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A novel Gray-Box Neural Network Model (GBNNM), including Multi-Layer Perception (MLP) Neural Network 

(NN) and integrators, is proposed for a Model Identification and Fault Estimation (MIFE) scheme. With the 

GBNNM, both the nonlinearity and dynamics of a class of nonlinear dynamic systems can be approximated. Unlike 

previous NN-based model identification methods, the GBNNM directly inherits system dynamics and separately 

models system nonlinearities. This model corresponds well with the object system and is easy to build. The 

GBNNM is embedded online as a normal model reference to obtain the quantitative residual between the object 

system output and the GBNNM output. This residual can accurately indicate the fault offset value, so it is suitable 

for differing fault severities. To further estimate the Fault Parameters (FPs), an improved Extended State Observer 

(ESO) using the same NNs (IESONN) from the GBNNM is proposed to avoid requiring the knowledge of ESO 

nonlinearity. Then, the proposed MIFE scheme is applied for Reaction Wheels (RW) in a Satellite Attitude Control 

System (SACS). The scheme using the GBNNM is compared with other NNs in the same fault scenario, and 

several partial loss-of-effect (LOE) faults with different severities are considered to validate the effectiveness of the 

FP estimation and its superiority. 
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1. Introduction 

Improving the security and reliability of man-made 

dynamic systems has become more and more critical 

over the past two decades. The requirements for such 

systems are now extending beyond the safety-critical 

systems of nuclear reactors, engines, high-rise 

buildings, chemical plants, and aircrafts to new systems, 

such as autonomous vehicles1–6and the human body 

system7,8. For all these systems, Fault Diagnosis (FD) is 

an essential reliability approach that can help avoid 

system shutdown, breakdown, and even catastrophes 

involving human fatalities and material damage. Over 

the past three decades, many approaches to FD have 

been proposed, including a model-based approach9, a 

computing-intelligence-based approach10,11, and a 

hybrid approach12. 

Neural Networks (NN)-based FD method is a 

representative of the computing-intelligence-based 

approach. Compared with the model-based FD method, 

NN-based FD does not require detailed information of 

the object system, such as structure and parameters. Not 

only an effective optimization method13–22, the NN is 

also an ideal mathematical tool for FD applications 

owing to its universal nonlinear function approximation 

property and its ability to learn and reproduce system 

behavior from quantitative system datasets (i.e., 

historical system input-output data) 23,24. Accordingly, 

NN has been extensively applied to FD, which include 
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the NN-based pattern recognition approach25, NN-based 

residual generation decision-making scheme26, and NN-

based multiple-model residual generation and 

classification27. The last two approaches, which use 

residuals for FD, dominate the field implementation. 

The residual is derived from a NN-based identification 

model, and is then used to detect fault or even to 

estimate fault if accurate sufficiently. The more accurate 

the identification model is, the higher quality of the 

residual is; therefore, NN-based identification is 

fundamental for NN-based FD. 

The NN is an ideal tool of model identification for 

nonlinear systems. Numerous studies have been 

conducted on the FD for nonlinear dynamic systems 

using NN-based model identification. However, only a 

few studies have utilized the identified NN model to 

accomplish Fault Estimation (FE). Three categories of 

NN-based nonlinear dynamic system identification 

schemes have been developed. The first category is 

called static NN such as Multi-Layer Perception (MLP) 

NN28. The second category is called dynamic NN 

because these NNs have integrators or delay 

components in their structure29–40. Generally, a single 

dynamic NN is used to model the object system; 

thereafter, it is trained offline. The third category is 

online NN observers. Y. Kim41 studied on an NN 

observer using dynamic recurrent NNs, which can only 

estimate the system states. Talebi42 presented a hybrid 

intelligent fault detection and isolation scheme for a 

general nonlinear system using an NN-based observer. 

However, these works have not addressed the estimation 

of fault severity. In Ref. 43,44, a hybrid FD approach 

was presented to estimate the Fault Parameter (FP) 

vector and fault severities, using a bank of 

parameterized fault models and a corresponding bank of 

adaptive neural parameter estimators. However, priori 

knowledge of faults and system nonlinearity is required 

to predefine the parameterized fault models. In addition, 

online generalization is an inherent problem for the 

neural parameter estimators. 

Model accuracy is the most crucial factor for model 

identification, particularly for model-based FD. If a 

residual is sufficiently accurate to differ the fault 

severities, this FD scheme is aptly called FE – a 

challenging problem encountered in the FD research 

field. 

To identify a nonlinear dynamic system is to 

approximate nonlinearity and dynamics simultaneously. 

The nonlinearity reflects the static behavior, whereas the 

dynamics reflects the dynamic behavior. For simple 

object systems, white-box modeling, such as a model 

observer, is typically used to perform FD, because the 

structure and physical principles are normally known. 

However, most practical systems are actually 

complicated, with unknown or partially unknown 

structures and physical principles. In this case, white-

box modeling is not applicable. Compared with white-

box modeling, black-box modeling methods, such as the 

NN-based identification and Wiener-Hammerstein 

models45,46, do not require the knowledge of structure 

and physical principles. However, it is difficult to train 

models with desired accuracy for nonlinear dynamic 

systems. Currently, the training of NN is based on 

samples, and samples are individual behaviors. The 

static behaviors are included in the samples, so NN can 

learn from the training. However, the system dynamics, 

the relationship between individual samples, are not 

included. Consequently, the system dynamics cannot be 

trained. This is why the dynamic structure is predefined 

in dynamical NN rather than trained. In some cases, the 

knowledge of the system dynamics is known, which can 

be utilized naturally to improve model accuracy so as to 

implement FE. 

