the membrane become tensionless.
To keep the analysis as general as possible, we will use the formalism of limiting MHS
introduced above, but the reader interested in more concrete realizations can check how the
results in this section reduce to the ones in section 4.3.4 for type IIA toroidal orientifolds.

First we restrict ourselves to the growth sector defined in (5.8). Within such a growth
sector, the fluxes can be split as Γ = ⊕

r Γr, analogously to the decomposition of the real
cohomology given in eq. (5.9). More precisely, we group the different terms in this splitting
as [22, 32]

Γ = Γlight ⊕ Γheavy ⊕ Γrest. (5.27)

The labels denote the behavior of the Hodge norm of the fluxes within each subspace,
namely the tension of the membranes dual to the fluxes (and their contribution to the
scalar potential) within Γlight tends to zero, the ones associated to fluxes that belong to
Γheavy diverge, and Γrest corresponds to the ones whose behavior is path-dependent. In
particular, for a CY3 we have

Γlight =
⊕

r
Γr, with r = {r1, . . . , rn̂−1 ≤ 0, rn̂ < 0}

Γheavy =
⊕

r
Γr, with r = {r1, . . . , rn̂−1 ≥ 0, rn̂ > 0} .

(5.28)

In the strict asymptotic approximation, the tension of a membrane with charge qr in
a single Γr (i.e. a membrane that interpolates between a fluxless Minkowski region and one
with the fluxes given by qr) takes a particularly simple expression. It can be computed by
using the sl(2)-approximation for the Kähler potential and the superpotential, which take
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the form [32]

K '− log
{

(t1)d1 (t2)d2−d1 . . . (tn̂)dn̂−dn̂−1
}
,

Wqr 'ρr (qr, b)
(
t1
) d1+r1

2
(
t2
) d2−d1+r2−r1

2 . . .
(
tn̂
) dn̂−dn̂−1+rn̂−rn̂−1

2 ,

(5.29)

and substituting into eq. (3.7) yields [22]

Tqr ' T0 ρr
(
qr, b

i
)

(t1)
r1
2 (t2)

r2−r1
2 . . . (tn̂)

rn̂−rn̂−1
2 , (5.30)

where T0 has units of M3
P and it is finite, even though it can depend on the moduli that

are not taken to infinity (if any) and ρr
(
qr, b

i
)

= eb
iNiqr depends on the axions and the

fluxes and is also finite.6
On the other hand, there exist BPS strings in 4d N = 1 EFTs which implement

monodromies bj → bj + ej when they are encircled, with ei the charge of the string. Their
tension is given by [22]

Tstring =
∣∣∣∣12ej ∂K∂tj

∣∣∣∣ . (5.31)

Taking the approximation for the Kähler potential given in eq. (5.29) for the strict asymp-
totic approximation, we see that for each field that goes to infinity there is a string whose
leading contribution to the tension takes the form

T jstring '
dj − dj−1

2tj . (5.32)

Notice that the above expression nicely matches the expressions given in table 1. Let us
recall that this is in agreement with the idea put forward in [22, 23] that any infinite
distance is associated with an axionic string becoming tensionless. However, note that this
expression is only valid for the cases in which dj − dj−1 6= 0, signaling that the process of
approximating the periods by means of their nilpotent or sl(2)-orbits, as required to obtain
eq. (5.29), does not generally commute with taking derivatives with respect to the moduli
(see [12, 34, 35] for more details on this issue). This implies that the approximation in
eq. (5.29) does not always include the necessary information to calculate these derivatives,
and we should first calculate the derivative of the full Kähler potential and then use the
nilpotent or sl(2)-approximation. However, this is a rather complicated task in general and
we will restrict ourselves to the cases in which d1 6= 0 (i.e. we approach an infinite distance
singularity when t1 →∞), as this turns out to be enough for our purposes in this section.
Note that this is not a very restrictive assumption as long as we study infinite distance
points, and it is enough to compute the tension of the leading string tower in the given
growth sector.

