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Recent advances in VLSI technology have made the area over cells available for routing. In
this paper we present a new over-the-cell channel router that uses greedy heuristics to make
the over-the-cell connections and to define the nets needed to complete the connections
inside the channel. The router tries to reduce the channel density by moving segments that
cross maximum density columns to the over-the-cell areas. The layout model used allows
only planar connections over each cell. The final stage is to use an existing channel router to
route the connections inside the channel. An important characteristic of the new router is that
there is interaction between the decisions made for the over-the-cell connections and the
connections needed inside the channel. It performs significantly better than previous over-

the-cell routers.
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1. INTRODUCTION

Since being introduced by Hashimoto and Stevens in
1971 [13], channel routers have been among the most
useful tools in the automatic layout of VLSI circuits.
A channel consists of two horizontal rows of points
called terminals that belong to two cells (bottom, top
cells). Each terminal belongs to a net and has the
name of the net as its label. In the rectilinear, two
reserved layer model there are two wiring layers
available for rectilinear routing. All horizontal wire
segments use one layer and all vertical wire segments
use the other layer. Connections between layers are

done through contact windows called vias. It is con-
venient to impose a unit grid on the channel so that
all terminals and vias are at grid points and all wire
segments follow grid lines (called tracks and col-
umns). The local density at a column c¢ equals the
number of nets for which a horizontal wire that inter-
sects the column is necessary (in all routings). The
channel density is the maximum local density in any
of the columns. A channel of density d needs at least
d tracks to be routed.

Certain technologies for the production of VLSI
circuits open up the possibility that the space over the
cells defining the channel might be available for rout-
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ing [7, 20]. This leads to the question of how to use
this space to further reduce the area needed for the
VLSI circuit. As before, a routing that fully connects
all the nets is required and the objective is to find a
routing that minimizes the number of tracks needed
between the two channel rows. The number of tracks
used by the over-the-cell connections is limited by
the size of the cell.

This over-the-cell channel routing problem (OC-
CRP) is, as most problems in VLSI design, computa-
tionally intractable [11]. There are two subproblems
in developing efficient algorithms that produce good
solutions: (a) Allocation of connections to the area
inside the channel and the areas over the cells on
either side, and (b) routing of the connections in each
area. Many of the over-the-cell routers that have been
reported [5, 7, 12] use the following three stage ap-
proach:

Step 1: Make the connections over each cell. This
produces groups of terminals (hyper-
terminals) that are locally connected.

Step 2: Select terminals within the hyperterminals
that will be used to completely connect each
net inside the channel.

Step 3: Use existing channel routers to route the
channel.

In this paper we describe a new greedy approach to
solve the over-the-cell channel routing problem. The
layout model used is the extended rectilinear, two re-
served layer model, with planar over-the-cell routing
(single interconnection layer available over each cell)
and unlimited number of over-the-cell tracks. The
planarity requirement for the over-the-cell connec-
tions severely limits the number of over-the-cell
tracks that are used and the router can be easily
adapted to handle a specified number of available
over-the-cell tracks. In this router we use only two
stages, where the first stage combines the first two
stages of the three stage approach. This results in
improved performance because we take into account
the interaction between the over-the-cell and the in-
ternal connections (rather than treat them indepen-
dently as in the three stage approach). As before, the

second (final) stage is to use a conventional two layer
channel router to route the connections that are nec-
essary inside the channel.

In section 2 we give a brief overview of recent
over-the-cell channel routers. In section 3 we de-
scribe the new greedy over-the-cell router. We com-
pare the new router with the routers reported in [1, 5,
7, 9, 16] in section 4. The new router has the best
performance in terms of final density inside the chan-
nel. It also does well in terms of the number of tracks
used for over-the-cell routing.

2. OVERVIEW OF RECENT OVER-THE-CELL
CHANNEL ROUTERS

Over-the-cell channel routing has been the topic of
extensive research in the past few years. In this sec-
tion we give a brief descriptions of recent over-the-
cell channel routers that use the same interconnection
model (two layers inside the channel and one layer
over the cells) as ours. Five of them are later used in
an experimental comparison with our router.

In [5], Cong and Liu describe and improve their
over-the-cell channel router that they first reported in
[4]. This channel router follows the three stage ap-
proach. They use a dynamic programming approach
(adapted from [21]) for routing over the cells. How-
ever, they convert the multiterminal over-the-cell pla-
nar routing problem into an equivalent two terminal
problem, and therefore can allow connections be-
tween terminals in the same net that are not “nearest
neighbors”. Furthermore, they assume that net seg-
ments coming into (from the left) and leaving (to the
right) the channel can be routed over the cells. Since
Cong and Liu are working with an increased number
of over-the-cell connection candidates, the complex-
ity of their first stage becomes O(n*N?) (rather than
O(N?) in [21]), where n is the maximum number of
terminals on the terminal row that belong to the same
net and N is the number of terminals on the terminal
row.

