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Abstract — In Wireless Sensor Networks (WSNs), clustering has been shown to be an efficient technique to improve scalability 

and network lifetime. In clustered networks, clustering creates unequal load distribution among Cluster Heads (CHs) and 

Cluster Member (CM) nodes. As a result, the entire network is subject to premature death because of the deficient active nodes 

within the network. In this paper, we present clustering-based routing algorithms that can balance out the trade-off between 

load distribution and network lifetime “green cluster-based routing scheme”. This paper proposes a new energy aware green 

cluster-based routing algorithm to preventing premature death of large scale dense WSNs. To deal with the uncertainty present 

in network information, a fuzzy rule-based node classification model is proposed for clustering. Its primary benefits are 

flexibility in selecting effective CHs, reliability in distributing CHs overload among the other nodes, and reducing 

communication overhead and cluster formation time in highly dense areas. In addition, we propose a routing scheme that 

balances the load among sensors. The proposed scheme is evaluated through simulations to compare our scheme with the 

existing algorithms available in the literature. The numerical results show the relevance and the improved efficiency of our 

scheme.  

Keywords— Dense wireless sensor network; energy consumption; green clustering; network separation; fuzzy logic. 

1. Introduction 

In recent years, Wireless Sensor Networks (WSNs) have been used in a wide range of applications, such as 

medical treatments and tele healthcare, outer-space exploration, military applications, home applications and the 

monitoring of oceans, agriculture lands and wildlife [1-3]. In such applications, deployed sensor nodes are equated 

with limited on-board processing, storage and radio communication. Miniaturisation has enabled the fabrication 

of portable smart sensor nodes at low cost with high accuracy [4, 5]. Therefore, recently it has become 

commonplace to densely deploy a large number of sensor nodes within the target environment to increase the 

Quality of Service (QoS) of the network with respect to the data reception ratio and the robustness of the WSN.  
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In such WSNs, each sensor node collects local information, processes the data and then transmits the collected 

information to the Base Station (BS) through single-hop or multi-hop communication. Distinguished from the 

traditional wireless networks, the deployed sensor nodes in WSNs are limited in power, computational capacity 

and memory. Battery replacement in WSNs may be impossible due to harsh and inaccessible deployment 

environments. According to energy consumption models [6, 7], energy consumption exponentially increases with 

required communication distance. Hence, transmission energy consumption is one of the most challenging issues 

for the long term operation of WSNs. Previous research has shown that multi-hop communication is more energy 

efficient than the single-hop communication [6, 8]. Therefore, clustering sensor nodes is an efficient strategy in 

terms of energy consumption where each deployed sensor node sends local information to a Cluster Head (CH) 

to which the node belongs [2, 9, 10] and CHs transmit their aggregated information to the BS [11, 12]. In clustered 

WSNs, CHs that are located close to the BS consume more energy than other CHs because they have to relay a 

relatively large number of packets, due to their position in relation to other CHs/nodes and the BS. Also, the CHs 

located close to BSs need to work as aggregators and they present higher computational burden than the rest CHs. 

As a result, CHs close to the BS tend to exhaust their energy (die) earlier compared to other CHs. In this 

circumstance, other CHs are unable to reach the BS causing the network to become disconnected, as presented in 

Fig. 1. However, most of the outer sensor nodes can still survive for a long period of time. This problem is 

commonly known as the premature death of the network [13-16] and is more crucial in the design of large scale 

dense WSNs. The premature death of the network can potentially reduce lifetime and QoS of the WSNs. If the 

load of the CHs and CM nodes can be reduced and balanced, then premature death of the network can be prevented 

and QoS of the network can be improved. 

A number of clustering approaches have been proposed in the last few years where the CHs role is rotated 

among the non-CH nodes to balance energy consumption among the deployed sensor nodes [17-19]. However, 

rotation of CHs only balances energy consumption of the non-CH nodes in an intra-cluster environment, it does 

not balance the energy consumption among CHs in the inter-cluster multi-hop routing environment. Furthermore, 

most studies on load balanced clustering propose static solutions, that is, they do not adapt the topology to the 

changing network conditions [5, 20-24]. These conditions are often not favourable for the elected CHs, regarding 

energy consumption. As a result, the CHs frequently become non-operational, leading to new CHs-election, 

further increasing message overhead, and thus energy consumption in the network. Therefore, CH rotation 

mechanisms significantly increase message exchange among the deployed sensor nodes. 
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Fuzzy logic based clustering approaches [20-22] have been proposed to reduce the extra message exchange 

during the CHs selection phase. In these approaches, fuzzy logic has been used for the CH selection process, 

where higher energy level nodes are selected as CHs through the fuzzy rule-based process. These approaches save 

extra message overhead and time delay during the cluster formation phase. However, these approaches do not 

balance CH load in the inter-cluster environment. In order to address the balance of energy consumption problem 

in an inter-cluster environment, recent studies on balance energy consumption in WSNs have proposed unequal 

clustering mechanisms whereby the entire network was divided into several clusters of unequal size [23-24]. The 

main concept behind these unequal clustering mechanisms was to adjust the cluster size with respect to the 

distance between the CHs and the BS to reduce the energy consumption of the CHs that are close to the BS. It has 

been seen from the literature that the existing unequal clustering method [21, 23] leads to a large number of 

message exchanges over the network to determine the cluster size and for the exchange of current energy status 

information, which rapidly depletes energy of deployed sensor nodes and creates a large overhead for large scale 

dense WSNs. In addition, the unequal clustering method increases number of CHs within the network that creates 

huge traffic load within the network. Due to poor performance and high energy overhead of the existing set of 

approaches, it has become necessary to design and develop an efficient load balancing algorithm for large scale 

dense WSNs to prevent the premature death of the network and improve the QoS of the network.  

In this paper, we propose a new energy aware fuzzy approach for large scale WSNs with different densities. 

We first present a fuzzy rule-based sensor node classification strategy that classifies deployed sensor nodes into 

different categories and selects a tentative CH set from the deployed sensor nodes. A fuzzy rule-based sensor node 

classification strategy helps to distribute the overload of the CHs and it is suitable for high uncertainty 

environments [25]. In order to reduce extra message overhead and time delay, we also propose a novel distributed 

CH selection algorithm that can select CHs from the tentative CH set. The proposed clustering algorithm adapts 

the topology to the changing network conditions, which increases the lifetime of the selected CHs and prevents 

frequent CHs selection process. Finally, we present a load balanced data routing algorithm that can minimize and 

balance load among the CHs.  

The rest of the paper is organized as follows. Related works on the load balanced clustering in WSNs are 

presented in Section 2. Section 3 presents the network mode and explains the unbalance communication load and 

data routing problems. Section 4 describes proposed clustering and data routing algorithms. Complexity analysis 

and the energy consumption calculation of the proposed algorithms are parented in Section 5. In Section 6, we 
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present simulation results which were conducted to measure the performance of the proposed algorithms. Finally, 

Section 7 concludes the paper. 

2. Related Works 

Recently, a significant amount of research has been done to address the energy consumption problem in WSNs. 

The main goals of these studies were to reduce the energy consumption among deployed sensor nodes and prolong 

the network lifetime. 

Heinzelman et al. [26] proposed a distributed cluster-based data routing scheme called Low-Energy Adaptive 

Clustering Hierarchy (LEACH). LEACH has been a popular early study that uses a dynamic transmission range 

to balance energy consumption between the deployed sensor nodes. In this dynamic clustering approach, each 

deployed sensor node has a certain probability of becoming a CH per round and LEACH selects CHs based on 

the probability of the deployed sensor nodes. In order to balance energy consumption, LEACH dynamically 

rotates the work load of the CH among the other non-CH nodes. In LEACH, each CH communicates with the BS 

via single-hop communication which leads to much energy consumption. Hence, the LEACH protocol is not 

suitable and scalable for large scale networks. On the other hand, in this approach, a lower energy node may be 

selected as a CH due to probability based CHs selection process. If a lower remaining energy node is selected as 

a CH, then the CHs selection process is executed at small time intervals. To overcome this problem, Younis and 

Fahmy [27] presented a multi-hop data routing algorithm called Hybrid Energy-Efficient Distributed (HEED). In 

this approach, a two-phase parameter process was performed to select CHs. In the first phase, the remaining energy 

of the deployed sensor nodes is used for CHs selection. If a tie occurred in the first phase, the second phase 

parameters, such as node degree, intra-cluster energy consumption, and distance to neighbours, were considered 

to break the tie in the first phase CHs selection process. In this approach, CHs are well distributed over the 

monitoring field. However, HEED did not consider balancing energy consumption among CHs. Therefore, CHs 

close to the BS suffered from the high communication load and the CHs around the BS depleted their energy 

faster than the boundary CHs. As a result, HEED suffered from the premature death problem.  