Let us now use this information to give a lower bound for δ in the GDC. As explained
in section 3.2, the gravitino mass in Planck units, given in eq. (3.3), takes the same form

6In models in which some fluxes are not restricted by a tadpole constraint, there can be an extra
divergence associated to the flux becoming large. However, in all the cases we are interested in, the leading
contribution to the tension of the membranes can be captured by a finite flux number.
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as the tension of a membrane interpolating between a fluxless Minkowski vacuum and the
flux configuration in which we want to study the gravitino mass, displayed in eq. (3.7).
That is

m3/2
MP

= eK/2|W | = 1
2
Tmem
M3
P

. (5.33)

Therefore, sending the gravitino mass to zero while staying in the growth sector defined
in eq. (5.8) implies that the membrane with charge vector q equal to the fluxes becomes
tensionless. In particular, following (5.27) the charge can be decomposed as q = ∑

r qr
and therefore all the constituent membranes with charges qr, whose tensions are given by
eq. (5.30), would also be tensionless, implying that all these qr ∈ Γlight. We obtain then, for
the leading contribution to the tension given by the heaviest Tqr , the following expression

m3/2
MP

' Tqr

M3
P

= T0
M3
P

ρr
(
qr, b

i
) (
t1
) r1

2
(
t2
) r2−r1

2 . . .
(
tn̂
) rn̂−rn̂−1

2 . (5.34)

Our goal now is to obtain a lower bound for the δ in the GDC. First, we define r̂i = rj−rj−1,
with r0 = 0. Second, we recall that in the given growth sector t1 > tj > 1 for all j > 1, and
in order to bound the gravitino mass from below we proceed by following the subsequent
steps (where we have omitted the factors of 1/2 in the exponents in order not to clutter
the notation):

1) For every r̂j ≤ 0,7 we use (tj)r̂j ≥ (t1)r̂j for all j.

2) For r̂j>0, if it is followed by r̂j+1<0, we have (tj)r̂j (tj+1)r̂j+1 =
(

tj

tj+1

)r̂j(tj+1)rj+1−rj−1≥

(tj+1)rj+1−rj−1 , where we have used that
(

tj

tj+1

)r̂j ≥ 1. Now, if rj+1 − rj−1 ≤ 0, we
can proceed as in step 1) and utilize (tj+1)rj+1+rj−1 ≥ (t1)rj+1+rj−1 . On the other
hand, if rj+1 − rj−1 > 0 we go back again to the beginning of step 2) if r̂j+2 ≤ 0 or
go to step 3 otherwise.

3) If we have r̂j > 0 followed by r̂j+1 > 0, we use that (tj)r̂j (tj+1)r̂j+1 ≥ (tj+1)r̂j+r̂j+1 =
(tj+1)rj+1−rj−1 . If the exponent r̂j+2 ≤ 0 we go to step 2) and if it is r̂j+2 ≥ 0 we
proceed as in step 3) again.

After following these steps systematically for all tj we arrive at

m3/2
MP

≥ Tqr

M3
P

≥ T0 ρr
M3
P

(t1)
rmin

2 (5.35)

where rmin = min(rj). Using eq. (5.32) we can relate t1 to the tension of the corresponding
BPS string as long as we are studying infinite distance singularities (i.e. d1 > 0), obtaining(

m3/2
MP

) 1
|rmin|

&
(T 1

string)1/2

MP
' mtower

MP
, (5.36)

where & means that we are neglecting finite factors like T0, ρr or d1, which are positive
but not relevant for the asymptotic behavior, and we have used that the mass of the states

7Recall that all rj ≤ 0 but this does not necessarily imply r̂j ≤ 0.
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associated to the string tower scales as m2
tower ' Tstring. We can therefore give a lower

bound for the δ in the GDC because there is always a tower of states associated to a BPS
string becoming tensionless whose mass is lighter or equal than mδcrit

3/2 . Consequently, we
obtain that for the GDC

1 ≥ δ ≥ δcrit = 1
|rmin|

. (5.37)

For a CY3, the minimum value for rmin = −3 and it can only be obtained if the enhancement
chain reaches a type IV singularity, whereas the minimum value for a CY4 may be obtained
at a type V singularity and is rmin = −4. Thus, we can give the following lower bounds
for the parameter in the GDC

δ ≥ 1
3 for CY3,

δ ≥ 1
4 for CY4.

