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Abstract

The goal of this paper is to estimate sparse
linear regression models, where for a given
partition G of input variables, the selected
variables are chosen from a diverse set of
groups in G. We consider a novel class of
nonconvex constraint functions, and develop
RepLasso, a greedy homotopy method that
exploits geometrical properties of the con-
straint functions to build a sequence of suit-
ably adapted convex surrogate problems. We
prove that in some situations RepLasso re-
covers the global minima path of the noncon-
vex problem. Moreover, even if it does not re-
cover the global minima, we prove that it will
often do no worse than the Lasso in terms of
(signed) support recovery, while in practice
outperforming it. We show empirically that
the strategy can also be used to improve over
various other Lasso-style algorithms. Finally,
a GWAS of ankylosing spondylitis highlights
our method’s practical utility.

1 Introduction

We are interested in model sparsity for linear observa-
tion models of the form

y = Xβ∗ + w w ∼ N (0, σ2I), (1)

where X is an n×p matrix of covariates, β∗ is a regres-
sion parameter, w is a noise vector and y is a vector of
responses. Given X, y, a constraint function Ω(·), and
constraint parameter τ > 0, constrained least squares
regression estimates β∗ as

argmin
β∈Rp

1

2n
||y −Xβ||22 s.t. Ω(β) ≤ τ. (G)
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A closely related formulation writes (G) in penalized
form using penalizer Ω(·) with a penalty parameter
λ > 0. In the following, we will motivate our algorithm
using the constrained formulation, but then show that
it solves a certain sequence of penalized problems.

Sparse model estimation is an integral part of the
statistics toolbox and is especially relevant for the
n � p case. The Lasso [24] is a well-known in-
stance of (G) which replaces a hard `0 constraint (i.e.,
||β||0 ≤ τ) by an `1 surrogate (i.e., ||β||1 ≤ τ) that
retains sparsity-inducing properties. Since the Lasso
regularization path is continuous and piecewise lin-
ear [21], it can be easily traced out using the homotopy
method [5, 19]. In the following, we will often refer to
the Lasso homotopy method simply as the Lasso. The
efficiency of the homotopy method is one of the Lasso’s
key assets and is critical for efficient model selection.

Recently, there has been increased interest in enhanc-
ing the Lasso with structured sparsity by replacing the
`1 penalizer with more complex, yet still convex, penal-
izers [11, 13, 14, 22, 28]. Because the overall objective
remains convex in β, efficient algorithms exist to solve
these problems. While these methods have many prac-
tical applications, the focus on convex formulations
has necessarily excluded important inference problems
that cannot be phrased in terms of structured convex
objectives. In particular, convex formulations do not
encourage solutions that are sparser than those of the
Lasso. This paper was motivated by a class of applica-
tions where this stronger level of sparsity is desired yet
impractical to produce using current methods. Specif-
ically, we are interested in situations where: (1) we
want to select a small subset of variables for predicting
y; and (2) given a partition G of variables {1, . . . , p},
each group contains at most a small number of se-
lected variables. In other words, we seek a sparse so-
lution where the variables are selected from a diverse
set of groups, each variable acting in some sense as a
representative of the group. Such a solution is both
sparse at the group and the within-group level. As
an example, in the Genome-Wide Association Study
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(GWAS) of Section 6 it is reasonable to suppose that
only a few Single Nucleotide Polymorphisms (SNPs)
(the variables) are truly relevant for predicting the re-
sponse and that these SNPs lie in a diverse set of genes
(the groups).

We note that the desired sparsity behavior is orthog-
onal to that of the well-known Group Lasso [28]. The
problem is also not adequately solved by the Eli-
tist/Exclusive Lasso [14, 30], a convex formulation
that selects at least one but at most a few variables
from each group. Finally, the Sparse Group Lasso
(SGL) [22] is another convex formulation that is un-
suitable for our purpose. It is effectively a compromise
between the Lasso and the Group Lasso and leads to
solutions that, while being sparser than those of the
Group Lasso, still tend to include multiple variables
from the same group (see Figure 1(c)). We seek more
parsimonious solutions than the Lasso and for this we
must consider nonconvex constraint functions.

