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A Green's Function for the Annulus(*). 

MIROSLAV ENGLI~ (**) - JAAK PEETRE 

gutta cavat lapidem, consumitur anulus usu 
OVID, Epistulae ex Ponto 

Abstrac t .  - In this paper we find an expression for Green's function for the operator A 2 in a pla- 
nar circular annulus with Dirichlet boundary conditions (clamped elastic plate). We like- 
wise determine the corresponding Poisson type kernels and the harmonic Bergman kernel. 
These results come in terms of certain new transcendental functions which in a natural way 
generalize the Weierstrass zeta function. They are analogous to the result of R. COURANT - 
D. H1LBERT (Methoden der Mathematischen Physik I (3. Aufl.), Springer-Verlag, Berlin, 
Heidelberg, New York (1968), pp. 335-337) and H. VILLAT (Rend. Circ. Mat. Palermo, 33 
(1912), pp. 134-175) respectively. As an application we show that, regardless of the size of the 
ratio of the radii of the bounding circles, the Green's function always assumes negative 
values, which constitutes another rather striking counter-example to the well-known Boggio- 
Hadamard conjecture. 

O. - I n t r o d u c t i o n .  

Let t9 = { 1 < I x I < R } be a (circular) annulus in the complex plane C with gener- 

ic point z = x + iy  = reiS. In this paper we shall consider the problem of determining 

Green's function for the operator A 2 (the square of the Laplace operator A = ~ / a x  2 § 

+ ~ / a y  2) in ~ subject to Dirichlet boundary conditions u = 3 u / a N  = 0 on the boundary 

aQ = { I z I = 1 } U { I z I = R } of tg, N being the outer normal on a~9. 

A solution of the analogous question for the operator A itself can be found in the 

book [8], pp. 335-337 (cf. Appendix V of the present paper). There the problem is re- 

duced to the study of a functional equation and in this way the appropriate Green's 
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function gets expressed in terms of Jacobi theta functions. We record that, physically 

speaking, it is question of a clamped elastic plate respectively a membrane. 

REMARK t. - We note also that the homogeneous Dirichlet problem on the other 

hand, was considered by H. VILLAT [21] in 1912. From the formulae in his paper one 

can read off expressions for the corresponding Poisson kernels in terms of the Weier- 

strass zeta function. (Villat's result is not quoted in [8].) [] 

Regarding the operator zJ 2 practically the only paper that we known of(1) dealing 

with the determination of Green's function for the annulus or similar domains (cf. Re- 

mark 1 in Appendix III) is a somewhat sketchy note by O. VENSKE [20] from 1890 (we 

have not been able to locate any later publications by him). 

Our approach is rather simple-minded and depends on separation of variables (the 

method of Bernoulli and Fourier). In principle it works also for any power zip (p = 

= 1, 2, . ..) of A and for many other operators as well (cf. the appendices) and also in 

higher dimensions (R  4 in place of C); in this paper we consider the two dimensional 

case exclusively. Let us give an outline of our method. 

For simplicity we assume first that the pole of our Green's function U sits at a 

point t on the positive real axis, 1 < t < R. In accordance with Almansi's theorem [1] 

(see Appendix I) we have the Fourier expansion 

U = ~ " ( A 2 r  ~ + B * r  2+~ + C * r  -~ + D * r 2 - ~ ) e  i~~ in { 1 <  Izl < t } ;  

U =  E " ( A * * r  ~ + B * * r  2+~ + C**r  -n + D * * r 2 - ~ ) e  in~ in {t < tzl < R } .  

The double stroke " after the sum sign means that the expression has to be modified if 

n = 0, -+ 1 due to the presence of logarithmic terms (we turn to this case only in Sec- 

tion 3). The corresponding basis of biharmonic functions consists of the functions z ~ 

and z ~ Iz 12 and their conjugates (plus the logarithmic terms when n = 0, -+ 1; cf. again 

Section 3). The boundary conditions give 

A* + B* + C* + D* = 0; 

nA*  +(2 + n) B* + ( - n )  C* +(2 - n) D* = 0 ; 