With this motivation, a novel Gray-Box Neural 

Network Model (GBNNM) method, which mixes both 

white-box and black-box approaches, is proposed. 

Because the GBNNM can produce high-quality 

residual, it is suitable to estimate the fault severity. To 

estimate the partial Loss of Effect (LOE) FPs, an 

improved Extended State Observer (ESO) using the 

same NNs from the GBNNM is developed, which does 

not require the knowledge of observer nonlinearity and 

provides a more visual FE result. 

The contributions of this paper are to present a 

sufficiently accurate NN model and a novel ESO to 

fulfill FE. Unlike many previous NN-based 

identification methods29–34, 37,38, 42, 47, this method does 

not adopt a single NN to model an object system in a 

black-box manner. Instead, it uses multiple static NNs 

to approximate corresponding nonlinearities separately, 

to decrease the complexity of identification. Compared 

with other multi-model FD approaches27,48,, redundant 

fault models are not required to generate multiple 

residuals for fault severity estimation.  Compared with 

the FE approach43,44, the GBNNM can be trained 

offline, and thus, it can avoid the problems with online 
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generalization. In contrast to our previous studies in 

computing-intelligence-based FD49,50, the GBNNM is 

used not only to detect faults but also to estimate fault 

severity and even FPs. In  addition, in contrast to our 

previous studies on model observers51, the GBNNM is 

used as a normal model reference instead of an 

analytical model, and an improved ESO derived from 

the GBNNM is proposed.  

The remainder of this paper is organized as follows. 

The problem and some concepts are first introduced in 

Section 2. In Section 3, Model Identification (MI) using 

the proposed GBNNM is presented, and its approximate 

ability is analyzed theoretically. In Section 4, FE based 

on a GBNNM model estimator and improved ESO with 

NN is presented. In Section 5, an example of an MIFE 

and the corresponding experiments result are presented 

using a high-resolution single-input-single-output 

(SISO) Reaction Wheel (RW) model. The conclusions 

and highlights are provided in Section 6. 

2. Problem Formulation and Concept 

2.1. Fault estimation problem 

To implement condition-based maintenance, such as 

fault accommodation, requires an accurate FD: that is, 

to compare the system with another normal system 

under identical operational conditions. This comparison 

is called the peer-to-peer concept in the FD field. For 

example, the fault can be detected, and the offset value 

between the fault mode and normal mode can reflect the 

severity of the fault (also called FE) based on the 

desired residual at the bottom left of Fig. 1. However, 

constructing the reference system for FE is not cost 

effective. An alternative solution is to use simulation 

model. However, the residual in the lower right of Fig. 1 

illustrates that it is easy to detect faults but not to 

estimate them because the residual is not sufficiently 

accurate for FE. Therefore, the key is to precisely 

identify or construct a simulation model.  

2.2. Identification problem of the nonlinear 

dynamic system 

An example of nonlinear dynamic system is shown in 

Fig. 2. It includes both nonlinearities and dynamics. The 

nonlinearities are the functions in Fig. 2, i.e. 1 4f f , 

whereas the dynamics are the integrators and its 

connection to the nonlinear functions. The nonlinearities 

and dynamics are coupled in the model structure. In 

general, there are two identification approaches, namely 

the white-box and black-box approach. 

Desired 

Residual

Input Output y(k)System in 

fault mode

Faults

System model 

in normal mode

- +

- +

u(k)

System in 
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r(k)=F(d(k))

d(k)

 
Fig. 1 Fault diagnosis based on comparing with peer to peer 

nonlinear  dynamic system
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Fig. 2  An example of nonlinear dynamic system  

On one hand, the white-box approach is used when 

full knowledge of both the nonlinearity and dynamics of 

the system are available. The identification process 

involves obtaining the unknown parameters or variables 

in the white-box model. However, its drawback is the 

requirement of full priori knowledge of the object 

system, making it unsuitable for complicated real 

system. 

On the other hand, the black-box approach is 

generally used when no knowledge of the object system 

is available. The black-box approach defines a general 

and known model structure with parameters for 

identification. The advantage of the black-box approach 

is no requirement of full knowledge. However, when 

applied in identification of nonlinear dynamic systems, 

obtaining a model with sufficient accuracy to 

approximate nonlinearity and dynamics simultaneously 

is difficult. 

At present, there are the four types of NN that can 

be applied to FD. These NNs include Series-Parallel 
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NARX NN (SPNN), Parallel NARX NN (PNN), 

Recurrent NN (RNN), and Static MLP NN (SNN), all of 

which are embedded to implement residual-based FD. A 

representative example of offline identification by an 

SPNN is provided in Fig.3 to illustrate the identification 

principle and drawbacks of these NNs. 