In order to overcome the uncertainties inherent in WSN environment, some cluster approaches have used fuzzy 

logic to overcome the problem. In the existing fuzzy based clustering approaches, CHs were selected by fuzzy 

rule-based mechanisms whereby fuzzy logic was employed to get a better combination of the input parameters to 

obtain an optimal output. CHEF was a fuzzy based CHs election algorithm where CHs election occurred in a 

distributed manner [20]. In this approach, the residual energy of each sensor node and local distance formed the 

fuzzy input parameters. CHs were elected on their residual energy and local distance of the deployed sensor nodes. 
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The main disadvantage of this approach was that the message overhead was very high compared to other cluster 

formation algorithms, and this approach did not consider the unequal load of the sensor nodes. Therefore, CHEF 

suffered from the network separation problem. Bagci and Yazici [21] proposed a fuzzy based unequal clustering 

approach where different unequal size clusters are designed to solve the network separation problem in a multi-

hop WSN. The main drawback of this unequal clustering approach was that it increased the number of CHs within 

the network which significantly increased the traffic load through the deployed sensors. In addition, the unequal 

clustering approach leads to a large number of message exchanges over the network for status interchange during 

the unequal cluster formation phase which rapidly depleted the current energy of the deployed sensor nodes. Li et 

al. [28] proposed an unequal clustering scheme called Energy Efficient Unequal Clustering (EEUC) for balanced 

energy consumption among CHs. In this approach, unequal cluster size determination method led to a large 

number of message exchanges over the network. Therefore, this approach suffered from poor network lifetime. 

On the other hand, in this approach, it would be difficult to control the actual size of the clusters when the number 

of exhausted nodes is very high within the network. Sabor et al. [23] proposed an Unequal Multi-hop Balanced 

Immune Clustering protocol (UMBIC) to solve the network separation problem and improve the network lifetime. 

In this approach, unequal clustering and multi objective algorithm were used to balance intra-cluster and inter-

cluster energy consumption. In addition, fuzzy logic was used to select CHs within the network. However, the 

main drawback of this approach was that the high volume of control message exchange between selected CHs 

and sensor nodes to from clusters within the network. Gajjar et al. [24] proposed an unequal clustering algorithm 

named Fuzzy and Ant Colony Optimization Based Combined MAC, Routing, and Unequal Clustering Cross-

Layer Protocol for WSN (FAMACROW). In this technique, fuzzy logic was used to select CHs within the network. 

As a large number of message exchanges over the network consume more energy compared to information 

processing, this approach dissipated more energy and reduced the lifetime of the network. Furthermore, in this 

approach, data delivery delay was very high which is unsuitable for large scale dense WSNs. Rao and Banka [11] 

proposed an unequal clustering and routing algorithms for wireless sensor networks where a chemical reaction 

optimization based scheme was adopted for CH selection and multi-hop data routing. In this approach, unequal 

cluster size determination and multi-hop data routing path selection method leads to a large number of message 

exchanges over the network. It also required a long time for CH selection and multi hop data routing. Zahedi et 

al. [29] proposed a swarm intelligence based fuzzy routing protocol for clustered wireless sensor network, called 

Swarm Intelligence Fuzzy SIF. In this work, the residual energy, distance to the sink, and distance from the cluster 

were considered as fuzzy input parameters to select CHs within the network. This approach generated unequal 
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traffic load among the CHs which significantly reduced the performance of the network. Semchedine et al. [30] 

proposed a load balanced algorithm for data centric routing in wireless sensor network called Directed Diffusion 

with Load Balancing (DDLB). In this approach, a routing protocol for energy efficient data transmission from the 

deployed sensor nodes to the BS was proposed. In addition, a load balanced algorithm was introduced for equal 

energy consumption of the sensor nodes. DDLB approach only balanced energy consumption among the deployed 

sensor nodes and CHs in intra-cluster environment. It did not balance energy consumption between the CHs in 

the inter-cluster environment. Therefore, it was unable to prevent the premature death of the WSNs. It also 

required a long time for data routing. Furthermore, it injected a large message overhead into large scale dense 

WSNs.   

Above all, the researchers only considered intra-cluster load balancing or cluster head selection. In this paper, 

two factors are studied together. A routing algorithm for wireless sensor network is presented to balance energy 

and prolong the network lifetime.  

3. Network models and problem statement 

  

3.1 Network model  

The following properties are assumed for the sensor network design [5, 11]: 

• We assume a large scale dense WSN, where sensor nodes are powered by a non-renewable energy source. When 

this energy supply is exhausted, the sensor node becomes non-operational; otherwise sensor nodes sense data 

from monitoring environment. Nodes are also capable of data receiving and transmitting data. 

• Initially, all sensor nodes are charged with the same amount of energy. 

• Sensor nodes are non-uniformly or randomly distributed within the monitoring environment and all deployed 

sensor nodes are stationary.  

• The BS is not limited in energy, memory, computational power. 

• Deployed sensor nodes are not location aware. 

• The WSN is homogeneous, all nodes have the same processing power, communication capability and memory 

capacity. 

• The network stops working when all of the sensor node energy is exhausted.  

• The distance between two deployed sensor nodes can be estimated using the receiving signal strength. 

• Every deployed sensor node is capable of adjusting its transmission power, according to the distance of the 

destination nodes. 
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3.2 Notations 

For clarity, we describe some notations that we have used throughout the paper in Table 1. 

 
3.2 Energy model 

 In this work, the first order radio model is used for measuring the energy consumption of deployed sensor 

nodes. Energy consumption by the node (vi) for single message transmission is represented by [10]: 

𝐸𝑇 = { (𝜏𝑡 + 𝜏𝑓𝑠𝑑2)𝑃𝑖          𝑖𝑓𝑑 < 𝑑0(𝜏𝑡 + 𝜏𝑎𝑚𝑝𝑑4)𝑃𝑖          𝑖𝑓𝑑 ≥ 𝑑0                                           (1) 

where 𝐸𝑇 is the energy dissipated to transmit Pi bits data packet over a distance d and d0 is a distance threshold 

where 𝑑0 = √𝜏𝑎𝑚𝑝 𝜏𝑓𝑠⁄ . 𝜏𝑡  [J/bit] is the energy loss per bit by the transmitter circuitry, 𝜏𝑓𝑠  (J/bit/m2) and 𝜏𝑎𝑚𝑝 

(J/bit/m4) denote the factors in the Friss’ free space model. Energy dissipation by the receiver circuit for receiving 

Pi (bits) message is represented by: 𝐸𝑅 = 𝜏𝑟𝑃𝑖                                                                    (2)   

where 𝐸𝑅 is the energy dissipated to receive Pi bits data packet. 𝜏𝑟[J/bit] represents the energy dissipation by the 

receiver circuit. In addition, the energy consumption by a sensor node (vi) for sensing Pi bits data is represented 

by: 𝐸𝑠𝑒𝑛 = 𝑃𝑖𝐸𝑠𝑒𝑛𝑠𝑖𝑛𝑔                                                                   (3) 

In cluster based approaches, local information is highly correlated, and hence CHs use a data aggregation 

mechanism to combine correlated information into a single-fixed packet. The energy consumption for aggregation 

m packets of Pi bits is represented by: 𝐸𝑎𝑔𝑔 = 𝑚𝑃𝑖𝐸𝐷𝐴                                                               (4) 

where EDA is the energy dissipated to calculate data correlation over mPi bits data packet.    