Cong and Liu proceed to show that the general
problem of choosing net segments inside the channel
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to fully connect the nets and minimize channel den-
sity after over-the-cell routing is NP-hard. To solve
the net segment selection problem a greedy heuristic
is used. First a hyperterminal (superterminal) connec-
tion graph is created, where the nodes correspond to
hyperterminals and (possibly parallel) edges corre-
spond to a connection between two hyperterminals.
When looking at net segments inside the channel that
can be used to connect a terminal to the rest of the
net, it is only necessary to consider connecting the
terminal to the terminals closest to it. The edges in
the hyperterminal connection graph have their net
segment intervals as weights. The objective is to find
a spanning forest for the graph, such that the channel
density resulting from the chosen edges (i.e., the ones
in the spanning forest) is minimized. First all critical
edges (edges whose removal increases the number of
connected components) are identified. A connection
is chosen for elimination in a greedy way, i.e., if it is
estimated to contribute the most towards the density
inside the channel and is not critical. This is repeated
until we are left with a spanning forest for the con-
nection graph. The complexity of this heuristic is
O(N? log N).

Cong, Preas and Liu [7] (originally reported in [6])
modified the over-the-cell router above by adding
weights to the over-the-cell connection candidates.
The main purpose of [7] is to show what needs to be
done to adapt the over-the-cell channel router to “real
life situations”, that is cases where the number of
tracks for over-the-cell routing is limited. Two termi-
nal rows are routed over each cell, i.e., the cell con-
tains the top and bottom terminal rows for two sepa-
rate channels. Finally the cell may be divided (due to
feedthroughs from global routing) so that it is not
always possible to connect two terminal on the same
terminal row that belong to the same net.

Lin, Perng, Hwang and Lin [16] formulate OCCRP
as a linear programming problem. They only consider
over-the-cell connections between terminals in the
same net that are “nearest neighbors” in each termi-
nal row. The benefit from this approach is that they
do not have to estimate (guess) how much each over-
the-cell connection will help in reducing the density
inside the channel. A drawback of this approach is the

limitations on the over-the-cell connection candidates
that are considered. The main drawback however is
that the number of constraints is O(N?) (and therefore
the complexity of the linear programming problem
grows very fast with the number of terminals). Also,
the number of variables in the linear programming
problem grows linearly with the number of net seg-
ments. Therefore, as nets have more terminals, the
time required to find a solution grows very fast.

Das, Nandy and Bhattacharya [9] approach the
problem by using a blend of the three stage approach
(reversing the order of the first two steps) and the
greedy approach to determine the connections to be
made over the cells. They start by using a greedy
strategy to decide, for each net that has terminals on
both sides of the channel, which net segment will
always be routed inside the channel to complete the
connection of the net between the two sides. They
proceed to show how five different cases should be
handled to maximize the density reduction possible
inside the channel. After starting with all possible
over-the-cell connection candidates (as in [5]) they
select over-the-cell connections according to a weight
function that tries to measure the impact of the con-
nections that will be forced inside the channel be-
cause of the planarity restriction. In a way, the objec-
tive of Das, Nandy and Bhattacharya is to increase
the density in the channel as little as possible, from a
known minimum of connections that have to be car-
ried out inside the channel. (On the other hand, in our
greedy approach we start by assuming that everything
is routed inside the channel and select an over-the-
cell connection that maximizes the density reduction
inside the channel.) The time complexity of the algo-
rithm in [9] is O(N D s(N + nl)). Here, N and n are as
defined above, D is the original density of the chan-
nel, s is the maximum span of a net and I is the size
of the maximum independent set of over-the-cell con-
nection candidates.

Holmes, Sherwani and Sarrafzadeh [14] extend the
k-track over-the-cell channel router by Cong, Preas
and Liu [6] to take advantage of vacant terminals.
The weights of connection candidates are not based
only on the density within the channel. They also try
to estimate the impact of the connection on the verti-
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cal constraint graph for the resulting channel. Con-
nection candidates that use vacant terminals are
added if two terminals in the same net and on oppo-
site sides of the channel each have a vacant terminal
in the same column. Also, if there exists a column in
which both terminals are vacant, they consider using
this column as part of the net (i.e., there are “virtual”
terminals for the net on both sides of the channel).
Holmes et al. use a greedy heuristic to assign vacant
columns to nets. The time complexity of this over-
the-cell channel router is O(N?(k + v)), where v is the
maximum number of vacant columns over the span
of any net that is considered for taking advantage of
vacant columns.

Chang, Hsiao, Yan and Shew [1] use a two stage
approach consisting of over-the-cell routing followed
by conventional routing within the channel. The over-
the-cell routing stage routes certain subnets that inter-
sect the column with highest density over the cell and
determines what net segments need to be connected
inside the channel. A conventional channel router can
then be used to complete the task. The overall ap-
proach in [1] is similar to ours but different methods
are used to make the critical decisions and the results
obtained by the two routers are significantly different.
We note that the two routers were developed indepen-
dently (ours was completed in 1992).

3. A GREEDY OVER-THE-CELL CHANNEL
ROUTING ALGORITHM

To solve the over-the-cell routing problem, we start
by assuming that all the connections will be made
inside the channel. We create an initial set OCC of
candidates for over-the-cell connections (OC-
candidates). For each candidate we find a “best” net
segment (reduction interval) in the portion of the net
that is routed inside the channel that can be elimi-
nated if the OC-candidate is routed over-the-cell. An
OC-candidate is acceptable if connecting it over-the-
cell lowers the density in a maximum density column
inside the channel. Our greedy approach proceeds as
follows:

while OCC contains an acceptable OC-candidate
do
begin
let occ be a “best” OC-candidate (using rules
c.1,2);
route occ over-the-cell;
remove from OCC all OC-candidates that conflict
with occ;
add new OC-candidates to OCC (rule b-iii; Figure
2) and determine a reduction interval for each
one.
re-evaluate the reduction intervals for an appropri-
ate subset of the OC-candidates and possibly add
more OC-candidates (rules c-i,ii,iii).
end.