Object system

In normal mode

 PNN

sampling
Training dataset

-
+

u y

'u

ŷ

'y e

( ', ')u y

Static Neural 

Network
TDL

TDL

Predefined 

and Fixed
 

Fig. 3  NN offline identification by an SPNN 

 As shown in Fig. 3, the objective of the NN training 

algorithm is to minimize the error between the sample 

output 'y and the corresponding NN model output ŷ  

estimation. The training algorithm adopts some 

parameter-searching strategy, such as the Levenberg-

Marquardt (LM) back-propagation training function and 

the Gradient Descent (GD) with momentum weight/bias 

learning function52, to adjust the parameters of all 

neurons in the static NN of Fig. 3. These parameters 

include two classes, namely, weight and bias. The 

dynamic elements in the Tapped Delay Line (TDL) 

cannot be changed during the training process, as TDLs 

are fixed for a specified NN. The fixed structure can 

help avoid the requirement for knowledge about the 

object system. However, a fixed structure is not 

sufficiently flexible to match the dynamics of the object 

system, even if it matches the nonlinearity of the object 

system well. In some cases, the fixed structure has a 

negative effect on matching the nonlinearity of the 

object system. In fact, the training process aims to learn 

the static behavior from the training sample rather than 

to learn both the static and dynamic behavior. The 

unmatched dynamics would decrease the performance 

of estimating nonlinearity when applying online, 

because the nonlinearity and dynamics are coupled in 

nonlinear dynamic systems.  

Moreover, for an industrial system, some 

information is generally known a priori. This 

information might be the probability density function, 

general statistics of the process data, impulse response 

or attractor geometry or the underlying physics52,53. 

Because black-box modeling requires no knowledge of 

the object system, a priori information is not used and 

thereby wasted. With this information used in the 

context of gray-box modeling, it is expected to be able 

to approximate nonlinearity and dynamics 

simultaneously so that the model has sufficient accuracy 

for FE. 

3. Gray Box NN Identification of a Nonlinear 

Dynamic System 

3.1. System description and the identified model 

structure 

Owing to the popularity of first-order systems, the 

identification of nonlinear dynamic systems is 

considered with the following general form: 

( , )

( , )

x F x u

y h x x





                                (1) 

where nx is the state vector, mu is the system 

input, and py is the output vector of the system. 

( , )F x u  and ( , )h x x represent unknown constitutive 

nonlinearities. The coupling relationship and dynamics 

are easy to obtain for a nonlinear system in the form of 

(1) because only one integrator is included in the 

dynamics. 

The gray-box approach presented would preserve 

the model structure inherent in (1) without requiring a 

priori representations of the nonlinearities ( , )F x u  and 

( , )h x x . Instead, these terms would be represented by a 

separate MLP feed-forward NN 1 1
ˆ( , , )g x u w and 

2 2
ˆ ˆ( , , )g x x w : 

1 1

2 2

ˆ ˆ( , , )

ˆ ˆ ˆ( , , )

x g x u w

y g x x w




                              (2) 

By modeling the nonlinearities ( , )F x u  and ( , )h x x , 

the model structure of (2) is preserved. The MLP feed-

forward NN is utilized to approximate nonlinearity, so 

1 1( , , )g x u w and 2 2( , , )g x x w  can be denoted as  

 

 
1 1 11 1 12 1

2 2 21 2 22 2

( , , )

( , , )

g x u w W W p

g x x w W W p

 

 

 

 
          (3) 

where (.)  is the activation function of the hidden-

layer neurons that is typically set to be a sigmoid 

function.  
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where
1 [ , ]Tp x u and

2 [ , ]Tp x x  are the inputs of two 

NNs. The weight parameters 1 11 12 1[ ]w W W   and 

2 21 22 2[ ]w W W   are the parameters of the two NNs. 

This gray-box approach preserves the direct 

associations between the NN’s architecture and its 

weights to the underlying systems’ dynamics. For a 

general nonlinear dynamic system in the form of (1), 

MLP feed-forward NN 1 1( , , )g x u w and 2 2( , , )g x x w  are 

just used to approximate the nonlinearities ( , )F x u  and 

( , )h x x .The relationship between ( )x t  and ˆ( )x t , which 

is the solutions of (1) and (2), is uncertain. Furthermore, 

the relationship between ( )y t  and ˆ( )y t , which are 

outputs of (1) and (2), respectively, is uncertain. To 

analyze the relationship between (1) and (2), some 

preliminaries and proofs will be provided in subsection 

3.2. 

3.2. Analyses of approximation ability 

Lemma 1: Let 
nS   and 

mU   be open sets, 

X S  and UD U  be compact sets, and mapping 

: nF S U R   be a 
1C -class function. If a continuous 

nonlinear system is in the form   

( ) ( ( ), ( ))

( ) ( ( ), ( ))

, , [0, ], (0 )

x t F x t u t

y t h x t x t

x S u U t T T






     

      (5) 

with an initial state (0)x X , then for an 

arbitrary 0  , there exists an integer N  and a 

GBNNM of form (6) with an approximate initial 

condition 0 0
ˆ( ) ( )x t x t S  . 

1 1 11 12 1

2 2 21 22 2

ˆ ˆ( ) ( ( ), ( )) ( )

ˆ ˆ ˆ( ) ( ( ), ( )) ( )

x t g x t u t A B x B u

y t g x t x t A B x B u

 

 

    


   

(6) 

such that for any bounded input ( ) Uu t D , [0, ]t T .  

 0,

ˆmax
t T

y y 


                                (7) 

According to lemma 2 in 49, there exists an integer 2N  

and an MLP NN of formula (3) with an 2N -

dimensional threshold 2  and matrices 

2

2

n NA  , 2

21

N nB   and 2

22

N mB  . For an 

arbitrary 2 0  : 

2 21 22 2 2
ˆ ˆ ˆ( , ) ( )

2
h x x A B x B u


           (8) 

According to corollary 1 in 49, there exists an 

integer 1N  and an MLP NN of formula (3) with an 1N -

dimensional  threshold 1  and matrices 1

1

n NA  , 

1

11

N nB   and 1

12

N mB  . ( )x t  and ˆ( )x t  are the 

solutions of the differential equations in (5) and (6), 

respectively, with the initial condition 0 0
ˆ( ) ( )x t x t S  . 

