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a b s t r a c t 

In a more and more competitive and global world, freight transports have to overcome in- 
creasingly long distances while at the same time becoming more reliable. In addition, a rais- 
ing awareness of the need for environmentally friendly solutions increases the importance 
of transportation modes other than road. Intermodal transportation, in that regard, allows 
for the combination of different modes in order to exploit their individual advantages. Inter- 
modal transportation networks offer flexible, robust and environmentally friendly alternatives 
to transport high volumes of goods over long distances. In order to reflect these advantages, 
it is the challenge to develop models which both represent multiple modes and their char- 
acteristics (e.g., fixed-time schedules and routes) as well as the transhipment between these 
transportation modes. In this paper, we introduce a Green Intermodal Service Network Design 
Problem with Travel Time Uncertainty (GISND-TTU) for combined offline intermodal routing 
decisions of multiple commodities. The proposed stochastic approach allows for the genera- 
tion of robust transportation plans according to different objectives (i.e., cost, time and green- 
house gas (GHG) emissions) by considering uncertainties in travel times as well as demands 
with the help of the sample average approximation method. The proposed methodology is ap- 
plied to a real-world network, which shows the advantages of stochasticity in achieving robust 
transportation plans. 

© 2015 Elsevier Ltd. All rights reserved. 

1. Introduction 

Freight transportation activities are closely related to the movement of goods between different locations within a supply 
chain network. Global outsourcing activities of companies aim to use advantages and expertise of suppliers from all over the 
world ( Kotabe and Murray, 2004 ). The growing specialization and internalization of the world trade has led to increasing dis- 
tances between suppliers, producers and final customers. This development resulted in the increasing volumes of global trans- 
portation operations during the last decade (see, e.g., OECD, 2010; UNCTAD, 2013 ). 
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The growth in international shipping also influences the volume of inland transportation operations. Within the EU-28 
(European Union’s 28 countries), about 2,100 billion ton-kilometers of goods were transported in 2012, with road transporta- 
tion accounting for about three quarters (75.5%) of this volume ( Eurostat, 2013 ). The high share of road transportation can be 
explained by a relatively dense transportation network enabling fast door-to-door transports and high flexibility in route plan- 
ning ( Kummer, 2006 ). However, the growing volumes of road transportation contribute to congestion on road, which leads to 
delay, disruption, and other negative impacts on the reliability of transportation ( European Commission, 2012 ). Moreover, trans- 
portation is one of the main attributes to the growth of carbon dioxide equivalent (CO 2 e) emissions ( European Commission, 
2014 ), where the impact of road transportation is significant. Therefore, companies are searching for alternative transportation 
options that allow them to minimize the negative impacts of road transportation and improve the economic and environmental 
performance of their distribution systems (see, e.g., Forkenbrock, 1999; Demir et al., 2015 ). 

Freight transportation services involve various transportation modes - road, rail, maritime, air and pipeline. The number of 
transportation alternatives can be increased by using different transportation modes and combining them in multimodal trans- 
portation chains. Multimodal transportation not only promotes advantages of each transportation mode but also releases their 
disadvantages. Multimodal transportation is mainly used on routes with high volumes and long distances where the economies 
of scale and environmental advantages offered by rail or maritime outweigh the additional costs and possible mode-connection 
delays ( Vannieuwenhuyse et al., 2003 ). The handling activities during transhipment can be facilitated by using a standardized 
loading unit (i.e., container) which is normally required in intermodal transportation ( ECMT, 1993 ). 

As defined by the ECMT (1993) intermodal freight transportation is a specialization of multimodal transportation. It consecu- 
tively uses multiple modes while moving the goods within a loading unit. Thus, the goods themselves do not have to be handled, 
but only the loading unit. Since a loading unit is often a standardized container, intermodal transportation is also referred to as 
containerized transportation. 

Intermodal transportation has numerous advantages in addition to the noted flexibility offered by multimodal transportation. 
Standard sizes, faster transhipments, and reduced packaging expenses are essential benefits for shippers with large volumes 
( Jennings and Holcomb, 1996 ). Intermodal transportation offers a fast alternative to unimodal transportation by road especially 
for long distances and, therefore, its volume has been growing significantly over the last decade. Thereby, an effective intermodal 
transportation is necessary for bringing maritime containers arriving to European ports to hinterland customers. In particular, 
rail and maritime play an important role in sustainable transportation ( UIC, 2012 ). The complexity of transportation plans lies in 
the use of multiple transportation modes and uncertainty in travel times and demands. In addition, constraints (e.g., fixed time 
schedules and routes, transhipment, sequence of transportation services, etc.) need to be considered in the planning phase. 

In response to the above-mentioned complexities, this paper presents a stochastic mixed integer linear programming for- 
mulation based approach for an advanced intermodal transportation planning problem on a transportation network including 
different transportation modes and transhipment locations. The aim of the paper is to generate optimal and robust transporta- 
tion plans using the intermodal transportation network. Capacity, travel and service times as well as costs and greenhouse gases 
(GHGs) of each specific service are taken into account. Moreover, the proposed methodology allows planners to optimize their 
transportation plans according to weightable objectives (i.e., cost, time and GHG emissions) and considers uncertainties con- 
nected with travel times as well as demands. 

The paper is structured as follows. Section 2 describes the problem definition and gives an overview of the literature. Section 3 
then outlines some of the modeling methodologies used for incorporating uncertainties as well as environmental criteria into 
the solution methodology while Section 4 describes the mathematical formulation. Section 5 focuses on the application of the 
proposed methodology to a sample case study based on real-world intermodal transportation network combining road, rail 
and inland waterway. Section 6 discusses the computational results when applying the stochastic approach to bigger real-life 
instances. Conclusions and future research directions are stated in Section 7 . 

2. Problem description 

In intermodal transportation, containers can be transported by different transportation modes operated between terminals. 
While most of the transports on the road are not scheduled, transportation services (rail, air and maritime) in intermodal trans- 
portation networks normally follow fixed schedules. In that case, Service Network Design (SND) provides intriguing possibilities 
for the reproduction of transportation flows on more than one mode including schedules. Moreover, it offers methodological 
possibilities which enable the representation of transhipments as well as the consolidation of containers. 

The problem addressed in this paper is routing and scheduling of customers’ transportation orders by selecting available as 
well as also planning transportation services within an intermodal transportation network. A service can be characterized by its 
origin, destination, intermediate terminals, transportation mode, route, service capacity and starting time window ( SteadieSeifi
et al., 2014 ). While research on the design of services within networks is quite extensive, SND literature concerned with the 
selection of available services for specific shipments is scarce and less advanced (see, e.g., Crainic, 20 0 0; 20 03; Wieberneit, 20 08 ). 
The orders are characterized by a certain number of containers which have to be transhipped from origin to destination within 
specified time windows. Whereas the transportation cannot start before a specified release time, late arrivals to destinations are 
allowed with a penalty cost. 

Since some of the services depart according to fixed schedules, it is not possible to wait for late containers due to unexpected 
delays during transportation. Fig. 1 displays a transportation network which shows one possible intermodal route for an order 
with origin A and destination D . The pickup time thereby is T dep while the due date at the destination is T due . The presented route 
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BA C D
road rail road

Fig. 1. A sample intermodal transportation route. 

takes the transported containers by truck from location A to location B where a transhipment to train takes place (with estimated 
duration E ( t B )). This train transports the containers from B to C , where they are transhipped back to truck for final delivery to 
destination D . 

Assuming these connections are available at any time which is common in most Vehicle Routing Problems (VRPs), selected 
paths are considered under the condition that a delivery reaches destination D before its due date. 

T dep + E(t AB ) + E(t B ) + E(t BC ) + E(t C ) + E(t CD ) ≤ T due . (1) 

To represent a scenario with a combination of fixed and yet to be generated schedules, in this example rail transportation 
between B and C has a fixed departure time of T BC while truck transportation between C and D has a wide starting time window 

allowing the generation of a schedule with starting time T CD . In other words, transportation units must arrive at B in time in 
order to reach service BC whereas service CD is generated based on the arrival time at C . If routing decisions are only based on 
estimated travel times, the following constraints for path feasibility occur. 

T dep + E(t AB ) + E(t B ) ≤ T BC , (2) 

T BC + E(t BC ) + E(t C ) + E(t CD ) ≤ T due . (3) 

However, estimated travel times do not reflect the uncertainties of the real world. Uncertainties of travel times (e.g., due 
to high traffic density, external events) create difficulties in routing plans especially for fixed schedules. For example, a delay 
between A and B could affect the ability to reach the scheduled rail service, leading to an infeasible situation. To present such a 
situation, a three-point distribution is considered with one possible realization below ( E ( t ) x with 0 < x < 1), one above ( E(t)(2 −
x)) and one directly at the expected travel time E ( t ) for both road services. If the realizations above the expected value lead to 
late arrivals compared to T BC and T due , respectively, the probability of route infeasibility despite feasibility with expected travel 
times would be 

P 
[

t AB = E(t AB )(2 − x)
]

+ P 
[

t CD = E(t CD )(2 − x) | t AB � = E(t AB )(2 − x)
]

. (4) 

Thus, vehicle routing plans should be reliable and accurate in response to uncertainties. In addition, there is an increasing 
need for dependable on-time deliveries considering tied-up capital, such as inventories ( Danese et al., 2012 ). As a result, the 
reliability of model outputs is more and more considered as a key deliverable of an optimization model. A direct consequence 
of this changed operating environment is raising interest in optimization techniques that account for time-dependent variables, 
such as travel times, in a network ( Chang et al., 2009; Guener et al., 2012 ). 

Owing to tremendous achievements in both fields of operations research and computer science, optimization models have 
been adapted as such, that uncertainties can be taken into account. The main purpose is to account for variabilities beforehand 
in order to develop transportation plans which are more accurate and robust to external influences. Improved collection of real- 
time traffic flow information over the last decade, which enables the identification of traffic flow distributions, builds the data 
basis for such approaches. On an operational level within the transportation sector, the VRP and its multitude of extensions play 
a pivotal role in this context (see, e.g., Bertsimas and Simchi-Levi, 1996; Gendreau et al., 1996; Eksioglu et al., 2009; Agra et al., 
2013 ). 