The motivation for our approach and for the way
the various steps are implemented was to see if the
level of performance of the linear programming ap-
proach in [5] could be achieved using a much faster
algorithm. The router in [5] showed that good results
can be obtained by focusing on net segments that
span maximum density columns. The router in [7]
uses weights that incorporate density information and
selects a maximum-weight over-the-cell routing.
However, the weights are static (i.e., they are as-
signed initially but are not updated as over-the-cell
connections are made) and it seems that many of the
over-the-cell connections reduce the local density
without affecting the channel density. This led us to
require that OC-candidates that are selected for rout-
ing over-the-cell should reduce the density in a max-
imum density column. In order to accomplish this,
the routing of over-the-cell connections had to be
combined with the selection of connections to be
made inside the channel (resulting in a two stage ap-
proach).

The set of OC-candidates considered by the routers
in [5,7] is larger that that of [16] because over-the-
cell connections between terminals that are not near-
est neighbors are used. In our router we allow a re-
stricted set of OC-candidates connecting terminals
that are not nearest neighbors. Our goal was to have
enough OC-candidates so that the performance of
[16] can be reached and, at the same time, limit the
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number of OC-candidates considered so that the com-
plexity of the algorithm can be kept low. Complexity
considerations also led us to disallow backtracking
(i.e., once a connection is routed over the cell, it is
never retracted).

In the following subsection we describe the way an
over-the-cell connection can be used to reduce the
density within the channel. Then we describe the set
of possible over-the-cell connection candidates (OC-
candidates) that we allow and how we determine
which OC-candidate is chosen for routing over-the-
cell. Finally, we analyze the time complexity of our
algorithm.

(a) Reduction Intervals for OC-Candidates

Let us consider an OC-candidate (¢, tj), where ¢,, and
t;, are two terminals on the same side of the channel
that belong to the same net »’ and are in columns
cl(t;) and cl(t;) respectively (c! is the column func-
tion). Let net n’ have terminals (on either side of the
channel) in columns ¢y, ¢,,..., ¢, such that cl(t;) = ¢,
< ¢, <...< ¢, = cl(t). Note that net n" may have
terminals in other columns that are not in [c;, ¢, ]. If
there is no over-the-cell connection to the terminals
of ' in columns cy,...,c,, (except possibly from c;
going to the left or from c,, going to the right) then
there must be a wire inside the channel that spans
fc1» ¢,,)- Then we can eliminate a segment of this
wire between columns c; and ¢, ; forsome /, 1 =/ <
m. If two or more wire segments in [c;, c,,] are elim-
inated, the net n’ is clearly no longer fully connected.
We call the interval [c;, c;,., a (density) reduction
interval. (Note that if 1 <[ < m — 1 then the reduc-
tion interval is open; otherwise it may be half open or
closed, depending on whether there are wires inside
the channel that connect to ¢, from the left and to c,,
from the right.)

Let us now assume that one over-the-cell connec-
tion has been made for net n’, say between terminals
t, and t, where cl(t,) < cl(t,). Then there is one break
in the connection for n’ inside the channel. This net
segment corresponds to a reduction interval, say
[p, q]. Note that there can be no column between

columns p and ¢q that contains a terminal of n'. Now,
consider some other OC-candidate (z,, £;) for n’. There
are four possibilities (see Figure 1):

(i) The spans of (¢, ¢)) and [p, ¢] are disjoint (they
may have a common endpoint). Then there must
be a wire inside the channel for net n’ spanning
[cl(t), cl(t;]. Any reduction interval in [cl(?,),
cl(t)] is allowable because the connection (z;, #)
would keep n’ fully connected when routed
over-the-cell. Note that if (r;, ;) and (¢,, #,) are
on the same terminal row they must be either
side by side or (¢, #;) is contained within (z,, 7,).
Otherwise, the spans of (z;, ;) and (z,, £,) may
partially overlap as long as the span of (¢, )
does not intersect [p, g].

(i) The span of (¢, f;) contains [p, g] and is con-
tained totally within the span of the already
routed connection (z,, #,). If the OC-candidate
(t; tj) were routed over the cell, it would keep
the terminals in columns p and g connected to
the rest of net n'. Therefore, we can now look
for a reduction interval that is within the span of

.................

1 4 5 7

P q 4 q
(iv) The span of (t,, ¢,) contains [p, q] and exactly one of 1,, ,..

FIGURE 1 Examples of finding reduction intervals when an
over-the-cell connection has been made for the net.
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(2, 7,) and outside the span of (¢, ;). If we find
such an interval, we associate [p, q] with (¢, #)
and the newly found interval with (z,, ). Notice
that we do not gain anything by routing two
over-the-cell connections (on opposite sides of
the channel) for the same net and between the
same two columns.

(iii) The case when the new OC-candidate contains
[P, q] and spans the already routed candidate is
analogous to (ii) above, where the roles of the
two candidates are reversed.

(iv) The span of (t; t) contains [p, g] and one of
(t,, t,) is inside the span of (z,, #,) while the other
is outside (planarity forces the candidates to be
on opposite sides of the channel). Then routing
the OC-candidate (#;, ¢,) over the cell would keep
the terminals in columns p and g connected to
the rest of net n’. Therefore, we can now look
for a reduction interval that is within the span of
either one of the candidates but is not inside
their intersection. The association of [p, g] will
change to (f;, #,) if the new reduction interval is
found within the span of (¢, ).