Given a parameter θ ∈ Rp and the partition G, we
will encode our constraints as a nonconvex function
Ωθ,G(·). There are specialized methods for the non-
convex penalized cousin of (G) for a fixed penalty pa-
rameter λ > 0 [4, 7, 10, 17, 33]. While these meth-
ods might be appropriate for finding a local minimum
of (G) with Ωθ,G(·) and some τ fixed, they are not
ideal for developing a homotopy-like algorithm which
allows τ to range over an interval. This complicates
their use when model selection over τ must be per-
formed. We propose RepLasso (for “Representative
Lasso”), a homotopy-like algorithm that attempts to
fill this gap by exploiting certain properties of Ωθ,G(·).
Roughly, RepLasso tries to build and solve a sequence
of convex surrogates problems so that, as τ is swept
out, the boundary of the surrogate constraint ball lo-
cally approximates the boundary of the ball induced
by Ωθ,G(·). A crucial feature that allows us to do
this efficiently is that the nonconvex constraint balls
induced by Ωθ,G(·) can be decomposed as unions of
convex balls. The sequence of surrogates is chosen so
that the induced regularization path is continuous and
piecewise linear and can thus be efficiently traced out.

We show theoretically that, under certain conditions,
RepLasso traces out the global minima of (G) with
constraints Ωθ,G(·). More importantly, we prove that,
while RepLasso may not exactly solve (G) in general,
on relevant instances it will still do at least as well
as the Lasso in terms of support subset and signed
support recovery. In practice, a strict improvement
is observed over Lasso and SGL [22]. A class of
Lasso-style algorithms has recently been popularized
which pre-process X, y, before solving a Lasso problem
(e.g., [9, 12, 20, 31]). As we demonstrate in Section 6,
RepLasso can also yield improvements in this setting.

Furthermore, RepLasso can be usefully applied to `1
constrained logistic regression [15], as we show in a
GWAS application. Lastly, we prove in the Supple-
mentary Material that, given some mild assumptions,
a variant of RepLasso cannot do worse than the Lars
algorithm of Efron et al. [5].

The paper is organized as follows: We review related
research in Section 2 before introducing Ωθ,G(·) and
simplifying (G) in Section 3. In Section 4 we present
the RepLasso as a generalization of the Lasso homo-
topy method and in Section 5 theoretically compare
the RepLasso and Lasso. Results on synthetic data
and a GWAS application are given in Section 6. Our
final remarks are in Section 7. The Supplementary
Material contains all proofs and further experiments.

2 Related Research

Methods for optimizing convex loss functions with
nonconvex regularizers include, among others,
local quadratic approximation [7], minorization-
maximization [10], local linear approximation [33]
and composite gradient descent [17]. The Adaptive
Lasso [4] is also relevant. However, since these
methods focus on a fixed penalty parameter, they
are not ideal for efficiently minimizing a sequence of
problems (G) indexed by τ , as in a homotopy method.
The SCAD [7] and MCP [29] are particularly impor-
tant nonconvex penalties. However, they make no use
of the grouping information G and are thus not useful
in our application. Additionally, they do not possess
the type of geometrical structure that we will exploit
in our greedy homotopy algorithm. While there are
other structured, nonconvex penalizers (e.g., [25]),
there are also no homotopy algorithms to solve them.
Various applications of the homotopy idea have so
far focused on other convex problems. Examples
include the Elastic Net [32] and the SVM [8]. The
literature on gradient-based homotopy methods for
convex problems is also growing [27]. The two most
salient extensions of homotopy methods to nonconvex
least squares problems are due to Zhang [29] and
Wang et al. [26]. However, as both assume the
penalty to be separable across the p coefficients, they
are not useful for the type of structured sparsity
we consider in this paper. There has been long-
standing interest in convex structured extensions
of the Lasso [11, 13, 14, 22, 28], and, as discussed
in Section 1, while some methods are at first sight
related to our approach (e.g., [14, 22, 28]), all of them
rely on a convex penalizer that cannot encapsulate the
structural constraints we are interested in. Tools for
analyzing nonconvex problems have recently begun to
emerge [17, 26], however, since the focus is again on
separable penalizers, they are not useful in our case.
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Figure 1: (a) The balls induced by Eq. (2) for G = {{1, 2}} and varying values of θ. If θ = 0 we recover the
`1 norm as a special case. (b) A ball induced by Eq. (2) for G = {{1, 2, 3}}, θ = 2. (c) Example level sets for
SGL [22], SCAD [7] and MCP [29]. For SGL we suppose a single group G = {1, 2}. See [7, 22, 29] for details.

3 Structured Nonconvex Problems

Many situations exist where for some partition G
of {1, . . . , p} we know that β∗ contains at most a
few nonzero elements whose positions cover a diverse
set of groups G ∈ G.1 Given a partition G =
{G1, . . . , Gg} without singleton or empty sets, and
θ = (θ1, . . . , θg) ≥ 0, the following union constraint
function targets this situation

Ωθ,G(β)=
∑

i<j∈Gg′∈G

ωθg′ (βi, βj)

|Gg′ | − 1
(2)

ωθg′ (βi, βj) = min(|βi|, |βj |)(1 + θg′) + max(|βi|, |βj |).