A * * R  ~ + B * * R  2+~ + C * * R  -~ + D * * R  2-~ = 0 ;  

nA~**R ~ +(2 + n) B : * R  ~+~ + ( - n )  c ** h~-" +(2  - n) D ** R.2-" = 0 

(1) We learnt this piece of information from H~C~N HEDENMALM. 
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On the other hand, let U* and U** denote the one-sided distributional boundary 
values of u on the circle { [z[ = t}. Exploiting the partial differential equation A 2U = 

= St(z) (Dirac delta function) then gives 

U** - U* = 0 ; 

aU** aU* = 0" 
aN aN ' 

. ~ U * *  ~ U *  =0; 
aN 2 aN 2 

~ U * *  33U * =t -15o(0) ,  
aN ~ aN ~ 

where 50 is the one dimensional delta function at the point 0. 

REMARK 2. - The presence of the factor t-1 in the last equation is due to the 
relation 

I I 5t(r' O)rdrdO = 1, 

where as above 5t stands for the delta function placed at the point t. �9 

It follows that we must have 

AA~t~+ AB~t2+~+ AC~t-~+ A D ~ t 2 - ~ = O ;  

n A A ~ t ~ + ( 2 + n )  A B ~ t 2 + ~ + ( - n )  A C ~ t - ~ + ( 2 - n )  AD~t ~-~ O; 

n2AA~t ~ + (2 + n)2AB~t 2+~ + ( -n)2AC~t  -~ + (2 n)2AD~t 2-~ O; 

8 2 + n  1 nSAA~t ~ + (2 + n) AB~t  + ( -n)aAC~t  -'~+ (2 n)SAD~t 2-~ 2z  t 2 , 

where we have put AA~ = A:*  - A* etc. Thus for each index n we have in toto a sys- 
tem of 8 linear equations in the 8 unknowns A*,  B*, C*, D*,  A~*, B**, C**, 
D** . 

Why have we undertaken this research? One reason is that we thought that this 

might shed some new light on the time honored problem of the positivity of Green's 

function for the clamped plate (see e.g. the discussion in [14], where the author evokes 
the names BOGGIO and HADAMARD, speaking of the Boggio-Hadamard conjecture). In- 

deed, using the explicit formulae obtained, we are able to show that, regardless of the 

size of R, the Green function U is always negative at some point. On the other hand, as 

the aforementioned formula in the case of the operator A involves theta functions, we 

thought that the generalization to the case of A 2 might also involve interesting special 
functions. From this point of view this paper belongs to a series of papers which the 

senior author has been engaged in over a long period, the first of these being per- 
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haps [15]. That  the resulting formulae become so very  complicated is of course a 

source of some disappointment. 

The disposition of mat ters  is as follows. The solution of the above mentioned linear 

system is given in Section 1. Indeed, it is convenient to t rea t  a more general case with 

general multipliers xl ,  x2, x3, x4 in place of the particular set of numbers  n, 2 + n, - n, 

2 - n. In this special case the full expression of the Fourier  coefficients is writ ten out 

in Section 2, where  we likewise verify the convergence of our series. The exceptional 

case n = 0, - 1 is considered in Section 3. Finally, in Section 4 we collect the informa- 

tion obtained so far  writing out the series expansion of the function U in full. The re- 

sult is expressed in te rms of certain , , t ranscendental ,  functions, apparently,  of a new 

type. The simplest of these is a certain meromorphic function X(2), in the punctured 

plane C \ { 0 } ,  which for R -2 < IAI < R ~' is given by the series development 

I~1 >1 (R ~ - R - ' )  2 - ne(R - R - l )  2 " 

REMARK 3. - Actually, the expression occurring in the above denominator occurs 

already in Almansi's great  paper  [1], p. 24. Perhaps  we should call it the Almansi de- 
terminant. (A related expression occurs also in GARABEDIAN [12], formula (36), p. 512 

in case of a domain bounded by an ellipse.) Note that  we assume basically tha t  R > 1, 

that  is, tha t  I z I = R is the outer  circle. However, it is ve ry  easy to modify our formu- 

lae to the case R < 1 when ]z I = R is the inner circle (see Remark  4 in Section 2) or 

even, in order  to obtain more symmetric formulations, to adapt  the result  to the case 

when we have two circles Izl = R and ]z I = R '  with R ~ R ' ,  as in [1]. I t  is the ratio 