 

3.3 Problem statement  

We consider a homogeneous WSN consisting of N sensor nodes. Sensor nodes are randomly deployed in a 2-

dimensional plane. In the initial network topology, each sensor node has transmission range 𝑅𝑚𝑎𝑥 . We represent 

the initial network topology with an undirected weighted graph 𝐺 = (𝑉, 𝐸), where 𝑉 = {𝑣1, 𝑣2, … . , 𝑣𝑁} is the set 

of the deployed sensor nodes and 𝐸 = {(𝑣𝑖 , 𝑣𝑗)|𝑑𝑖𝑠𝑡 (𝑣𝑖 , 𝑣𝑗) < 𝑅𝑚𝑎𝑥} is the set of edges, where 𝑑𝑖𝑠𝑡(𝑣𝑖 , 𝑣𝑗) 
depicts the distance between nodes 𝑣𝑖 and 𝑣𝑗.  



8 
 

The network is divided into M number of clusters and each cluster contains 𝑛𝑖(𝑖 = 1, 2, . . ) member nodes. 

Each CM node senses Pi bits data from the surrounding region and transmits this data to which the node belongs. 

Therefore, the load of a CM node is given by: 𝐸𝑛𝑜𝑛𝐶𝐻 = 𝐸𝑠𝑒𝑛 + 𝐸𝑇 = 𝑃𝑖𝐸𝑠𝑒𝑛𝑠𝑖𝑛𝑔 + (𝜏𝑡 + 𝜏𝑑1𝑑𝑖2)𝑃𝑖                                      (5) 

where di is the average distance between a CM node and its CH. Furthermore, the energy consumption of the CHs 

primarily depends on sensing data, traffic load, and routing load. The traffic load in a CH is expressed as: 𝐸𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝐶𝐻 = 𝑁𝑀 × (𝐸𝑅) + (𝑁𝑃)𝐸𝑅 = (𝑛𝑖 + 𝑁𝑃)𝜏𝑟𝑃𝑖                                 (6) 

where Np is the number of routing packets receive by a CH from other CHs. The routing load in a CH is given by: 𝐸𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝐶𝐻 = (𝜏𝑡 + 𝜏𝑎𝑚𝑝𝑑𝑗4)(𝑁𝑃 + 1)𝑃𝑖 + (𝑛𝑖 + 1)𝑃𝑖𝐸𝐷𝐴                                 (7) 

 
where dj is the average distance between a CH and the next hop CH or BS. The total acting load of a CH is 

expressed as: 𝐸𝐶𝐻 = 𝑃𝑖𝐸𝑠𝑒𝑛𝑠𝑖𝑛𝑔 + ((𝑁𝑀 − 1) + 𝑁𝑃) 𝜏𝑟𝑃𝑖 + (𝑁𝑀)𝑃𝑖𝐸𝐷𝐴 + (𝜏𝑡 + 𝜏𝑎𝑚𝑝𝑑𝑗4)(𝑁𝑃 + 1)𝑃𝑖                    (8) 

 From eq. (8), it can be seen that the CH load is significantly more than a non-CH node within the cluster 

because a CH not only collects the data from its CM nodes, it also transmits the data to the BS. Hence, CHs close 

to the BS tend to exhaust their energy faster because of the heavy relay traffic. Therefore, the premature death of 

the network may arise and shorten the lifetime of the network. To solve this problem, some load balanced 

clustering approaches were proposed [23-24, 29]. However, existing load balanced clustering approaches put a 

large message overhead into the large scale WSNs which itself rapidly depletes the energy of the sensor nodes. 

The energy consumption of a WSN depends on inter- and intra-cluster traffic load. The inter-cluster traffic 

depends on energy spent to communicate with other CHs as well as the BS. Intra-cluster traffic load depends on 

the energy consumption from data communication inside the cluster as well as data processing. In large scale 

dense WSNs, inter-cluster traffic load consumes more energy than the intra-cluster traffic load. Therefore, the 

premature death of the network is a core issue in the design of large scale dense WSNs. An energy efficient load 

balanced multi-hop routing algorithm is required to prevent the premature death of the WSNs, especially for large 

scale network. Thus objectives of this paper are (a) to reduce the energy consumption of the network, (b) reduce 

inter-cluster traffic load, and (c) balance energy consumption among the CHs and CM nodes. These three 

functions of a network can avoid the premature death of the WSNs and improve the lifetime of the network. 

Specifically, we present our objectives as follows: 

Objective 1: Total energy consumption of the network (Etotal) must be minimized. The total energy consumption 

of the network is given by: 
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𝐸𝑇𝑜𝑡𝑎𝑙 =∑[  
 (𝑃𝑖𝐸𝑠𝑒𝑛𝑠𝑖𝑛𝑔 + ((𝑁𝑀−1)+𝑁𝑃) 𝜏𝑟𝑃𝑖 + (𝑁𝑀)𝑃𝑖𝐸𝐷𝐴 + (𝜏𝑡 + 𝜏𝑎𝑚𝑝𝑑𝑗4) (𝑁𝑃 + 1)𝑃𝑖)𝑀

𝑗=1
+ ∑ 𝑃𝑖𝐸𝑠𝑒𝑛𝑠𝑖𝑛𝑔 + (𝜏𝑡 + 𝜏𝑓𝑠𝑑𝑖2)𝑃𝑖 (𝑁𝑀−1)

𝑖=1 ]  
 + 𝐶𝑛 (∑𝑘𝑖 ((𝜏𝑡 + 𝜏𝑓𝑠𝑑𝑖2)+ 𝜏𝑟)𝑁

𝑖=1 )                           (9) 
where Cn is the number of control messages flowed over the network and ki represents the size of the control 

messages. First part of eq. (9) represents the minimum energy consumption of the CH and the second part of eq. 

(9) describes the minimum energy consumption of the CH nodes. The remaining part of eq. (9) represents the 

energy loss of the deployed sensor nodes due to the required handling of control messages. 

Objective 2: The number of control messages (𝐶𝑛) must be minimized. 𝐶𝑛 is given by: 

(𝐶𝑛 = (∑𝑘𝑖 ((𝜏𝑡 + 𝜏𝑑1𝑑𝑖2)+ 𝜏𝑟)𝑁
𝑖=1 ))                                                                    (10) 

Objective 3: The traffic load of the CHs (𝐸𝑇𝑟𝑎𝑓𝑓𝑖𝑐) should be minimised. 𝐸𝑇𝑟𝑎𝑓𝑓𝑖𝑐  is given by: 

(𝐸𝑇𝑟𝑎𝑓𝑓𝑖𝑐 =∑(𝑛𝑖 + 𝑁𝑃)𝜏𝑟𝑃𝑖𝑀
𝑖=1 )                                                                    (11) 

Objective 4: The average load (𝐸𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑙𝑜𝑎𝑑 ) between the CH and its CM nodes should be minimized. 𝐸𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑙𝑜𝑎𝑑  is: 

𝐸𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑙𝑜𝑎𝑑 = (𝑃𝑖𝐸𝑠𝑒𝑛𝑠𝑖𝑛𝑔 + ((𝑁𝑀 − 1) +𝑁𝑃) 𝜏𝑟𝑃𝑖 + (𝑁𝑀)𝑃𝑖𝐸𝐷𝐴 + (𝜏𝑡 + 𝜏𝑑2𝑑𝑗4)(𝑁𝑃 + 1)𝑃𝑖) + 𝐶𝑛𝑘𝑖 ((𝜏𝑡 + 𝜏𝑓𝑠𝑑𝑖2) + 𝜏𝑟)
− 𝑀( ∑ 𝑃𝑖𝐸𝑠𝑒𝑛𝑠𝑖𝑛𝑔 + (𝜏𝑡 + 𝜏𝑑1𝑑𝑖2)𝑃𝑖 + 𝐶𝑛𝑘𝑖 ((𝜏𝑡 + 𝜏𝑓𝑠𝑑𝑖2) + 𝜏𝑟) (𝑁𝑀−1)

𝑖=1 ) 𝑁⁄                                                 (12) 
 

4. Design Rational and Proposed Scheme 

 

To solve the balanced energy consumption problem in WSNs, previous research [20, 21] periodically rotated the 

role of the CH among the CM nodes. The rotation of the CHs can only balance the energy consumption among 

the CHs and CM nodes. It cannot balance energy consumption among the CHs in the inter-cluster environment. 