Let Bθ,G(τ) = {β ∈ Rp : Ωθ,G(β) ≤ τ} be the induced
constraint balls. We are interested in the following
nonconvex instance of (G) with the constrained objec-
tive Jτ (β) over β, indexed by τ

β(τ) ∈ argmin
β∈Rp

Jτ (β) (P1)

= argmin
β∈Rp

{
1

2n ||y −Xβ||
2
2 if β ∈ Bθ,G(τ)

∞ o.w.
.

If θ = 0, then Ωθ,G(β) = ||β||1 for all G, and so (P1)
recovers the Lasso problem as special case. However,
when θ 6= 0, the constraint function is non-separable,
nonconvex and, as exemplified in Figure 1, induces
star-shaped balls2. When θ 6= 0, Ωθ,G(β) can be
thought of as a nonconvex counterpart to the well-
known Group Lasso penalty [28], where the noncon-
vexity encourages solutions β(τ) of (P1) to select a

1In the GWAS application in Section 6, G corresponds
to a partition of SNPs by genes and we know that in a
diverse set of genes at most a few SNPs are truly relevant
for predicting y.

2Note that when a subset of components of θ is set to
zero, we can effectively treat the variables corresponding
to those groups as ungrouped, as they only contribute an
`1 penalty to Ωθ,G(β).

small number of representatives from a diverse set
groups in G. The constraint Ωθ,G(β) also differs from
the Elitist/Exclusive Lasso penalty [14, 30], which ef-
fectively encourages each group to select at least one
variable, or the SGL penalty [22], which encourages
selection of multiple variables from the same group.

For some positive vector s, let Bs(τ) = {β ∈ Rp :
||diag(s)β||1 ≤ τ} be the s-weighted `1 ball. A key
geometric property that we exploit is that Bθ,G(τ) can
be written as a finite union of weighted `1 balls and so
has planar faces. Let Γ(i) ∈ {1, . . . , g} be the (unique)
index so that i ∈ GΓ(i).

Proposition 1 (Union Decomposition). Let the par-
tition be G = {G1, . . . , Gg} and the parameter θ =
(θ1, . . . , θg) ≥ 0. There is a finite set Sθ,G ⊂ Rp of
vectors s ≥ 1, so that for any τ > 0

Bθ,G(τ) =
⋃

s∈Sθ,G
Bs(τ). (3)

Define Πg′ to be all permutations πg′ of the elements
in Gg′ and let ΠG = ×gg′=1Πg′ be their cross-product,
whose elements π ∈ ΠG are g-tuples of permutations
π = (π1, . . . , πg). For some π ∈ ΠG, denote by
πΓ(i)(i) ∈ {1, . . . , |GΓ(i)|} the position of i ∈ GΓ(i) in
permutation πΓ(i). We have

Sθ,G = ∪π∈ΠG{sπ} (4)

sπ,i = 1 + (πΓ(i)(i)− 1)
θΓ(i)

|GΓ(i)| − 1
. (5)

Figure 1(c) shows that this property is not shared by
other nonconvex penalties, e.g., SCAD [7] or MCP [29].
A common, brute force approach that eliminates the
computational issues of (P1) would be to replace
Bθ,G(τ) by its convex hull, the `1 ball B1(τ), thus re-
covering the Lasso. We advocate an orthogonal strat-
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Figure 2: (a) The global minima path for B2,{{1,2}}(τ). The dashed-dotted, dashed and solid constraint
boundaries correspond to progressively larger τ . The solutions on the regularization path (red) are defined by
intersections of the constraint set with the corresponding ellipsoid (red dots). (b) The corresponding regularization
path for the weighted `1 ballB(1,3)>(τ). If the weighting is known the same regularization path can be reproduced.

egy that instead focuses on replacing Bθ,G(τ) by a suit-
able sequence of weighted `1 balls, indexed by τ . To
achieve this, we will exploit the decompositional struc-
ture of Bθ,G(τ) highlighted in Proposition 1. Specifi-
cally, our method is motivated by the following exten-
sion of a well-known result of Rosset and Zhu [21].

Proposition 2 (Local Piecewise Linearity). Sup-
pose X has absolutely continuous distribution and that
∃τ ′ > 0 s.t. @β ∈ Bθ,G(τ ′) which is a minimum
of ||y − Xβ||22. Let τmax be the supremum over these
τ ′. The set of local minima of Jτ (·) in (P1) with
τ ∈ (0, τmax) is w.p. 1 a finite union of piecewise
linear paths, each path indexed by τ and lying in the
boundary of a ball, bd(Bs(τ)), s ∈ Sθ,G.

