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Abstract. LearningaGaussianmixturewitha local algorithm likeEMcanbe dif¢cultbecause (i)
the true number of mixing components is usually unknown, (ii) there is no generally accepted
method for parameter initialization, and (iii) the algorithm can get trapped in one of the many
local maximaof the likelihood function. In this paper we propose a greedyalgorithm for learning
aGaussian mixturewhich tries to overcome these limitations. In particular, starting with a single
component and adding components sequentially until a maximum number k, the algorithm is
capable of achieving solutions superior to EM with k components in terms of the likelihood
of a test set. The algorithm is based on recent theoretical results on incremental mixture density
estimation, and uses a combination of global and local search each time a new component is
added to the mixture.

Key words: EM algorithm, Gaussian mixture, greedy learning

1. Introduction

Finite mixture distributions [9] provide a simple framework for modeling population
heterogeneity. If fðx; hjÞ is the jth component model parametrized on hj, then a
mixture density for a random vector x assuming k components is

fkðxÞ ¼
Xk
j¼1

pjfðx; hjÞ ð1Þ

where pj are the mixing weights satisfying p1 þ . . .þ pk ¼ 1, pj X 0. Mixtures have
proven useful tools for data analysis and recent examples are mixtures of factor
analyzers [6] and principal component analyzers [16].
Learning the mixture, namely, estimating the weights pj and the parameters hj of

each component, is often carried out through likelihood maximization using the
Expectation-Maximization (EM) algorithm [4]. The popularity of EM is due to
its simple implementation together with the guaranteed monotone increase of
the likelihood of the training set during optimization. However, known limitations
of EM are (i) it assumes that the number k of mixing components is known, (ii)
there is no widely accepted ‘good’ method for initializing the parameters, and (iii)
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the algorithm is of local nature and thus can get trapped in local maxima of the
likelihood function.
Theoretical evidence [7, 8] indicates that it is possible to learn a mixture density by

maximum likelihood in a greedy fashion, namely, by incrementally adding com-
ponents to the mixture up to a desired number of components k. As shown in [7],
if component insertion is carried out in an optimal way, such an incrementally com-
puted mixture is almost as good as any mixture in the form (1).
The practical consequence of this result is that learning a k-component mixture

can be replaced by a successive two-component mixture learning which is a
substantially simpler task, making the learning algorithm less sensitive to the above
limitations of EM. Nevertheless, in the work of [7] the important issue of optimal
allocation of a new component is not adequately addressed, and this constitutes
an open problem.
We propose in this paper a greedy algorithm for learning a general multivariate

Gaussian mixture. We start with one component. Assuming at some point of
the algorithm k components, regular EM steps are carried out until convergence,
and then a new component is added to the mixture according to [7]. To locate
the optimal position of the new component we propose the use of (i) a global search
among all input points, followed by (ii) a local search based on partial EM steps
for ¢ne tuning of the parameters of the new component. Simulation results indicate
that the proposed algorithm (running until k components have been added) seems
to outperform EM (with k components) in terms of the likelihood of a test set.

2. Gaussian Mixtures and the EM Algorithm

A multivariate Gaussian mixture is given by the weighted sum (1), where the jth
component fðx; hjÞ is the d-dimensional Gaussian density

fðx; hjÞ ¼ ð2pÞ�d=2
jSjj

�1=2 exp �0:5ðx�mjÞ
TS�1

j ðx�mjÞ

h i
ð2Þ

parametrized on the mean mj and the covariance matrix Sj, collectively denoted by
the parameter vector hj. For the learning problem we assume a training set
fx1; . . . ; xng of independent and identically distributed points sampled from the
mixture, and the task is to estimate the parameters fpj;mj;Sjg of the k components
that maximize the log-likelihood

Lk ¼
Xn
i¼1

log fkðxiÞ: ð3Þ

In order to prevent maxima of the log-likelihood going to in¢nity, we must place
lower bounds on the singular values of the covariance matrices of the mixing
components. Then, log-likelihood maximization can be carried out by the EM algo-
rithm using the following iterative update equations for each component j,
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j ¼ 1; . . . ; k [12]

PðjjxiÞ ¼
pjfðxi; hjÞ

fkðxiÞ
; ð4Þ

pj :¼
1
n

Xn
i¼1

PðjjxiÞ; ð5Þ

mj :¼

Pn
i¼1 PðjjxiÞxiPn
i¼1 PðjjxiÞ

; ð6Þ

Sj :¼

Pn
i¼1 PðjjxiÞðxi �mjÞðxi �mjÞ

TPn
i¼1 PðjjxiÞ

: ð7Þ

It can be shown that in each EM step the log-likelihood cannot decrease [14].