Therefore, our mechanism focuses on the energy balance among the CHs in the inter-cluster environment. In 

addition, previous clustering approaches [15, 22] potentially increase extra message overhead during the CHs 

rotation process which itself shortens the network lifetime. Therefore, this work also focuses on the message 

overhead problem. In this section, we first estimate the traffic load and energy consumption of the CM nodes, as 

well as CHs in intra-and inter cluster environment. After these, we propose fuzzy rule-base node classification 
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strategy, clustering algorithm, and load balanced data routing algorithm. Fig. 2 shows a flow chart of our proposed 

scheme.  

 
Theorem 1: Denote Ri as the time period for one data gathering round. di is the distance between node j and its 

CH. If node j processes Cn number of control messages at the Ri time period, the average energy consumption 𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑗
 of j is 𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑗 = 𝐸𝑇𝑗 + 𝐸𝑅𝑗 + 𝐸𝑠𝑒𝑛𝑗 , where: 

{ 
 𝐸𝑇𝑗 = (𝜏𝑡 + 𝑥𝑑𝑖𝑙) ((𝑛𝑔 + 1)𝑃𝑖 + 𝐶𝑛𝑘𝑖)𝐸𝑅𝑗 = 𝜏𝑟(𝐶𝑛𝑘𝑖 + 𝑛𝑔𝑃𝑖)                                 𝐸𝑠𝑒𝑛𝑗 = 𝑃𝑖𝐸𝑠𝑒𝑛𝑠𝑖𝑛𝑔                                                                                                                                                       (13)  
and if 𝑑𝑖 ≤ 𝑑0, 𝑥 = 𝜏𝑓𝑠 and l=2; otherwise, 𝑥 = 𝜏𝑎𝑚𝑝 and l=4. 

Proof: In a data gathering round, the energy consumption of node j consists of the following three parts. 

1) Energy consumption for receiving data: a sensor node j receives ng number of data packets from its 

neighbour nodes and Cn number of control messages in a round. Therefore, energy consumption for 

receiving is 𝐸𝑅𝑗 = 𝜏𝑟(𝐶𝑛𝑘𝑖 + 𝑛𝑔𝑃𝑖). 
2) Energy consumption for data transmitting: a sensor node j transmits ng number of data packets with its own 

sensing data. In addition, sensor node j also transmits Cn number of control messages in a round. Therefore, 

energy consumption for data transmitting is 𝐸𝑇𝑗 = (𝜏𝑡 + 𝑥𝑑𝑖𝑙) ((𝑛𝑔 + 1)𝑃𝑖 + 𝐶𝑛𝑘𝑖). 
3) Energy consumption for data sensing: sensor node j senses Pi amount of data from its surrounding region at 

Ri time. Therefore, energy consumption for data sensing is 𝐸𝑠𝑒𝑛𝑗 = 𝑃𝑖𝐸𝑠𝑒𝑛𝑠𝑖𝑛𝑔 . In a round, the energy 

consumption 𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑗  of node j is 𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑗 = 𝐸𝑇𝑗 + 𝐸𝑅𝑗 + 𝐸𝑠𝑒𝑛𝑗  . 

Theorem 2:  Assume that cluster i is in the region of Bx with the width of 𝜗 and Bx region is composed of  𝑁/𝑀 

number of non-CH nodes. Denote dI as the distance between CH i and the BS. If CH i process and relays Cn 

number of control messages and 𝑁/𝑀  number of data packets at the Ri time period, the average energy 

consumption 𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝐶𝐻𝑖  of i is 𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝐶𝐻𝑖 = 𝐸𝑇𝑖 + 𝐸𝑅𝑖 + 𝐸𝑠𝑒𝑛𝑖 +𝐸𝐷𝐴𝑖 , where: 

{   
   𝐸𝑇𝑖 = (τt + 𝑥dI𝑙)((𝑁𝑃 + 1)𝑃𝑖+𝑘𝑖𝐶𝑛)𝐸𝑅𝑖 = (((𝑁𝑀 − 1) + 𝑁𝑃) 𝑃𝑖 + 𝑘𝑖𝐶𝑛) 𝜏𝑟𝐸𝐷𝐴𝑖 = (𝑁𝑀)𝑃𝑖𝐸𝐷𝐴                                     𝐸𝑠𝑒𝑛𝑖 = 𝑃𝑖𝐸𝑠𝑒𝑛𝑠𝑖𝑛𝑔                                      

                                                                                                                 (14) 
and if 𝑑𝐼 ≤ 𝑑0, 𝑥 = 𝜏𝑓𝑠 and l=2; otherwise, 𝑥 = 𝜏𝑎𝑚𝑝 and l=4. 

Proof: In a data round, the energy consumption of CH i consists of the following four parts. 
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1) Energy consumption for data receiving: CH i receives all data packets from its 𝑁/𝑀 number of CM nodes 

and Cn number of control messages in a round Ri. In addition, CH i relays data packets from Np number of 

other CHs. Therefore, the energy consumption in receiving data is: 

 𝐸𝑅𝑖 = (((𝑁𝑀 − 1) + 𝑁𝑃) 𝑃𝑖 + 𝑘𝑖𝐶𝑛) 𝜏𝑟 . 

2) Energy consumption for transmitting data: in a round, a sensor node i transmits aggregated data packets to 

the BS. In addition, CH i also exchanges Cn number of control messages with its CM nodes. CH i relays Np 

number of data packets from other CHs. Therefore, energy consumption in transmitting data is 𝐸𝑇𝑖 =(τt + 𝑥dI𝑙)((𝑁𝑃 + 1)𝑃𝑖+𝑘𝑖𝐶𝑛). 
3) Energy consumption for data aggregation: CH i aggregates correlated data into a single-fixed packet. 

Therefore, energy consumption for data aggregation is 𝐸𝐷𝐴𝑖 = (𝑁𝑀)𝑃𝑖𝐸𝐷𝐴. 

4) Energy consumption for sensing: CH i senses Pi amount of data in a round. Therefore, energy consumption 

for data sensing is 𝐸𝑠𝑒𝑛𝑖 = 𝑃𝑖𝐸𝑠𝑒𝑛𝑠𝑖𝑛𝑔. In a round, energy consumption 𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝐶𝐻𝑖  of CH i is 𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝐶𝐻𝑖 =𝐸𝑇𝑖 + 𝐸𝑅𝑖 + 𝐸𝑠𝑒𝑛𝑖 +𝐸𝐷𝐴𝑖 .  

 

According to the theorem 1 and theorem 2, several phenomena can be concluded as follows: 

1) Traffic load and energy consumption have a direct relationship with transmission radius Rmax, which may 

cause the location of the network separation deviating from the adjacent area of the BS.  

2) When Rmax is fixed, the total energy consumption is impacted by the energy consumption for the 

transmission and reception of data packets. 

Since the first energy-exhausted nodes must be the ones with the maximum energy consumption in the network, 

the time duration of the first node being exhausted within the network is: 

𝑅𝐿 = ⌊ 𝐸𝑚𝑎𝑥max(𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝐻𝑖 )⌋                                                                          (15)   
where Emax is the maximum energy of the sensor nodes. If the time period of the first exhausted node within the 

network can be extended, then the premature death of the network can be faced. In the next section, we propose a 

load balanced data routing scheme where the overload of the CHs is reduced through the routing nodes. CHs 

overload is computed using eq. (14). Control message overhead also increases energy consumption of the CM 

nodes, as well as CHs. Therefore, in this paper, we also reduce control messages flow within the network.    