Proposition 2 emphasizes that for the range of inter-
esting values of τ ∈ (0, τmax), the local minima of Jτ (·)
in (P1) can be grouped into a set of local minima
paths, each indexed by τ . Moreover, any such local
minimum path lies on some weighted `1 ball Bs(τ),
with s ∈ Sθ,G appropriately chosen. With the aid of
Proposition 2, it is possible to re-express (P1) as a spe-
cial set of penalized optimization problems, indexed
by τ . This change of representation will be useful for
the homotopy-like algorithm we present shortly. By
Proposition 2 and convexity [2], for any solution β(τ)
of (P1) with τ ∈ (0, τmax) (i.e., a global minimum of
Jτ (·)), ∃λ∗(τ), s∗(τ) ∈ Sθ,G so that

β(τ)∈argmin
β∈Rp

1

2n
||y−Xβ||22+λ∗(τ)||diag(s∗(τ))β||1. (P2)

Thus, modulo uniqueness issues, there exist λ∗(τ),
s∗(τ) so that (P2) is in some sense equivalent to (P1).
Figure 2 shows a motivating example of this. In this
case, the global minimum path of Figure 2(a) could be
reproduced using the B(1,3)>(τ) balls of Figure 2(b).
Of course, knowledge of the vector-valued function
s∗(τ) ∈ Sθ,G would imply knowing for each τ roughly

where on Bθ,G(τ) the global minimum of Jτ (·) in (P1)
lies, which is hard in general. We thus cannot expect to
be able to efficiently produce the entire regularization
path of (P1) for all τ ∈ (0, τmax) using the equivalence
between (P2) and (P1).

A Simplifying Assumption. The formulation
in (P2) replicates the regularizing effect of Bθ,G(τ)
in (P1) using a sequence of weighted `1 balls that de-
pend on τ (characterized by s∗(τ)). This dependence
is necessary as the global minimum of Jτ (·) in (P1)
can “jump” from one weighted `1 ball to another as
we vary τ ∈ (0, τmax). If we let S(β) be the support of
some vector β, we can simplify the problem of finding
sequences λ∗(τ), s∗(τ) for (P2), by assuming that

A0: ∃s∗ ∈ Sθ,G s.t. ∀τ ∈ (0, τmax) (P1) has a unique
solution ∈ bd(Bs∗(τ)). ∀0 < τ1 < τ2 < τmax, the
solutions of (P1) satisfy S(β(τ1)) ⊆ S(β(τ2)).

An example where A0 holds with s∗ = (1, 3)> was
shown in Figure 2. Under A0, the problem reduces to
finding a sequence λ∗(τ) and a single vector s∗ ∈ Sθ,G .
In fact, it is not even necessary to know the precise
function λ∗(τ): For any λ > 0, so long as the solution
β̄(λ) to (P2) with λ∗(τ) replaced by λ and s∗(τ) = s∗,
satisfies for τ ,

∣∣∣∣diag(s∗)β̄(λ)
∣∣∣∣

1
that τ ∈ (0, τmax), we

know that λ = λ∗(τ). Thus, under A0 we only seek
to find the vector s∗ ∈ Sθ,G so that solving (P1) is for
some λ equivalent to solving the problem

β̄(λ) ∈ argmin
β∈Rp

1

2n
||y −Xβ||22 + λ ||diag(s∗)β||1 . (S)

This paper makes two main contributions. The first
contribution in Section 4 proves that if A0 holds, then
there is an algorithm, RepLasso, which (effectively)
greedily estimates the vector s∗ making (S) and (P1)
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Algorithm 1: REPLASSO(X, y,G, θ)

ȳ = 0, A = (), L = 0, λ = ||X>y||∞, s(λ) = 1, β̄(λ) = 0
while λ > 0

Stage 1


if L = 0 # Add a variable
A = (A, i∗), where i∗ = argmaxj∈Ac

∣∣X>j (y − ȳ)/sj(λ)
∣∣

sM (λ−) = sM (λ) +
θΓ(i∗)

|GΓ(i∗)|−1
1, sMc(λ−) = sMc(λ), with M =

{
Ac ∩GΓ(i∗)

}
if L = 1 # Delete a variable
A = A\i∗, where i∗ = argi∈AJβ̄i(λ) = 0K

Stage 2
{
w̄A = AA

(
X>AXA

)−1
diag(sgn

(
X>A (y − ȳ)