(5.38)

Strictly speaking, when applied to type II theories compactified on CY3, this analysis
only captures the complex structure sector of type IIB and (by mirror symmetry) the Kähler
sector of type IIA. However, as seen in previous sections, for the type IIA setup it is not
possible to stay within the perturbative regime when we approach the Large Volume Point
if this is not accompanied by an infinite displacement in the complex structure sector. One
can try to accommodate this by relaxing the form of the Kähler potential in eq. (5.29) and
using the monodromy generators associated to the complex structure sector of type IIA,
as defined in [19, 50]. We will see momentarily that this allows us to recover the results
from previous sections as well as to recover the adequate F-theory results in the right
approximation. First, following [22], we allow for the Kähler potential to be expressed as

K ' − log
{

(t1)n1 (t2)n2−n1 . . . (tn̂)nn̂−nn̂−1
}
, (5.39)

with nj not necessarily equal to the dj defined by the action of the associated monodromy
generator on the period vector, as in eq. (5.6).8 Thus eqs. (5.30) and (5.34) take the
same form with the replacement rj → r′j = rj + (dj − nj). For type IIA orientifolds,
the no-scale condition for the complex structure moduli space yields a maximum value for
nj = 4. Furthermore, we also have dj = 1 because the associated log-monodromy matrix
has nilpotency order equal to 1 (see [19, 50] for the concrete expressions). The question now
is whether this may give a different value for δcrit. From the (dj − nj) part, the minimum
value that can be obtained is 3. Moreover, if we consider a qr that does not include NS-
NS flux (i.e. rj = −1, as can be seen from the superpotential in eq. (5.29)) we obtain
a δcrit = 1/4. Note, however, that this does not mean that we have an example which
saturates this bound. In fact, we recover the value δcrit = 1/3 as soon as we consider the
presence of NS-NS fluxes (which are typically necessary for cancelling the tadpole sourced
by the orientifold), as their contribution to the superpotential (linear on the corresponding
complex structure moduli) corresponds to the value rj = +1, yielding r′j = −2, which
would not modify the argument below (5.36).

8This is the case when the Kähler potential cannot be written directly as K = − log
(
ΠIηIJ Π̄J

)
.
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Moreover, the bound δcrit = 1/4 can be interpreted in a more natural way as the lower
bound that one would obtain from an F-theory compactification on a CY4, as the complex
structure deformations on such a setup capture the behavior of the dilaton in the dual type
IIA compactifications, which belongs to the complex structure moduli space in this case
and in turn captures its behavior in the limit s ∼ ui.

Finally, it is remarkable that the lower bound δ ≥ 1/3 for CY3, also found in section 4.3
from different arguments, matches the lower bound for the parameter α ≥

√
1/6 in the

SDC found in [11–13] as explained in section 4.3.3.

5.5 Generalizing the relation between the GDC and the SDC

Recall that in section 4.3.3 a relation between the GDC and the SDC was pointed out, at
least for a class of Minkowski no-scale vacua, where some of the moduli remained unde-
termined and hence there was still some freedom to move within the unfixed field space.
There it was shown that if we chose to move along those directions where the gravitino
was rendered asymptotically massless, one could relate the relevant exponents in both con-
jectures to each other, by identifying the tower of light states whose appearance signals
the breakdown of the EFT. Indeed, by particularizing to the type II examples analysed
in section 4.1, we obtained a relation of the form α =

√
3
2 δ , which was shown to repro-

duce the known bounds in the α parameter of the SDC existing in the literature [11–13].
Henceforth our goal will be to generalize this discussion by using the tools of Asymptotic
Hodge Theory introduced in this section.

To begin with, recall that the general relation between the α parameter in the SDC and
the δ in the GDC along a given geodesic path towards a singularity is given in eq. (4.41),
that we recall here for definiteness

α

δ
= −

log(m3/2)
d

. (5.40)

First, let us try to calculate the geodesic distance d. Consider the sl(2)-orbit approximation
of the Kähler potential (5.29), which extracts the leading dependence on the moduli that
diverge (after restricting to a specific growth sector of the form (5.8)) yielding the following
expression in terms of the complex moduli T i:9

K ' −log
(
(T 1 + T̄ 1)d1(T 2 + T̄ 2)d2−d1 . . .