In order to include uncertainties into SND formulations, SND methodologies can be divided into static and dynamic problems. 
While all the characteristics of (possible) services are fixed in static problems, dynamic problems allow modifications of decision 
variables. Since research on dynamic SND problems is still in its early stages, there is a lack of applications as well as new methods 
for service network environments. Whilst rare cases have addressed demand uncertainty, to the best of our knowledge, there is 
little attention to travel time uncertainties (e.g., Crainic et al., 2011; Bai et al., 2014 ). However, practitioners suggest that travel 
time uncertainty is as important as demand uncertainty for accurate routing plans. 

In response, a capacitated multi-commodity Green Service Network Design formulation which takes uncertainties in travel times 

(in addition to demand) into account is proposed in this paper. In order to exploit the distinct advantages of SND, we consider an 
intermodal environment , in which the network consisting of transhipment locations as well as services operating between them 

with their frequency, itinerary and schedule is provided. The point of interest is not only on the design of scheduled services 
but also on the optimal selection of available services in order to serve a set of orders. This sequence of services, then, is the 
routing plan. We consider travel time uncertainties by using the Sample Average Approximation (SAA) method which results in 
the routing plan that is reliable and robust to external variabilities (see Section 4.2 ). The optimal routing plan is chosen according 
to different objectives (e.g., transportation costs, time, GHG emissions) which could be prioritized. Moreover, we consider a 
continuous time with a certain planning horizon within which orders can be assigned to services. 
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Thus, the scientific contribution of this study is three-fold: (i) to provide a stochastic linear mixed integer programming 
formulation for the green intermodal SND problem with uncertain travel times (GISND-TTU), (ii) to implement the well-known 
SAA method to solve GISND-TTU, (iii) to demonstrate the methodology with a real-life case study. 

3. Modeling methodology 

In order to solve the mathematical formulation presented in Section 4 , some of the input data (e.g., services, travel times) 
needs to be prepared in advance. Therefore the interpretation of the underlying network and its schedules is described in 
Section 3.1 . The approach considers environmental criteria next to time- and monetary-dependent factors as discussed in 
Section 3.2 . Section 3.3 describes the problem faced when including uncertain travel times in the SND environment. 

3.1. Modeling the transportation network 

The network is modeled by means of nodes and arcs. The nodes are intermodal transportation terminals while the arcs 
represent the scheduled services. In contrast to traditional graphs describing transportation networks, the network consists of 
multiple arcs (or services) between two nodes in order to represent the problem described above (e.g. Andersen et al., 2009 ). 
In addition, more than one possible connection between two specific nodes and the handling of loading units at terminals are 
reflected in the formulation. 

The term service is defined as a transportation with a specific vehicle. A service, thereby, is specified by its scheduled start 
time window as well as travel time (or service time) and route. While the start time windows are constant, travel times can take 
on values of varying degrees, depending on the traffic state and infrastructure utilization. As there can be multiple scheduled 
transports between terminals, the network has to represent multiple schedules between these transhipment points. As already 
mentioned before, the focus is not exclusively on the tactical scheduling of services, but also on their operational sequencing 
to routing plans which fulfil the demand and provide robust solutions with respect to the uncertainties considered. Thereby, 
starting time windows for services with fixed schedules can be rather small while larger time windows for other services enable 
the path-dependent design of their actual start times and thus schedule. That way the contrast between differing modes in 
regard to the proportion of services with fixed schedules can be represented. In addition to the scheduled start time as well 
as the service time itself, each service is characterized by its free capacity in terms of loading units (e.g., containers) as well as 
its (approximated) costs and generation of GHG emissions (see Section 3.2 ) when using one of these open container slots. The 
services, thereby, have varying specifications which makes our problem one with inhomogeneous fleet. 

Successive services are linked at terminals. Thereby, if two successive services are executed by different vehicles, tranship- 
ments have to take place. However, since two successive services could be operated by the same vehicle there is not always the 
need for transhipment. Transhipment locations, like services, are characterized by the time, costs and emissions per container 
transhipped. Thereby, the model enables the representation of terminal utilization and its impact on transhipment time. The 
orders to be fulfilled are specified by the amount of containers demanded, origin and destination node, the earliest departure 
and the latest arrival time of the delivery as well as penalty costs accounting for delayed delivery. 

For each type of service, a brief overview of the transportation mode is provided and followed, in Section 3.2 , by the modeling 
of its environmental impacts. Although the model is also suitable for air freight and sea shipping, the transportation modes 
covered in this paper are based on the case study (see Section 5 ) and thus include road, rail and inland waterway transportation. 

• Road transportation: Road enables reliable and speedy freight transportation, where goods can be supplied to warehouses 
and retailers in a timely fashion. In the last decade, a shift towards road transportation has been recorded in European Union 
(EU). In 2011, road transportation made up over half of freight movements in most of the member states of EU ( EU, 2013 ). 
Approximately 14,933 million tonnes of freight were transported by road in the EU-28 (EU’s 28 states). A comparison between 
road and other modes of transportation shows that, in 2010, the quantities of freight transported by road in the EU-28 equaled 
approximately nine times of the amount transported by the other modes of transportation. 

• Rail transportation: A freight train is a combination of freight wagons hauled by one or more locomotives on a railway, trans- 
porting cargo between the origin and the destination as part of the transportation chain. A freight train can be categorized 
into electric or diesel locomotives: the former is powered by electricity from overhead lines; and the latter is a type of railway 
locomotive in which the prime mover is a diesel engine. Different locomotives could result in significantly different external 
costs. Rail is a more efficient transportation mode than road in terms of ton-kilometers hauled per unit of energy consumed. 
However, a shipment by rail is not as flexible as road transportation, which results in a great proportion of freight being 
hauled by trucks in the world. In 2010, EU-28’s freight transportation by rail amounted to 1 ,589 million tons ( EU, 2013 ). 

• Inland waterway transportation: The inland waterway transportation denotes the transportation of goods over any distance 
by barge through canals, rivers, large deep lakes, lochs, and estuaries. It provides a great opportunity for the transportation 
of freight in Europe. Approximately more than 37,0 0 0 kilometres of waterways connect hundreds of cities and industrial 
regions ( EU, 2013 ). Although the transportation capacity might be sometimes limited by low water levels, inland waterway 
transportation is known for its reliability, low transportation costs and low environmental impact ( via donau, 2007 ). 
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3.2. Modeling the environmental criteria 

GHGs are the most studied externality of freight transportation. They cause atmospheric changes and climate disruptions 
which are harmful to the natural and built environments, and pose health risks. GHGs are not classified as a pollutant in the 
classical sense. However, the United States Environmental Protection Agency (EPA) recognized that GHGs pose a danger to hu- 
man health and welfare in 2009. GHGs absorb and emit radiations within the thermal infra-red range in the atmosphere, and 
significantly raise the Earth’s temperature. The primary transportation-related man-made greenhouse gases in the Earth’s atmo- 
sphere are carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O) and ozone ( O 3 ). As CO 2 is the dominant man-made GHG, 
the impacts of other gases can also be calculated based on carbon dioxide equivalent (CO 2 e). There are numerous studies show- 
ing that it is very likely that GHGs are a major contributor to the climate change that the world is facing nowadays. The impact 
of emissions on climate change is assessed by a comparison between the actual temperature changes in the last 100 years and 
those that are provided in the models with or without human influence. It is found that the actual temperature changes are very 
similar to those provided by the model in which the human influence is taken into account ( IPCC, 2007 ). In particular, the Inter- 
governmental Panel on Climate Change has estimated that 13.1% of the GHGs emissions is caused by the transportation sector. 
As of June 2015, the level of GHGs is estimated to be equal to 402.80 parts per million (ppm), and is still increasing ( ESRL, 2015 ). 

The amount of emissions caused by transportation is dependent on the energy needed for moving the vehicle which can be 
expressed as its fuel consumption. There exist a number of models for calculating fuel consumption as shown by Demir et al. 
(2011) and Demir et al. (2014) . These models consider a number of factors which can be divided into three categories. Firstly, 
fuel consumption is dependent on the vehicle characteristics represented by the mass of the vehicle, air and rolling resistance, 
engine and transmission efficiency, engine speed and energy needed for auxiliaries ( Barth and Boriboonsomsin, 2008; Bowyer 
et al., 1985 ). In addition, route and driving characteristics, such as gradient, number of accelerations and decelerations, speed of 
the vehicle and driving behaviour need to be considered ( Ahn et al., 2002; Eichlseder et al., 2009 ). Last but not least, the load 
factor of the vehicle influences the amount of fuel needed for transporting goods on a certain road. 

However, the use of these models requires detailed input data which is in many cases not available. Therefore a number 
of models and calculators based on real-world measurements and recommended values for the important factors have been 
developed (e.g., Boulter and McCrae, 2007; Eichlseder et al., 2009; IFEU, 2011 ). These models can be used for calculating emissions 
using predefined data for a representative vehicle as well as for cases when the input data for a concrete vehicle is known. The 
methodologies used in this paper for calculating emissions for each transportation mode and for transhipment activities in 
terminals are shortly described in the next subsections. 

3.2.1. Road freight transportation 

In case of road transportation, the Passenger car and Heavy duty vehicle Emission Model (PHEM) developed by TU Graz is an 
important basis for the Handbook on Emission Factors for Road Traffic (HBEFA) that offers fuel consumption factors for vehicles 
with different engine types driving on different road categories ( Eichlseder et al., 2009 ). These factors are based on real-world 
measurements simulating predefined driving cycles and give the fuel consumption for an empty as well as fully loaded vehicle. A 

linear relationship between the load factor and the fuel consumption of the vehicle is assumed to simplify the modeling approach 
and therefore the fuel consumption can easily be calculated for different loads as in Bauer et al. (2010 ). In addition to the road 
category and load factor, the gradient also plays an important role. According to IFEU (2011) , the influence of gradients on fuel 
consumption in road transportation is 5% for hilly and 10% for mountainous countries. 

