
A Greedy Facility Location Algorithm

Analyzed using Dual Fitting

Mohammad Mahdian∗ Evangelos Markakis Amin Saberi

Vijay Vazirani†

Abstract

We present a natural greedy algorithm for the metric uncapacitated facility location
problem and use the method of dual fitting to analyze its approximation ratio, which
turns out to be 1.861. The running time of our algorithm is O(m logm), where m is
the total number of edges in the underlying complete bipartite graph between cities
and facilities. We use our algorithm to improve recent results for some variants of the
problem, such as the fault tolerant and outlier versions. In addition, we introduce a
new variant which can be seen as a special case of the concave cost version of this
problem.

Keywords: facility location, approximation algorithm, greedy, LP-Duality theory, linear
programming.

∗77 Massachusetts Avenue, Department of Mathematics, MIT, Cambridge, MA, 02139-4307, USA.
mahdian@math.mit.edu

†801 Atlantic Drive, College of Computing, Georgia Tech, Atlanta, GA, 30332, USA. (vangelis, saberi,
vazirani)@cc.gatech.edu

1

1 Introduction

A large fraction of the theory of approximation algorithms, as we know it today, is built
around the theory of linear programming. Two fundamental algorithm design techniques,
based on linear programming, yield approximation algorithms for a large number of im-
portant problems: LP-rounding and the primal–dual schema. One unsatisfying aspect of
the current picture is that perhaps the most central problem of this theory, the set cover
problem, is not solved using either of these techniques. Instead, it is solved using another
method [18] dual fitting. The greedy algorithm for set cover can also be analyzed with-
out using LP-duality [15]; however, the analysis using dual fitting is more powerful. In
particular, it extends in a seamless manner to generalizations and variants, e.g., see [20].

The method can be described as follows, assuming a minimization problem: The basic
algorithm is combinatorial – in the case of set cover it is in fact a simple greedy algorithm.
Using the linear programming relaxation of the problem and its dual, one shows that the
primal integral solution found by the algorithm is fully paid for by the dual computed;
however, the dual is infeasible. The main step in the analysis consists of dividing the
dual by a suitable factor and showing that the shrunk dual is feasible, i.e., it fits into the
given instance. The shrunk dual is then a lower bound on OPT, and the factor is the
approximation guarantee of the algorithm.

This method seems quite basic. However, to our knowledge, it does not seem to have
found use outside of the set cover problem and its generalizations and variants. Perhaps
the most important contribution of this paper is to apply this method to the fundamental
metric uncapacitated facility location problem.

Our combinatorial algorithm for the metric uncapacitated facility location problem is
a simple greedy algorithm. It is a small modification of Hochbaum’s greedy algorithm
for this problem. The latter was in fact the first approximation for this problem, with
an approximation guarantee of O(log n). In contrast, our greedy algorithm achieves an
approximation ratio of 1.861 and has a running time of O(m logm), wherem is the number
of edges of the underlying complete bipartite graph between cities and facilities, i.e. m =
nc × nf , where nc is the number of cities and nf is the number of facilities. Although
this approximation factor is not the best known for this problem, our algorithm is natural
and simple, and achieves the best approximation ratio within the same running time. For
a metric defined by a sparse graph, Thorup [22] has obtained an algorithm, achieving a
better running time, namely Õ(|E|), where |E| is the number of edges in the sparse graph.
The approximation factor of his algorithm is 3 + o(1).

The first constant factor approximation algorithm for this problem was given by Shmoys,
Tardos and Aardal [21]. Later, the factor was improved by Chudak and Shmoys [6] to
1+2/e. This was the best known algorithm until the recent work of Charikar and Guha [2],
who slightly improved the factor to 1.728. The above mentioned algorithms are based on
LP-rounding, and therefore have high running times. Jain and Vazirani [13] gave a primal–
dual algorithm, achieving a factor of 3, and having the same running time as ours (we
will refer to this as the JV algorithm). Their algorithm was adapted for solving several
related problems such as the fault-tolerant and outlier versions, and the k-median problem
[13, 14, 4]. Mettu and Plaxton [19] used a restatement of their algorithm for the on-line
median problem.

Strategies based on local search and greedy improvement for facility location problem

2

have also been studied. The work of Korupolu et. al. [16] shows that a simple local search
heuristic proposed by Kuehn and Hamburger [17] yields a constant factor approximation
for the facility location problem. Guha and Khuller [9] showed that greedy improvement
can be used as a post-processing step to improve the approximation guarantee of certain
facility location algorithms. The best approximation ratio for facility location [2] was
obtained by combining a local search heuristic with the best LP-based algorithm known.
They also combined greedy improvement and cost scaling to improve the factor of the
JV algorithm. They proposed two algorithms with approximation factors of 2.41 + ǫ and
1.853 and running times of Õ(n2/ǫ) and Õ(n3) respectively, where n is the total number of
vertices of the underlying graph. Regarding hardness results, Guha and Khuller [9] showed
that the best approximation factor that we can get for this problem is 1.463, assuming
NP 6⊆ DTIME[nO(log logn)].