Figure 1 (i)-(iv) illustrates the four cases for the
interaction between the OC-candidates and their re-
duction intervals that we described above. For each
case, the left side of the figure shows the original
OC-candidate and the corresponding reduction inter-
val (dashed lines) and the new OC-candidate and its
reduction interval (dotted lines). The right side of the
figure shows the possible locations of the reduction
intervals after both OC-candidates are routed (there is
reassignment of reduction intervals in cases (ii) and
(iv)). Note that only one reduction interval will be
selected from among the various possibilities.

When more that one over-the-cell connection has
been made, allowable reduction intervals for an OC-
candidate can be found by repeated application of the
analysis in cases (i)—(iv) above. It is worth noting
that because of case (iv) it is possible that we have to
evaluate reduction intervals anywhere in the span of
the net (if there is a chain of partially overlapping
over-the-cell connections). Also, when a reduction in-
terval has been used because of a routed over-the-cell
connection, we never retract this choice and select a

different reduction interval at a later time. However,
as we saw in cases (ii) and (iv), reduction intervals
may be associated with a different over-the-cell con-
nection as more connections are routed over-the-cell
for the same net.

(b) Building and Maintaining the Set of
OC-Candidates

At any time, we allow each terminal to be part of at
most two two-terminal (or regular) OC-candidates,
one going to the left and the other to the right (ini-
tially, these OC-candidates connect nearest neigh-
bors). A three terminal OC-candidate (3TOC-
candidate) is introduced at any terminal ¢ that has
two regular OC-candidates and the current local den-
sity in its column is maximum. The reduction interval
associated with a 3TOC-candidate is the one we get
by joining the two intervals that have #' as a common
endpoint. A 3TOC-candidate is not introduced if ei-
ther one of these reduction intervals is not allowed. In
constructing our set of OC-candidates, vacant termi-
nals are not used. Connecting exits (nets that enter
the channel from the left or leave the channel to the
right) over-the-cell is allowed. Moreover, the relative
ordering of these exits is not fixed (i.e., we do not
introduce new terminals for these nets at the begin-
ning and end of the channel).

The set of OC-candidates is built and maintained
as follows:

(i) Initially the set of OC-candidates consists of all
the regular OC-candidates that we get by con-
necting to “nearest neighbors” in the net and on
the same row. If a net has exits, we also intro-
duce a regular OC-candidate going to the left
from the leftmost terminal and/or one going to
the right from the rightmost terminal for the net
on each terminal row as is appropriate (we in-
troduce columns -1 and N + 2 that we treat in a
special way). 3TOC-candidates are included as
warranted by the initial set of regular candidates.

(ii)) When an OC-candidate occ for net n' is routed
we delete from the current set of OC-candidates
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all other candidates for net n’ that are on the
same terminal row as occ and either contain occ
or are contained within the span of occ.

(iii) When occ is routed we eliminate candidates
from other nets on the same terminal row ac-
cording to the planarity restriction. Assume two
regular OC-candidates from some other net n”
are eliminated, where one spans the leftmost ter-
minal in occ and the other spans the rightmost
terminal of occ. Then we create a new regular
OC-candidate for net n” that connects the termi-
nals outside the span of occ that were endpoints
for the two eliminated OC-candidates (unless
they both correspond to exits), see Figure 2.
Note that the OC-candidate connecting the inner
pair of terminals in Figure 2 is not affected.
3TOC-candidates are included as warranted by
the newly created OC-candidates.

When an OC-candidate is created, we associate a
reduction interval with it. This is the reduction inter-
val that would be used if this OC-candidate is chosen
for over-the-cell routing. We choose a reduction in-
terval based on the maximum local density that this
interval would reduce inside the channel. Ties are
broken by how many columns in the reduction inter-
val have this local density. In case of another tie, the
first interval that we find is used.

(@

(b)
FIGURE 2 Maintenance of active set of OC-candidates using
rule (iii). (a) Before routing (z,, t,). (b) After routing (z,, 1,).

(c) Selection of OC-Candidates for Routing

We choose the next OC-candidate to be routed over-
the-cell by following the criteria below:

(1) Select an OC-candidate that reduces the current
density for the maximum number of maximum
density columns in the current channel. When
routing of the OC-candidate will result in reas-
signment of reduction intervals (cases (ii) and
(iv) in figure 1), we use the‘new” reduction inter-
val in the evaluation. If no OC-candidate has a
reduction interval that spans a maximum density
column, then we stop.

(2) If there is a tie in (1), select the OC-candidate
that minimizes the number of OC-candidates that
(a) would have to be discarded because of planar-
ity and (b) reduce the density in a maximum den-
sity column. In case of another tie, select the OC-
candidate that minimizes the number of OC-
candidates that reduce the density in a column
with local density one less than the maximum
density and have to be discarded because of pla-
narity. Note that this count includes OC-
candidates that reduce the density in a maximum
density column but are such that those columns
also get reduced by the reduction interval associ-
ated with the candidate under consideration. In
case of another tie, select the first OC-candidate.

When choosing OC-candidates for routing we
travel the terminal rows from left to right. We found
that first considering the opposite terminal row from
the one over which the last connection was made
(initially we consider the bottom) slightly improves
the quality of our solutions.