)
)sA(λ), with AA s.t. ||XAw̄A||22 = 1

Stage 3


Find smallest ρ > 0 s.t.
• ∃j ∈ Ac s.t. |X>j (y − ȳ − ρXAw̄A)/sj(λ)| = λ− ρ : set L = 0
• ∃i ∈ A s.t. β̄i(λ) 6= 0 and β̄i(λ) + ρwi = 0: set L = 1

Stage 4

{
β̄A(λ− ρ) = β̄A(λ) + ρw̄A, β̄Ac(λ− ρ) = 0, ȳ = Xβ̄(λ− ρ)
λ = λ− ρ

return β̄

equivalent while sweeping out λ > 0 and producing
solutions β̄(λ) in a homotopy-like fashion. Of course,
if A0 does not hold, there may not be an equivalence
between (S) and (P1). In that case, we may think
of (S) as a convex surrogate for (P1) for some vector s∗

that is greedily constructed by RepLasso. The second
contribution of this paper is to prove in Section 5 that,
whether A0 holds or not, RepLasso will in relevant
regression problems still perform at least as well as the
Lasso in terms of (signed) support recovery. Empirical
evidence in Section 6 and the Supplementary Material
shows that a strict improvement can be achieved.

4 RepLasso: A Homotopy Method

A key observation for the development of RepLasso
is the following proposition, which shows that it is in
principle sufficient to incrementally estimate s∗ while
simultaneously sweeping out a regularization path.
For a vector b > 0, let β̄b(λ) be a solution to (S)
with penalty λ||diag(b)β||1.

Proposition 3 (Recoverability of (S)). Suppose X
has absolutely continuous distribution. For any vectors
a ≥ b ≥ 1 and λ > 0, w.p. 1 β̄a(λ), β̄b(λ) are unique.
If additionally ||diag(a)β̄b(λ)||1 = ||diag(b)β̄b(λ)||1, then
β̄a(λ) = β̄b(λ).

Thus, if β̄b(λ) has zero coefficients, it doesn’t matter
if on those coefficients b underestimates the value of a,
so long as b matches a on the remaining coefficients.

The RepLasso algorithm (Algorithm 1) is a greedy
homotopy method that exploits Proposition 3 to
solve (S). If X is absolutely continuous and A0 holds,
then Proposition 3 suggests the existence of a sequence
s(λ), satisfying ∀λ > 0, s∗ ≥ s(λ) ≥ 1, so that w.p.
1 (S) can ∀λ > 0 be solved as β̄(λ) , β̄s∗(λ) =
β̄s(λ)(λ). As Theorem 1 shows, RepLasso computes
such a sequence s(λ), while simultaneously producing
solutions β̄s(λ)(λ). Notice that RepLasso is identical

to the Lasso homotopy method if θ = 0 (which means
that ∀λ > 0, s(λ) = 1). The only differences are that
s(λ) 6= 1 when θ 6= 0. We will discuss RepLasso as
proof for Theorem 1. Let Xj be the column j of X
and XA a matrix which consists of the columns in-
dexed by A.

Theorem 1 (RepLasso). Assume that X has abso-
lutely continuous distribution and that A0 holds. Let
s∗ ∈ Sθ,G be the vector so that (P1) is equivalent
to (S). Then w.p. 1, RepLasso produces a sequence
s(λ) so that β̄s∗(λ) = β̄s(λ)(λ). By the equivalence
of (P1) and (S), it follows that w.p. 1, RepLasso pro-
duces the global minima of (P1).

Proof. Note from Proposition 3 that it is sufficient for
RepLasso to estimate sequences s(λ) which are piece-
wise constant with changepoints at values λt where
the support of β̄s∗(λt) changes. By A0, we know
that the support of β̄s∗(λ) is monotonically increas-
ing with λ decreasing. Hence, we only need to discuss
the variable addition case of RepLasso (case L = 0 in
stage 1) for this argument. Conceptually, RepLasso
first initializes s(∞) = 1 (for practical reasons it suf-
fices to start at λ = ||y>X||∞). Then, while keep-
ing s(λ) = s(∞) constant, RepLasso (conceptually)
traces out λ = ∞ ↓ 0 while solving β̄s(λ)(λ) = 0 un-

til reaching λ1 = ||y>X||∞, where the first variable i∗1
is selected by β̄s(λ)(λ) (the L = 0 case in stage 1 of
RepLasso). Because s(λ) = 1 was up to now fixed,
RepLasso is up to this point identical to the Lasso ho-
motopy method. Due to Proposition 3, we know that
w.p. 1, ∀λ ∈ [λ1,∞] we have β̄s∗(λ) = β̄s(λ)(λ). Under
A0, we know that ∀0 < λ ≤ λ1, i∗1 will remain selected
and that the relative order of i∗1 in the set of variables
GΓ(i∗1), as induced by the magnitude of their coeffi-

cients in β̄s(λ1)(λ1) will not change. Using this and the
general form of s∗ ∈ Sθ,G given by Proposition 1, we
can modify s(λ) in a way that is consistent with Propo-
sition 3. Specifically, if we let t = 1, then the current
active set is At = {i :