3. Greedy Mixture Learning

The proposed algorithm is based on theoretical evidence [7] that, under assumptions,
maximum likelihood learning of a mixture can be done in a greedy manner by
successively adding components to the mixture. In particular, assume that a new
component fðx; hÞ is added to a k-component mixture fkðxÞ giving the mixture

fkþ1ðxÞ ¼ ð1� aÞfkðxÞ þ afðx; hÞ; ð8Þ

with a in ð0; 1Þ. Then, as long as for each k, given fkðxÞ, the weight a and the
parameter vector h of fðx; hÞ are optimally chosen so that the new log-likelihood

Lkþ1 ¼
Xn
i¼1

log fkþ1ðxiÞ ¼
Xn
i¼1

log½ð1� aÞfkðxiÞ þ afðxi; hÞ� ð9Þ

is maximized, then, for large k, the resulting mixture has almost at least as high a
log-likelihood as is achieved by any mixture density in the form (1), in the sense
that for any mixture and data set, there is a number C such that the log-likelihood
achieved by the greedy algorithm is at most C=k smaller than the log-likelihood
achieved by such a mixture, as shown in [7]. Moreover, a notable property of
the above two-component maximization problem is that the parameters of fkðxÞ
remain ¢xed during maximization of Lkþ1.
The importance of this result is that maximum likelihood learning of a general

Gaussian mixture can be replaced by the successive learning of the two-component
mixtures fkþ1ðxÞ, where the ¢rst component is the old mixture fkðxÞ and the second
one is the Gaussian component fðx; hÞ with h ¼ ½m;S� its mean and covariance
matrix. This is advantageous from a practical point of view since a two-component
mixture is easier to learn than a general mixture, however, appropriate search
techniques need to be developed in order to optimally specify the parameters a,
m, and S that maximize Lkþ1. An effective technique to deal with this problem
is presented next.
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3.1. LOCAL SEARCH

Since we have to learn a two-component mixture, an EM algorithm can be employed
to perform local search for the maxima of Lkþ1 with respect to a, m, and S.
Moreover, since the parameters of fkðxÞ remain ¢xed during component allocation,
partial EM steps can be used in which (4)^(7) update only the mixing weight a,
the mean m, and the covariance matrix S of the newly inserted component, i.e.,

Pðkþ 1jxiÞ ¼
afðxi;m;SÞ

ð1� aÞfkðxiÞ þ afðxi;m;SÞ
; ð10Þ

a :¼
1
n

Xn
i¼1

Pðkþ 1jxiÞ; ð11Þ

m :¼

Pn
i¼1 Pðkþ 1jxiÞxiPn
i¼1 Pðkþ 1jxiÞ

; ð12Þ

S :¼

Pn
i¼1 Pðkþ 1jxiÞðxi �mÞðxi �mÞ

TPn
i¼1 Pðkþ 1jxiÞ

: ð13Þ

Since only the parameters of the new component are updated, partial EM steps
constitute a simple and fast method for locally searching for the maxima of
Lkþ1, without needing to resort to other computationally demanding nonlinear
optimization methods. However, the above EM-based scheme is still a local
algorithm which is very sensitive to the initial values of the parameters a, m,
and S. In the following we propose a global search strategy for proper parameter
initialization.