Comment: The above lemma reflects a constructive 

way to create a GBNNM that has universal 

approximation capability for a nonlinear dynamic 

system. From the theoretical analysis of the GBNNM, 

we can see that different nonlinearities in the system can 

be separately approximated by MLP NNs. Importantly, 

the complexity of identification is decomposed, so the 

GBNNM can be constructed in steps. 

3.3. Training algorithm with a self-defined 

exciting strategy 

To train a NN model with better generality performance, 

a self-defined exciting strategy is introduced to obtain 

sample data for training50. Based on using band-pass 

Gaussian white noise as the exciting input and the 

corresponding system output, a NN model can be 

obtained for approximation. Therefore, the offline 

identification can be divided into two steps, as described 

in Fig. 4. 

Comment: To improve the data condition for better 

approximation and training, a re-sampling for dataset 

 , , ,t tu x x y is adopted to ensure that the computing time 

for training is not very long. According to our 

experience, a final dataset with 1,000-10,000 points is 

suitable for NN training. With the network structures of 

NN1 and NN2 defined, the LM back-propagation 

NN1

Training algorithm 

1

S
( , )F x u

( )x t

( , )h x x
( )x t

Output

Data holding&sampling

Self-defined 

exciting input

NN1

1 1( , , )g x u w
NN2

2 2( , , )g x x w

NN2

Training algorithm 

Plant

 

Fig. 4 Offline identification scheme with a self-defined exciting 
strategy 
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training function and GD with a momentum weight/bias 

learning function, which are detailed in the Matlab NN 

Toolbox, are employed to obtain the desired 

convergence performance54 . 

4. Fault Estimation Based on the GBNNM and 

IESONN 

After all of the NN models have been trained offline, a 

complex structure of FE, including a GBNNM model 

estimator and an improved ESO based on NNs from the 

GBNNM, is proposed, as illustrated in Fig. 5. The FE 

scheme has two outputs, including the GBNNM residual 

and FP estimation. The GBNNM residual can be used 

for fault detection or even fault severity identification 

(called a rough FE), and the improved ESO based on 

NN (IESONN) estimates FP for further diagnosis 

(called an accurate FE). The two NNs in the improved 

ESO utilize the two sub-NNs of the GBNNM to allow 

the improved ESO to estimate the FP without requiring 

the knowledge of the nonlinearity in the object system. 

4.1.  Fault severity identification based on the 

GBNNM model residual  

To formulate the fault severity identification result, a 

residual is defined as:  

ˆ( ) ( ) ( )r t y t y t                           (9) 

 We can denote FE (only fault severity identification) 

based on the GBNNM as: 

1 1 1

2 2 2

ˆ( ) ( ) 0 ( )

ˆ( ) ( ) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( ) ( ) ( ) ( )

n

fo fo n

fi fo n

y u y u no fault

y u y u m d y u y u dr output fault

y u y u m d y u y u d input fault

 


    
    

where ( )ny u  denotes the input-output function of the 

object system in normal mode. ˆ( )y u  denotes the input-

output function of the GBNNM model, ( )foy u denotes 

the input-output function of the object system in fault 

mode with an output offset value 1d , and ( )foy u denotes 

the input-output function of the object system in fault 

mode with an input offset value 2d . 

The residual r  equals to zero when no fault occurs. 

When a fault occurs, all system faults can be classified 

into two types of equivalent faults, a fault with an 

output offset or a fault with an input offset, because 

once a fault exists, it will certainly affect the output or 

input of a system.  

For both fault modes with an output offset and fault 

modes with an input offset, the residual r  is the 

function of fault value d , which is denoted as 1( )m d  or 

2 ( )m d . If the fault value d  changes, the residual r  will 

change. For a fault mode with an output offset, 

1 1 1( )r m d d  . Therefore, we can use this principle to 

differentiate fault severity. The FE effects will be 

demonstrated with simulations, as presented in Section 

5.  

Discussion: The residual is the basis of FD. If the 

distinction between the occurrences of single- and 

multiple-component failures is required, some 

preconditions should be satisfied, the effects on the 

system output in normal mode, single-component 

failure mode, and multiple-component failure mode 

must be different. Thus, the symptom must be different 

in different modes. Once the precondition above is 

satisfied, the GBNNM residual can take on different 

values in the time domain. Therefore, it is possible to 

distinguish between the occurrences of single- and 

multiple-component failures. Whether these types of 

failure can be distinguished clearly depends on the 

ability to identify the difference in the failure symptom. 

If this difference is not obvious in the time domain, a 

time-frequency signal-processing tool, such as wavelet 

analysis, is often used to post-process the GBNNM 

residual to make this difference sufficiently discernible. 

4.2. FP estimation for partial LOE fault 

In the case that the object system is a type of actuator 

and the fault is a type of partial LOE fault, the FP 

estimation is generally essential for ensuring the 

reliability and integrity of the control system. If the 

object system is a type of actuator but the fault is a type 

of full LOE fault, the FE is not needed, and a redundant 

1

S
( , )F x u

( )x t

( , )h x x
( )x t

( )fy t

NN1

1 1( , , )g x u w
NN2

2 2( , , )g x x w

actuators

1

S
ˆ( )x t

ˆ( )x t

GBNNM



+

-
ˆ( )y t

( )r t

( )u t

Improved ESO based on Neural Network

NN1

1 1( , , )g x u w

NN2

2 2( , , )g x x w
1

S
 

-

2

2
ˆ ( , , )f g e   

+

+
-

1

+

Estimation of 

Fault parameter

GBNNM

Residual 

 
Fig. 5  FE based on GBNNM and IESONN 
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system is generally employed. Therefore, FP estimation 

for partial LOE faults was studied in our research.  