Our greedy algorithm is quite similar to the greedy set cover algorithm: iteratively pick the
most cost-effective choice at each step, where cost-effectiveness is measured as the ratio of
the cost incurred and the number of new cities served. In order to use LP-duality to analyze
this algorithm, we give an alternative description which can be seen as a modification of
the JV algorithm. This algorithm constructs a primal and dual solution of equal cost.
However, the dual is infeasible. We show that if each of the dual variables is divided by
1.861, we obtain a feasible dual. As a consequence, the approximation guarantee of our
algorithm is 1.861.

We have run our algorithm on randomly generated instances to obtain experimental re-
sults. The cost of the integral solution found is compared against the cost of an optimal
solution to the LP-relaxation, and not an optimal integral solution (finding which will of
course be unpractical). The results are good: the error varies in a small range of 0.8% to
7.1%.

We also use our algorithm to improve some recent results for some variants of the problem.
In the facility location problem with outliers we are not required to connect all cities to
some open facilities. In the robust version of this variant we are asked to choose l cities
and connect the rest of them to some open facilities. In facility location with penalties
we can either connect a city to a facility, or pay a specified penalty. Both versions were
motivated by commercial applications, and were proposed by Charikar et al. [4]. In this
paper we will modify our algorithm to obtain a factor 2 approximation algorithm for these
versions, improving the best known result of factor 3.

In the fault tolerant variant, each city has a specified number of facilities it should be
connected to. This problem was proposed in [14] and the best factor known is 2.47 [10].
We can show that we can achieve a factor 1.861 algorithm, when all cities have the same
connectivity requirement. In addition, we introduce a new variant which can be seen as a
special case of the concave cost version of this problem: the cost of opening a facility at a
location is specified and it can serve exactly one city. In addition, a setup cost is charged
the very first time a facility is opened at a given location.

2 The algorithm

Before stating the algorithm, we give a formal definition of the problem.
Metric uncapacitated facility location : Let G be a bipartite graph with bipartition

3

(F,C), where F is the set of facilities and C is the set of cities. Suppose also that
| C |= nc and | F |= nf . Thus, the total number of vertices in the graph n = nc + nf

and the total number of edges m = nc × nf . Let fi be the cost of opening facility i, and
cij be the cost of connecting city j to facility i. The connection costs satisfy the triangle
inequality. We want to find a subset I ⊆ F of facilities that should be opened and a
function φ : C → I assigning cities to open facilities, such that the total cost of opening
facilities and connecting cities to them is minimized.

In our algorithm we use a notion of cost-effectiveness. For each pair of a facility i with
opening cost fi, and a set of cities C

′
⊆ C, we define its cost-effectiveness to be :

fi +
∑

j∈C
′ cij

| C ′ |

In each iteration the algorithm picks the most cost-effective pair (i, C
′
) greedily.

The algorithm is as follows:

Algorithm 1

1. In the beginning all cities are unconnected and all facilities are closed.

2. While C 6= ∅:

• Among all pairs of facilities and subsets of C, find the most cost effective one,
(i, C

′
), open facility i, if it is not already open, and connect all cities in C

′
to i.

• Set fi := 0, C := C\C
′
.

Note that a facility can be chosen again after being opened, but its opening cost is counted
only once since we set fi to zero after the first time the facility is picked by the algorithm.
As far as cities are concerned, every city j is removed from C, when connected to an open
facility, and is not taken into consideration again.

Although the number of pairs of facilities and subsets of cities is exponentially large, in
each iteration the most cost-effective pair can be found in polynomial time. For each
facility i, we can sort the cities according to their connection cost to i. It can be easily
seen that the most cost-effective pair will consist of a facility and a set, containing the
first k cities in the increasing order of their connection cost to that facility, for some k.

The idea of cost-effectiveness essentially stems from a similar notion in the greedy algo-
rithm for the set cover problem.

In that algorithm, the cost effectiveness of a set S is defined to be the cost of S over the
number of uncovered elements in S. In each iteration, the algorithm picks the most cost-
effective set until all elements are covered. The most cost-effective set can be found either
by using direct computation, or by using the dual program of the linear programming for-
mulation for the problem. The dual program can also be used to prove the approximation
factor of the algorithm.

Similarly, we will use the LP-formulation of facility location to analyze our algorithm. As
we will see, the dual formulation of the problem helps us to understand the nature of the
problem and the greedy algorithm.