PHEM interpolates the fuel consumption from the engine maps according to the course of engine power demand and engine 
speed in the driving cycles. The actual engine power ( P ) can be calculated as P = P rr + P ar + P acc + P gr + P au + P tl , where P rr = 

Mg( f r 0 + f r 1 v + f r 2 v 
2 + f r 3 v 

3 + f r 4 v 
4 )v is the rolling resistance, P ar = 0 . 5 C d Aρv 3 is the air resistance, and P acc = (M + m rot )a v 

is the acceleration. Moreover, P gr = Mgω0 . 01 v is the gradient resistance, P au = P 0 P rated is the power demand for auxiliaries and 
P tl = P dr / ηt − P dr is the transmission losses, where fr 0 to fr 4 are the rolling resistance coefficients, m rot is the reduced mass for 
rational accelerated part, P 0 is the power demand of the auxiliaries as ratio to the rated power P rated , and P dr is the power to 
overcome the driving resistances. The total emission value can be calculated under the transient conditions 

E trans (t) = E qs + P rated + F trans , (5) 

where E qs is the quasi-steady-state emission value interpolated from steady-state emission map (in gram/hour), P rated is the rated 
engine power (kilowatt ) (since emission values are normalized to the rated power), F trans ( t ) is the dynamic correction function 
((gram/hour)/kilowatt rated power). More information can be found in Boulter and McCrae (2009) . 

3.2.2. Rail freight transportation 

The emissions of rail transportation are also dependent on a number of factors, such as rolling and aerodynamic resistance, 
speed and acceleration profiles as well as gradient ( Boulter and McCrae, 2007 ). However, as the comparison with real-world 
values shows, energy consumption of a train can be related to its gross weight in tons as shown in the following formula ( IFEU, 
2011 ) 

EC = 1200 ∗ GW T −0 . 62 , (6) 

where EC is the energy consumption of the train in kilowatt hours and GWT is its gross weight in tons. The values calcu- 
lated in this formula are valid especially for trains between 600 and 1800 tons gross weight which is a range typical also for 
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container trains. The results are valid for hilly countries and have to be multiplied by 0.9 for flat and by 1.1 for mountainous 
countries ( IFEU, 2011 ). In order to calculate the amount of emissions from the energy consumption, the result has to be mul- 
tiplied by the specific emission factor. Here it has to be differentiated between the diesel train causing emissions by burning 
diesel and the electric train where the emissions are only caused by energy production and not by energy consumption (Kranke 
et al., 2011) . 

3.2.3. Inland waterway freight transportation 

In case of inland waterway transportation (IWT) the available calculators usually use a fixed average emission factor per 
ton kilometre (see, e.g., IFEU, 2011 ; 2012 ) or use the same methodology for IWT and sea transportation ( NTM, 2008 ) ignoring 
specific factors influencing the fuel consumption of IWT. As a consequence, the results are inaccurate and do not show the real 
performance of IWT. Therefore we apply the ARTEMIS model developed by Boulter and McCrae (2007) which allows a more 
realistic emission calculation based on detailed input data. 

The estimation of emissions by ARTEMIS is based on the vessel characteristics (type, length, breadth, draught, number of 
propellers), route properties (waterway depth and width, distance, vessel speed and direction) and cargo characteristics (type 
and weight). Based on these parameters, the model calculates resistances needed for the determination of engine power and 
energy consumption which gives information about the amount of emissions released into the air. The energy consumption (EC) 
in kilojoule/ton kilometre is calculated as 

EC = 
P d ∗ SF C ∗ F CV 

10 3 ∗V ∗ RL 
, (7) 

where P d represents the power demand of the engine to overcome driving resistances in kilowatt, SFC is the specific fuel con- 
sumption in gram/kilowatt hour, FCV determines the fuel calorific value in kilojoule/kilogram, V is the speed of the vessel in 
kilometres/hour and RL is the reference load in tons ( Boulter and McCrae, 2007 ). In order to calculate emissions, EC has to be 
multiplied by the specific emission factor. 

3.2.4. Emissions from transhipment 

In intermodal transportation the transhipment operations in terminal (or port) also contribute to the overall CO 2 e emis- 
sions needed in a specific transportation chain. The amount of emissions released in a certain terminal depends on the in- 
frastructure and the handling equipment used for the movement of containers. As Geerlings and van Duin (2011) show in the 
example of the port of Rotterdam, on its way from the sea ship to the hinterland transportation mode the container has to go 
through various operations in the terminal within which it is transported by different vehicles like cranes, reach stackers or 
automated guided vehicles. The total energy in form of electricity or diesel needed for the movement of these vehicles was 
estimated to 18.25 kilowatt hours/transhipment from sea ship to rail which is also the value used in this paper for sea ports. 
In case of smaller inland terminals the factor of 4.4 kilowatt hours/transfer of one container is applied as recommended by 
IFEU (2011) . 

3.2.5. Emission factors and general assumptions 

Since the energy consumption does not produce any emissions at all in case of electric trains, the well-to-wheel (WTW) 
emission scope was chosen in order to make emissions from different transportation modes comparable. This scope includes 
emissions from energy consumption and energy production (Kranke et al., 2011) . The emission factor used for diesel therefore 
is 3.24 kilogram CO 2 e emissions per ton of diesel while for electric energy specific emission factors are taken for each country 
as proposed by IFEU (2011) and DSLV (2013) . In order to express the emissions in terms of costs for the objective function of the 
planning model, a value of € 70/ton of CO 2 e emissions was chosen as recommended by the German Federal Environment Agency 
(PLANCO, 2007) . 

The amount of emissions released per TEU strongly depends on the capacity utilization of the vehicle. Whereas the rela- 
tionship between the load factor and the amount of emissions is linear for trucks, the emission functions for trains and inland 
vessels have an exponential character. Hence, in order to reduce the complexity, the emissions per TEU were calculated assuming 
a utilization of 80% for trains (PLANCO, 2007) and 90% for inland vessels (via donau, 2006) . 

3.3. Modeling the uncertainty 

Important aspects of stochastic network models are the formulation of the recourse and the solution method. In the trans- 
portation planning context, stochasticity is in many studies included by considering demand uncertainty. For example, Jaillet 
(1988) and Laporte et al. (1994) study a stochastic traveling salesman problem (TSP) under uncertain demand with a so-called 
simple recourse where no second-stage optimization is performed. The authors find an optimal a priori tour to minimize ex- 
pected cost and the recourse includes “simply” skipping the zero demand nodes after the uncertainty is resolved. It is important 
to note that the a priori tour remains feasible under any demand realization. 

Few studies that consider stochasticity in network design are Lium et al. (2009) , Hoff et al. (2010) , and Bai et al. (2014) . 
Lium et al. (2009) study a two-stage stochastic model where the first-stage decision is the design of the network under demand 
uncertainty and the second stage is about determining the commodity flows after demand realization. Their focus is on the design 
problem while our focus lies on planning the commodity flow when there is still uncertainty about demand. Hoff et al. (2010) 
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study the network design and commodity flow in a single stage model with demand uncertainty. Excess demand is handled by 
a high -cost ad-hoc capacity. We assume a similar recourse: if demand is higher than planned the excess demand is assigned to 
a scheduled service if there is free capacity or to a truck which is assumed to be always available. Handling of excess demand is 
penalized with a higher service charge. Bai et al. (2014) extends the work by Lium et al. (2009) by considering the possibility of 
vehicle rerouting at the second stage. Similar to Lium et al. (2009) , we define robustness with respect to demand uncertainty as 
the ability of a plan to deal with varying demand in a cost effective manner. 

While inclusion of demand uncertainty is rather straightforward, travel time uncertainty requires a more detailed treatment. 
Uncertain travel times, for example, are considered in the shortest path problem by Verweij et al. (2003) and in the VRPs by 
Kenyon and Morton (2003) . The authors do not make any recourse decision but the recourse function is assumed to be the 
lateness or a penalty for the lateness. Again, the a priori path/route is followed and remains feasible under any travel time 
realization. In our case with scheduled services, “simple” recourse is not easy to define. If we want that the route remains feasible 
under any realization we have to consider the worst case realizations for all the random variables which makes the solution 
extremely conservative. Therefore we include a probabilistic constraint to control the reliability of the plan. If a scheduled service 
cannot be reached because of delays in the previous services, then replanning is required to take an emergency action in real 
time. In order to avoid such situations we enforce a minimum level of reliability, i.e., the probability of missing a service and 
hence replanning should be lower than a predefined level. We focus on the possible delays and do not consider shorter than 
scheduled travel times. A similar approach is taken by Agra et al. (2013) for the VRP. 

4. The green intermodal service network design problem 

In this section we depict our modeling approach for the selection of robust routing plans. The foundation is a deter- 
ministic linear mixed -integer programming formulation, which is used for the selection and sequencing of services in order 
to form routing plans. The robustness of these plans, then, results from the inclusion of uncertainties by the SAA method. 
Section 4.1 focuses on the central advancement done by this research. The solution methodology and an extension to the 
model in order to reflect travel time uncertainties and also demand uncertainties are presented in the sequential Sections 4.2 
and 4.3 . 

4.1. Mathematical formulation 

A network consisting of services s ∈ S (scheduled transports) and nodes i, j ∈ N (transhipment locations) forms the basis 
for the routing decisions. Each service, since it is connected to a schedule and vehicle, is unique and connects transhipment 
locations i and j . Therefore, δs (i, j, v , D s m ) = { (s ∈ S)| i ∈ N and j ∈ N and v ∈ V} is a set of services executed by vehicle v between 
origin i and destination node j within the starting time window bounded by T s 

min 
and T s max . In addition to s , variables q and r are 

also used to represent services. In order to improve the computability of the mathematical model, the scope of the network is 
reduced beforehand to only reflect viable service options. The considered transhipment locations result from these pre-selected 
services. The services are characterized by their scheduled departure time D s m and service time t s m as well as service slot price c s 

and CO 2 e emissions per container e s . Service time uncertainties are reflected by multiple runs of the deterministic optimization 
model with different samples taken from their distribution function ( m ∈ M ). We assume that the service time for a service is 
a random variable which takes values in set �s 

i j 
. t s m is the m th element of set �s with the corresponding probability π s 

m (see 

Section 4.2 ). Services on the road as well as transhipments are - due to their lack of scheduled supply in reality - assumed to 
be available when needed. Their respective service times are dependent on data reflecting the traffic flow and infrastructure 
utilization. 