∣∣X>i (y −Xβ̄s(λt)(λt))
∣∣ /si(λt) =
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λt}. We may apply the following generic update to
s(λ) so that at λ−t (i.e., for a value of λ infinitesimally
smaller than λt) it satisfies

sj(λ
−
t ) =

{
sj(λt)+

θΓ(i∗t )

|GΓ(i∗t )|−1 j ∈ {Act ∩GΓ(i∗t )}
sj(λt) o.w.

. (6)

Notice that the change leaves the path β̄s(λt)(λt) con-
tinuous in the neighborhood of λt. RepLasso then con-
tinues to decrease λ = λ1 ↓ 0, again keeping s(λ) =
s(λ−1 ) constant and producing solutions β̄s(λ)(λ) along
the way, until a point λ2 > 0 is reached when a new
variable is selected by β̄s(λ)(λ). Because s(λ) was kept

constant for λ ∈ [λ2, λ
−
1 ], this can be achieved by a

straightforward modification of the Lasso homotopy
method3. As before, we know from our update of s(λ)
and Proposition 3 that w.p. 1, ∀λ ∈ [λ2, λ1] we have
β̄s∗(λ) = β̄s(λ)(λ). At this point, A0 and Proposi-
tion 1 again allow us to update s(λ) using Eq. (6)
with t = 2. RepLasso continues sweeping out λ in this
fashion until some final value λT > 0 is reached. By
the time the algorithm has completed, we know that
w.p. 1, ∀λ ∈ [λT ,∞] we have β̄s∗(λ) = β̄s(λ)(λ). The
final claim follows immediately.

If A0 does not hold, we can apply Proposition 3
to (P2) to see that RepLasso will generally still re-
cover global minima of (P1) for large λ > 0. Indeed, if
RepLasso adds variables one by one, the first variable
selected by RepLasso is also the first selected by (P1).

5 Comparing RepLasso and Lasso

In this section we show several results irrespective of
whether A0 holds, but assuming that G, β∗ satisfy
some mild conditions. Before continuing, we briefly
outline some more notation. Let the support set of β∗

be S , S(β∗). Denote the signed support of β∗ by
S± = S±(β∗), where element-wise we have

S±(βi) ,

 +1 if βi > 0
−1 if βi < 0

0 o.w.
. (7)

We rely on the following assumptions

A1: ∀G ∈ G, |{i ∈ G : β∗i 6= 0}| ≤ 1

A2: ∀A ⊂ S and uA the equiangular vector in Eq. (2.6)
of [5], @j ∈ Ac, |X>AuA| = |X>j uA|1

Assumption A1 formalizes that β∗ is nonzero on at
most a few elements (in this case one) of each group of

3Specifically, where the Lasso homotopy method traces
out equiangular directions, the RepLasso follows skew-
angular directions (given in stage 2), with the angle skew
determined by the weights sA(λ).

G. Assumption A2 ensures that the active set of the
Lasso homotopy method in [5] matches the support
set. This condition is mild and holds, e.g., w.p. 1 if X
has spherical and absolutely continuous distribution.

Many analyses of the Lasso focus on its (signed)
support recovery properties. The following theorem,
which we prove in the Supplementary Material, will
allow us to easily compare RepLasso against Lasso in
terms of these measures. Let β̂(λ) and β̄(λ) be the
Lasso and RepLasso solutions to a regression problem
using penalty parameter λ.

Theorem 2 (Lasso Recovery). Assume that A1–2
hold. Conditioned on X, y, we have for any λmin > 0

∀λ ≥ λmin S(β̂(λ)) ⊆ S =⇒ ∀λ ≥ λmin β̂(λ) = β̄(λ).

On the other hand, if the conditions of Theorem 2 do
not hold, then for large θ, ∃λ ≥ λmin, β̂(λ) 6= β̄(λ) in
general. Many consequences for the support recovery
behavior of RepLasso can be derived from Theorem 2.
The following are two example corollaries that follow.
With a slight abuse of notation, let the ⊆ notation
applied to signed vectors denote that a correctly signed
subset of the signed support is recovered. We have

Corollary 1 (Support Recovery). Assume that A1–2
hold. Conditioned on X, y, we have for any λmin > 0

∀λ ≥ λmin S(β̂(λ)) ⊆ S =⇒ ∀λ ≥ λminS(β̄(λ)) ⊆ S

∀λ≥λminS±(β̂(λ))⊆S± =⇒ ∀λ≥λminS±(β̄(λ))⊆S±.