Sensor nodes can typically be deployed in very dynamic changing environments, where network variables 

frequently change their values. Energy status, inter-node distance, acting load within a node, and size of the 
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network are a few of the variables which need to be continually monitored. In such a case, fuzzy rule-based 

approaches are very effective to overcome the uncertainties inherent in the WSN environment. The total energy 

consumption of the network will depend on the number of control message flows over the network (eq. (13) and 

eq. (14)). If the number of control messages is decreased, then the total energy consumption of the network also 

decreases. Therefore, in this paper, we reduce the number of control messages within the network through the 

fuzzy-rule based nodes classification process. The proposed fuzzy rule-based nodes classification strategy 

classifies deployed sensor nodes into different categories and defines a tentative CH set. Therefore, our proposed 

clustering algorithm selects CHs from the tentative CHs set through the minimum number of nodes involvement 

to significantly reduce the number of control message flows within the network. The proposed scheme is divided 

into three phases, viz (a) nodes classification through fuzzy logic, (b) cluster formation phase, and (c) load 

balanced data routing phase. The operation of the proposed scheme is split into rounds, where each round consists 

of three phases as shown in Fig. 3. The first phase of the proposed scheme is the node classification phase with T1 

duration. In node classification phase, deployed sensor nodes are classified into three categories: (i) strong node 

Sg, (ii) moderate node Md, and iii) weak node Wk with the help of fuzzy rule-based. This phase is distributed, where 

each deployed sensor node makes own decision through the fuzzy inference system. The second phase of the 

proposed scheme is a cluster formation phase with T2 duration. In this phase, the whole network divided into 

several clusters. The best CHs searching process among all the deployed sensor nodes is a complicated process 

and it needs a long time especially in large scale dense WSNs. To solve this problem, in our proposed scheme, 

only strong nodes participate in the CHs selection process. The third phase of the proposed scheme is a load 

balancing and routing phase with T3 duration. The data routing phase is divided into two sub-phases where each 

CH calculates its acting load and selects a routing node through the distributed manner. On the other hand, after 

the routing node selection phase, CM nodes transmit their data to a respective CH and the CH relays aggregated 

data to the BS directly, or via a routing node. 

 

4.1 Nodes classification through fuzzy logic inference system  

 A Fuzzy rule-based system has been used for node classification, where deployed sensor nodes have been 

classified into three different categories (strong, moderate, weak) according to their routing load, traffic load, and 

current energy level condition. The strong node set Vg (Vg⊆V) has minimum load and maximum residual energy. 

Therefore, CHs are primarily selected from a strong node set (Vg). The moderate node set Vd (Vd ⊆V) has medium 

load and medium residual energy. Hence, Vd node set senses data from monitoring environment and transmits to 

the adjacent CH. The moderate node takes the supplementary role in managing the cluster once the strong node’s 
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energy starts to drain out erratically. The weak node set Vk (Vk ⊆V) has maximum load and minimum residual 

energy. So, weak node acts as a cluster member node. The week node does not perform any aggregation or 

communication with the BS and this makes the node retain its energy for sensing data. After classification of the 

deployed sensor nodes, strong node set defines as tentative CHs. The proposed clustering algorithm selects final 

CH set from the tentative CHs without any central control. The fuzzy logic system is divided into four parts, (a) 

fuzzifier, (b) inference engine, (c) fuzzy rule base, and (d) defuzzifier. In the fuzzifier module, input variables are 

transferred to a linguistic value according to the membership function. The output of the fuzzifier is the input of 

the fuzzy inference engine. Fuzzy rule-base is a set of linguistic control rules. The inference engine makes 

decisions based on the fuzzy control rule and input of linguistic variables. Defuzzifier generates a non-fuzzy 

control output from the inferred fuzzy control action. 

In order to classify deployed sensor nodes, three input variables are used. The first one is the communication 

load or routing load. Each node calculates its communication load based on its distance from the BS. The second 

fuzzy input variable is the traffic load of the sensor node. The third input variable is the residual energy of the 

sensor node. Three linguistic variables “Low”, “Medium”, and “High” are used for communication load. The 

linguistic variables for traffic load are “Low”, “Medium”, and “High”. Similarly, linguistic variables for residual 

energy are “Low” “Medium” and “High”. The output of the inference engine refers to the appropriateness of the 

node as a strong node, moderate node, weak node, and poor node (Fig.4). Poor nodes are energy exhausted nodes. 

Therefore, these nodes are excluded from the network and are not considered further. Table 2 lists the rule-base 

employed by the inference engine. A Mamdani Controller [31] is used as a fuzzy inference technique to evaluate 

the rule set and the Centre of Area (COA) method is used for defuzzification. Mamdani controller consists of: (1) 

combining the fuzzified inputs according to the fuzzy rules in order to establish rule strength, (2) finding the 

consequence of the rule by combining the rule strength and the output membership function, and (3) combining 

the consequences to generate an output distribution. After classifying deployed sensor nodes using Mamdani 

controller, the cluster formation algorithm is used to select CH based on residual energy and acting load 

respectively. According to the fuzzy rules, higher residual energy and lower acting load nodes are selected as 

tentative CHs. The proposed clustering scheme selects CHs from the tentative CH set depending on their current 

energy condition which is described in the next section.  
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4.2 Cluster formation  

After classification of the deployed sensor nodes, sensor nodes are organized into different clusters. In the 

proposed scheme, only higher residual energy and lower acting load sensor nodes are participated in CHs selection 

process without any central control (Fig.4 and Fig. 5). In the clustering phase, each strong sensor node (𝑣𝑔 ⊆ 𝑉𝑔) 
sets its own timer independently before starts CH advertisement (ADVE message).  Let 𝑇𝑠𝑖 be the timer of a strong 

node 𝑣𝑔𝑖  which is derived as: 

𝑇(𝑣𝑔𝑖) = 𝐸𝑚𝑎𝑥(𝑣𝑔𝑖 ) − 𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑣𝑔𝑖 )𝐸𝑚𝑎𝑥(𝑣𝑔𝑖 ) × 𝑇𝐶𝐻                                                               (16) 
where TCH is the maximum allocated time for CH selection and 𝐸𝑚𝑎𝑥is the initial maximum energy of the strong 

node 𝑣𝑔𝑖 . 𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the residual energy of the strong node 𝑣𝑔𝑖 . According to the eq. (16) a strong sensor node with 

higher residual energy, lower communication load, and traffic load will be selected as CH from the strong node 

set (Vg). Once the timer expires then the node 𝑣𝑔𝑖  selects itself as a CH and broadcasts CH_ANNOUNCE message 

in the communication range Rmax. The CH_ANNOUNCE message includes Frame Identification (FI), Source 

Identification number (SID), Residual Energy (RE), and location information. Fig. 6 shows the CH_ANNOUNCE 

message format. If a strong node 𝑣𝑔𝑗  receives the CH_ANNOUNCE message, then it withdraws its nomination for 

CH by cancelling its timer and it acts as a non-CH node for the upcoming data routing round. Strong node 𝑣𝑔𝑗also 

starts keeping track of the sensor nodes from which it receives a CH_ANNOUNCE message by maintaining a 

neighbour CH set denoted by NCH (vj). Similarly, when moderate nodes (Vd), and weak nodes (Vk) receive 

CH_ANNOUNCE message then they also keep track of sensor nodes from which they receive a CH_ANNOUNCE 

message by maintaining a neighbour CH set (NCH (vj)). All non-CH nodes decide their cluster membership later 

by using NCH (i). 

To form the clusters, each non-CH node decides its cluster membership as follows. A sensor node needs to join 

one of the CHs belonging to the set NCH (vj). Let 𝑣𝑔1, 𝑣𝑔2, 𝑣𝑔3,….., 𝑣𝑔𝑚  be the set of CHs belonging to the set NCH(vj). 