Transport orders p ∈ P are represented by their demand at the origin i and destination j nodes d p as well as earliest release 
Ŵp 
release 

and due time Ŵp 
duetime 

. Based on that, γ p (i, j) = { (p ∈ P)| i ∈ N and j ∈ N } is a set of orders with origin i and destination 
node j . While the release time represents a hard time constraint to work with, the due time is represented as soft constraint, 
leading to penalty cost for late deliveries. The decision variables include continuous variables for containers serviced ( x sp , z qrp , 
n j ) as well as binary variables for the services in use in the resulting routing plans ( y sp , y s ). 

Sets: 

P Set of transportation orders 
S Set of transportation services 
V Set of vehicles 
N + Set of start terminals of transportation orders 
N − Set of end terminals of transportation orders 
N Set of all transhipment locations 
M Set of scenarios with different traveling time values 
K Set of scenarios with different demand values 
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Variables: 

Ŵp 
release Earliest release time of order p 

Ŵp 
duetime Due time of order p 

t s m Transportation time of service s in scenario m 

d p Demand (in containers) of order p 

cap s Free capacities of services s 

l qr A binary variable equal to 0 if transhipment is necessary between preceding services q and succeeding service r, 1 otherwise 

α Needed probability of a route to be feasible in order to be considered as robust 

L Large (enough) numbers used for binary constraints 

t i Separate loading and unloading time at terminal i 

D s m Departure time of service s at the associated departure node i in scenario m 

A s m Arrival time of service s at the associated destination node j in scenario m 

f qrp m A binary variable equal to 1 if order p can catch ensuing service r ∈ S after arriving at a node with preceding service q ∈ S, 0 otherwise 

f p m A binary variable equal to 1 if the current route for order p is feasible, 0 otherwise 

a p m delay Delay of order p at destination node j in scenario m 

delay qrp m Delay between preceding service q and succeeding service r of order p in scenario m 

y s , y sp A binary variable equal to 1 if service s is used (for order p) 

x sp The number of containers of order p carried via service s 

z qrp The number of containers of order p that have to be transhipped between preceding services q and succeeding service r 

n j The number of containers transhipped at terminal j 

The objective function minimizes the total weighted costs. The weights, thereby, enable the reflection of individual prefer- 
ences regarding direct transportation, time-related and CO 2 e emissions-related costs. The direct transportation costs consist of 
transportation costs per container and service c s – which include the fixed transportation costs per service allocated to one con- 
tainer as well as the direct transportation costs per container – and transhipment costs per container ( c j ). The time-related costs 

are represented in a way to allow charges for delayed deliveries ( c p pen ) while the CO 2 e emissions-related costs per kg ( c emi ) for 
the emissions consumed per container serviced ( e s ) and transhipped ( e j ) are also included. 

Minimize ω 1 

{ 

∑ 

p∈P 

∑ 

s ∈S 

x sp c s + 

∑ 

j∈N 

n j c j 

} 

(8) 

+ ω 2 
1 

M 

∑ 

m ∈M 

∑ 

p∈P 

∑ 

s ∈S 

a p m delay 
c p pen (9) 

+ ω 3 c emi 

{ 

∑ 

p∈P 

∑ 

s ∈S 

x sp e s + 

∑ 

j∈N 

n j e j 

} 

(10) 

Subject to: 
∑ 

s ∈ δ(s ∈S| n = i)
x sp = d p ∀ n ∈ N | n = i, p ∈ P (11) 

∑ 

s ∈ δ(s ∈S| n = j)
x sp = d p ∀ n ∈ N | n = j, p ∈ P (12) 

∑ 

s ∈ δ(s ∈S| n = i)
x sp −

∑ 

s ∈ δ(s ∈S| n = j)
x sp = 0 ∀ n ∈ N | (n � = i & n � = j), p ∈ P (13) 

∑ 

p∈ γ (p∈P)

x sp − y s cap s ≤ 0 ∀ s ∈ δ(s ∈ S) (14) 

x sp ≤ y sp L ∀ s ∈ δ(s ∈ S), p ∈ γ (p ∈ P) (15) 

x sp ≥ y sp ∀ s ∈ δ(s ∈ S), p ∈ γ (p ∈ P) (16) 

y s ≤
∑ 

p∈ γ (p∈P)

x sp ∀ s ∈ δ(s ∈ S) (17) 
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∑ 

p∈P 

∑ 

s ∈ 
δ(s ∈S| i = n | j= n)

x sp − 2 
∑ 

p∈P 

∑ 

q ∈ 
δ(q ∈S| i = n)

∑ 

r∈ 
δ(r∈S| j= n)

z qrp = n n ∀ n ∈ N (18) 

D 
s 
m + t s m − A s m ≤ L(1 − y s ) ∀ s ∈ δ(s ∈ S), ∀ m ∈ M (19) 

A q m + t i x 
qp + t i x 

rp − 2 t i z 
qrp − delay 

qrp 
m − D 

r − L(1 − y qp ) ≤ L(1 − y rp ) ∀ m ∈ M , q ∈ δ(s ∈ S| j ∈ N ), 

p ∈ P, r ∈ δ(s ∈ S| i ∈ N ) (20) 

1 − f qrp m ≤ delay qrp m ∀ q ∈ S, r ∈ S, p ∈ P, m ∈ M (21) 

L(1 − f qrp m ) ≥ delay qrp m ∀ q ∈ S, r ∈ S, p ∈ P, m ∈ M (22) 

f qrp m ≥ f p m ∀ q ∈ S, r ∈ S, p ∈ P, m ∈ M (23) 

∑ 

m ∈M 

f p m ≥ Mα ∀ p ∈ P (24) 

z qrp ≤ Ll qr ∀ q ∈ δ(s ∈ S| j ∈ N ), p ∈ P, r ∈ δ(s ∈ S| i ∈ N ) (25) 

D 
s 
m − y sp Ŵp 

release 
≥ 0 ∀ m ∈ M , p ∈ P, s ∈ δ(s ∈ S| i ∈ N 

+ ) (26) 

A s m − a p m delay 
− Ŵp 

duetime 
≤ L(1 − y sp ) ∀ p ∈ P, m ∈ M , s ∈ δ(s ∈ S| i ∈ N 

−) (27) 

T s min y 
s ≤ D 

s 
m ≤ T s max y 

s ∀ m ∈ M , s ∈ S (28) 

delay qrp m ≤ y qp L ∀ q ∈ S, r ∈ S, p ∈ P, m ∈ M (29) 

delay qrp m ≤ y rp L ∀ q ∈ S, r ∈ S, p ∈ P, m ∈ M (30) 

f qrp m , f p m , y 
s , y sp = { 0 , 1 } ∀ s ∈ S, q ∈ S, r ∈ S, p ∈ P, m ∈ M (31) 

a p m delay 
, x sp , z qrp , delay qrp m , D 

s , A s m ≥ 0 ∀ s ∈ S, q ∈ S, r ∈ S, p ∈ P, m ∈ M . (32) 

Constraints (11) –(13) manage the traffic/container flow. While constraints (11) and (12) focus on the origin and destination nodes, 
constraint (13) manages the transhipment. Demand, in that regard, is positive if more containers are planned to originate from a 
specific node than are destined for that node. Constraint (14) ensures that capacity limits of services are adhered to. Constraints 
(15) –(17) make sure that a service is only allowed to process any amount of containers when it is selected. While (18) tracks 
the transhipment necessary, constraints (19) and (20) ensure the timely sequencing of the services within the network. As seen 
in (19) , each service has interrelated departure, service and arrival times per scenario m . In addition to the synchronization at 
nodes in terms of loading units ( (11) –(13) ), constraint (20) takes care of the timely synchronization. It ensures the relation of 
sequential services at a transhipment location. This is necessary due to more or less fixed schedules of services, which permit 
services with earlier departure times than possible preceding services from following up on them. Thus - for a plan to be feasible 
in scenario m – the arrival time of the preceding service ( q ) at a transhipment location plus the necessary unloading and loading 
times ( t i x 

qp + t i x 
rp − 2 t i z 

qrp ) have to be fulfilled before the ensuing service ( r ) departs. In case of an infeasible plan for scenario 
m , constraints (21) –(23) ensure that f p m is 0. A plan, then, is not robust and thus erased from the possible set of transportation 
routes in case of more than 1 − α percent of all scenarios being infeasible (see constraint (24) ). Constraint (25) ensures that only 
containers which have to change the vehicle are considered when calculating transhipment times, costs and CO 2 e -emissions. 
Constraints (26) and (27) provide the time frame for each order to plan within. The lower limit (earliest pick-up time) is fixed 
while the upper limit (due date) can be bent, with penalties – if desired – allocated to late deliveries ( a p m delay 

). Constraint (28) 

gives the time window within which services can depart with T s 
min 

= T s max being valid for scheduled services. Constraints (29) 
and (30) ensure that the feasibility of two consecutive services is only checked if these services are designated to be used within 
the same routing plan. 
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4.2. The sample average approximation method 

Solving stochastic network optimization models by conventional methods such as dynamic programming and multistage 
stochastic programming is not possible for realistic problem sizes. In this study we apply the SAA method to solve the stochastic 
network problem with chance constraints. 