Without loss of generality, we consider a type of 

partial LOE fault for nonlinear dynamic system (1) in 

the form 
2

1

1

( , )

( , )

in

out

x F x u f

u h x x

  



                    (10) 

Where 2
f  is the fault value, x  is the state of the 

system, inu  is the system input, and outu  is the system 

output.  

To estimate the fault value 
2f , an improved ESO 

based on NN is proposed in the following format: 

1

2

2 1

2

2

ˆ ˆ( , )

ˆˆ ˆ( , )

ˆ ( , , )

out

in

e NN x x u

x NN x u f e

f g e



  

  


  


 

            (11) 

Where 1 0  , 2 0   and 0 1  . ( , , )g e    is a 

nonlinear continuous function in the form of (12): 

1

,sgn( )
( , , )

,

ee e
g e

ee






 

 

 
 



 (12) 

To analyze the convergence of an improved ESO 

based on NN, Lemma 2 and Corollary 2 on the 

convergence of an ESO are presented. 

Lemma 2: Supposing 2f  is bounded, if 1 , 2 ,   and 

  are set and satisfy55 
2 1

1 24                             (13) 

then the observer (14) can estimate the states x and the 

fault variable  
2f  asymptotically.  

  

1

2

1 1

2

2

ˆ ˆ( , )

ˆˆ ˆ( , )

ˆ ( , , )

out

in

e h x x u

x F x u f e

f g e



  

  


  


 

        (14) 

where 1 0  , 2 0   and 0 1  . ( , , )g e    is a 

nonlinear continuous function in the form of (12). 

As seen from (14), the unimproved ESO is a model-

based estimator method. Its model structure and 

parameters are given by the nonlinear functions 

1( , )inF x u  and 1( , )h x x . Therefore, the availability of the 

ESO (14) must be based on the availability of the 

nonlinear function 1( , )inF x u  and 1( , )h x x . As is 

discussed in section 2, generally, nonlinear relationships 

are not available for industrial applications. Therefore, 

the gray-box identification is introduced to obtain an 

approximation of nonlinear functions.  

To estimate the process FP- partial LOE fault value 
2f , the NNs in the GBNNM can be used again in the 

improved ESO to approximate the nonlinear functions 

1( , )inF x u  and 1( , )h x x  . Therefore, corollary 2 is given 

to analyze the convergence of the improved observer of 

(11). 

Corollary 2: Supposing 2f  is bounded, if NN1 and 

NN2 are the nonlinear approximations of 1( , )inF x u  and 

1( , )h x x , 1 , 2 ,   and   are set and satisfy (13),Then 

the observer (11) can also estimate the states x  and the 

fault variable 
2f  asymptotically. 

Proof: According to Lemma 2, the following 

approximate equations can be obtained: 

1 1

1 2

( , ) ( , )

( , ) ( , )

F x y NN x y

h x x NN x x





                (15) 

Therefore, the improved ESO based on NN of (11) has 

the same convergence as the ESO of (14) with the same 

error dynamic adjustment. The approximation error is 

strictly restrained by the high-gain parameter 

convergence conditions of (13).  

5. Case Study: Application to the Reaction 

Wheel in SACS 

Improvements in the accuracy and reliability of the RW 

in SACS directly contribute to mission success and 

performance47. Inherent dynamic nonlinearities, 

however, make the requirement for an accurate and 

efficient MIFE for the RW of SACS a challenging and 

nontrivial problem. In this section, an example of a 

high-fidelity RW in SACS using the proposed MIFE 

method is presented. 

5.1. High-fidelity RW in SACS 

A type of complete SACS model is considered 56,57. The 

structure of the model (Fig. 6) is composed of a 

controller, actuator (i.e., RW), satellite attitude 

dynamics, satellite attitude kinematics, attitude sensors, 

and attitude determination module. The attitude sensor 

module is composed of a rate-integrating gyro, infrared 

earth sensors, and sun sensors. Related studies on 

modeling and the real-time simulation effect of SACS 

are detailed in Ref. 49. 
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The selection of RWs for attitude control is justified 

due to their popularity in satellite attitude control. SACS 

can be considered a MIMO control system whereas the 

single-axis RW is a SISO system. A high-fidelity 

nonlinear model of the RW was obtained from Ref. 49 

and was integrated into the SACS.  

To simulate the object system, two types of 

disturbances are considered: disturbances outside the 

RW (Fig. 6) and disturbances of the friction inside the 

RW. Both real-time simulations in fault-free and fault 

modes are performed on the Fault Diagnosis and 

Tolerant Control Platform (FDTCP), which is shown in 

Fig. 7 and Fig. 8. The platform was developed by the 

Space Intelligent Control State Key Lab of China. This 

platform has been introduced and described in Ref. 58. 