4

Consider the following integer program for this problem. In this program yi is an indicator
variable denoting whether facility i is open, and xij is an indicator variable denoting
whether city j is connected to facility i. The first constraint ensures that each city is
connected to at least one facility and the second that this facility should be open.

minimize
∑

i∈F,j∈C

cijxij +
∑

i∈F

fiyi

subject to
∑

i∈F

xij ≥ 1 ∀j ∈ C

yi − xij ≥ 0 ∀i ∈ F, j ∈ C

xij ∈ {0, 1} ∀i ∈ F, j ∈ C

yi ∈ {0, 1} ∀i ∈ F

(1)

The LP-relaxation of this program can be obtained if we allow xij and yi to be non-negative
real numbers. The dual program of the LP-relaxation will then be:

maximize
∑

j∈C

αj

subject to αj − βij ≤ cij ∀i ∈ F, j ∈ C

∑

j∈C

βij ≤ fi ∀i ∈ F

αj ≥ 0 ∀j ∈ C

βij ≥ 0 ∀i ∈ F, j ∈ C

(2)

There is an intuitive way of interpreting the dual variables. We can think of αj as the
contribution of city j. This contribution goes towards connecting the city to some facility
i and towards opening i. Using the inequalities of the dual program, we will have:

∑

j∈C

max(0, αj − cij) ≤ fi (3)

When inequality 3 holds with equality, it means that the total contribution of the cities
towards opening facility i is enough to cover its cost, fi, and thus we can open it.

We can now see how the dual variables can help us find the most cost-effective pair in each
iteration of the greedy algorithm: if we start raising the dual variables of all unconnected
cities simultaneously, the most cost-effective pair (i, C

′
) will be the first pair for which

∑

j∈C
′ max(0, αj − cij) = fi.

Hence we can restate Algorithm 1 based on the above observation. This is in complete
analogy to the greedy algorithm and its restatement using LP-formulation for set-cover.

5

Algorithm 2

1. We introduce a notion of time, so that each event can be associated with the time
at which it happened. The algorithm starts at time 0. Initially, each city is defined
to be unconnected, all facilities are closed, and αj is set to 0 for every j.

2. While C 6= ∅ :

• For every city j ∈ C, increase the parameter αj simultaneously, until one of the
following events occur (if two events occur at the same time, we process them
in arbitrary order).

(a) For some unconnected city j, and some open facility i, αj = cij . In this
case, we connect city j to facility i and we remove j from C.

(b) For some closed facility i, we have :

∑

j∈C

max(0, αj − cij) = fi.

This means that the total contribution of the cities is sufficient to open
facility i. In this case, we open this facility, and for every unconnected city
j with αj ≥ cij , we connect j to i, and we remove it from C.

In each iteration of algorithm 1 the process of opening a facility and connecting some cities
to it can be thought of as an event.

Theorem 1 The events executed by algorithms 1 and 2 are identical.

Proof. By induction.

Algorithm 2 can also be seen as a modification of JV algorithm [13]. The only difference
is that in JV algorithm cities, when connected to an open facility, are not excluded from
C, hence they might contribute towards opening several facilities. Due to this fact they
have a second cleanup phase, in which some of the already open facilities will be closed
down.

3 Analysis of the Algorithm

In this section we will give an LP-based analysis of this algorithm. As stated before, the
contribution of each city goes towards opening at most one facility and connecting the city
to an open facility. Therefore the total cost of the solution produced by our algorithm will
be equal to the sum of the contributions (

∑

j αj). But (α, β), where βij = max(αj−cij , 0),
is no longer a dual feasible solution as it was in the JV algorithm. The reason is that
∑

j max(αj − cij , 0) can be greater than fi and hence one of the constraints of the dual
program, (

∑

j βij ≤ fi) is violated. However, if we show that for some number R > 1,
we can define β, in such a way that (α/R,β/R) is a feasible dual solution, then by the
Weak Duality theorem, (

∑

j αj)/R is a lower bound for OPT (where OPT is the optimum
solution to the problem). Hence we have proved that the approximation ratio of the
algorithm is R.

6

Theorem 2 Let αj, j = 1, . . . , nc denote the contribution of city j when algorithm 2

terminates. If for every facility i, and every set of k cities we have:

k
∑

j=1

αj ≤ R



fi +
k
∑

j=1

cij





for some R > 1, then the approximation ratio of the algorithm is at most R.

Proof. Let βij = max(αj − Rcij , 0). We will show that (α/R,β/R) is a feasible dual
solution. To see that the first condition of the dual program is satisfied, we need to show
that αj −max(αj −Rcij , 0) ≤ Rcij . We can verify that this holds by considering the two
possible cases (αj > Rcij) and (αj ≤ Rcij). As far as the second constraint of the dual
program is concerned, we need to show that

∑nc

j=1max(αj −Rcij, 0) ≤ Rfi. Let S be the
set of cities for which αj − Rcij > 0. Then

∑nc

j=1max(αj − Rcij , 0) =
∑

j∈S(αj − Rcij).

Thus the constraint becomes equivalent to the condition
∑

j∈S αj ≤ R
(

fi +
∑

j∈S cij
)

,

which is true due to the assumptions of the theorem. Hence by the Weak Duality theorem
it holds that (

∑

j αj)/R ≤ OPT . We also know that the cost of the solution produced by
our algorithm, SOL, is:

SOL =
∑

j

αj ≤ R ·OPT

This completes the proof.