Corollary 1 shows that whenever the Lasso recovers
the (signed) support, so does RepLasso. That is, under
A1–2, RepLasso cannot perform worse than the Lasso
in terms of (signed) support recovery. In Section 6 and
the Supplementary Material we show empirically that
RepLasso often strictly outperforms the Lasso.

Consequences for other Methods. Besides the
Lasso, Theorem 2 also applies to many related algo-
rithms that pre-process the data X, y in some way,
prior to running the Lasso on the modified data. In-
stances of these algorithms are, for example, the Adap-
tive Lasso [31] and various Preconditioned Lasso algo-
rithms [9, 12, 20]. Indeed, if the assumptions hold,
the results are even true for `1 regularized minimiza-
tion of quadratic approximations to logistic regression
as proposed in [15]. We will empirically highlight this
property in Section 6 and the Supplementary Material.

A Lars-like Variation. We note at this point that
the Lars algorithm [5] is a special case of RepLasso
if we set θ = 0 and force L = 0. If we only force
L = 0 but allow θ 6= 0, then the resulting algorithm
can be seen as a generalization of Lars. We analyze
this method in the Supplementary Material and show
similar support recovery behavior.

1056



Fabian L. Wauthier, Peter Donnelly

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

P
(S

±
(β̂

Ŝ
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Figure 3: (a), (b) Results on synthetic data with n = 150, p = 50,G = groups of 2 and within-group correlations
ρ. We show the empirical probability that a subset of the correct signed support is recovered as a function of
support size. For each base-method we show three curves, grouped by color. The performance of the existing
Lasso variant (i.e., Lasso, Z, JR, PBHT, HJ) is shown as dashed-dotted curve; the performance of the algorithm
with the Lasso replaced by RepLasso/SGL is shown in solid/dashed respectively (see text for details). (c) A
GWAS Manhattan plot for ankylosing spondylitis on a region of chromosome 5. The x-axis gives SNP position;
circles indicate the − log10(p)-values of marginal association tests. The red, green and blue shaded regions
indicate the CAST, ERAP1 and ERAP2 genes respectively. Solid circles highlight the SNPs that were chosen
by the methods below. (d) The IRLS method of Lee et al. [15] with Lasso. Circles indicate the magnitudes of
estimated β coefficients. Solid circles indicate the first 4 SNPs that are chosen by Lasso. The method selects
multiple SNPs from the same gene. (e) The RepLasso avoids this if θ is chosen large enough.

Computational Complexity. Under assumption
A0, RepLasso (and RepLars in the Supplementary
Material) strongly resemble the Lars algorithm [5].
The principal difference is that we now maintain a set
of weights s(λ) in stage 1. This bookkeeping increases
the runtime of stage 1 by at most a constant factor,
as we already need to compute the residual correla-
tions of all inactive variables. It follows that, under
assumption A0, RepLasso and RepLars have the same
computational complexity as the Lars algorithm, that
is, O(p3 +np2) if p < n and O(n3 +n2p) if n� p (see
discussion in [5]). If A0 does not hold, then RepLasso
may drop variables and consequently the runtime may
increase. While the Lasso regularization path (i.e.,
RepLasso with θ = 0) can contain up to O(3p) linear
segments [18], the empirical complexity of the Lasso
homotopy (in this case also RepLasso) is often consid-
ered to be the same as above [1]. We hope that this
behavior carries over to RepLasso more generally.

6 Results

In this section we provide some comparisons of
RepLasso against implementations of Lasso [23] and
SGL [16], and validate the findings of Section 5. Since
SCAD [7] and MCP [29] do not take advantage of the
partition G, we will not compare against them.