Non-CH node vj (𝑣𝑗 ∈ (𝑉𝑔 ∪ 𝑉𝑑 ∪ 𝑉𝑘)) computes the average communication load of CHs, denoted by Lavg(vj) 

which is calculated as follows 

𝐿𝑎𝑣𝑔(𝑣𝑗) = ∑ 𝐸(𝑛𝑖, 𝑃𝑖, 𝑑𝑖)𝑚𝑖=1 𝑚                                                                                                  (17) 
  

Non-CH node vj joins the nearest CH whose communication load is less than or equal to Lavg(vj) by broadcasting 

a cluster joint message CH_JOIN in the communication range Rmax. The detail description about this algorithm is 

summarized in algorithm 1. 
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Algorithm 1: cluster formation 
 

/* cluster formation*/ 

1. Initial, ∀𝑉 classified into (𝑉𝑔 ∪ 𝑉𝑑 ∪ 𝑉𝑘). 
2. If vg

i ⊆Vg then 

3.    Set timer according to eq. no. 16. 

4.    Node vg
i broadcast ADVE message. 

5. end if 

6. if (vg
j receive CH_ANNOUNCE msg.) then 

7.     Node vg
j stop CH_ANNOUNCE  by switches off its timer. 

8.       vg
j sets as a non-CH node. 

9.       vg
j Updates NCH(vj). 

10. end if 

11. for V 

12.       if 𝑣𝑖 ⊆ (𝑉𝑑 ∪ 𝑉𝑘) then 

13.            vi sets as a non-CH node. 

14.            vi update NCH(vi). 

15.       end if 

16. end for 

17. for each non-CH node 𝑣𝑚 ⊆ (𝑉𝑔 ∪ 𝑉𝑑 ∪ 𝑉𝑘). 
18.      sum=0.0; 

19.      for each CH vg
k belong to NCH(vi) 

20.           sum=sum+ECH(vg
k); 

21.      end for 

22.     𝐿𝑎𝑣𝑔(𝑣𝑗) = 𝑠𝑢𝑚/|𝑁𝐶𝐻(𝑣𝑖)| 
23.     for each CH vg

k belongs to NCH(vi) 

24.           if (ECH(vg
k)≥ 𝐿𝑎𝑣𝑔(𝑣𝑗) ) 

25.              ACH = vg
k; 

26.           end if 

27.     end for 
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28. Join with ACH CH. 

29. end for 

 
4.3 Routing nodes selection and data routing phase      

To route the data to the BS and balance energy consumption of CHs, CHs select routing nodes depending on 

their acting load. In this phase, routing nodes are selected without any central control. In order to avoid the 

dissipated energy in the overhead control packet and high computational time of the data routing phase, the 

proposed scheme performs routing node selection phase only if the acting load of any selected CH greater than 

the average load of the cluster (𝐴𝐶𝐿𝑜𝑎𝑑). Initially, each CH computes the average load of the cluster 𝐴𝐶𝐿𝑜𝑎𝑑 is 

𝐴𝐶𝐿𝑜𝑎𝑑 = 𝑀 (𝐸𝐶𝐻 + ∑ 𝐸𝑛𝑜𝑛𝐶𝐻)(𝑁𝑀−1)𝑖=1𝑁                                                                               (18) 
 If a CH vg

i detects its acting load is greater than the 𝐴𝐶𝐿𝑜𝑎𝑑, it broadcasts a TR_REQ message in the range 

Rmax. The message contains frame identification, source ID, residual energy (Ecurrent (vj)), its distance from the BS 

(DCH), and location information. Fig. 7 shows the CH_ANNOUNCE message format. If a sensor node vi receives 

TR_REQ message and its distance from the BS (𝐷𝑣𝑖) is less than the DCH and residual energy is greater than the 

vg
i, it sends a TR_REP message to request CH vg

i. The message contains its ID, 𝐷𝑣𝑖 , current energy level (Ecurrent 

(vi)), and location information. When vg
i receives the TR_REP message, then it is set as one of the routing nodes 

by maintaining a neighbour routing node set denoted by TN(vg
i). Otherwise, it simply discards the message. 

Recursively, all CHs whose acting load is higher than the average load of the cluster broadcasts the TR_REQ 

message to complete the routing node selection process. 

In the routing node selection process, a CH may have multiple TNs(vg
i) and hence multiple path to the BS. Let 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑘 , …… , 𝑣𝑝 are the set of routing nodes belonging to routing node set TNs(vg

i). Each CH vg
i computes 

the average residual energy of the routing nodes, which is calculated as: 

𝛿𝑎𝑣𝑔(𝑣𝑅) = ∑ 𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑣𝑖)𝑝𝑖=1 𝑝                                                                                            (19) 
where 𝛿𝑎𝑣𝑔(𝑣𝑅) is the average residual energy of the TNs(vg

i) node set. CH vg
i selects a routing node for data routing 

from the TN(vg
i) whose residual energy is greater than or equal to 𝛿𝑎𝑣𝑔(𝑣𝑅) and communication load is less than 

the communication load of the CH vg
i . Similarly, each selected routing node vR checks its traffic load 𝑇𝐿𝑜𝑎𝑑(𝑣𝑅). 

If  𝑇𝐿𝑜𝑎𝑑(𝑅)greater than the communication load of vR, the vR selects another routing node in a similar way. The 

detailed description about this algorithm is summarized in algorithm 2. 
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Algorithm 2: Load balanced data routing algorithm 
/* Routing node selection*/ 

1. for each CH 𝑣𝑔𝑖  
2.      CH calculates communication load 𝐸𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝐶𝐻 . 

3.      CH calculates average communication load 𝐴𝐶𝐿𝑜𝑎𝑑  of the cluster by eq. no. 14. 

4. end for 

5. for each CH 𝑣𝑔𝑖  
6.       if  𝐸𝐶𝐻 > 𝐴𝐶𝐿𝑜𝑎𝑑  then 

7.            CH 𝑣𝑔𝑖  broadcasts TR_REQ msg. in the Rmax rang. 

8.         end if 

9. end for 

10. for each node vi  

11.       if 𝐷𝑣𝑖 ≤ 𝐷𝐶𝐻 then 

12.          Node vi sends TR_REP msg. 

13.       end if 

14. end for 

15. for each CH 𝑣𝑔𝑖  
16.       sum=0.0; 

17.      for each node vi belong to TNs(vg
i) 

18.             sum=sum+Ecurrent(vi); 

19.       end for 

20.       𝛿𝑎𝑣𝑔(𝑣𝑖) = 𝑠𝑢𝑚/|𝑇𝑁𝑠(𝑣𝑔𝑖 )|; 
21.      for each node vi belong to TNs(vg

i) 

22.             if 𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑣𝑖) ≥ 𝛿𝑎𝑣𝑔(𝑣𝑅) and 𝐸𝐶𝐻(𝑗) ≤ 𝐸𝐶𝐻(𝑅)then 

23.                Node 𝑣𝑖  selects as routing node; 

24.        end if 

25. end for 

/*Load balancing of the selected routing nodes*/ 

26. for each routing node vk 

27.       if 𝐸𝐶𝐻(𝑅) >  𝑇𝐿𝑜𝑎𝑑(𝑣𝑅) then 
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28.          Recursively, step 5 to 25 continues for selecting another routing node. 

29.       end if 

30. end for  

 

5. Complexity and Discussion   

In this section, we present the analysis of message complexity, time complexity, and estimate the network 

lifetime of the proposed algorithms. 

Lemma 1: Message and time complexity of the proposed clustering algorithm is O(1) per sensor node and O (N) 

for N sensor nodes in the network. 

Proof: In the proposed clustering algorithm, a sensor node vi (𝑣𝑖 ∈ (𝑉𝑔 ∪ 𝑉𝑑 ∪ 𝑉𝑘) either broadcasts ADVE 

message or CH_JOIN message only. Therefore, the message complexity of the proposed clustering algorithm 

is O (1). On the other hand, in the proposed clustering algorithm, each sensor node decides independently 

whether to become a CH or not, which can be done in constant time. For cluster formation, each sensor node 

needs to process N-1 messages in worst case to join a cluster. Therefore, the time complexity of the proposed 

clustering algorithm is O(N). 