3.2. GLOBAL SEARCH

The partial EM steps require the initialization of the parameters m and S of the new
component, and also the weight a. In order to facilitate the global search over
the parameter space, we can substitute the log-likelihood function (9) with a Taylor
approximation about a point a ¼ ao, and then use the resulting estimate to search
for the optimal m and S. More speci¢cally, we expand Lkþ1 by second order Taylor
about ao ¼ 0:5 and then maximize the resulting quadratic function with respect
to a. It is not dif¢cult to see that this procedure gives the approximation

L̂Lkþ1 ¼ Lkþ1ðaoÞ �
½L

0
kþ1ðaoÞ�

2

2L00
kþ1ðaoÞ

ð14Þ

with L
0
kþ1 and L

00
kþ1 the ¢rst and second derivatives of Lkþ1 with respect to a. If we

de¢ne

dðx; hÞ ¼
fkðxÞ � fðx; hÞ
fkðxÞ þ fðx; hÞ

ð15Þ
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then a local maximum of Lkþ1 near ao ¼ 0:5 is easily shown to be

L̂Lkþ1 ¼
Xn
i¼1

log
fkðxiÞ þ fðxi; hÞ

2
þ
1
2

Xn
i¼1

dðxi; hÞ

" #2
Xn
i¼1

d2ðxi; hÞ
ð16Þ

and is obtained for a equal to

âa ¼
1
2
�
1
2

Pn
i¼1 dðxi; hÞPn
i¼1 d

2
ðxi; hÞ

: ð17Þ

If this value falls outside the range ð0; 1Þ then we can initialize the partial EMwith the
approximation âa ¼ 0:5 for k ¼ 1 and âa ¼ 2=ðkþ 1Þ for kX 2, according to [7].
The above procedure makes the likelihood function in (9) independent of the

mixing weight a, and the next step is to ¢nd a good initialization of the center
m and covariance matrix S of the new component. In general, this involves a global
search over the space of all ½m;S� parameters which is clearly infeasible since S
is a general covariance matrix involving many parameters.
However, we observe from (16) that L̂Lkþ1 depends only on fðxi;m;SÞ (remember

that fkðxÞ remains ¢xed during optimization) which, for constant covariance matrix
S ¼ s2I, is just a function of the Euclidean distance of m to the input point xi. Thus,
if we restrict our global search for the new m only over the input points xj , then
evaluation of L̂Lkþ1 for all m requires the computation of all pairwise Euclidean
distances jjxi � xjjj between inputs which can be carried out only once at the
beginning of the algorithm.
Thus, in the initialization of the learning algorithm we also store a matrix K with

elements

kij ¼ ð2ps2Þ�d=2 expð�0:5jjxi � xjjj2=s2Þ ð18Þ

for an appropriate s, and then use the kij in each component allocation step in the
rest of the algorithm for computing the required fðxi; xj;SÞ values in (16). We
can also de¢ne many kernel matrices, one for each value of s, and then compute
the maximum of L̂Lkþ1 over all s. A similar approach that uses a matrix K for
searching for global solutions over the parameter space has been proposed in [15].
The choice of s must depend on the dimension d of the data and the size n of the

training set, and we propose a s proportional to the value that minimizes the mean
integrated squared error of a nonparametric multivariate density estimator [19]

s ¼ b
4

ðd þ 2Þn

� �1=ðdþ4Þ
ð19Þ

with b a ¢xed number.
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Using the above approach the time complexity of each evaluation of L̂Lkþ1 is OðnÞ,
giving total complexity for the global search Oðn2Þ. The use of the kernel matrix
K makes this computation feasible during optimization.

3.3. THE GREEDY EM ALGORITHM

Summarizing the above ideas we have the following algorithm for learning a
multivariate Gaussian mixture.

1. Initialize using one component withm ¼ E½x� and S ¼CovðxÞ. Compute s in (19) by
setting b to half the value of the maximum singular value of S. Compute the kernel
matrix from (18).

2. Perform EM steps until convergence: jLt
k=L

t�1
k � 1j < 1e-6. If an appropriate

stopping condition holds then terminate.
3. Search over all xj for candidate locations for the new component. Setm to the xj that
maximizes (16) using the precomputed kernel values kij in place of fðxi; xj; s2IÞ.

4. Initialize the partial EM with the estimated value of m, S ¼ s2I, and âa by
introducing these estimates in (17).

5. Apply partial EM steps (10)^(13) until convergence as in step 2.
6. If Lkþ1WLk then terminate, otherwise allocate the new component and go to 2.