From now on, we will assume without loss of generality that α1 ≤ α2 ≤ . . . ≤ αnc
. For

the rest of the analysis, we will also need the following lemmata:

Lemma 3 For every 2 cities j, j
′
and every facility i:

αj ≤ αj
′ + cij′ + cij (4)

Lemma 4 For every city j and facility i,
∑nc

k=j max(αj − cik, 0) ≤ fi

The proofs of both lemmata are in the Appendix. Subject to the constraints introduced
by these lemmata, we want to find a factor R such that for every facility i and every set
of k cities:

∑k
j=1 αj

fi +
∑k

j=1 cij
≤ R

This suggests considering the following program:

zk = maximize

∑k
j=1 αj

f +
∑k

j=1 dj

subject to αj ≤ αj+1 ∀j ∈ {1, . . . , k − 1}

αj ≤ αl + dj + dl ∀j, l ∈ {1, . . . , k}

k
∑

l=j

max(αj − dl, 0) ≤ f ∀j ∈ {1, . . . , k}

αj, dj , f ≥ 0 ∀j ∈ {1, . . . , k}

(5)

7

For a facility i and a set of k cities, S, the variables f and dj ’s of this maximization
program will correspond to the opening cost of i, fi, and the costs of connecting each city
j ∈ S to i, cij .

It is easy to show that for every k ≥ 1, zk > 1 and zk ≤ zk+1. We can also prove, by
demonstrating an infinite family of instances, that the approximation ratio of Algorithm
2 is not better than supk≥1{zk}.

Theorem 5 For every k, there is an instance of the facility location problem for which

Algorithm 2 outputs a solution of cost at least zk times the optimum solution.

The following theorem combined with theorems 2 and 5 shows that the factor of our
algorithm is exactly equal to supk≥1{zk}.

Theorem 6 For every facility i and every set of k cities, 1 ≤ k ≤ nc, we have:

k
∑

j=1

αj ≤ zk(fi +
k
∑

j=1

cij)

The proofs of theorems 5 and 6 are in the Appendix. Hence, in order to prove that the
approximation ratio of our algorithm is 1.861 it is enough to show that supk≥1{zk} ≤ 1.861.

It’s not difficult to prove that zk (the maximum value of the objective function of pro-
gram 5) is equal to the optimal solution of the following linear program:

zk = maximize
k
∑

j=1

αj

subject to f +
k
∑

j=1

dj ≤ 1

αj ≤ αj+1 ∀j ∈ {1, . . . , k − 1}

αj ≤ αl + dj + dl ∀j, l ∈ {1, . . . , k}

xjl ≥ αj − dl ∀j, l ∈ {1, . . . , k}

k
∑

l=j

xjl ≤ f ∀j ∈ {1, . . . , k}

αj , dj , f, xjl ≥ 0 ∀j, l ∈ {1, . . . , k}

By finding an appropriate feasible solution to the dual of the above linear program, we
managed to obtain the desirable upper bound for supk≥1{zk}.

Theorem 7 For every k ≥ 1, zk ≤ 1.861.

The proof involves many technical arguments and can be found in the Appendix.

8

We solved the above linear program for k = 500 using the software package AMPL, and
we found that z500 = 1.81. This implies that the approximation factor of our algorithm is
between 1.81 and 1.861. We still do not know if our algorithm achieves a better approxi-
mation guarantee than 1.861.

The following simple example shows that the approximation factor of the algorithm is at
least 1.5.

0 0

1 0 1 2

 1 + ε

 1 2

The cost of the missing edges is equal to the cost of the shortest path in the above graph.
Obviously the optimal solution is to open the facility with cost 1 + ǫ and connect both
cities to it. Therefore, OPT = 2 + ǫ. But, if we run algorithm 2, at time 1 city 1 will
be connected to the first facility from the left and will withdraw its contribution from the
rest of them. Hence, city 2 will be connected at time 2 to the facility on the left and the
total cost of the solution produced by the algorithm will be 3.

3.1 Running time analysis

In order to implement algorithm 2, for each facility, we keep track of the unpaid cost and
the number of cities that contribute towards its cost. We also maintain a heap of events.
The events are extracted and processed from the heap in increasing order of the time that
they occur. There are three types of events:

(a) City j starts contributing towards opening facility i (αj = cij; i is not open). In this
case we update the unpaid cost, the number of cities that contribute to i, and the
expected opening time of facility i.

(b) Facility i is being paid for and hence opened. All cities contributing towards opening
i will be connected to it, and the steps of the next event will be executed for them.

(c) City j connects to an open facility i (αj = cij ; i is open). For all other facilities, which
city j was contributing to, other than i, the number of contributors is decreased by
one, and we recompute their expected opening time.

The total number of events is O(m). Therefore, the cost of extracting an event from the
heap is O(logm). We have at most m events of type (a), nf events of type (b), and nc

events of type (c). The cost of processing the events are O(logm), O(nc) and O(nf logm)
respectively. Hence, the running time of the algorithm is O(m logm).