5.2. Faults of the RW 

Without loss of generality, two common RW fault modes 

are considered. The two fault modes are the 

augmentation of friction torque and the continuously 

decreasing angular velocity of the RW. The former is a 

type of partial LOE Fault, whereas the latter is a type of 

full LOE fault. 

a) Fault mode 1 

The augmentation of friction torque is derived from 

the disturbance coupling function. Accordingly, the RW 

output formulation is rewritten as 

1

1

( )
( )

( ( ))

inc

in

in

u f hT
y f u d

h u f h dt





   
     

     
 (16) 

Changing the value of 1d  depends on the nature of the 

fault. If the value of 
1d  changes into another constant 

value and stays, it is a sustained fault. If the value of 
1d  

changes several times and returns to zero, it is an 

intermittent fault. Without loss of generality, the 

following intermittent time-varying fault in the 

disturbance coupling function is injected into the RW on 

the Pitch axis as a variation. 

1
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0.2 700 800
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t

t

d t

t
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                        (17) 

b) Fault mode 2 

The continuous decrease of the angular velocity is 

derived from the speed limiter function. Accordingly, 

the RW formulation is rewritten as  
Fig. 8 Interface matrix device for fault simulation and injection 
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Fig. 6  Block diagram of SACS 

 
Fig. 7  Real-time simulation environment based on FDTCP for 

Attitude and Orbit control (AOC) 
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          (18) 

Similar to fault mode 1, the following intermittent time-

varying fault in the speed limiter function is injected 

into the RW on the Pitch axis as a variation. 
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                      (19) 

5.3. Experimental results 

To verify the performance of our proposed MIFE 

scheme, three sets of MIFE simulations are conducted 

on the FDTCP, and the results are presented in this 

section. The first set of simulations involves model 

validation, in which the system state between the object 

system and GBNNM is compared. The second set of 

simulations injects specialized faults and verifies the FE 

performance in different fault modes. The third set of 

simulations is conducted to compare the performance of 

our proposed MIFE scheme with other FD methods 

based on NN identification.  

a) Model Identification Effect Comparison 

To quantifiably compare the approximate and 

generalization ability of the GBNNM with other 

identification model approaches, two important 

statistical indexes, R2 (coefficient of determination) and 

the Root Mean Square Error (RMSE) from the sequence, 

y  and ŷ , denoted as (20) and (21), are selected. The 

two indexes for the SNN, RNN, PNN, SPNN, and 

Wiener-Hammerstein models are also computed for 

comparison. 

Tˆ ˆ( ) ( )

ˆ( )

y y y y
RMSE

length y y

  



                 (20) 

2
2 1

( )

RMSE
R

VAR y
                              (21) 

where ˆ( )length y y  is the length of sequence ˆy y  

and ( )VAR y  is the variance of sequence y . 

From the R2 and RSME of the GBNNM in Table 1, 

we can see that the GBNNM estimate has good 

generalizability because the R2 and RMSE values 

mostly approximate the desired case and outperform the 

classical Wiener-Hammerstein nonlinear dynamic 

model. This result indicates that the GBNNM accurately 

estimates unknown operating domains even if it is 

trained to work with limited and known operating points 

from the sample set. 

b) Fault Estimation subject to different types of 

faults 

To verify the performance of FE, different fault 

modes are considered for the second set of simulations. 

These fault modes include sustained and intermittent 

faults subject to both LOE faults and partial LOE faults. 

FE subject to four types of faults is performed in this 

section. 

FE for an LOE sustained fault  

The FE results subject to an LOE sustained fault 

(fault mode 2) with a value of 
2 0.1 .d N m  are shown 

in Fig. 9. Fig. 9 (a)–(c) present the responses of the 

Table 1. Statistical index for generalization ability 

INDEX SNN RNN PNN SPNN GBNNM Wiener-Hammerstein desired 
 

R2 98.84% -21.25 46.98% 97.46% 99.99% 70.41% 100%  

RMSE 3.95e-2 1.73 2.692e-1 5.85e-2 2.7e-3 1.99e-1 0  
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Fig. 9  FE result subjected to fault mode 2. (a) system output, (b) 
model output comparison between the desired model and GBNNM, 

and (c) residual comparison between the desired model and 
GBNNM. 
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system output, GBNNM model output, and residual, 

respectively. As shown in Fig. 9 (a), the jump in the 

system output response at 500 s demonstrates the effects 

of fault mode 2. As the action of the closed-loop control 

law breaks, the response curve tends to be unsteady 

after 500 s; in other words, the value of the RW output 

is a nonzero constant, indicating that the system is 

unstable. Nevertheless, this information alone cannot 

determine whether a fault has occurred, including its 

degree of severity. In Fig. 9 (b), under the same input 

and fault effect, the response of the GBNNM model 

output also jumps at a relative slower speed at 500 s, 

and the GBNNM model output remains close to the 

desired model in normal mode. As shown in Fig. 9 (c), 

the response of the output residual approaches zero in 

the time interval  0 500t . When the fault occurs at 

500 s, the value of the residual jumps to a value of 0.1 

and then tends to be divergent under the action of 

system dynamics. Based on a theoretical analysis of the 

fault nature, the effect of an LOE fault tends to increase 

under the action of system dynamics after the fault 

occurs. The residual based on the GBNNM reflects not 

only the severity of the fault at the occurrence but also 

the subsequent potential effects after its occurrence. 