Because of the way we choose OC-candidates for
routing, it is logical to store the relevant information
for the reduction interval currently associated with
the candidate. So for each OC-candidate we store the
terminals it connects, the columns that define the re-
duction interval, the highest density reduced and the
number of columns covered that have this density. So
that this information is current when the next over-
the-cell connection is chosen, we must do the follow-
ing after routing over-the-cell connection occ (and
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reducing the density inside the channel as implied by
its reduction interval):

(i) Reevaluate the reduction intervals for any re-
maining OC-candidates from the same net as
oce.

(i) Reevaluate the reduction interval for any OC-
candidate (from a different net than occ) whose
current reduction interval intersects the reduc-
tion interval associated with occ.

(iii) If the density of the channel has just been re-
duced by one, then we must consider each ter-
minal in a maximum density column for intro-
duction of a 3TOC-candidate.

Finally, since a secondary goal of ours is to mini-
mize the number of tracks used for over-the-cell rout-
ing, we roll back the last OC-candidates that were
routed and did not result in further reduction of the
density inside the channel. This can be easily accom-
plished by keeping routed OC-candidates on a stack
and clearing the stack every time the density of the
channel has been reduced by one.

(d) Complexity Analysis

In order to be able to analyze the time complexity of
our implementation it is necessary to describe briefly
the data structures that are used. The data for the
original channel is kept in a two dimensional array
(2 X N) of terminal structures. Each terminal struc-
ture contains the net the terminal belongs to as well
as the columns of the nearest terminals (both left and
right) on each side of the channel that belong to the
same net. The over-the-cell routing information is
similarly kept in a two dimensional array. Each ele-
ment of this array stores the column, to the left and
right, that is (possibly) connected by an over-the-cell
wire to this terminal. Also, there are pointers for up to
three active OC-candidates associated with this ter-
minal, two regular OC-candidates that go left and
right, and a 3TOC-candidate that has this terminal as
its middle terminal. The current density inside the
channel is kept in a one dimensional array; each ele-
ment stores the current local density for the corre-

sponding column of the channel. Finally, for each net
we have a linked list of intervals that show the wires
inside the channel that remain for the net.

In the following analysis of the time complexity N
is the number of terminals on each side of the chan-
nel, » the maximum number of terminals on either
terminal row that belong to the same net, D the orig-
inal density of the channel, s the maximum span of a
net, and / the size of the maximum independent set of
over-the-cell connection candidates.

Initializing the terminal array, calculating initial
densities and setting up initial net intervals can
clearly be done in O(N) time from an input that lists
the nets coming into and leaving the channel, as well
as listing the number of the net in each column. To
determine the time complexity of finding the initial
set of OC-candidates we notice that each possible
reduction interval for a net figures in the calculation
of at most two regular OC-candidates. These are the
two regular OC-candidates, one on each side of the
channel, that span the reduction interval. This same
reduction interval can appear in at most four 3TOC-
candidates, two on each side. These have their middle
terminal in one of the columns that determine the
interval. Therefore the density reduction calculations
for the initial OC-candidates can be done in time pro-
portional to the total span of all the nets in the chan-
nel. This is clearly O(D N), that is proportional to the
total area inside the original channel.

Now we turn our attention to the choosing of
which OC-candidate should be routed next over-the-
cell. By scanning the connection array we find all the
OC-candidates that have reduction intervals covering
a maximum density column. Because of our rules for
the set of active OC-candidates, at most O(D) OC-
candidates have to be discarded because of planarity.
For any given OC-candidate, finding the candidates it
interferes with can be done by scanning the span of
the OC-candidate in question (in O(s) time). Actually
calculating the amount of interference for a candidate
takes O(n + s) time (the n is because we need to
check whether the reduction interval is open or
closed). The time complexity for choosing the next
OC-candidate for routing is therefore O(N (s + D(n
+ 5))) = OWN D s), since n = s. Since the number of
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times that we choose an OC-candidate for routing is
= ], the overall time complexity of this step is O N
D s).

Routing the chosen OC-candidate (call it occ) is
done in constant time. Reducing the density over its
reduction interval and updating the inside the channel
wire intervals for the net that occ belongs to (call it
n') can be done in O(s + n) time.

Removing the OC-candidates for net n’ that over-
lap the span of occ takes O(n) time. It takes O(n(n” +
5)) time to reevaluate the density reduction interval
for the OC-candidates that remain for net n’. As be-
fore, there are O(D) OC-candidates blocked by occ,
and those candidates can be found in O(s) time. We
create at most O(D) new OC-candidates by merging
two candidates for the same net that are blocked by
occ. Finding the best density reduction interval for
each of these new OC-candidates can be done in O(n?
+ ) time. The time required to obey the planarity
restriction is therefore O(s + (n + D)(n* + 5)) =
O((n + D) (n* + s)).

Next we turn our attention to reevaluating the re-
duction intervals for those OC-candidates whose cur-
rent best reduction interval intersects the reduction
interval of the newly routed candidate. There is no
need to reevaluate OC-candidates whose best reduc-
tion interval does not intersect the reduction interval
for occ (since any such interval gets worse). To esti-
mate the number of the OC-candidates that need to be
reevaluated, we need to know how many nets may
have such reduction intervals. This is clearly linear in
the span of the reduction interval for occ. The time
complexity for each update is therefore O(sn(n®> +
5)). If d is the final density inside the channel after
our over-the-cell routing, then the total density reduc-
tion is O(N(D — d)). Thus, the overall time complex-
ity of this step is ON D n(n® + s)).