9

4 Experimental results

We implemented algorithm 2 in C to see how it behaves in practice. The test bed of
our experiments consisted of randomly generated instances: In each instance, cities and
facilities were points, drawn uniformly from a 10000×10000 grid, using a random number
generator. We set the connection cost between a city and a facility to be equal to the
euclidean distance of the corresponding points. Furthermore the opening cost of each
facility was drawn uniformly between 0 and 9999 . As a lower bound for the optimal
solution of each instance,OPT, we used the optimal solution of the LP-relaxation, which
we computed using the package AMPL.

We varied the instance sizes from 50 cities and 20 facilities to 400 cities and 150 facilities.
For each size we generated 20 instances and computed the ratio of the solution produced
by our algorithm over the optimal solution of the LP-relaxation. Our results showed that
the average ratio for each instance size varied between 1.025 and 1.034 whereas the worst
ratio was 1.071. Hence the average error of our algorithm on these randomly generated
instances varied between 2.5% and 3.4 %.

Some of the test data that we generated along with the corresponding results are shown
in the Appendix.

5 Variants

5.1 Arbitrary demands

In this version, for each city j, a non-negative integer demand dj , is specified. An open
facility i can serve this demand at the cost of cijdj . The best way to look at this modifi-
cation is to reduce it to unit demand case by making dj copies of city j. This reduction
suggests that we need to change algorithm 2, so that each city j raises its contribution αj

at rate dj . Note that the modified algorithm still works in more general cases, where dj is
fractional or exponentially large.

Theorem 8 Our algorithm achieves an approximation ratio of 1.861 for the arbitrary

demands facility location problem, and has a running time of O(m logm).

5.2 Fault tolerant version

We are given a connectivity requirement rj for each city j, which specifies the number of
open facilities that city j should be connected to. We can see that this problem is closely
related to the set multi-cover problem, in the case at which every set can be picked at most
once [20]. In that problem we need to choose a collection of sets, so that every element
e is covered a specified number of times, re. The greedy algorithm for set cover can be
adapted for this variant achieving the same approximation factor. We can use the same
approach to deal with the fault tolerant facility location:

The mechanism of raising dual variables and opening facilities is the same as in our initial
algorithm. The only difference is that city j stops raising its dual variable and withdraws

10

its contribution from other facilities, when it is connected to rj open facilities. Clearly,
this algorithm is identical to algorithm 2 when rj = 1 for every city j.

Theorem 9 The algorithm described above has an approximation ratio of 1.861 for the

fault tolerant facility location problem, when all rj ’s are equal.

5.3 Facility location with penalties

In this version we are not required to connect all cities to an open facility; however, for
each city j, there is a specified penalty, pj, which we have to pay, if it is not connected
to any open facility. We can modify algorithm 2 for this problem, so that city j does
not increase its dual variable more than pj. If αj reaches pj before j is connected to any
open facility, the city stops raising its dual variable and keeps its contribution equal to its
penalty until it is either connected to an open facility or all remaining cities stop raising
their dual variable. At this point, the algorithm terminates and unconnected cities remain
unconnected. Using the same proof as the one we used for algorithm 2, we can show that
the approximation ratio of this algorithm is 2.

Theorem 10 Our algorithm achieves an approximation factor of 2 and has a running

time of O(m logm).

5.4 Robust facility location

We are given a number l and we are required to connect only nc− l cities to open facilities.
This problem can be reduced to the previous one via Lagrangian relaxation.

Very recently, Charikar et al. [4] proposed a primal dual algorithm, based on JV algorithm,
which achieves an approximation ratio of 3. As they showed, the linear programming
formulation of this variant has an unbounded integrality gap. In order to fix this problem,
they use the technique of parametric pruning, in which they guess the most expensive
facility in the optimal solution. After that, they run JV algorithm on the pruned instance,
where the only allowable facilities are those that are not more expensive than the guessed
facility. Here we can use the same idea. Suppose that the most expensive facility is i with
cost fi. We modify the instance by setting its cost to zero. For all facilities whose cost is
greater than fi, we set the facility cost to ∞. Now we run algorithm 2, the only difference
being that the algorithm terminates, when the number of unconnected cities is at most l.
If the number of unconnected cities at the termination time is less than l, we can choose
some cities among those with maximum α and disconnect them.

To analyze the algorithm, let us focus on the case, in which the algorithm guesses i
correctly. The instance is modified by setting the cost of all facilities which are more
expensive than fi to ∞, and the cost of i to zero. Hence, the cost of the optimal solution
to the modified instance, OPT

′
, is equal to OPT−fi, where OPT is the cost of the optimal

solution to the original instance. With an argument similar to the proof presented for the
original problem we can show that, when the algorithm terminates, the total contribution
of the connected cities is at most 2OPT

′
. In addition, the solution to the original instance

might include the cost of opening the most expensive facility i plus the last facility that

11

we opened, which is also at most fi. Hence the cost of our solution, SOL, is:

SOL ≤ 2OPT
′

+ 2fi ≤ 2OPT

Theorem 11 The approximation factor of the algorithm stated above for the robust facil-

ity location problem is 2.