R/R' tha t  matters ,  m 

We note tha t  in the case of the operator  A (cf. Appendix V) one encounters instead 

the series 

~ Tb 

R n -~ I~l > o - R ' 

which series is closely connected with the Weierstrass  zeta function, or ra the r  with its 

multiplicative analogue. Thus the above function X must  be viewed as a natural  gen- 

eralization of the lat ter  (2). In the case of A 2 the same function X enters  also in the ex- 

pression for the corresponding Poisson kernels, which calculations are set forth in 

Section 5. Section 6 is devoted to the limiting cases R --~ 0 and R --) ~ (the punctured 

(2) In a way, what we are dealing with in this paper may be viewed as a generalization of 
quantum- or q-function theory; cfo Remark 2 in Section 8. Often, for instance in [13], one puts 
q = R 2 and considers this quantity as the modulus of the annulus. 
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disc and the exterior of t:he disc, respectively) and also contains a partly new coun- 

terexample to the aforementioned Boggio-Hadamard conjecture. The latter is com- 

pletely solved (for the case of the annuli) in the next Section 7: we show that U can 

never be positive in the whole annulus. In the proof a decisive rSle is played by the fa- 

mous Schur algorithm [18]. In Section 8 the function X and the other transcendental 

functions entering in our expression for U are studied in some detail. 

There are also several appendices where we discuss auxiliary topics. In Appendix 

I we have assembled some salient facts connected with biharmonic functions in gener- 

al, including a proof of Almansi's theorem [1]. In Appendix II we extend our results to 

the more general case of Hedenmalm's famous weighted bi-Laplacean A Iz I -2~A, 

a > - 1 [14]. In Appendix III  we consider briefly the related case of the strip, which 

may be viewed as a limiting case of the annulus. Appendix IV deals with the singular- 

ities of the biharmonic continuation of the Green function. In Appendix V we indicate, 

mainly for the benefit of the reader, the corresponding computations of Green's func- 

tion for the operator A (not ,t 2) in the annulus. Note that this gives also, in principle, 

an alternative derivation of the formula in [8]. Finally, in Appendix VI we put the ba- 

sic computation in Section 1 in a broader perspective by connecting it with a certain 

interpolation problem. 

The sign �9 is used liberally to design not only end of proofs, but also end of re- 

marks, examples etc. 

1. - S o l u t i o n  o f  a s y s t e m  o f  l inear  equat ions .  

It will be convenient to consider a somewhat more general system of equations, 
viz. 

(1) 

A* + B* + C* + D* = 0 ;  

x l A *  +x2B*  +xaC* +x4 D* 0 ; 

A ** R ~ + B** R ~2 + C** R ~8 + D** R ~4 0; 

X l A * * R  ~ + x 2 B * * R  ~ + x s C * * R  ~s + x 4 D * * R  ~4 0; 

z t A t  ~1 + A B t  ~2 + ACt xs + zJDt x4 0 ; 

x l A A t  ~ + x 2 A B t  ~ + x s A C t  ~8 + x 4 A D t  ~4 O; 

x ~ A A t  ~ + x ~ A B t  ~ + x ~ A C t  ~8 + x ~ A D t  ~4 0; 

x ~ A A t  ~ + x ~ A B t  ~ +x~ACt  ~3 + x ~ A D t  ~ c ,  

with, similarly as before, zlA = A ** - A *  etc. and arbitrary exponents 

the number c being an arbitrary constant. It is clear that when 
Xl, X2, X3, X4, 

t 2 
(2) xl = n ,  x2 = 2 + n ,  x3 = - n ,  x4 = 2 - n ,  c = - -  

2~  
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then (1) reduces to the system in the Introduction. Note that, in the general case, the 

exponents x~, x2, x3, x4 enter in a symmetric fashion. In the four last equations (1) it is 

essentially question of inverting a 4 dimensional ,,Vandermonde matrix-. Indeed, it is 

readily seen that one has 

c t  -- x l 
(3) AA = etc. 