Lemma 2: The time complexity of the proposed data routing algorithm is O (N) for N sensor nodes in the network. 

Proof: In the proposed data routing algorithm, each CH needs to calculate the average residual energy of 

deployed sensor nodes for which it requires to check the residual energy of N-1 nodes in the worst case. 

Therefore, the time complexity of the proposed routing algorithm is O(N). 

Lemma 3: The network lifetime (NLT) due to the proposed algorithm is min {TEmax/ELi} i=1, 2, 3….N where 

TEmax and ELi are the total energy present at deployed sensor nodes and consumed energy by the deployed sensor 

nodes respectively.    

Proof: The network lifetime (NLT) is defined as the total number of data gathering round upto last node die 

within the network due to the energy consumption. Let TEmax be the total initial energy of the network. A 

deployed sensor node vi utilizes PEi amount of energy for data processing, the CTEi amount of energy of cluster 

formation and routing node selection, the EOAi amount of energy for other activity of the network. Therefore, 

the network lifetime due to the proposed algorithms is defined as 𝑁𝐿𝑇 = min {𝑇𝐸𝑚𝑎𝑥 𝐸𝐿𝑖}⁄  where 𝐸𝐿𝑖 =𝑃𝐸𝑖 + 𝐶𝑇𝐸𝑖 + 𝐸𝑂𝐴𝑖 . 
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6. Results 

In this section, we compare performance of the proposed scheme with the recent existing fuzzy based routing 

algorithms UMBIC [23], FAMACROW [24], and SIF [29]. The performance of the proposed scheme has been 

obtained by extensive simulations using the NS3 tool. We perform our simulations in various scenarios where a 

large number of sensor nodes are deployed in a square area. All the deployed nodes are homogeneous and initial 

energy of all the nodes has been set to 0.5J. All deployed sensor nodes generate information with a sensing rate 

of 200 bps. The detailed simulation parameters with their values are given in Table 3 [23, 24]. Simulations are 

conducted in two scenarios and the detail description of the simulation scenarios are as follows. 

1. Scenario 1 (low density networks): 100 to 500 sensor nodes are randomly distributed in a field with 

dimension 100×100 [m2]. Without loss of generality, a BS is placed at the centre of the monitoring region, 

i.e., (50, 50). Fig. 8.a shows a low density network scenario.   

2. Scenario 2 (dense networks): 500 to 1000 sensor nodes are randomly deployed in a field with dimension 

100×100 [m2]. A BS is located at the outside of the network, i.e., (250, 200). Fig. 8.b shows a large scale 

dense network scenario. 

 

6.1 Total energy consumption 

In Fig. 9, we compare the total energy consumption of the proposed scheme, UMBIC, SIF, and 

FAMACROW. We can see that proposed scheme minimizes the total energy consumption of all deployed sensor 

nodes in the WSN that increases the overall lifetime of the network. Fig. 9.a shows the energy consumption of the 

network in scenario 1. It demonstrates that the proposed scheme is up to 37% more energy-efficient compared to 

UMBIC, 35% more energy-efficient compared to SFI, and 32% more energy-efficient compared to FAMACROW. 

Further, Fig. 9.b shows the energy consumption of the network in scenario 2. It shows that the proposed scheme 

is up to 27% more energy-efficient compared to UMBIC in dense network, 25% more energy-efficient compared 

to SIF, and 23% more energy efficient compared to the FAMACROW. From Fig. 9.a and 9.b, we can observe 

that if the node density is increased within the network, energy consumption rates also increases. This is because 

in large scale dense network, traffic load of the CHs is high compared to the low density networks. However, our 

proposed scheme achieved better results in terms of energy consumption in large scale dense network due to 

effective traffic management by the traffic node. In addition, according to theorem 1, the message overhead also 

has increased the energy consumption rate of all sensor nodes in the intra-cluster environment. In our proposed 

scheme, the message overhead is significantly less compared to other approaches due to our fuzzy rule-based node 
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management strategy that significantly reduces energy consumption in our proposed scheme, especially in a dense 

network scenario. 

6.2   Energy balancing     

In this section, we examine the energy balance among CHs. Fig. 10.a and Fig. 10.b show the amount of the 

average energy consumption of CHs in a low density network (Scenario 1) as well as high density network 

(Scenario 2). As seen in the Fig. 10.a and Fig. 10.b, the average energy consumption of CHs is nearly equal in our 

proposed scheme. This is because the proposed scheme reduces inter-cluster communication load through the 

selection of efficient routing nodes that reduces and balances the energy consumption among CHs as equally as 

possible. 

6.3 Alive nodes over rounds 

Fig. 11.a shows that alive nodes within the network in scenario 1. In Fig. 11.a, it is seen that after 700 rounds 

the proposed scheme contains more than 61% active nodes as compared with UMBIC, 57% active nodes as 

compared with SIF, 55% active nodes as compared with FAMACROW in the low density network scenario. This 

is an indication of improvement in the performance of the network. It is due to the fact that the proposed scheme 

reduces energy consumption of the deployed sensor nodes through the effective load management proposes and 

preserves node lifetime. On the other hand, as we can see from the Fig. 11.b, the network lifetime of the proposed 

scheme is maximized as compared to other approaches in the dense network scenario. In dense network, after 

1350 rounds proposed scheme contains more than 64% active nodes as compared with UMBIC, 58% active nodes 

as compared with SIF, 56% active nodes as compared with FAMACROW. We can find that proposed scheme is 

more effective for dense WSNs. This is because the proposed scheme effectively distributes high traffic load of 

CHs in dense network scenario through the routing nodes selection process that protects nodes death in the highly 

dense scenario. On the other hand, UMBIC, FAMACROW, and SIF reduce energy consumption of the CHs 

through next hop CHs selection process. It can potentially increase relay traffic of the CHs which are near to the 

BS. Therefore, in UMBIC, FAMACROW, and SIF, nodes die very fast compared to the proposed scheme.     

6.4 Network lifetime 

Fig. 12 shows the comparison in terms of First Node Exhausted (FNE), Half of Nodes Alive (HNA), and Last 

Node Exhausted (LNE) at scenario 1. The proposed scheme improves the stability period of FNE by 190, 160, 

120 rounds as compared to UMBIC, SIF, and FAMACROW. On the other hand, the performance of the proposed 

scheme in terms of HNA is 150, 120, 80 rounds better as compared to UMBIC, SIF, and FAMACROW. Similarly, 

if LNE is considered, the performance of the proposed scheme is 170, 180, 110 rounds better than UMBIC, SIF, 

FAMACROW. It is due to effective load management between the CHs, as well as non-CH nodes. Fig. 13 shows 
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the comparison results in term of FNE, HNA, and LNE at dense network (scenario 2). As seen in the Fig. 13, the 

proposed scheme also performs better than the UMBIC, SIF, and FAMACROW in dense network. It is due to the 

fact that the proposed scheme reduces energy consumption of all deployed sensor nodes in the intra-cluster as 

well as an inter-cluster environment that can significantly improve the lifetime of the deployed sensor nodes in 

highly dense scenario.     

6.5 Scalability analysis 

Fig. 14.a and Fig. 14.b show the average energy consumption in scenario 1 and scenario 2. This is the measure 

of the ratio between the sums of energy consumption of all deployed sensor nodes to the total number of deployed 

sensor nodes. In low density network (scenario 1), the average energy consumption rate of the proposed scheme 

is less by 37.5% as compared to UMBIC, 35% as compared to SIF, and 28.6 % as compared to FAMACROW. 

On the other hand, in high density network (scenario 2), the average energy consumption rate of the proposed 

scheme is less by approximately 43.4 % as compared to UMBIC, 42% as compared to SIF, and 36% as compared 

to FAMACROW. This is caused due to the elimination of load in inter-cluster data routing environment. In 

addition, our proposed scheme also takes advantage in fuzzy rule-based node calcification strategy that can 

potentially reduce extra overhead.  