Kenyon and Morton (2003) apply SAA to solve a stochastic VRP under two different objective functions: minimizing the ex- 
pected completion time and maximizing the probability of completion time being below a target level. Luedtke and Ahmed 
(2008) provide an application of SAA to a chance-constrained transportation problem with a convex feasible region where the 
dimension of the random vector presents a computational challenge. Wang and Meng (2012) apply SAA for a schedule design 
problem for liner shipping services to minimize expected costs and Wang et al. (2013) apply it to chance-constrained liner ship 
fleet deployment problem. The approximation is obtained by replacing the actual distribution with an empirical distribution by 
Monte Carlo sampling. If the objective function corresponds to an expected value it is approximated by its sample average esti- 
mate. The resulting problem is then solved by deterministic optimization methods. Verweij et al. (2003) provide an introduction 
to the application of SAA to stochastic routing problems with expected value objectives. 

In a chance-constrained problem the method is used to approximate the true probability of the constrained event by its 
frequency of occurrence within the sample. In general, SAA is applied to chance-constrained stochastic problems because of two 
reasons: the feasible region defined by the chance constraint can be non-convex, and the probability of the constrained event 
may be difficult to evaluate ( Luedtke and Ahmed, 2008; Pagnoncelli et al., 2009 ). It has been shown that the optimal solution 
of the sampled problem converges exponentially fast to the optimal solution of the original problem as the number of scenarios 
increases. The solution of the sampled problem can be used to develop statistical bounds on the optimal solution of the original 
problem. 

In this methodology, we generate K independent samples where each sample includes M realizations of service times t s 

according to the probability distributions π s . We solve the model for each sample k ∈ K separately to obtain the objective value C k 
and the corresponding solution θ k . In order to decide which of the K solutions to select, an independent test sample is generated 
to evaluate each candidate solution θ k . The test sample with size M ′ is generally chosen to be quite large. Using the test sample, 
each solution θ k is evaluated to obtain the probability of replanning. If a solution has a higher probability than 1 − α it is not 
considered as a feasible solution. Otherwise it is a candidate solution. We select the best candidate solution with the minimum 

cost under M ′ as the optimal solution θ ∗ to the problem. For any feasible solution θ the objective function value under any 
independent sample C ( θ ) is an upper bound for the true objective value. Therefore the upper bound corresponding to θ ∗ is 
calculated as 

UB = C M ′ (θ
∗) + 

z βσU √ 
M ′ 

, (33) 

where z β is the 1- β quantile of the standard normal distribution and σ U is the standard deviation of the objective value within 
the test sample . 

In order to evaluate the quality of the solution we derive a lower bound as described by Luedtke and Ahmed (2008) . The 
K optimal values corresponding to different samples are rearranged to obtain the order statistics C [ k ] for k = 1 , . . . , K such that 
C [1] ≤ … ≤ C [ K ] . The L th order statistic C [ L ] corresponds to a lower bound with a confidence level of γ where 

γ = 

L −1 
∑ 

i =0 

(

K 

i 

)

ρ(α, M)i (1 − ρ(α, M))K−i , (34) 

and 

ρ(α, M) = 

⌊ αM⌋ 
∑ 

i =0 

(

M 

i 

)

αi (1 − α)M−i . (35) 

The quality of the solution θ ∗ is evaluated based on the optimality gap estimate (UB − LB)/LB . The sample sizes are selected to 
ensure a reasonable optimality gap, e.g. smaller than 1%. 

4.3. Extension to the demand uncertainty 

As mentioned in Section 2 , the inclusion of demand uncertainties in routing and even SND problems is more common. There- 
fore we have focused our central approach - as seen in Section 4.1 - on travel time uncertainties. Nevertheless, demand uncer- 
tainties are important to reflect. 

In order to also use SAA as the approach to include demand uncertainties, a set of scenarios taken from depicted demand 
distribution functions is necessary ( k ∈ K). Thereby, it’s essential to enable the booking/canceling of unexpected higher/lower 
demand ( b sp 

k 
) either on – if possible – free capacity slots or on other services ( ocap s 

k 
) in order to account for possibly varying 

demand over all K -scenarios ( d p 
k 
). These extensions especially are to be reflected in constraints (11) –(14) which focus on demand 

fulfillment and capacity restriction. 
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Minimize ω 1 

{ 

∑ 

p∈P 

∑ 

s ∈S 

x sp c s + 
1 

K 

∑ 

p∈P 

∑ 

s ∈S 

∑ 

k ∈K 

b sp 
k 
c s + 

∑ 

j∈N 

n j c j + 
1 

K 

∑ 

s ∈S 

∑ 

k ∈K 

ocap s k c 
s 
pen d 

} 

(36) 

+ ω 2 
1 

M 

∑ 

m ∈M 

∑ 

p∈P 

∑ 

s ∈S 

a p m delay 
c p pen (37) 

+ ω 3 c emi 

{ 

∑ 

p∈P 

∑ 

s ∈S 

x sp e s + 
1 

K 

∑ 

p∈P 

∑ 

s ∈S 

∑ 

k ∈K 

b sp 
k 
e s + 

∑ 

j∈N 

n j e j 

} 

(38) 

Subject to: 
∑ 

s ∈ δ(s ∈S| n = i)

{

x sp + b sp 
k 

}

= d p 
k 

∀ n ∈ N | n = i, p ∈ P, k ∈ K (39) 

∑ 

s ∈ δ(s ∈S| n = j)

{

x sp + b sp 
k 

}

= d p 
k 

∀ n ∈ N | n = j, p ∈ P, k ∈ K (40) 

∑ 

s ∈ δ(s ∈S| n = i)

{

x sp + b sp 
k 

}

−
∑ 

s ∈ δ(s ∈S| n = j)

{

x sp + b sp 
k 

}

= 0 ∀ n ∈ N | (n � = i & n � = j), p ∈ P, k ∈ K (41) 

∑ 

p∈ γ (p∈P,i, j)

{

x sp + b sp 
k 

}

− y s cap s − ocap s k ≤ 0 ∀ s ∈ δ(s ∈ S, i, j), k ∈ K (42) 

and constraints (15) –(32) . 
The objective function (36) contains costs for possibly additional needed capacity ( c s pen d ) as well as costs for addi- 

tional/substracted containers transported with the already planned-for capacity ( c s ). These cost factors, thereby, are counted 
for each scenario and therefore have to be divided by K . Constraints (39) –(41) are constraints (11) –(13) with the necessary ad- 
ditions for the inclusion of demand uncertainties. They are extended by b sp 

k 
in order to reflect a possible difference in actual 

demand compared to the planned for demand. Constraint (42) makes sure that all ordered containers which cannot be fulfilled 
by the selected service ( cap s ) have to be transported by another service and thus accounted for in the objective function ( ocap s 

k 
). 

5. Case study/Application 

In order to test the behavior of the methodology and to compare the results using different weights for the individual objec- 
tives, a realistic case study was studied including road, rail and inland waterway transportation as the main transportation modes 
used in hinterland transportation chains bringing containers from and to the main European ports. The case study is described in 
this section whereas the results of an extensive computational study including instances with higher number of nodes, services 
and orders are presented in Section 6 . 

The case study is concentrated on the Danube region between Hungary and Germany which serves as destination and origin of 
containerized goods coming from maritime transportation (via donau, 2006) . There exist a number of intermodal terminals from 

which containers are transported by feeder services to bigger terminals in Germany, Austria or Czech Republic. These terminals 
then have direct connection to the maritime ports in Germany, the Netherlands or Belgium. 

The network consists of 10 terminals including inland waterway ports and railway terminals which are connected by 32 
services. Each of the terminals is characterized by the time, costs and emissions needed for transhipment of one container 
whereas each service is defined by its origin, destination, distance, vehicle, capacity, time window for departure ( T s 

min 
, T s max ), 

travel time, transportation costs and emissions. The terminals and services are depicted in Fig. 2 and the characteristics of the 
services are described in Table 1 . 

Since the region is located around the Danube, a container transportation by ship connecting the terminals in Budapest, 
Vienna, Linz and Regensburg is modeled as three consecutive services operated by one ship so that the next service can start 
only after the previous service’s arrival to the terminal. This offers the advantage for the containers which can be transported 
directly from Budapest to Regensburg, but also additional freight can be loaded on the ship if there is free capacity left. The costs 
and travel times for the ship were derived from via donau (2007) and the capacity was set to 60 twenty-foot equivalent units 
(TEU). The ship services are displayed in Table 1 as services 1–3. 

The inland waterway network was enhanced by railway terminals in Budapest, Vienna, Prague, Wels, Salzburg and Munich 
which are connected by multiple trains per week or even per day. Trains depart at fixed times according to time schedules which 
are publicly available. In this case study, rail transportation is modeled in form of services with fixed time windows for departure 
according to schedules published by Metrans (2014) and Kombiverkehr (2014) . The time frame used for departures was one 
week which means that there can be multiple services between the same terminals. Since the train capacity is partly blocked by 
existing agreements with logistics service providers, an average train with 750 tons net weight and utilization of 80% is used for 
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Fig. 2. A visualization of services used in the case study. 

calculations ( PLANCO, 2007) . The remaining capacity is used for the new orders. The fixed costs for train, personnel and other 
variable costs (i.e., energy and infrastructure fees) were calculated based on PLANCO (2007) . Train services have numbers 4–21 
in Table 1 . 

Transportation by truck is relatively flexible regarding the departure time and route since trucks do not need to run according 
to fixed schedules but can be booked when they are needed. Therefore, flexible time windows for departure and high available 
capacities are assumed so that every order which arrives can be transported by a truck. The travel times and costs were calculated 
using the Map&Guide tool from PTV (2014) . Trucks are represented by services 22–32 in Table 1 . 

The transport orders are displayed in Table 2 . Thereby, more than one order is chosen in order to show and test the ability of 
the model to consolidate orders. 

For the computational analysis we first use the deterministic travel times while comparing them to the stochastic ones. 
Thereby we assume a three point distribution for each travel time. The three possible realizations correspond to (i) the most 
likely service time which is the one used in deterministic models and is also displayed in Table 1 , (ii) the service time under 
congestion, and (iii) the service time under disruption. In order to evaluate the robustness and feasibility of a route, we set 
α = 0 . 95 meaning that the route is only used if it is feasible in at least 95% of the scenarios. We also used nine different weight 
combinations in order to see the impact of the direct service costs ( w 1 ), time penalty costs ( w 2 ) and emission-related costs ( w 3 ) 
on the results. 