Comment: Although the SACS is unstable and the 

output of the RW is discontinuous, the input of the RW, 

the output of the desired model, and the output of the 

GBNNM model are still continuous in the fault scenario 

with the action of closed-loop control. Under the fault 

scenario, the GBNNM should be the same as the desired 

model but not the real system. Fig. 9 (a) illustrates that 

the object system output in fault mode 2 is 

discontinuous and unstable. The unstable behavior of 

the system is because the closed-loop control law is 

disturbed by the fault effect. However, the 

discontinuous system output does not change the 

continuous system input. Under the action of the closed-

loop control law, the system input in the case of fault 

mode 2 remains continuous and bounded (Fig. 10). In 

Fig. 9 (b), the GBNNM model output is equivalent to 

the desired model output, and both outputs are 

continuous and bounded within the observed time 

period, [400,700]t . Thus, the conditions of Lemma 1 

(i.e., continuous and bounded) still hold. 

FE for partial LOE and LOE intermittent faults 

The sustained faults of different severities are mixed 

to form intermittent time-varying faults, including 

partial LOE intermittent faults (fault scenario 1) and 

LOE intermittent faults (fault scenario 2). In this section, 

two types of fault scenarios are injected, and 

simulations based on the FDTCP are used to verify the 

FE performance subject to intermittent faults of 

different severities. 

Fig. 11 illustrates the FE results subjected to fault 

scenario 1: (a) the response of the system output, (b) the 

response of the GBNNM model output, and (c) the 

residual. As shown in Fig. 11 (a), the jumps in the 

system output response at 500, 600, 700, and 800 s 

demonstrate the effects of fault scenario 1. Under the 

action of the closed-loop control law, the response curve 

tends to be steady after these instants. Nevertheless, 

these data alone cannot determine whether a fault has 

occurred or the degree of severity of a fault that did 
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Fig. 10  Input into the RW in the case of fault mode 2. 

400 500 600 800 900 1000
-0.5

0

0.5

S
y
s
te

m
 o

u
tp

u
t

(a)

 

 

400 500 600 800 900 1000
-0.2

0

0.2

M
o

d
e
l 

o
u

tp
u

t

(b)

 

 

400 500 600 800 900 1000
-0.1

0

0.1

0.2

t(s)

R
e
s
id

u
a
l

(c)

 

 

output in fault scenario 1

GBNNM model output

desired model ouput

GBNNM residual

desired residual

0.1 0.05 0.05

0.2

 
Fig. 11 FE result subjected to fault scenario 1. (a) System output, 

(b) model output comparison between the desired model and 
GBNNM, and (c) residual comparison between the desired model 

and GBNNM. 
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occur. In Fig. 11 (b), under the same input and fault 

effect, the response of the GBNNM model output also 

jumps at a relatively slower speed at 500, 600, 700, and 

800 s, and the GBNNM model output is also close to the 

desired model in normal mode. As shown in Fig. 11 (c), 

the response of the output residual approaches zero in 

the time interval,  0 500t . When a fault with value 

0.1 N.m occurs at 500 s, the value of the residual jumps 

to a value of 0.1 N.m, and then tends to be stable under 

the action of system dynamics. When a fault with a 

value of 0.15 N.m occurs at 600 s, the value of the 

residual increases (0.15–0.1=0.05) and then tends to be 

stable. When a fault with a value of 0.2 N.m occurs at 

700 s, the value of the residual increases (0.2–0.15=0.05) 

and then tends to be stable. When a fault with a value of 

0.2 N.m disappears at 800 s, the value of the residual 

decreases (0.2-0=0.2) and then tends to zero, indicating 

that the system returns to normal. Based on a theoretical 

analysis of the nature of a partial LOE fault, the effect 

of a partial LOE fault tends to decrease under the action 

of system dynamics. The residual based on the GBNNM 

reflects not only the severity of the fault at each instance 

in which a partial LOE fault occurs but also the 

subsequent potential effects after each fault occurrence 

for the partial LOE intermittent fault. 

The FE result subject to fault scenario 2 is shown in 

Fig. 12. Based on a theoretical analysis of the nature of 

an LOE fault, the residual based on the GBNNM 

reflects not only the severity of the fault in each instance 

that the LOE fault occurs but also the subsequent 

potential effects after each fault occurs for the LOE 

intermittent fault. 

 
c) Comparisons of GBNNM and other NN 

We now compare our GBNNM with other NNs to 

demonstrate its superiority for FD. Fault mode 1 with a 

Table 2. Neural Network parameters 

Network type SNN RNN PNN SPNN 
GBNNM 

MLP NN1 MLP NN2 

Number of Layers 2 2 2 2 2 2 

Properties for 

Layer1 

Number of neurons 10 10 10 10 10 10 

Transfer function logsig tansig tansig tansig tansig tansig 

Properties for 

Layer2 

Number of neurons 1 1 1 1 1 1 

Transfer function tansig tansig purelin purelin purelin purelin 

Dynamic 
properties 

Input delay vector * * [0 1] [0 1] * * 

Output delay vector * * [1 2] [1 2] * * 

Training rules 

Training function TRAINLM TRAINLM TRAINLM TRAINBR TRAINLM TRAINLM 

Adaptation learning 
function 

LEARNGDM LEARNGDM LEARNGDM LEARNGDM LEARNGDM LEARNGDM 

Performance function MSE MSE MSE MSE MSE MSE 

Training sample 
properties 

Choice of training 
data 

Self-defined 
White-noise 

Normal mode Normal mode Normal mode 
Self-defined 
White-noise 

Self-defined 
White-noise 

Sample length 1000 1000 1000 1000 1000 1000 

Sampling 
frequency(Hz/s) 

1 1 1 1 1 1 

* denotes no properties for this option. The expressions of the training function, such as TRAINLM, and the adaptation learning function, such as 