Creating new 3TOC-candidates when the density
inside the channel has been reduced by one takes
O(D N) time, each time. Since this is done at most D
times, the overall time complexity for this step is
O(D°N).

Since the over-the-cell routing is planar, the size of
the maximum independent set of over-the-cell con-
nection candidates (/) is linear in the number of ter-

minals. This then means that the complexity of re-
moving and creating new OC-candidates after routing
is dominated by the complexity of choosing the can-
didates for over-the-cell routing. From the above we
see that the total time complexity for our algorithm is
then O(D N(I s + n(n* + s) + D)).

According to [5, p. 411] it is safe to assume that
the number of terminals per net is bounded by a small
constant. They claim that in industrial examples the
average number of terminals per net is between 2 and
3, and the maximum is between 16 and 18. In theory
n could be O(N). However, the above observation
leads us to believe that the fact that we may have to
check most of the density reduction segments for a
net for each active OC-candidate is not too time con-
suming. Thus, we probably would not gain much
time by using more complicated data structures than
a linked list to store the current wire segments inside
the channel.

4. EXPERIMENTAL RESULTS

We implemented the first stage of the over-the-cell
channel router in C and ran our experiments on a
SUN SPARCstation SLC, Our experiments consisted
of “routing” (i.e., deciding which connections to
make over-the-cell and inside the channel so that the
resulting density inside the channel is minimized) the
seven channels used in [8,22] and the two circuits
used in [7]. The seven channels used in [8,22] were
originally published in [15] (Ex1-Ex5) and in [10]
(Deutsch). We compare the over-the-cell routers
based on the final density inside the channel rather
than the number of tracks used for routing the chan-
nel. This is reasonable since almost all channels will
be routed at density, or at most one track over density,
by a good channel router.

In Table I we show the results of using the new
router on routing the examples with those for the
routers in [1, 5, 7, 9, 16]. The router in [14] is not
included in the comparison because it uses vacant
terminals (resulting in a very different set of over-the-
cell routing candidates). After determining how to



32

use the vacant terminals, the router in [14] uses a
slightly modified version of the three stage approach
in [5]. Holmes et al. [14] report that on standard ex-
amples this router (without the use of vacant termi-
nals) performs similarly to previous routers. From the
results presented here, we believe that combining our
router with the initial stages of the router in [14] will
improve the results obtained by either router alone.

Table I lists the densities (except in the case of [9],
see below) after over-the-cell routing by all the over-
the-cell routers. The old routers are identified by the
references to the corresponding paper. The columns
marked T, B and I, give the resulting densities over
the top (T) and bottom (B) cells as well as the result-
ing density inside the channel (I). For our router we
also have a column marked #C; this gives the total
number of over-the-cell connections (i.e., the number
of iterations). The densities reported here for the im-
proved three stage approach by Cong et al. [7] were
not reported in the paper, but were obtained through
personal communication with Dr. Jason Cong.

From Table I we see that our new router always
reduces the density inside the channel more than the
three stage approach in [5]. We also see that our
router outperforms the improved three stage approach
[{7]. For all but two of the channels we reduce the
density inside the channel more, and when there is a
tie we use fewer tracks for over-the-cell routing. Our
router performs better than the one reported in [1] as
well. It reduces the density inside the channel more in
six of the seven examples; it achieves the same den-
sity in one example but uses less over-the-cell con-
nections for it. A contributing factor to the difference
in performance between the router in [1] and the new
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router is that the router in [1] considers OC-
candidates that connect to nearest neighbors only.
Also, the router in [1] estimates the expected benefit
of making an over-the-cell connection; it determines
how to use the selected connection in order to reduce
the density inside the channel after the connection
has been selected. Our router first decides how a con-
nection will be used to reduce the density inside the
channel and that information is used in the selection
process.

A direct comparison with the greedy approach by
Das et al. [9] is difficult because: (i) They only report
the total number of tracks used for over-the-cell rout-
ing (shown here in column O). (ii) Only the number
of tracks used inside the channel after routing the
channel with the Greedy Channel Router [19] are re-
ported (i.e., we do not know the actual density inside
the channel). (iii) They do not report results for ex-
ample 5. We believe that using actual density reduc-
tion inside the channel to select candidates for over-
the-cell routing (whereas Das et al. use an estimation
formula) should make our algorithm produce better
results.

Finally, let us compare our router to the linear pro-
gramming approach of Lin et. al [16]. These two al-
gorithms do produce very similar results. Each has
better inside the channel density in one case (the new
router decrease the density by 3 more for example 3b,
while Lin et al. do 1 better for example 3c) and the
overall number of over-the-cell tracks goes back and
forth. The inbherent weakness of using linear program-
ming leads us to believe that the new router is pref-
erable to the linear programming approach. First, the
necessity of having a linear programming solver

TABLE I Channel densities for various over-the-cell routers.