5.5 Dealing with capacities

In real applications, it’s not usually the case that the cost of opening a facility is indepen-
dent of the number of cities it will serve. But we can assume that we have economy of

scales i.e. the cost of serving each city is decreasing when the number of cities is increas-
ing. In order to capture that property, we define the following variant of the capacitated
metric facility location problem. For each facility i, there is an initial opening cost fi.
After facility i is opened, it will cost si to serve each city. This variant can be solved using
metric uncapacitated facility location problem. We’ll prove that these two problems are
reducible to each other. One direction is trivial (set all si’s to be zero) for the other direc-
tion we just have to change the metric such that for each city j and facility i, c

′

ij = cij+si.

Clearly, c
′
is also a metric and the solution of the metric uncapacitated version to this

problem can be interpreted as a solution to the original problem with the same cost.

There is also another variant of the capacitated problem first appeared in [13]. Suppose
that each open facility can serve at most ui cities. We can open a facility an unlimited
number of times and if we open it yi times it can serve yiui cities. We reduce the first
problem to this one by defining si = fi/ui. If in the solution to this problem k cities are
connected to facility i, we open facility i ⌈k/ui⌉ times. The cost of the solution will be at
most two times the original cost so we can give an algorithm with approximation factor
equal to two times the best approximation factor known for uncapacitated version, which
improves the best factor known to this problem which was four [13].

Note added April 2, 2001: A small modification of our greedy algorithm, analyzed
using dual fitting, has been shown to achieve an approximation ratio of 1.61. This becomes
the current best factor for the metric uncapacitated facility location problem [12]. The
running time of their algorithm is the same as ours.

Acknowledgments

The first and third authors would like to thank Dr. Mohammad Ghodsi, Computer Engi-
neering Department, Sharif University of Technology, for introducing them to the facility
location problem. We would also like to thank Nisheet K. Vishnoi for valuable discussions.

12

References

[1] M. L.Balinski. On finding integer solutions to linear programs. Proc.
IBM Scientific Computing Symposium on Combinatorial Problems, pp.
225-248, 1966.

[2] M. Charikar, S. Guha. Improved combinatorial algorithms for facility
location and k-median problems. In Proceedings of the 40th Annual

IEEE Symposium on Foundations of Computer Science, pp. 378-388,
October 1999.

[3] M. Charikar, S. Guha, E. Tardos, and D. B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. In Proceedings of

the 31st Annual ACM Symposium on Theory of Computing, pp. 1-10,
May 1999.

[4] M. Charikar, S. Khuller, D. Mount, and G. Narasimhan. Algorithms
for Facility Location Problems with Outliers. In Proceedings of the 12th

ACM-SIAM Symposium on Discrete Algorithms, 2001.

[5] F. A. Chudak. Improved approximation algorithms for uncapacitated
facility location. In R. E. Bixby, E. A. Boyd, and R. Z. Ros-Mercado,
editors, Integer Programming and Combinatorial Optimization, volume
1412 of Lecture Notes in Computer Science, pp. 180-194, Springer,
Berlin, 1998.

[6] F. Chudak and D. Shmoys. Improved approximation algorithms for the
capacitated facility location problem. Proc. 10th Annual ACM-SIAM

Symposium on Discrete Algorithms, pp. 875-876, 1999.

[7] V. Chvatal. A greedy heuristic for the set covering problem. Math.

Oper. Res. 4 pp. 233-235, 1979.

[8] G. Cornuejols, G.L. Nemhauser, and L.A. Wosley. The uncapacitated
facility location problem. In P. Mirchandani and R. Francis, editors,
Discrete Location Theory, pp. 119-171, John Wiley and Sons, Inc., New
York, 1990.

[9] S. Guha and S. Khuller. Greedy strikes back: Improved facility location
algorithms. Journal of Algorithms, 31 pp. 228-248, 1999.

[10] S. Guha, A. Meyerson, and K. Munagala Improved Approximation
Algorithms for Fault-tolerant Facility Location. In Proceedings of the

12th ACM-SIAM Symposium on Discrete Algorithms, 2001.

[11] D. S. Hochbaum. Heuristics for the fixed cost median problem.Math.

Programming, 22:148-162, 1982.

[12] K. Jain and M. Mahdian and A. Saberi. Private communication, 2001.

[13] K. Jain and V. V. Vazirani. Primal-dual approximation algorithms for
metric facility location and k-median problems. In Proceedings of the

13

40th Annual IEEE Symposium on Foundations of Computer Science,
pp. 2-13, October 1999.

[14] K. Jain and V. Vazirani. An approximation algorithm for the fault
tolerant metric facility location problem.APPROX, 2000.

[15] D. S. Johnson. Approximation algorithms for combinatorial prob-
lems.J. Comput. System Sci., 9:256-278, 1974.

[16] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Analysis of a local
search heuristic for facility location problems. In Proceedings of the

9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1-10,
January 1998.

[17] A. A. Kuehn and M. J. Hamburger. A heuristic program for locating
warehouses. Management Science, 9 pp. 643-666, 1963.