)
, (5.41)

where the di were defined in (5.6) and indicate the singularity type at each step along the
enhancement chain (see discussion around (5.7)).10 Note that this implies that the Kähler
metric in the subsector of the divergent moduli is that of a direct product of hyperbolic

9Here we keep the notation used in the rest of section 5.1 above, denoting the divergent moduli in general
as T i. To make contact with the results in section 4.3.3, recall that the divergent moduli there are the
complex structure moduli, denoted U i.

10To allow for more general Kähler potentials one could make the replacement di → ni as explained
around eq. (5.39).
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planes [79],11

KT iT̄ i = di − di−1
4(ti)2 and KT iT̄ j = 0 for i 6= j. (5.42)

By solving the geodesic equation with the metric given by ds2 = 2KT iT̄ j dT i dT̄ j in
such a limit one can see that the unique geodesic curves that asymptote to ti = Re T i →∞
are those for which the axions are constant and the rate at which each of the saxions grows
with respect to the other is not fixed. More precisely, all such geodesics towards the
singularity at infinity can be expressed as

t1 = γ2 · (t2)µ2 = . . . = γn̂ · (tn̂)µn̂ , (5.43)

where γi are finite constants that only depend on the initial points and become irrelevant
as we approach the singularity, and the exponents fulfill µi ≥ µi+1 with 1 ≥ µi ≥ 0, so that
the trajectory stays within the chosen growth sector as the singularity is approached.12

Along such geodesics, the distance can be expressed as follows

d =
√
d1
2 log2(t1) + d2 − d1

2 log2(t2) + . . .+ dn̂ − dn̂−1
2 log2(tn̂). (5.44)

This geodesic distance can then be bounded both from above and from below as√
dn̂
2 log(tn̂) ≥ d ≥

√
d1
2 log(t1) . (5.45)

For the lower bound we have used the fact that all the terms in the sum of eq. (5.44)
are non-negative, and for the upper bound the fact that the contribution from each of the
terms in the sum is maximized when all the µi → 1 and therefore t1 ' t2 ' . . . ' tn̂

(neglecting the contribution from the γi, which can be used for the path to remain within
the desired growth sector, but whose contribution to the distance becomes negligible in the
limit ti → ∞). Finally, let us remark that the reason why we have chosen to express the
upper bound in terms of tn̂ and the lower bound in terms of t1 will become clear shortly.

Given these bounds for the distance, we turn now to examining the piece depending on
log(m3/2). First of all, note that as a consequence of the logarithm, any constant prefactor
appearing in the gravitino mass, as well as any subleading additive contributions, may be
neglected in the limit of vanishing gravitino mass, so we only need to keep track of the
dependence on the divergent moduli. It can therefore be bounded both from above and
from below as

rmin
2 log(tn̂) ≥ log(m3/2) ≥ rmin

2 log(t1) , (5.46)

11Note that this expression is only valid whenever di−di−1 6= 0. If this is not the case, one could first take
the derivatives and then use the approximation given by the sl(2)-orbit, but this is extremely more involved
and beyond the scope of this work, so we limit our discussion here to the cases in which di − di−1 6= 0
(see [12, 33, 34]).

12This restriction on the exponents does not imply any loss of generality since any other geodesic
not fulfilling it can be accommodated within a different growth sector with analogous restrictions in
the exponents.
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where we recall that rmin ≤ −1 and it has the highest absolute value of all ri that enter the
gravitino mass. The lower bound is obtained directly from the eq. (5.36), and the upper
bound by applying a reasoning analogous to the one explained in the three steps described
before eq. (5.36) but going from tn to t1 and bounding everything from above.

When combined with eq. (5.40), these bounds can be used to restrict the ratio between
the parameters in the SDC and the GDC, yielding

|rmin|√
2d1

≥ α

δ
≥ |rmin|√

2dn̂
(5.47)

where it becomes clear that expressing the previous bounds for the distance and the loga-
rithm of the gravitino mass in terms of t1 and tn̂ was the right choice for the dependence
on the moduli to drop from this bound.