Since EM cannot lead to decrease of the log-likelihood and the partial EM solutions
are accepted only if Lkþ1 > Lk, the algorithm ensures the monotone increase of the
log-likelihood of the training set.
The stopping condition in step 2 is typically the maximum allowed number of

components k. If the task is the estimation of the true number of components of
the mixture, then we can run the algorithm for a large ¢nal value of k and then
select the optimal k̂k based on some model selection criterion, e.g., cross-validation
using a set of test points, a coding scheme based on MDL [7], etc.

4. Experiments

We compared the performance of the proposed greedy EM algorithm to the regular
EM algorithm by carrying out a set of experiments using both synthetic and real
data.
In the synthetic data case we created 50 random mixtures of varying complexity

(see below), and sampled from each of them a training set of 400 points and a test
set of 200 points. We tested the methods for dimensions d ¼ 2 and d ¼ 5 because
higher dimensions would suffer from the limited size of the training set (curse of
dimensionality). We applied both the greedy EM and the regular EM algorithm
to these mixtures and computed the average, over the 50 runs, of the log-likelihood
of the test set for each of them. The quality measure we used was the difference
between the two averages (the standard deviations were negligible).
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In all experiments the greedy EM was initialized with s and b as described
in Section 3.3. For the initialization of the regular EM algorithm using k
components, the mixing weights were set equal to 1=k, the component centers were
randomly placed over the range of the training points, and the initial covariances
were spherical, each with variance according to [3]

s2i ¼
1
2d

min
j 6¼i

jjmj �mijj
2: ð20Þ

The complexity of the mixtures in the 50 experiments was controlled by the
number of components k taking the values k ¼ 4; 6; 8; 10, the maximum allowed
eccentricity emax (see de¢nition in Section 2) which was kept constant to the value
emax ¼ 15, and the degree of separation c of the components of the mixture taking
the values c ¼ 1; 2; 3; 4. The mixing weights of the k components were uniformly
sampled from ½1=ð2kÞ; 1� and then normalized to sum to one. For setting the
eccentricity of each component, the singular values of its covariance matrix were
sampled uniformly in ½1; emax�, while the degree of separation c imposed a constraint
on the positions of the component centers according to [3]

jjmi �mjjjX c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxftraceðSiÞ; traceðSjÞg

p
: ð21Þ

Each mixture was generated so as to satisfy this bound as tightly as possible.
After each EM step the covariance matrix of each component was transformed to

its Cholesky decomposition leading to a speedup of the algorithm. The eccentricity
of each component was upper bounded by 1e4 in order to avoid singular solutions
as mentioned above.
A typical six-component mixture with d ¼ 2, c ¼ 4, and emax ¼ 15 and the results

of the greedy EM algorithm are shown in Figure 1. In each diagram we plot the
newly allocated component after partial EM has converged. The results of the
complete synthetic experiment are summarized in Figure 2. We see that the greedy
EM algorithm achieves solutions superior to the regular EM on the average,
and this becomes clearer as the degree of separation c of the components increases.
In the second part of the experiments we applied the greedy EM and the regular

EM algorithm on an image segmentation data set available from the UCI repository
[1]. This data set contains 210 training patterns and 2100 test patterns of 19 features.
Although this is a supervised data set, in the conducted experiments we ignored the
class labels of the patterns. To reduce the dimensionality we applied Principal
Component Analysis and retained only the ¢rst ¢ve principal dimensions which
explained more than 95% of the total variance of the data. In the reduced
¢ve-dimensional data set, we applied the greedy EM once and the regular EM
algorithm 50 times (with different initializations), for values of k from two to 20.
In Figure 3 we plot the log-likelihood of the test set as a function of k. The boxes

correspond to values of the log-likelihood using the greedy EM, the crosses to
the maximum (over the 50 trials) log-likelihood using the regular EM, and the circles
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(with error bars) to the average (�s) log-likelihood using the regular EM. We see
that the greedy EM is constantly superior to the average EM solutions and even
reaches or surpasses the best possible EM solutions for some k. The value
k ¼ 13 was reported by the greedy EM algorithm as the optimal number of
components using the test set. This experiment provides a second indication of
the superiority of the greedy EM algorithm over the regular EM.
A Matlab implementation of the algorithm is available at
http://www.science.uva.nl/�vlassis/software