For the stochastic problem, we set M = 50 and we varied L so that we find a valid lower bound with confidence 0.99. Similarly 
for the upper bound calculation we used a sample size of M ′ = 50 0 0 for the test sample and we applied β = 0 . 99 so that we 
reach a confidence level of 0.99. For all the different weight combinations, these parameters guarantee an optimality gap for 
the objective function value within 1% which implies that the quality of the approximation is satisfactory (see, e.g., Kenyon and 
Morton, 2003 ; Verweij et al., 2003 ; Wang et al., 2013 ). 

As the deterministic results presented in Table 3 show, the optimal solution is strongly dependent on the weights for each 
objective. In cases where the relative weight of the direct service costs is reasonably high (cases 1, 4, 6 and 8), the model tries 
to choose rail and inland waterway as cheaper transportation modes instead of road. This also has positive impact on emissions 
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Table 1 

A detailed information for services used in the case study. 

Service Origin Destination Distance Capacity T s 
min T s max Costs Emissions Time 

number in km in TEU in € in kg in hours 

1 Budapest Port Vienna Port 280 60 32 32 115 127 42 
2 Vienna Port Linz 211 60 76 97 63 53 29 
3 Linz Regensburg 242 42 107 141 102 86 49 
4 Budapest BILK Munich 729 20 18 18 182 70 38 
5 Budapest BILK Munich 729 20 42 42 181 69 84 
6 Budapest BILK Munich 729 20 114 114 183 71 38 
7 Budapest BILK Munich 729 20 162 162 184 68 38 
8 Budapest BILK Wels 488 16 21 21 201 50 35 
9 Budapest BILK Wels 488 16 45 45 202 49 58 
10 Budapest BILK Wels 488 16 117 117 200 51 35 
11 Budapest BILK Wels 488 16 141 141 203 48 35 
12 Budapest BILK Wels 488 16 165 165 199 52 35 
13 Budapest BILK Prague 626 16 8 8 250 163 40 
14 Budapest BILK Prague 626 16 80 80 251 162 40 
15 Budapest BILK Prague 626 16 128 128 249 164 40 
16 Vienna Rail Wels 218 16 19 19 113 9 11 
17 Vienna Rail Wels 218 16 115 115 114 8 11 
18 Vienna Rail Wels 218 16 139 139 112 10 11 
19 Vienna Rail Wels 218 16 163 163 115 11 11 
20 Prague Salzburg 415 16 17 17 109 53 81 
21 Prague Salzburg 415 16 137 137 110 52 35 
22 Budapest Port Regensburg 649 60 0 168 484 390 10 
23 Vienna Port Regensburg 404 60 0 168 327 252 6 
24 Linz Regensburg 231 60 0 168 196 140 3 
25 Munich Regensburg 136 60 0 168 129 83 2 
26 Regensburg Munich 136 60 0 168 129 83 2 
27 Wels Regensburg 203 60 0 168 165 123 3 
28 Prague Regensburg 249 60 0 168 209 158 4 
29 Salzburg Regensburg 229 60 0 168 193 157 4 
30 Regensburg Salzburg 229 60 0 168 193 157 4 
31 Budapest Port Budapest BILK 11 60 0 168 62 14 0 
32 Vienna Port Vienna Rail 12 60 0 168 66 12 0 

Table 2 

A detailed information on the orders considered in the case study. 

Order From To Release time Due time Number of containers Penalty costs 

number in hours in hours in TEU per hour 

1 Budapest Port Regensburg 10 160 20 30 
2 Budapest Port Regensburg 25 170 10 100 
3 Budapest Port Munich 20 80 15 70 
4 Vienna Port Regensburg 70 159 9 80 
5 Prague Salzburg 30 102 6 50 

Table 3 

Results for the deterministic setting. 

Case Weights Optimal services Total service Total penalty Total emissions Total 

w 1 w 2 w 3 1 2 3 4 5 costs (€) costs (€) costs (€) costs (€) 

1 1 0 0 1,2,3 1,2,3 31,5 2,3 21 17,179 6 ,720 782 24 ,681 
2 0 1 0 22 22 22,26 23 28,30 32,284 0 1 ,634 33 ,919 
3 0 0 1 31,5,25 31,6,25 31,7 2,3 21 22,435 12,200 594 35 ,229 
4 0 .4 0 .4 0 .2 1,2,3 1,2,3 31,5 2,3 28,30 19,171 3 ,220 894 23 ,285 
5 0 .2 0 .6 0 .2 1,2,3 1,2,3 22,26 2,3 28,30 24,707 0 1 ,303 26 ,010 
6 0 .6 0 .3 0 .1 1,2,3 1,2,3 31,5 2,3 21 17,179 6 ,720 782 24 ,681 
7 0 .1 0 .8 0 .1 1,2,3 1,2,3 22,26 2,3 28,30 24,707 0 1 ,303 26 ,010 
8 1 1 1 1,2,3 1,2,3 31,5 2,3 28,30 19,171 3 ,220 894 23 ,285 
9 1 10 10 1,2,3 1,2,3 31,8,27,26 2,3 28,30 25,081 0 1 ,098 26 ,179 
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Table 4 

Results for the stochastic setting. 

Case Weights Optimal services Total service Total penalty costs Total emissions Total costs 

w 1 w 2 w 3 1 2 3 4 5 costs LB UB costs LB UB 

1 1 0 0 1,2,3 1,2,3 31,5 2,3 21 17 ,179 7 ,575 7 ,646 782 25 ,536 25 ,607 
2 0 1 0 22 22 22,26 23 28,30 32 ,284 0 0 1 ,634 33 ,919 33 ,919 
3 0 0 1 31,5,25 31,9,27 31,7 2,3 21 22 ,984 12,396 12,522 605 35 ,985 36 ,111 
4 0 .4 0 .4 0 .2 1,2,3 1,2,3 31,5 2,3 28,30 19 ,171 3 ,945 4 ,038 894 24 ,010 24 ,103 
5 0 .2 0 .6 0 .2 1,2,3 1,2,3 22,26 2,3 28,30 24 ,707 225 525 1 ,303 26 ,235 26 ,535 
6 0 .6 0 .3 0 .1 1,2,3 1,2,3 31,5 2,3 21 17 ,179 7 ,575 7 ,646 782 25 ,536 25 ,607 
7 0 .1 0 .8 0 .1 1,2,3 31,5,25 22,26 2,24 28,30 27 ,696 123 136 1 ,274 29 ,093 29 ,106 
8 1 1 1 1,2,3 1,2,3 31,5 2,3 28,30 19 ,171 3 ,945 4 ,038 894 24 ,010 24 ,103 
9 1 10 10 31,5,25,9,27 31,5,25 22,26 2,24 28,30 31 ,726 0 16 1 ,162 32 ,888 32 ,905 

Fig. 3. Comparison of deterministic and stochastic solutions for weights 0,0,1 (Case 3). 

which are relatively low, but the longer transportation times by train and ship lead to delays which result in high penalty costs. 
However, if only or mostly time is considered (especially case 2, but also cases 5 and 7), then the fastest truck connections are 
chosen and transportation costs as well as emissions are very high. For case 3 where only emissions are important, the orders 
are transported by electric trains as much as possible which causes delay for order 3 because of the insufficient capacity on 
the link Budapest-Munich and for order 5 which has to wait for the late train between Prague and Salzburg instead of using 
trucks. Therefore, the total costs are much higher since the lower emission costs are overcompensated by high transportation 
and penalty costs. 

The total costs are the lowest in two cases (4 and 8) where all three objectives are considered with nearly even weights. 
Thereby, the focus is on cheap and environmentally friendly transportation modes (inland waterway) while also using the truck 
for orders which would lead to high time penalty costs (see order 5 in these cases). This balance distinguishes these solutions 
from e.g. service cost only solutions as seen in case 1. Overall, the results for all set combinations with a significant weight factor 
for w 1 tend to be fairly equal since the direct service costs dominate in absolute magnitude over time penalty and emission- 
related costs. Only cases 2, 3 and to some extent 9 with relative high factors of w 2 and w 3 compared to w 1 lead to considerably 
different results. The results of the stochastic version including variable transportation times are displayed in Table 4 . 

As the results show, in 6 of 9 cases the optimal solution does not change. The only differences are not coincidentally in cases 
3, 7 and 9 as these cases have comparably high weights for time penalties and/or emissions. In case 3 the deterministic solution 
is not robust enough due to the high number of scenarios in which service 6 arrives too late so that order 2 cannot be transported 
by service 25. The route is only feasible in 93% of the scenarios which is below the assumed threshold of α = 0 . 95 . Therefore the 
route for order 2 changes to services 31, 9 and 27 where the probability of arriving on-time and using the consecutive service 
is much higher although the transportation costs and emissions are increasing too. The difference between the deterministic 
and stochastic solution for this case is graphically represented in Fig. 3 . In cases 7 and 9, the original deterministic solution is 
still feasible, however, when testing it in the stochastic setting, penalty costs for delayed arrival appear. So would the objective 
function value of the deterministic solution of case 7 in the stochastic setting increase from 2, 601 to 3, 121. Therefore orders 2 and 
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Table 5 

Results for the stochastic setting ( n = 20, s = 50, p = 5). 

Case Weights Optimal services Total transportation Total penalty costs Total emissions Total costs 

w 1 w 2 w 3 1 2 3 4 5 costs LB UB costs LB UB 

1 1 1 1 2,48,13 2,48 49 2 17 16 ,203 2 ,199 2 ,255 300 18 ,702 18 ,759 
2 1 0 0 2,48,13 2,48 49 2 17 16 ,203 2 ,199 2 ,255 300 18 ,702 18 ,759 
3 0 1 0 45,16,17 2,48 49 2 17 19 ,023 249 309 160 19 ,432 19 ,492 
4 0 0 1 45,16,17 2,48 49 2 17 19 ,023 249 309 160 19 ,432 19 ,492 

Table 6 

The influence of robustness level α on the computational times and the solution quality. 