Channel Cols  Density [5] [16] {71 [9] m New Router

T B 1 T B I T B I o I T B I T B I #C
Ex1 35 12 4 3 9 2 5 8 4 4 8 7 9 1 3 9 3 3 8 7
Ex3a 62 15 3 6 12 3 5 11 3 6 12 6 11 2 3 12 2 7 11 13
Ex3b 61 17 2 5 13 2 4 13 2 5 13 7 13 2 3 13 6 6 10 13
Ex3c 79 18 3 4 4 4 4 12 4 4 14 6 14 2 4 14 2 4 13 10
Ex4b 119 17 5 4 16 5 4 12 4 6 12 9 13 2 3 13 2 5 12 12
Ex5 119 20 4 3 14 6 4 11 6 4 1 — — 6 4 11 5 4 11 12
Deutsch 174 19 8 7 16 2 4 s 10 7 16 11 16 3 2 16 4 4 15 17
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makes this approach very unlikely to be intergrated
into“real world” computer aided design tools. Fur-
thermore, the unpredictability of the running time to
solve the linear programming problem makes it un-
appealing. While the running times for the new router
on the example channels ranges form 0.090 to 0.530
seconds with an average of 0.267 seconds, Lin et al.
report a running time of 5.4 to 96.6 seconds (average
39.6 sec.) for all channels except 4b, which takes
629.4 seconds to be solved. (Obviously the running
times are not directly comparable because different
computers are used. This only shows the way that the
complexity of the channel, rather than its size, plays a
major role in the time needed by the linear program-
ming approach.)

Table II shows the density reduction inside the
channel (except for [9] where we use number of
tracks) as a percentage of the original density of the
channel. The average density reduction shows that
the new router outperforms all the other routers. In
the case of Lin et al. this is on the strength of the
solution for channel 3b.

Tables III and IV compare the density reduction
obtained by the new greedy router with the results in
[7] for the horizontally-connected vertically-divided
(HCVD) layout model. In this model it is assumed
that power and ground buses are routed at the middle
of the cells, so the over-the-cell routing region is di-
vided in two. In this case 5 tracks are available for
over-the-cell routing for each terminal row. Each ta-
ble shows the results of routing the channels of one
standard cell circuit. These circuits are the Reed-
Solomon Decoder (RSD) and Primaryl. Primaryl is
a benchmark example used in the Physical Design

Workshop {18]. The actual channel definitions of the
circuits, i.e., the results of global routing, were ob-
tained from [2].

Cong et al. do not show the densities over-the-
cells. We can however get an idea as to whether the 5
track limit has an effect on the resulting densities by
comparing with the results reported for the
horizontally-connected vertically-connected (HCVC)
layout model. In HCVC the over-the-cell routing re-
gion of a cell is treated as common area for both
terminal rows of the cell, and moreover there are now
13 tracks available for over-the-cell routing. It turns
out that the inside the channel densities for the RSD
do not get further reduced, and are only reduced in 3
channels in Primaryl (see [7]). Furthermore, the re-
sults for Primaryl for the HCVC model are just ob-
tained by combining the solution for unlimited num-
ber of over-the-cell tracks for each terminal row. It
can therefore be concluded that the limitation of hav-
ing only 5 tracks for over-the-cell routing in the
HCVD model does not severely affect the outcome of
the density reduction by the improved three stage ap-
proach of [7].

Table III compares the results in the case of the
Reed-Solomon Decoder. In only one case (channel
10) is the final density found by the new router higher
than that obtained by Cong et al. The final densities
are the same in 6 cases and the new router reduces
the final densities more for the remaining 8 channels.
It should be noted that Cong et al. report the initial
density for channel 8 as being 13. This seems to be
because of a net that only goes straight across the
channel in a maximum density column (has only two
terminals). This does not really increase the density

TABLE II Density reduction inside the channel for various over-the-cell routers.

Channel Density [5] [16] 71 [9] 1] New Router
Ex1 12 25.0% 33.3% 33.3% 25.0% 25.0% 33.3%
Ex3a 15 20.0% 26.7% 20.0% 26.7% 20.0% 26.7%
Ex3b 17 23.5% 23.5% 23.5% 23.5% 23.5% 41.2%
Ex3c 18 11.1% 33.3% 22.2% 22.2% 11.1% 27.8%
Ex4b 17 5.9% 29.4% 29.4% 23.5% 23.5% 29.4%
Ex5 20 30.0% 45.0% 45.0% - 45.0% 45.0%
Deutsch 19 15.8% 21.1% 15.8% 15.8% 15.8% 21.1%
Average reduction 18.8% 30.3% 27.0% 22.8% 23.4% 32.1%
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TABLE Il Channel densities in Reed-Solomon Decoder after over-the-cell routing by Cong et al. and our new router.

New Router

Channel Cols Orig. density [5] Inside Top Bottom Inside #0CC
2 58 11 9 0 2 9 2
3 61 9 8 3 2 5 7
4 57 11 9 1 2 8 3
5 56 7 7 1 1 6 2
6 63 11 8 2 1 8 3
7 68 10 8 1 3 7 5
8 67 12 10 0 3 9 3
9 63 10 10 i 1 9 3
10 61 9 7 1 0 8 1
11 60 11 9 0 2 9 2
12 56 10 8 0 2 8 2
13 58 10 9 0 2 8 2
14 58 13 11 1 3 9 4
15 51 7 5 0 2 5 2
i6 59 12 8 1 3 8 4
Total density 153 126 12 29 116 45
Reduction 17.6% 24.2%

of the channel since that column can simply be ig-
nored. Therefore, it is possible that the final density
for this channel should be 9 instead of 10 in [7] (that
would increase the number of ties by one). The over-
all density reduction for the RSD circuit is 24.2% for
the new greedy router, compared with 17.6% for
Cong et al. The running times for the new router
varied from 0.070 to 0.110 seconds, with an average
running time of 0.084 seconds.