Let us now remark a few interesting points. First of all, in the one-modulus case the
lower and the upper bounds degenerate (as expected from the fact that there is only one
geodesic since the space is one-dimensional). This would yield α = |rmin|√

2dn̂
δ, and its highest

value for a CY3 would be obtained at a type IV singularity giving α = δ
√

3/2. In fact,
this is also the relation obtained in the type IIA setup considered in section 4.3.3 (which
is actually dual to a type IIB setup in which a type IV singularity is approached). In
order to recover this result from the general formula one needs to make the appropriate
replacements to describe the part of field space that is divergent, namely the complex
structure moduli in IIA. These replacements, already introduced throughout this section,
are dn̂ → nn̂ and rn̂ → r′n̂ = rn̂+(dn̂−nn̂). Then, the corresponding values for the setup of
section 4.3.3, which can be read from the Kähler potential and the superpotential, turn out
to be rn̂ = −1, dn̂ = 1 and nn̂ = 3, so that one recovers the result α = δ

√
3/2 as expected.

Second, one can combine the bounds in eq. (5.47) with the ones for δ displayed in
eq. (5.37), obtaining the following bounds for the SDC parameter

|rmin|√
2d1

≥ α ≥ 1√
2dn̂

. (5.48)

Moreover, for a CY3 this implies 3√
2 ≥ α ≥ 1√

6 , which coincides with the lower bounds
for α found in [11–13].

6 Phenomenological implications

The value of the gravitino mass is an important phenomenological parameter both in
particle physics and cosmology. In Minkowski vacua the gravitino mass is a direct measure
of the scale of supersymmetry breaking. But also for large moduli the gravitino mass gives
the size of supersymmetry breaking in runaway dS and AdS minima. In supersymmetric
theories of particle physics the gravitino mass will typically give us the scale of the mass
of the supersymmetric partners of the SM. If the GDC introduced in this paper is true, an
important message is that one cannot arbitrarily decouple the gravitino mass from the UV
scales. One rather has

m3/2 '
M

1/δ
KK

M
(1−δ)/δ
P

, δ < 1 . (6.1)
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For δ = 1 there is no decoupling and the gravitino mass would be of order the KK scale.
The maximal scale separation is reached for the smallest possible δ. We have seen in the
previous sections that in general the minimal δ is δ = 1/3, although in the specific examples
analysed only δ = 2/3 for the lightest tower is reached. Thus e.g. for such a value one would
have the maximum separation at

m2
3/2 '

M3
KK
MP

. (6.2)

The implications for particle physics depend on the actual value of m3/2. A couple of
phenomenologically interesting values for the gravitino mass are:

1) m3/2 ∼ 1 TeV. This is the popular case in low-energy MSSM supergravity models,
in which the gravitino mass is tied to the electro-weak scale. Then eq. (6.1) implies
an upper limit

MKK . 108 − 1013 GeV (6.3)

for δ = 2/3 − 1/3. Thus the big desert scenario with no new physics beyond the
MSSM up to a scale MX ∼ 1016 GeV would not be consistent with the GDC.

2) m3/2 ∼ 1010 GeV. This is the intermediate scale scenario in which the non-
supersymmetric SM is valid up to an intermediate scale 1010 GeV [80, 81]. It is
well known that above those energies the SM scalar potential with a Higgs mass
mH = 125GeV becomes unbounded from below. The virtue of having m3/2 at this
intermediate scale is that then supersymmetry is restored and the potential becomes
stable and positive. In this case the UV scales may be a bit larger with

MKK . 1013 − 1016 GeV (6.4)

for δ = 2/3− 1/3.

It is interesting to note that a gravitino mass lower bound in terms of membrane tensions
was already remarked in section 5 of ref. [82]. There the necessity of a lower UV scale in
order to obey the WGC as applied to membranes was pointed out.

From the point of view of cosmology, the difficulties to accommodate inflation in a way
consistent with the dS swampland conjecture are well known. From the GDC here studied
an obvious condition is that the Hubble constant upon inflation must be H .MKK, for an
effective field theory description to make sense. Thus one can write

H . mδ
3/2 M

(1−δ)
P . (6.5)

For the range of gravitino values mentioned above one thus generically expects negligible
tensor perturbations in the cosmic background. Recently it has been pointed out that
one should impose as a Swampland condition that the cosmological gravitino sound speed
should be non-vanishing [83, 84]. It would be interesting to study whether this condition
and our GDC are consistent.