Instance Sample size Deterministic Stochastic ( α = 0.75) Stochastic ( α = 0.90) Stochastic ( α = 0.95) Stochastic ( α= 1) 

Objective CPU Objective CPU Objective CPU Objective CPU Objective CPU 
value (€ ) (s) value (€ ) (s) value (€ ) (s) value (€ ) (s) value (€ ) (s) 

EU_20_1a_100 100 1 ,774 .02 0 .27 1 ,774 .86 320 .44 1 ,774 .86 320 .44 1 ,774 .86 243 .35 1 ,774 .86 3 .76 
EU_20_1b_100 100 1 ,595 .45 0 .25 1 ,595 .45 303 .90 1 ,595 .45 313 .08 1 ,595 .45 259 .75 1 ,595 .45 3 .60 
EU_20_1c_100 100 3 ,563 .68 0 .26 3 ,563 .68 312 .93 3 ,563 .68 326 .76 6 ,519 .62 258 .98 6 ,519 .62 4 .24 
EU_20_1d_100 100 3 ,354 .09 0 .30 3 ,354 .09 328 .07 4 ,089 .75 362 .43 4 ,531 .20 256 .53 4 ,531 .20 3 .54 
EU_20_1e_100 100 746 .57 0 .29 746 .57 323 .06 746 .57 325 .63 746 .57 228 .08 746 .57 3 .60 

4 with high penalty costs per hour are re-routed so that their probability of on-time arrival is increased. The objective function 
value of this solution (LB: 2, 995, UB: 3, 005) compares favorably to the deterministic solution. The same reasoning applies to 
orders 1 to 4 of case 9. 

6. Computational study 

Besides the case study in Section 5 , additional instances have been created to evaluate the capabilities of the methodology 
to solve larger instances. The basis for the instances presented in this section is a network with 20 locations (or nodes) and the 
instances vary with respect to the number of services, the number of orders and the level of uncertainty. In most cases the results 
are available for weights (1,1,1) including all three components of the objective function with the same weight. The objective of 
the computational study is mainly to show the impact of the different factors on the computational time and the size of the 
instances which can be solved to optimality. In addition, the solution quality of these instances is also examined for specific 
cases. 

The mixed -integer linear programming model is solved by a standard linear programming solver, namely CPLEX 12.4 ( IBM 

ILOG, 2015 ). All experiments are conducted on an Intel(R) Core(TM)2 CPU with 2.6 GHz and 3 GB of memory. For the experi- 
ments, we use newly generated instances based on real data. These instances follow a naming convention of EU _ n _ p _ s where EU 

represents the geographical locations of the services and terminals and n is the number of terminals. Moreover, p is the number 
of orders that need to be transported, and s is the number of services considered (road, rail, and inland waterway). The complete 
data set used in this paper is available at www.smartlogisticslab.nl . 

When we enlarge the network by adding services, the feasible region is obviously larger and the costs would be smaller than 
or equal to the one under the smaller network. For example, when n = 10 and p = 1 , with a network of 50 services the order is 
transported by two consecutive services (1, 50) with a cost of € 7 ,470 in the deterministic setting. When the network is extended 
to 250 services, a direct service (65) is used which reduces the cost to € 6 ,291. 

Similar effects are seen with respect to the reliability of the plan and the quality of the results under the stochastic environ- 
ment. The proposed methodology can produce feasible solutions for all the instances as long as an instance can be solved with 
stochastic travel times. Feasibility here implies that at least one solution satisfies the upper limit on the probability of missing a 
service, i.e., replanning, within the test sample. However, for large problems, the quality of the solutions decreases significantly. 
For example, when n = 20 , s = 50 , and p = 5 , (see Table 5 ) the optimality gap under weight set (0,1,0) is larger than 20% which 
cannot be considered in any case. In this specific example, the size of the confidence interval is mainly determined by the vari- 
ance in transportation time of the first order with services (45,16,17). When we extend the network to 100 services, it is found to 
be an optimal solution for transporting the first order via a direct service (60) which decreases the optimality gap within the 1% 
range. 

The quality of the stochastic solution is also dependent on the sample size chosen. Although a growing sample size in many 
cases leads to better or more stable results, it also limits the size of the instance which can be solved. However, the optimal sample 
size cannot be estimated in general since it is dependent on the characteristics of the instance solved. The tables presented in 
this section use the sample size of 10 or 100 dependent on the size of the problems which are considered. 

Table 6 shows the impact of α on the results and computational times. It consists of five different orders which are routed 
separately on a network with 20 nodes and 100 services and the sample size considered for stochastic travel times is 100. As the 
results show, if α is relatively low, then the stochastic results tend to be equal to the deterministic results. However, there still 

http://www.smartlogisticslab.nl
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Table 7 

The influence of the number of service on the computational times and the solution quality ( α = 0 . 95 ). 

Instance Sample size # of Services (50) # of Services (100) # of Services (250) # of Services (500) 

Objective CPU Objective CPU Objective CPU Objective CPU 
value (€ ) (s) value (€ ) (s) value (€ ) (s) value (€ ) (s) 

EU_20_1a 1 1 ,774 .02 0 .20 1 ,774 .02 0 .60 1 ,774 .02 1 .53 1 ,762 .86 2 .66 
EU_20_1a 10 1 ,774 .02 0 .79 1 ,774 .02 0 .79 1 ,774 .02 3 .64 1 ,762 .86 14 .03 
EU_20_1b 1 1 ,990 .01 0 .40 1 ,595 .45 0 .54 1 ,595 .45 1 .21 1 ,584 .57 2 .09 
EU_20_1b 10 2 ,068 .36 0 .46 1 ,595 .45 0 .71 1 ,595 .45 3 .17 1 ,584 .57 6 .90 
EU_20_1c 1 3 ,563 .68 0 .18 3 ,563 .68 0 .53 3 ,563 .68 1 .36 3 ,490 .42 2 .14 
EU_20_1c 10 Inf. Inf. 6 ,519 .62 1 .12 3 ,645 .95 4 .10 3 ,490 .42 16 .60 
EU_20_1d 1 3 ,801 .04 0 .21 3 ,354 .09 0 .60 3 ,169 .23 1 .32 3 ,158 .07 3 .89 
EU_20_1d 10 Inf. Inf. 4 ,531 .2 0 .99 3 ,169 .23 3 .47 3 ,158 .07 12 .36 
EU_20_1e 1 762 .49 0 .18 746 .57 0 .50 447 .57 1 .09 447 .57 3 .83 
EU_20_1e 10 762 .49 0 .39 746 .57 0 .83 447 .57 3 .28 447 .57 135 .69 

Inf.: Infeasible solution 

Table 8 

Combined results for different number of services and orders for weights (1,1,1) and (1,0,0). 

Instance α Weight = (1,1,1) Weight = (1,0,0) 

Deterministic Stochastic (sample size = 10) Deterministic Stochastic (sample size = 10) 

Objective CPU Objective CPU Objective CPU Objective CPU 
value (€ ) (s) value (€ ) (s) value (€ ) (s) value (€ ) (s) 

EU_20_1_50 0 .95 1 ,774 .02 0 .21 1 ,774 .02 0 .43 1 ,740 0 .26 1 ,740 0 .76 
EU_20_2_50 0 .95 2 ,521 .76 0 .38 2 ,521 .76 0 .51 2 ,485 0 .69 2 ,485 0 .52 
EU_20_5_50 0 .95 8 ,076 .24 0 .63 8 ,124 .75 0 .82 7 ,775 .5 0 .77 7 ,775 .5 0 .93 
EU_20_10_50 0 .95 15 ,224 .5 4 .50 15 ,363 .4 1 .69 14 ,746 .5 0 .82 14 ,866 .5 0 .98 
EU_20_20_50 0 .95 31 ,980 .2 2 .01 32 ,119 .4 2 .18 31,072 1 .41 31,192 1 .75 
EU_20_1_100 0 .95 1 ,774 .02 0 .35 1 ,774 .02 0 .51 1 ,740 0 .65 1 ,740 1 .14 
EU_20_2_100 0 .95 2 ,521 .76 0 .64 2 ,521 .76 1 .53 2 ,485 0 .72 2 ,485 1 .09 
EU_20_5_100 0 .95 7 ,389 .1 1 .59 7 ,389 .1 2 .51 7 ,205 .5 1 .63 7 ,205 .5 3 .32 
EU_20_10_100 0 .95 14 ,014 .3 1 .63 14 ,138 .9 25 .20 13 ,651 .5 1 .41 13 ,768 .5 27 .93 
EU_20_20_100 0 .95 28 ,226 .2 74 .69 28 ,350 .8 77 .13 27,463 26 .01 27,580 186 .20 
EU_20_1_250 0 .95 1 ,774 .02 0 .44 1 ,774 .02 1 .23 1 ,740 0 .73 1 ,740 2 .05 
EU_20_2_250 0 .95 2 ,521 .76 1 .14 2 ,521 .76 6 .17 2 ,485 2 .60 2 ,485 2 .98 
EU_20_5_250 0 .95 7 ,389 .1 4 .06 7 ,389 .1 10 .63 7 ,205 .5 3 .83 7 ,205 .5 11 .64 
EU_20_10_250 0 .95 13 ,715 .3 35 .06 X X 13 ,337 .5 38 .87 X X 
EU_20_20_250 0 .95 X X X X X X X X 
EU_20_1_500 0 .95 1 ,762 .86 1 .82 1 ,762 .86 6 .78 1 ,728 3 .11 1 ,728 12 .51 
EU_20_2_500 0 .95 2 ,510 .6 3 .01 X X 2 ,473 7 .52 X X 
EU_20_5_500 0 .95 7 ,348 .99 19 .74 X X X X X X 
EU_20_10_500 0 .95 X X X X X X X X 
EU_20_20_500 0 .95 X X X X X X X X 

X: Not solved to optimality due to the time limit (10 minutes) or memory problem 

might be a high probability of a delay or disruption on the chosen route. With the growing α the results are changing for orders 
1c and 1d which indicates that the deterministic routes might not be robust enough. Although the objective function values are 
much higher in these cases, the new route offers higher probability that the goods will arrive on time. The last column with α = 1 
shows the results for the worst-case scenario in which the solution is feasible in 100% of the cases. The computational times are 
relatively equal for the lower values of α and they start to decrease with α = 0 . 95 and are very low for the worst-case scenario. 
This fact can be explained by the decreasing number of alternatives which are still feasible when α is growing. 