[18] L. Lovasz. On the ratio of Optimal Integral and Fractional Covers.
Discrete Math. 13 pp. 383-390, 1975.

[19] R. Mettu and G. Plaxton. The online median problem. Proceedings of

41st IEEE FOCS, 2000.

[20] S. Rajagopalan and V. V. Vazirani. Primal-dual RNC approximation
of covering integer programs. SIAM J. Comput., 28 pp. 526-541, 1999.

[21] D. B. Shmoys, E. Tardos, and K. Aardal. Approximation algorithms
for facility location problems. In Proceedings of the 29th Annual ACM

Symposium on Theory of Computing, pp. 265-274, May 1997.

[22] M. Thorup. Quick k-median, k-center, and facility location for sparse
graphs. To appear in ICALP 2001.

14

Appendix

Proofs of theorems and lemmata

Proof of lemma 3. If αj
′ ≥ αj , inequality 4 obviously holds. Assume that αj > αj

′ .

Let i
′
be the facility that city j

′
is connected to by our algorithm. Thus, facility i

′
is open

at time αj
′ . The contribution αj cannot be greater than ci′ j because in that case city j

would be connected to facility i
′
at some time t < αj. Hence αj ≤ ci′ j . Furthermore by

triangle inequality we have:

ci′ j ≤ ci′ j′ + cij′ + cij ≤ αj
′ + cij′ + cij

This completes the proof.

Proof of lemma 4. Assume, for the sake of contradiction, that for some j and some i the
inequality does not hold. Consider the time t = αj . At this time, all cities j, j + 1, . . . , nc

are unconnected. Therefore, the total contribution for facility i is at least
∑nc

k=j max(αj −
cik, 0) > fi. This means that facility i is open before time t. But the total contribution of
unconnected cities towards the opening cost of a facility is zero after the facility is opened.
Hence, we have:

nc
∑

k=j

max(αj − cik, 0) ≤ fi ∀i ∈ F, j ∈ C (6)

Proof of theorem 5. Consider an optimum feasible solution of program 5. We construct
an instance of the facility location problem with k cities and k + 1 facilities as follows:
The cost of opening facility i is

fi =

{

0 if 1 ≤ i ≤ k
f if i = k + 1

The connection cost between a city j and a facility i is:

cij =











αj if 1 ≤ i = j ≤ k
dj if 1 ≤ j ≤ k, i = k + 1
di + dj + αi otherwise

It is easy to see that the connection costs satisfy the triangle inequality. On this instance,
our algorithm connects city 1 to facility 1, then it connects city 2 to facility 2, and finally
connects city k to facility k. (The inequality

∑k
l=j max(αj − dl, 0) ≤ f guarantees that

city i can get connected to facility i before facility k+1). Therefore, the cost of Algorithm
2 is equal to

∑k
j=1 cjj +

∑k
i=1 fi =

∑k
j=1 αj = zk.

On the other hand, the optimal solution for this instance is to connect all the cities to
facility k + 1. The cost of this solution is equal to

∑k
j=1 ck+1,j + fk+1 = f +

∑k
j=1 dj ≤ 1.

Thus, our algorithm outputs a solution whose cost is at least zk times the cost of the
optimal solution.

Proof of theorem 6.

15

Let dj = cij , j = 1, . . . , k, and f = fi. We prove that αj , dj , f form a feasible solution of
program 5.

We have already assumed that α1 ≤ α2 ≤ . . . αnc
. Furthermore by lemmata 3 and 4 it

follows immediately that the rest of the constraints of program 5 are satisfied. Therefore,
αi, di, f constitute a feasible solution of program 5. Consequently

∑k
j=1 αj

fi +
∑k

j=1 cij
≤ zk.

This completes the proof.

Proof of theorem 7. Let r = 1.8609. Assume, without loss of generality that k is
sufficiently large. Consider a feasible solution of the program 5. It is clear from the third
inequality that for every j, j′ we have

j′
∑

i=j

(αj − di) ≤ f. (7)

Now, we define lj and θj as follows:

lj =

{

p2k if j ≤ p1k
k j > p1k

θj =











r+1
p2k

if j ≤ p1k
(r+1)(p2−p1)
p2(1−p1)k

p1k < j ≤ p2k

0 j > p2k

where p1 = 0.1991 and p2 = 0.5696. We consider Inequality 7 for every j ≤ p2k and j′ = lj ,
and multiply both sides of this inequality by θj. By adding up all these inequalities, we
obtain

p1k
∑

j=1

p2k
∑

i=j

θj(αj − di) +
p2k
∑

j=p1k+1

k
∑

i=j

θj(αj − di) ≤ (
p2k
∑

j=1

θj)f. (8)

The coefficient of f in the right-hand side of the above inequality is equal to
∑p2k

j=1 θj =
r+1
p2k

p1k + (r+1)(p2−p1)
p2(1−p1)k

(p2k − p1k) = (r + 1)
(

p1
p2

+ (p2−p1)2

p2(1−p1)