Table IV shows the results for the Primary! circuit.
In the three cases (channels 3, 5 and 12) when the 5
track over-the-cell limit comes into play for Cong et
al. the density for the HCVC case is shown in paren-
theses. The new router goes over the 5 track limit for
one channel (channel 2) and there the solution for the
unlimited number of over-the-cell tracks is shown in
parentheses. This is indeed a valid solution for the
HCVC layout model, since channel 2 is the lowest

TABLE IV  Channel densities in Primary 1 after over-the-cell routing by Cong et al. and our new router.

New Router

Channel Cols Orig. density [5] Inside Top Bottom Inside #0CC
2 264 19 14 0 5 14(13) 5(8)
3 262 14 13(11) 3 3 9 17
4 206 18 12 3 5 11 11
5 272 25 22(21) 2 5 20 8
6 272 16 13 3 3 12 8
7 309 24 19 4 2 19 11
8 293 22 18 2 2 18 5
9 300 25 21 4 4 19 11
10 313 27 22 2 5 20 7
11 306 26 22(21) 3 4 19 7
12 254 19 15 2 4 14 10
13 247 19 15 1 3 15 4
14 318 21 15 1 4 16 7
Total density 275 221 30 51 206 114
Reduction 19.6% 25.1%
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channel in the circuit and only 7 tracks are used for
over-the-cell routing (when 13 are available). The 5
track solution by the new router for channel 2 is just
an intermediate step on the way towards the solution
when there is no limit to the number of over-the-cell
tracks. Therefore, a modification of the new greedy
router that works with limited number of over-the-
cell tracks might give a better solution (note that
there is no routing over the top cell). Again, Cong et
al. find a solution with lower final density in only one
case (channel 14). The final densities are the same in
4 cases and the new router results in lower final den-
sities for 8 channels. The overall density reduction
for the Primary1 circuit is 25.1% for our greedy ap-
proach and 19.6% for the improved three stage ap-
proach. The running times for the new router on the
channels in Primary1 varied from 0.340 to 0.600 sec-
onds, with an average running time of 0.455 seconds.

5. CONCLUDING REMARKS

We described a new algorithm for over-the-cell chan-
nel routing. The new router tries to reduce the density
inside the channel by moving segments that span
maximum-density columns to the over-the-cell areas.
The new router performs better than previous over-
the-cell routers. The improved performance results
from combining the routing of over-the-cell connec-
tions with the selection of connections to be made
inside the channel and from more effective greedy
heuristics for selecting the over-the-cell connections.

The worst case time complexity for the algorithm
is quite high but the actual running time turns out to
be quite good. We should note that in the channels in
tables 3 and 4, which came from actual circuits, from
20% to nearly 50% of all the terminals were vacant
(this is after elimination of all columns where both
terminals are vacant). This cuts down on the number
of OC-candidates that we create and therefore re-
duces the running time. The time complexity (and the
running time, for sufficiently large channels) of our
algorithm can be reduced by storing the densities in-
side the channel in a segment tree [17] instead of the
simple array that we use. The time for updating the

densities remains O(s), but the query time (to find the
maximum density and the number of maximum den-
sity columns over an interval) is reduced to O(log s).
This leads to overall time complexity of O(I N(s + D
log s) + D N n” (n + log s)) instead of the previous
O(D N s + n(n® + 5) + D)).

There are a number of avenues for improving the
algorithm. The most obvious of these is to make use
of vacant terminals. Assuming that we do not use a
vacant terminal assignment preprocessing step (such
as [14]) a possibility for improvement is to increase
the number of OC-candidates by using the vacant ter-
minals. That is, in a column where one of the termi-
nals is vacant, we allow the net for the active terminal
to go straight across the channel and use the vacant
terminal for a possibility of over-the-cell routing on
the opposite terminal row.

The restriction of not allowing the overlap of two
over-the-cell wires for the same net and on the same
side (rule (ii) in maintaining the active set of OC-
candidates) is unnecessary. It can be dropped without
affecting the time complexity of the algorithm and
that would increase the size of the set of active OC-
candidates. It would also be interesting to see how
much effect it would have to allow every possible
two terminal OC-candidate in the initial active set of
OC-candidates (instead of just candidates connecting
nearest neighbors). However, this would clearly in-
crease the time complexity of the algorithm by a fac-
tor of n.

We have observed an example where an OC-
candidate chosen for routing has two possible reduc-
tion intervals, and the “wrong” one is chosen as its
best reduction interval. That is, the maximum density
columns in the reduction interval that was not chosen
can not be covered by any other active OC-candidate
while it is possible to cover the maximum density
columns in the chosen interval by other OC-
candidates. This indicates a weakness in our approach
for choosing reduction intervals for OC-candidates.
However, it is not clear how to fix this problem even
if we associate the list of all possible maximum den-
sity reduction intervals with each OC-candidates.

Finally, the rules that we use for selecting the next
OC-candidate for over-the-cell routing is an area
worth studying. There is the question of whether it
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would be better to reduce the priority of maximizing
the number of maximum density columns that are
covered. We could try to create a weight function that
balances the number of maximum density columns
covered against the number of (or columns covered
by) the OC-candidates that the candidate interferes
with in a planar routing.
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