Fig. 15.a and Fig. 15.b show that average data transmission latency in scenario 1 and scenario 2. The average 

data transmission latency is least in the proposed scheme compared to the other scheme. This is because the 

proposed scheme reduces network traffic through the routing nodes selection process. However, UMBIC, SIF, 

FAMACROW select next hop CH to transmit their data to the BS. It increases traffic delay during the data 

transmission process.  

Fig. 16.a and Fig. 16.b show the comparison results in terms of the data delivery ratio at scenario 1 and scenario 

2. As can be seen, the proposed scheme performs much better than UMBIC, SIF, FAMACROW in a low density 

network scenario, as well as a high density network scenario. This is mainly because less data congestion in the 

proposed data routing scheme. In the proposed data routing scheme, CHs select routing node based on its traffic 

load. Traffic node mainly reduces traffic congestions in the CHs. Therefore, packet loss in the proposed scheme 

is less compared to the other schemes.      
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7. Conclusions 

In this paper, a new energy aware fuzzy approach has been introduced for large scale Wireless Sensor Networks 

(WSNs) to prevent the premature death of the network. Our proposed scheme classifies deployed nodes into three 

different categories through a fuzzy logic process which significantly reduces the extra message overhead within 

the network and saves Cluster Head (CH) selection time, especially in the highly dense scenarios. It also helps to 

distribute overload of the CHs. The proposed scheme contains a novel distributed clustering algorithm where CHs 

are preserved for a sufficient amount of time. In order to avoid the premature death of the network which appears 

in large scale dense WSNs, we propose a new data routing algorithm that reduces and balances energy 

consumption of the CHs in inter-cluster multi-hop environment. The proposed routing algorithm computes the 

acting load of each CH and the overload of the CH is reduced through the routing node. Our scheme extends node 

lifetime and significantly avoids the premature death of the network. The results show that the proposed fuzzy-

rule based approach achieves excellent performance in terms of average energy consumption, network lifetime, 

first node exhausted, half of nodes alive, last node exhausted, and energy variation of the CHs.  

In the future works, we will try to improve the performance of our proposed scheme by applying other intelligent 

techniques derived from nature inspired algorithms. 
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Table 1 

Notations used in the problem formulation and proposed algorithms 

Symbol Description 

V The set of deployed sensor nodes, i.e., V= {v1, v2,……vN} 

E The set of edges, i.e., E= {(vi,vj)| dist(vi,vj)<Rmax} 

Rmax The maximum transmission range of a sensor node  

M Number of clusters 

ni Number of cluster member nodes within a cluster 

di The average distance between a cluster member node and its CH 

Np Number of routing packets receive by a CH from other CHs 

dj The average distance between a CH and the next hop CH  

Cn Number of control messages flowed over the network 

ki Size of the control messages 

ETraffic Traffic load of a CH 

EAverage_load Average load between CH and its CM nodes 

Ri The time period for one data gathering round 

ng Number of data packets receive by a node j 

Ej
average The average energy consumption of a node j  

Ej
T Energy consumed by a node j for data transmission 

Ej
sen Energy consumed by a node j for data sensing 

Bx The cluster region 𝝑 Width of a cluster region 

dI The distance between CH i and the BS 𝑬𝒂𝒗𝒆𝒓𝒂𝒈𝒆_𝑪𝑯𝒊  The average energy consumption by CH i 

Ei
R Energy consumed by CH i for data receiving 

Ei
T Energy consumed by CH i  for data transmitting  

Ei
ED Energy consumption for data aggregation by ith CH  

Sg The set of strong nodes 

Md The set of moderate node 

Wk The set of weak nodes 

Ecurrent Residual energy of a node 
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Emax Initial Energy of a node 

Lavg(vj) The average communication load of a CH j  

ACLoad The average load of a cluster 𝜹𝒂𝒗𝒈(𝒗𝑹) The average residual energy of the routing nodes 

TEmax The total initial energy of the network 

 
 
 
 
 
 
 
 
 

Table 2 

Rule base used by the inference engine 
Rule Communication_Load Traffic_Load Residual_Energy Decision 

1 Low Low Low Poor 
2 Low Low Medium Strong 
3 Low Low High Strong 
4 Low Medium Low Weak 
5 Low Medium Medium Moderate 
6 Low Medium High Moderate 
7 Low High Low Poor 
8 Low High Medium Weak 
9 Low High High Moderate 

10 Medium Low Low Weak 
11 Medium Low Medium Moderate 
12 Medium Low High Moderate 
13 Medium Medium Low Weak 
14 Medium Medium Medium Weak 
15 Medium Medium High Moderate 
16 Medium High Low Poor 
17 Medium High Medium Weak 
18 Medium High High Moderate 
19 High Low Low Poor 
20 High Low Medium Weak 
21 High Low High Weak 
22 High Medium Low Poor 
23 High Medium Medium Weak 
24 High Medium High Moderate 
25 High High Low Poor 
26 High High Medium Weak 
27 High High High Moderate 
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Table 3 

Simulation parameters 

 
Parameters Value 

Network size 100×100 [m2] 
Number of nodes 100-500 and 500-1000 𝝉𝒇𝒔 10pJ/bit/m2 𝝉𝒂𝒎𝒑 0.0013 pJ/bit/m4 𝝉𝒕 50 nJ/bit 𝑬𝒂𝒈𝒈(𝑷𝒊) 5 nJ/bit/signal 

Data packet size 100 bytes 

Control message size 100 bits 

Round time 30s 

Frame in each round 5 frame 
Threshold distance (d0) 76 m 

Initial energy 0.5 J 

Radio propagation model                       Log-distance path loss 

Carrier sense range 150m 

Duration of control period 5ms 

Duration of data slot 12ms 

Duration of RTS/CTS packet 0.9 ms 

Duration of data packet 8.5ms 

Channel rate 250kbps 

Source rate 5pkt/s 
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Fig. 1:  Premature death of the dense WSNs.   
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Fig. 2:  Flowchart for the proposed scheme  
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Fig. 3:  Operation of the proposed scheme 

 
 
 
 
 
 

 
 

 

 

 

 
 

 

 

 
 
 
 

FA: Frame Identification                                                   XPS: X Position of Source 
SID: Source ID                                                                  YPS: Y Position of Source 
RE: Residual Energy   

Fig. 6:  CH announcement packet (CH_ANNOUNCE) format. 
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FA: Frame Identification                                                   DBS: Distance from the BS 
SID: Source ID                                                                  XPS: X Position of Source 
RE: Residual Energy                                                         YPS: Y Position of Source 
 

 

Fig. 7:  The routing node selection message (TR_REQ) format. 
 
 

 

 

 

Fig. 8: Simulation scenarios. (a) Scenario 1 (low density network), and (b) Scenario 2 (dense network).  
 
 

 

 
 

Fig. 9: Residual energy of the network in (a) Scenario 1 and (b) Scenario 2.  
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Fig. 10: Energy consumption of CHs in (a) Scenario 1 and (b) Scenario 2. 
 
 
 
 
 

  
Fig. 11: Number of alive nodes over rounds, a) Scenario 1, b) Scenario 2. 
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Fig. 12: (a) First Node Exhausted (FNE) in Scenario 1, (b) Half of nodes alive (HNA) in Scenario 1, (c) Last Node Exhausted (LNE) in 
Scenario 1. 

 
 
 
 
 
 
 
 
 
 

 
Fig. 13: (a) First Node Exhausted (FNE) in Scenario 2, (b) Half of nodes alive (HNA) in Scenario 2, (c) Last Node Exhausted (LNE) in 

Scenario 2. 
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Fig. 14: Average energy consumption of the network, a) scenario 1, and b) scenario 2. 
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Fig. 15: Average data latency with different number of sources, a) scenario 1, and b) scenario 2. 
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Fig. 16: Data delivery ratio with different number of sources, a) scenario 1, and b) scenario 2.  
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