LEARNGDM, are referred to as the Neural Network Toolbox@matlab 54. MSE refers to the Mean Square Error.  
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Fig. 12 FE result subject to fault scenario 2. (a) System output, (b) 

model output comparison between the desired model and GBNNM, 
and (c) residual comparison between the desired model and 

GBNNM. 
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value of 1 0.1 .d N m  is injected and simulated to 

compare several types of major NN-based FD methods, 

including SNN-, RNN-, PNN-, and SPNN-based 

methods. The best cases of each category are chosen for 

comparison. The identification effect of these NNs is 

illustrated in Table 1, and the detailed parameters of 

these NNs are listed in Table 2. The choice of training 

data includes two classes: self-defined white noise and 

normal mode. In the self-defined white noise class, the 

training data are derived from self-defined white noise 

exciting input. In the normal mode class, the training 

data are derived from measurements with a system 

operating in normal mode. 

The FE results based on the SNN, RNN, PNN, 

SPNN, GBNNM, and desired models are shown in Fig. 

13. To improve the accuracy of the SNN, RNN, PNN, 

and SPNN model residuals, their tuned residuals (i.e., 

difference of the SNN residuals between the fault mode 

and fault-free mode) are introduced. As illustrated by 

the six types of residuals in Fig. 13, the GBNNM 

residual tracks the desired residual more closely, and 

does not need to be tuned, which means that the 

GBNNM has the best accuracy among these models.  

Comment: From the FD result and structure of the SNN, 

we can see that the static NN has no memory, so it can 

match only static behaviors. From the FD result and the 

structure of the RNN, PNN, and SPNN, we can see that 

the PNN is the best one among the three dynamic NNs 

because it has a dynamic structure closest to that of the 

object system and the effect of unmatched dynamics is 

the smallest. In contrast, the RNN is the worst choice 

because its dynamic structure is the most complex and 

the most different from the object system, and the effect 

of the unmatched dynamics is strongest. However, none 

of the choices are sufficiently accurate to fulfill FE as a 

single NN. Compared with the four NNs, the GBNNM 

has the ability to conduct FE because it has the best 

approximation ability and generalization ability, as 

described in Table 1. The results demonstrate the 

superiority of the GBNNM in modeling nonlinear 

dynamic systems.  

Compared with several major FD methods based on 

NN identification, our proposed GBNNM-based MIFE 

scheme has several advantages. First, system dynamics 

are considered and matched sufficiently in the GBNNM, 

and thus, the GBNNM is the closest theoretically to the 

desired model. Second, the GBNNM can be 

approximated based on separate parts and is thus easy to 

implement. Third, the GBNNM residual can be directly 

used to implement FD, and the residual in fault-free 

mode is not essential for a better-tuned residual. Finally, 

the GBNNM residual can quantitatively reflect both the 

severity of the fault at the occurrence and the 

subsequent potential effects after its occurrence. 

5.4. LOE FPs estimation result  

To validate the effect of FP estimation using the 

GBNNM and improved ESO, two partial LOE faults 

with reference to (16) and (17) are considered in the 

MIFE scheme. One is the partial LOE sustained fault 

(fault mode 1) with a value of 
1 0.1 .d N m , and the 

other is the partial LOE intermittent fault (fault mode 1) 

in the form of (17). Fig. 14 and Fig. 15 shows the FP 

estimation results, including estimation of the proposed 
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Fig. 14  FP estimation result for a partial LOE sustained fault (fault 

mode 1) with a value of 
1 0.1 .d N m  
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improved ESO based on NNs (IESONN), estimation of 

ESO and the real fault value. 

As seen from Fig. 14, the curve of the IESONN 

estimation can accurately indicate the FP value for the 

partial LOE sustained fault (fault mode 1) with a value 

of 1 0.1 .d N m . Compared with residual-based 

diagnosis, the diagnosis effect is more direct and more 

accurate. Although the IESONN estimation has some 

error at the fault jumping instant, it will quickly 

converge to a stable value with the effect of high-gain 

feedback in the ESO.  

As seen from Fig. 15,   the IESONN estimation 

curve can accurately indicate the FP value for the partial 

LOE intermittent faults (fault mode 1) in the form of 

(17). A similar conclusion can be drawn: the IESONN 

estimation can converge to the corresponding stable 

values at each fault jumping instants.  

From the results, we conclude that our IESONN has 

the same FP estimation ability as the ESO. Because it 

uses two sub-NNs of the GBNNM to replace the 

nonlinearity of the object system, it can overcome the 

limitation of the original ESO when nonlinearity is not 

available in some practical applications. 

6. Conclusions 

In this paper, we proposed an MIFE scheme for a 

general class of nonlinear dynamic systems. In this 

scheme, a novel GBNNM is constructed from which 

diagnostic residuals are generated to detect a fault and 

estimate its severity. Unlike many previously developed 

NN-based model identification methods, our proposed 

GBNNM is based on system dynamics and is 

constructed systematically. Thus, it is equivalent to the 

desired model and suitable for implementation. To 

estimate the FP for accurate FE, an improved ESO using 

NNs from the GBNNM is proposed; it has the same 

estimation ability of the ESO without requiring the 

knowledge of the nonlinearity of the object system. To 

illustrate the performance of this MIFE scheme, the 

model has been applied to the RW of SACS. Test 

results have demonstrated that this MIFE scheme is 

effective and optimal for the studied class of nonlinear 

dynamic systems. Future studies will need to apply the 

GBNNM to an object system that is more complex and 

implement fault accommodation based on FE. 
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