Figure 1. A six-component 4-separated bivariate mixture and the component allocation steps.
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5. Discussion

In the previous section we showed experimental results from the application of both
the greedy EM and the regular EM algorithms to synthetic and real data. One point
that should be stressed, however, is that the performance of the regular EM depends
very much on the initialization of its parameters, and for this reason the comparison
of the greedy EM to the regular EM can be considered biased. However, we decided
to compare with the regular EM since the latter is still state of the art in mixture
problems and also because several other algorithms report results compared to those
of the regular EM [3, 17].
There are a few published algorithms in the literature that bear similarities to the

proposed greedy EM algorithm and belong to the category of techniques related
to the Vertex Direction Method (VDM) [2, 5, 8]. More speci¢cally, an algorithm
that combines the EM algorithm with dynamic component allocation has been
proposed in [5] but only for univariate mixtures. Also, like in our approach, a second

d ¼ 2 c ¼ 1 c ¼ 2 c ¼ 3 c ¼ 4 d ¼ 5 c ¼ 1 c ¼ 2 c ¼ 3 c ¼ 4
k ¼ 4 0.1006 0.3155 0.4113 0.4944 k ¼ 4 0.1149 0.4390 0.5439 0.4376
k ¼ 6 0.1182 0.2851 0.5518 0.6657 k ¼ 6 0.0888 0.2730 0.6869 0.3097
k ¼ 8 0.1060 0.3182 0.4694 0.6733 k ¼ 8 0.1134 0.2482 0.2202 0.6083
k ¼ 10 0.0666 0.3828 0.5432 0.7726 k ¼ 10 0.1605 0.3413 0.5267 0.7754

Figure 2. Di¡erence of the average log-likelihood of the test set between the greedy EM and the regular EM
in the synthetic experiment. The results are for d ¼ 2 and d ¼ 5 and various values of k (number of
components) and c (degree of separation).

Figure 3. Log-likelihood of the test set for the UCI data after PCA. The greedy EM algorithm achieves
superior solutions to the regular EM on the average.
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order Taylor expansion about ao ¼ 0 of a two-component mixture has been proposed
in [2]. However, due to the discontinuities of Lkþ1 near ao ¼ 0, suboptimal solutions
could result as we noticed in our implementations. In the latter work it is also
not clearly speci¢ed how to search for the maxima of L̂Lkþ1, especially in the case
of multivariate mixtures.
A Bayesian approach to the problem of learning a mixture with an unknown

number of components has been proposed in [13]. There, a reversible jump Markov
Chain Monte Carlo method is employed for switching between parameter subspaces
of different dimensionality (the number of components of the mixture). The
dimension-changing ‘jumps’ are in the form of splitting, combining, and deleting
components. The main argument against the use of this method is its computational
complexity (see discussion in [13]).
A related approach which also uses split and merge operations between

components has been proposed in [17]. In this approach the number of components
remains unchanged, while a form of backtracking is required to ensure that the
log-likelihood increases in each split-merge step. The split test statistic employed
in this approach is the Kullback divergence between a component density and
the empirical density in the vicinity of the component.
In the past we have also proposed an incremental scheme for learning univariate

Gaussian mixtures, in which a component of the mixture is split according to a
statistical test involving the kurtosis of the component [18]. However, the proposed
greedy EM algorithm seems to be more robust and avoids possible problems of
the kurtosis related to outliers.
Ongoing research focuses on two directions. First we are investigating the

possibility of applying this technique in learning latent mixture models [6, 16]. A
second important issue is the acceleration of the algorithm, especially the EM
optimization part and the global search which is currently Oðn2Þ. For the former
an on-line version of EM [11] could be useful, while for the latter the use of
specialized structures for storing high-dimensional data like kd-trees, combined with
a more sophisticated global search scheme, can offer signi¢cant speedup [10].
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