)

≈ 1.8609 < 1.861. Also, the

coefficients of αj and dj in the left-hand side of Inequality 8 are equal to

coeff[αj] =

{

(p2k − j + 1)θj j ≤ p1k
(k − j + 1)θj j > p1k

(9)

coeff[dj] =

{

∑j
i=1 θi j ≤ p2k

∑j
i=p1k+1 θi j > p2k

(10)

16

Notice that the sum of coefficients of αj ’s is equal to

k
∑

j=1

coeff[αj] =
p1k
∑

j=1

r + 1

p2k
(p2k − j + 1) +

p2k
∑

j=p1k+1

(r + 1)(p2 − p1)

p2(1− p1)k
(k − j + 1)

=
r + 1

p2k
(p1p2k

2 −
p1k(p1k − 1)

2
)

+
(r + 1)(p2 − p1)

p2(1− p1)k
((p2 − p1)k

2 −
(p1k + p2k − 1)(p2k − p1k)

2
)

> (r + 1)

(

p1 −
p21
2p2

+
(p2 − p1)

2

p2(1− p1)
−

(p2 − p1)
2(p1 + p2)

2p2(1− p1)

)

k

≈ 1.00004k

> k

Now, we use the inequality αi ≥ αj − dj − di on the expression on the left-hand side of
Inequality 8 to reduce the coefficients of αj ’s that are greater than 1, and increase the
coefficient of αj ’s that are less than 1. Since the sum of these coefficients is greater than k,
using this inequality and the inequality αj ≥ 0 we can obtain an expression E that is less
than or equal to the left-hand side of Inequality 8, and in which all αj’s have coefficient 1.
The coefficient of dj in this expression will be equal to its coefficient in the left-hand side
of Inequality 8, plus the absolute value of the change in the coefficient of the corresponding
αj . Therefore, by Equations 9 and 10 this coefficient is equal to:

coeffE[dj] =











∑j
i=1 θi + |(p2k − j + 1)θj − 1| j ≤ p1k

∑j
i=1 θi + |(k − j + 1)θj − 1| p1k < j ≤ p2k

∑j
i=p1k+1 θi + |(k − j + 1)θj − 1| j > p2k

If j ≤ p1k, we have (p2k − j + 1)θj > (p2k − p1k)
r+1
p2k

= (r + 1)(p2 − p1)/p2 ≈ 1.8609 > 1
Therefore,

coeffE [dj] =
j
∑

i=1

θi + (p2k − j + 1)θj − 1

=
r + 1

p2k
j +

r + 1

p2k
(p2k − j + 1)− 1

=
r + 1

p2k
(p2k + 1)− 1

= r +O(
1

k
)

< 1.861

Similarly, if p1k < j ≤ p2k, we have (k−j+1)θj > (k−p2k)
(r+1)(p2−p1)
p2(1−p1)k

= (r+1)(p2−p1)(1−p2)
p2(1−p1)

≈
1.00003 > 1. Therefore,

coeffE [dj] =
j
∑

i=1

θi + (k − j + 1)θj − 1

17

=
r + 1

p2k
p1k +

(r + 1)(p2 − p1)

p2(1− p1)k
(j − p1k) +

(r + 1)(p2 − p1)

p2(1− p1)k
(k − j + 1)− 1

=
r + 1

p2
p1 +

(r + 1)(p2 − p1)

p2(1− p1)k
(k − p1k + 1)− 1

= (r + 1)

(

p1
p2

+
(p2 − p1)

p2

)

− 1 +O(
1

k
)

= r +O(
1

k
)

< 1.861

Finally, if j > p2k, the coefficient of dj is equal to

coeffE[dj] =
j
∑

i=p1k

θi + |0− 1|

=
(r + 1)(p2 − p1)

p2(1− p1)k
(p2k − p1k) + 1

=
(r + 1)(p2 − p1)

2

p2(1− p1)
+ 1

≈ 1.8609

< 1.861

Therefore, in each case, the coefficient of dj is less than or equal to 1.861. Thus, we have
proved that

k
∑

j=1

αj −
k
∑

j=1

1.861dj < 1.861f.

This clearly implies that zk < 1.861.

Experiments

As stated in the main paper, we ran our algorithm on randomly generated instances of
the problem. The number of cities, nc, varied between 50 and 400 whereas the number of
facilities, nf , ranged between 20 and 150. For each instance size (nc, nf) we generated 20
instances and computed the average and the worst ratio of the solution of our algorithm
over the optimal solution of the LP-relaxation. The results of our experiments are shown
in the following table.

18

nc nf instances average ratio worst ratio

50 20 20 1.033 1.070

100 20 20 1.025 1.071

100 50 20 1.026 1.059

200 50 20 1.032 1.059

200 100 20 1.027 1.064

300 50 20 1.034 1.070

300 80 20 1.030 1.057

300 100 20 1.033 1.053

300 150 20 1.029 1.048

400 100 20 1.030 1.060

400 150 20 1.030 1.050

Table 1: experimental results

19