Synthetic Data. We first focus on a set of experi-
ments which analyzes the probability of correctly re-
covering a subset of the correct signed support. We fix
G, β∗ so that A1 holds. Conditioned on G we also sam-
ple X with unit-length columns that are independent
between groups G ∈ G but exhibit some correlation ρ
within groups. Given X,β∗, we generate y according
to Eq. (1), with σ2 = 0.22. In Figures 3(a) and 3(b)
we investigate the performance of the RepLasso (solid
red), the Lasso (dashed-dotted red) and SGL (dashed
red). As there is no homotopy method for SGL we
generated the results by probing along the regulari-
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sation path until a model of desired complexity was
found. Notice that the curve for RepLasso lies above
that of Lasso, giving empirical support to Theorem 2
and Corollary 1. Also, the curve for the Sparse Group
Lasso (SGL) [22] lies below that of the Lasso and
RepLasso. We believe this is because SGL is for al-
most all parameter settings less sparse than the Lasso
(see Figure 1(c)) and because the SGL penalty does
not exploit A1. In addition to Lasso and SGL, we also
evaluated the performance of four other methods that
solve a standard Lasso problem after pre-processing
the data X, y in some way. For each algorithm we
show three curves, grouped by colors: the original
method is shown as dashed-dotted curve, the method
with the Lasso replaced by RepLasso as solid curve,
and the method with the Lasso replaced by SGL as
dashed curve. The four methods are: (1) the Adaptive
Lasso of Zou [31] (Z); (2) the “Whitened” Lasso of Jia
and Rohe [12] (JR); (3) the Preconditioned Lasso of
Paul et al. [20] (PBHT); and (4) Correlation Sifting of
Huang and Jojic [9] (HJ). The results in Figures 3(a)
and 3(b) highlight that using RepLasso as a drop-in
replacement these algorithms can also be improved,
while using SGL as drop-in replacement generally does
not help. As we show in the Supplementary Material,
results are similar when groups are larger and n� p.4

GWAS application. A second experiment consid-
ers the application to a Genome-Wide Association
Study (GWAS). A GWAS hopes to find Single Nu-
cleotide Polymorphisms (SNPs) that are associated
with disease status. Our focus is on n = 4000 cases
and controls for the disease ankylosing spondylitis5

and a region on chromosome 5 spanning p = 84 SNPs,
where susceptibility SNPs [3] had been previously re-
ported. Mainstream GWAS methodology tests each
SNP marginally for association using a maximum like-
lihood ratio test (MLRT) and plots the resulting p-
values on a “Manhattan plot”, as in Figure 3(c). Due
to linkage disequilibrium, many small p-values lie close
to each other. Alternatively, a penalized logistic re-
gression could also be used to regress the SNPs onto
disease status, which would then highlight interesting
SNPs by the magnitudes of the learned regression co-
efficients. Lee et al. [15] have proposed an IRLS strat-
egy for estimating an `1 constrained logistic regression
by solving a Lasso problem on a quadratic approxi-
mation of the logistic objective. The magnitudes of
the first four regression coefficients estimated by this
method are shown in Figure 3(d). As can be seen, two
pairs of selected SNPs lie near each other in two genes.
We might wish to discourage the Lasso from choos-

4If n < p we let the Adaptive Lasso scale columns of X
by univariate regression coefficients.

5See [6]. The EGA accession numbers for the data are
EGAD00010000150 and EGAD00000000022.

ing multiple SNPs from the same gene. Unlike SGL,
the RepLasso is ideally suited to this task. Given a
gene partition G (here by CAST, ERAP1 and ERAP2
genes) we can replace the Lasso in the IRLS algorithm
by the RepLasso and produce a different parameter es-
timate. If θ is large (e.g., 20 for each group), RepLasso
avoids selecting multiple SNPs from the same gene, as
seen in Figure 3(e). These SNPs may be worthy of
further study.

7 Conclusion

In this paper we presented a greedy homotopy al-
gorithm that approximates an underlying nonconvex
problem by a suitable sequence of surrogates that lo-
cally approximate Ωθ,G(·) well. As shown by Theo-
rem 1, our method will in certain cases sweep out a
global minima path of (P1). Theorem 2 and Corol-
lary 1 showed that even though RepLasso may not
exactly solve (P1) in general, in relevant regression
problems RepLasso will not do worse than the Lasso
in terms of (signed) support recovery. Finally, Sec-
tion 6 shows that RepLasso often outperforms Lasso.

Several extensions can be considered. Firstly, we de-
fined Ωθ,G(·) as a sum over certain pairs of variables.
More flexible constraint functions could potentially be
defined if the sum is allowed to range over an arbi-
trary set of pairs. Secondly, our overall strategy was to
decompose the nonconvex constraint balls induced by
Ωθ,G(·) as a union of simpler, convex balls. This moti-
vates directly defining nonconvex constraint balls as a
union of convex balls. For instance, one could consider
unions of weighted `∞ balls or a mix of weighted `∞
and weighted `1 balls. So long as these convex building
blocks are consistent with [21] it should still be possi-
ble to efficiently compute local minima paths segments
as demonstrated in this paper. Thirdly, it would be
interesting to see whether results in, e.g., [17] can be
extended to argue for consistency of the RepLasso in
cases where local minima paths are produced.
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