The number of services is another limiting factor which influences not only the computational time but also the quality of 
the solution. As displayed in Table 7 , the computational times for the deterministic solutions are increasing only slowly whereas 
the increase for stochastic solutions is much faster. Nevertheless, it is still possible to obtain an optimal solution for 500 services 
within less than 3 minutes. The sample size chosen for stochastic solution is 10 since this is the biggest sample size which allows 
to solve instances with 500 services. The impact on the solution can be seen especially for orders 1c and 1d where there is no 
feasible solution for the stochastic version of the model in case of 50 services because the uncertainty in case of the deterministic 
route, which is the only possible connection in this small network, is very high and thus not acceptable for α = 0 . 95 . With the 
increasing number of services also stochastic solutions are found for both orders and in general the costs of the optimal solution 
are decreasing. This is also due to the fact that the bigger instances contain a higher number of direct truck services and more 
combinations are possible in comparison to smaller instances with a limited number of services consisting mainly of trains and 
ships. 

Tables 8 and 9 combine the number of services (between 50 and 500) and the number of orders (between 1 and 20) and show 

the results for different weight combinations. 
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Table 9 

Combined results for different number of services and orders for weights (0,1,0) and (0,0,1). 

Instance Weight = (0,1,0) Weight = (0,0,1) 

Deterministic Stochastic (sample size = 10) Deterministic Stochastic (sample size = 10) 

α Objective CPU Objective CPU Objective CPU Objective CPU 
value (€ ) (s) value (€ ) (s) value (€ ) (s) value (€ ) (s) 

EU_20_1_50 0 .95 0 0 .46 0 0 .56 34 .02 0 .25 34 .02 0 .81 
EU_20_2_50 0 .95 0 0 .61 0 0 .70 36 .77 0 .63 36 .76 0 .67 
EU_20_5_50 0 .95 0 0 .67 48 .504 1 .05 199 .27 0 .51 270 .38 0 .92 
EU_20_10_50 0 .95 0 0 .82 60 .504 1 .67 331 .06 1 .10 402 .17 1 .59 
EU_20_20_50 0 .95 0 0 .85 60 .504 2 .28 684 .95 1 .21 756 .05 1 .76 
EU_20_1_100 0 .95 0 0 .34 0 0 .78 34 .02 0 .62 34 .02 1 .12 
EU_20_2_100 0 .95 0 0 .46 0 1 .20 36 .76 0 .72 36 .76 1 .26 
EU_20_5_100 0 .95 0 0 .82 0 2 .28 183 .52 1 .44 183 .60 1 .802 
EU_20_10_100 0 .95 0 1 .24 0 89 .66 315 .03 1 .41 315 .11 13 .08 
EU_20_20_100 0 .95 0 4 .97 0 151 .47 642 .92 29 .84 643 .0 34 .29 
EU_20_1_250 0 .95 0 0 .93 0 1 .39 33 .6 0 .76 33 .6 1 .24 
EU_20_2_250 0 .95 0 1 .58 0 8 .10 36 .34 1 .58 36 .34 2 .73 
EU_20_5_250 0 .95 0 3 .91 0 43 .59 182 .40 3 .44 182 .48 33 .56 
EU_20_10_250 0 .95 0 26 .91 X X 312 .16 32 .50 X X 
EU_20_20_250 0 .95 0 137 .58 X X 632 .76 186 .71 X X 
EU_20_1_500 0 .95 0 1 .59 0 8 .66 30 .66 1 .99 30 .66 12 .86 
EU_20_2_500 0 .95 0 3 .43 X X 33 .40 5 .26 X X 
EU_20_5_500 0 .95 0 19 .41 X X 178 .41 26 .10 X X 
EU_20_10_500 0 .95 X X X X X X X X 
EU_20_20_500 0 .95 X X X X X X X X 

X: Not solved to optimality due to time limit (10 min) or memory problem 

Table 10 

The inclusion of demand uncertainty together with travel time uncertainty (sample size = 10). 

Instance α Deterministic Stochastic (demand = low) Stochastic (demand = medium) Stochastic (demand = high) 

Objective CPU Objective CPU Objective CPU Objective CPU 
value (€ ) (s) value (€ ) (s) value (€ ) (s) value (€ ) (s) 

EU_20_1a_100 0 .95 1,468 .08 0 .54 1,468 .08 2 .02 1,445 .08 2 .35 1,514 .09 1 .70 
EU_20_1b_100 0 .95 1,354 .99 0 .72 1,354 .99 1 .07 1,386 .86 0 .70 1,323 .12 1 .79 
EU_20_1c_100 0 .95 2,487 .24 1 .07 3,339 .92 4 .07 3,339 .92 3 .75 3,520 .63 2 .95 
EU_20_2a_100 0 .95 2,075 .31 1 .06 2,075 .31 3 .78 2,063 .75 2 .77 2,109 .87 1 .86 
EU_20_2b_100 0 .95 1,762 .25 1 .03 1,762 .25 13 .04 1,794 .12 8 .10 1,730 .38 7 .10 
EU_20_2c_100 0 .95 3,984 .2 1 .58 3,984 .2 2 .01 3,984 .2 2 .06 4,264 .61 1 .89 
EU_20_5a_100 0 .95 5,726 .13 3 .46 5,708 .18 71 .15 5,753 .79 124 5,752 .17 59 .58 
EU_20_5b_100 0 .95 3,889 .6 3 .90 3,889 .6 31 .06 3,949 .35 71 .28 4,003 .9 140 .24 
EU_20_5c_100 0 .95 6,276 .98 2 .72 6,273 .25 107 .46 6,295 .96 44 .67 6,511 .95 16 .14 

In all cases instances up to 20 nodes, 500 services and 5 orders are solvable deterministically with the exception of the instance 
EU _ 20 _ 20 _ 250 for weights (1,1,1) and (1,0,0). For the stochastic version with the sample size of 10 the instance EU _ 20 _ 5 _ 250 
seems to be the limit. The limitation in this case is not the computational time but rather the memory since the size of the prob- 
lems becomes easily too large for CPLEX to read it. The computational times are less than one minute for each of the considered 
instances with a maximum of slightly more than 3 minutes for one instance. The number of orders has a higher influence on 
the complexity of the problem than the number of services as it can be also seen from the computational times. The lowest 
computational times are achieved for the weights (0,1,0) since in this case only the penalty costs for late arrival are considered 
and therefore the model just needs to find a solution where no delay occurs at the destination which was successfully found in 
all deterministic cases and in most of the stochastic cases. The benefits of additional services can be also seen in this case since 
the costs tend to decrease with the increasing number of services. 

Next to the travel time uncertainty, demand uncertainty has been investigated as shown in Table 10 . Demand uncertainty 
has been analyzed based on three different uncertainty levels, namely “low uncertainty”, “medium uncertainty” and “high un- 
certainty”. Thereby, medium uncertainty levels are based on our empirical analysis of traffic flow levels and thus match the 
probabilities used for the case study. Based on that, high uncertainty levels were chosen with twice as high probabilities for 
disrupted or congested states while in the low uncertainty case these probabilities were halved. 

As seen from Table 10 , demand uncertainty has impact on both the solution time and the quality. Depending on the uncer- 
tainty level, for some of the instances, the solution value increases with the increase in uncertainty level. More specifically, these 
instances (i.e., E U _ 20 _ 1 c _ 100 , E U _ 20 _ 2 c _ 100 , E U _ 20 _ 5 c _ 100 ) are sensitive to the change in demand. Based on this analysis, it 
can be stated that demand uncertainty has impact but it is less affective than travel time uncertainty. 
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7. Conclusions and future research directions 

New trends, such as intermodal transportation, are extending existing transportation systems and integrating available trans- 
portation options in a sustainable way. The integration among transportation modes, such as road, rail and maritime transporta- 
tion, potentially increases harmonization effort s f or multiple transportation users. This could be achieved by considering not 
only monetary costs but also customer satisfaction (i.e., timely delivery), and environmental concerns of the transportation. 

In this paper, we have proposed a novel continuous-time mixed-integer linear programming formulation which evaluates 
the time of occurrence of transportation activities and the number of containers transhipped on transportation services (i.e., 
truck, train and barge). The model extends the fixed charge network design formulation by considering the synchronization of 
the transportation services and supporting the multi-objective nature of the SND-oriented problems. Moreover, the proposed 
formulation considers the travel time uncertainty, which is one of the most crucial factors affecting the reliability of intermodal 
transportation. In order to deal with uncertainty in travel times, we have applied sample average approximation algorithm which 
evaluates an extensive set of scenarios in order to develop more robust transportation plans in terms of selected costs, time, or 
environmental objectives. 

We have validated the proposed methodology on a real-life case study. Our results indicate that the proposed stochastic math- 
ematical formulation generates robust solutions that compare favorably with solutions generated by a deterministic formulation. 
To fully evaluate the effectiveness of the proposed approach, we generated different sets of instances based on real geographic 
data and compiled a library of GISND-TTU instances. We have presented results of extensive computational experimentation 
using the proposed stochastic methodology and have compared it against the solutions produced using the deterministic formu- 
lation. The results show that the proposed algorithm is highly effective in finding good-quality and robust solutions on instances 
with up to 20 locations and 500 transportation services. 

Considering the development of the intermodal transportation, the following two areas were identified as further research di- 
rections, which include: ( i ) extending the formulation to generate the transportation plan with asset management consideration, 
and ( ii ) developing the dynamic programming algorithm to consider the real-time characteristics of data. 
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