It would also be interesting to study whether the GDC is consistent with well-known
scenarios to fix all moduli in dS in type IIB string theory like KKLT [85] or the LVS [86].
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Since both scenarios start with AdS vacua a first question is whether they are consistent
with the ADC. In ref. [87] it is claimed that the AdS step of KKLT is consistent with the
ADC under certain circumstances. In particular, if the KKLT requirement |W0| � 1 is
obtained via a strongly warped throat close to a conifold point (this is the throat where
the D3’s would be located), then it is claimed that there is a KK tower associated to this
singularity and that its scale is

M2
KK '

1
log2(−Λ)

|Λ|1/3 , (6.6)

so that the ADC is respected. Since this is an AdS N = 1 vacuum, this would be consistent
with the GDC with δ = 1/3.

7 Final comments and conclusions

Many tests in the Swampland program are performed by studying the structure of specific
string vacua in some large moduli direction. That is in fact the case of the Swampland
Distance Conjecture and the AdS Distance Conjecture. In this paper we have emphasized
that there is a particularly relevant limit which involves a physical particle rather than a
random field direction. This is the limit in which the gravitino mass goes to zero, m3/2 → 0.
This limit selects particular field directions and makes contact with both the Swampland
Distance Conjecture and the AdS Distance Conjecture. We propose a Gravitino Distance
Conjecture which states that in that limit, an infinite tower of massless particles appear,
with masses controlled by the gravitino mass as Mtower ∼ mδ

3/2 (in Planck units), where
δ is a positive constant. The lowest lying tower is typically a KK tower with sublead-
ing towers coming from tensionless strings. There is also a direct connection between a
vanishing gravitino mass and membranes becoming tensionless. Their corresponding gauge
couplings to 3-forms go to zero as m3/2 → 0, which would violate Weak Gravity Conjecture
arguments, and hence gives support to the singular character of that limit.

We have presented evidence for this conjecture within the context of type IIA CY3
orientifold vacua, both by studying specific classes of type IIA toroidal models as well as
considering general properties within type II CY3 and F-theory CY4 settings, using the
MHS formalism. The exponent δ is bounded as 1 > δ ≥ 1/3 for CY3 orientifolds (although
δ ≥ 2/3 is realized in toroidal examples) and 1 > δ ≥ 1/4 in F-theory compactifications
on CY4. The Gravitino Distance Conjecture here proposed implies the AdS Distance
Conjecture and the exponents for the latter are simply given by δ/2. The value of δ is also
directly connected to the corresponding exponent α in the Swampland Distance Conjecture,
and it is shown that α

δ =
√

3
2 in toroidal orientifolds. In general CY3 compactifications

we recover the same result for the one-modulus case and for several moduli we obtain
3√
2 ≥

α
δ ≥

1√
6 .

The m3/2 → 0 limit considered by the Gravitino Distance Conjecture is also relevant
from the phenomenological point of view. In general, m3/2 sets the scale of supersym-
metry breaking (except for supersymmetric AdS, which is not phenomenologically rele-
vant). If one wants to have a low gravitino mass in order to address the hierarchy problem
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(m3/2 ∼ 1TeV) or to guarantee the stability of the Higgs potential in the Standard Model
(m3/2 . 1010 GeV), the GDC tell us that this comes along with a relatively low KK scale
MKK ∼ 108 − 1013 GeV. This implies that the traditional desert scenario with a gauge
coupling unification at ∼ 1016 GeV would not be viable. This lowering of the UV scale also
puts limits on a possible inflationary potential, which should fulfill H . mδ

3/2M
(1−δ)
P GeV.

There remain many open questions to analyse. In particular, all examples provided are
classical type II vacua. This is also the case of the specific tests provided in the literature
for the Swampland Distance Conjecture, the AdS Distance Conjecture and even the Weak
Gravity Conjecture. However the distinction between classical and quantum vacua in string
theory is not clear, and it is difficult to believe that all these constraints are only valid for
classical vacua. Still it would be important to extend the checks to larger classes of string
vacua. It would also be important to check whether the Gravitino Distance Conjecture
is consistent with specific scenarios for full moduli stabilisation in dS vacua such as the
KKLT or LVS schemes.
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