(X 1 - - X  2) (x l  -- X 3) (x l  -- X 4) 

This allows one to eliminate, say, the variables A** etc., writing A**  = A *  + A A ,  in 

the first four equations (1). Therefore what remains is a system of four equations for 

the determination of the quantities A* etc., namely 

(4 )  

i A* + B* + C* + D* =0; 
x l A *  +x2B*  +xaC* +xaD* = 0 ; 

A * R~I + B *  R ~ + C*  R ~3 + D *  R ~4 = �9 ; 

x l A  * R ~ +x2B*  R ~ +x3C* R x~ +xaD* R x4 = c0c2, 

where 

(R / t )  ~, (R / t )  ~ 
+ + 

(X 1 -- X 2) (x l  -- X 3) (x l  -- X 4) (X2 -- X 1 ) ( x 2 -  X 3 ) ( x 2 -  X 4) 

(R / t )  ~ (R / t )  ~' 
+ + 

(x8  - x ~ ) ( x 8  - x 2 ) ( x 8  - x 4 )  ( x4  - x ~ ) ( x 4  - x 2 ) ( x 4  - x 3 )  

and 

xl (R / t )  ~ 

(~)(~) = - c  (x 1 _ x2)(Xl _ x3)(Xl_ x4 ) 

x2 (R / t )  ~2 
+ + 

(X 2 -  X 1)(3~2- X 3 ) ( x 2 -  X 4) 

x3 (R / t )  ~ x4 (R / t )  ~4 1 

+ (x~  - x l  ) ( x8  - x2  ) (x3  - x4  ) + (x4  - x l  ) ( x 4  - x2  ) ( x 4  - x 3 )  ] " 

In treating the system (4) we begin by expanding the corresponding determinant, 

viz. 

A = 

1 1 1 1 

Xl x2 X3 x4  

R~I RX2 R r R~4 

x l R  ~1 x2R r x sR  r xt R~4 
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using Laplace's theorem [16], p. 38. We find 

A - ( x  2 - X l ) ( X  4 - x 3 ) R  xa+x4 - ( x  3 - X l ) ( X  4 - x 2 ) R  x2+x4 + 

+(x4 - xl )(x3 - x2) R ~2 § ~ + (x8 - x2)(x4 - xl  ) R ~ § ~4 _ 

- (Xa - x2  ) ( x 8  - x l  ) R x~ + ~8 + ( x t  - x8  ) ( x 2  - x l  ) R ~ + ~2, 

which formula can also be writ ten as 

(5) 

I 
A = ( x  1 - X 2 ) ( x  3 - x4)(R xl+x2 + R x3+xt) + [ 

+ (xl - xa )(x4 - x~ )(R xl + ~3 + R ~  + ~4) + I" 

+ ( x l  - x 4 ) ( x 2  - x s ) ( R  ~' § ~' + R x~ § ~ )  

EXAMPLE 1. - Let  us look at the special case when the exponents are given by (2). 

In this case the differences and the sums of the exponents Xl etc. are given by 

(xi-xk)= 

- 2  2n - 2  + 2n)  

0 2 + 2 n  

- 2 n  - 2  - 2n 0 --2 

2 - 2n - 2 n  2 O 

and 

(xi + xk)  = 

�9 2 + 2 n  0 2 } 

2 + 2 n  �9 2 4 

0 2 �9 2 - - 2 n  

2 4 2 - 2n o 

respectively(8). Using this information one finds 

(6) A = A , = A ~ ( R ) = ( - - 2 ) . ( - 2 ) ( R 2 + 2 ' ~  + R 2 - 2 ~ ) - 2 n . 2 n ( I  + R a )  + 

+ ( - 2  + 2n)(2 + 2 n ) . 2 R  2 = 4 R 2 [ R  2~ + R - 2 ~ -  n 2 ( R  2 + R -2)  + 2(n 2 -  1)], 

(a) Note that the latter is a Hankel matrix; since the diagonal terms are of no interest for us 

we have indicated them by the sign �9 This is of course jus t  a res ta tement  of the 
fact that  xl + x4 = x2 + xa = 2 in this case. 
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which also can be writ ten 

(7) A = 4R2 [(R ~ - R -~)2 _ n2(R  _ R - l ) 2 ]  l" 

F o r  later  use we also set 

(8) i M~ = M~(R)  = (R '~ - R - n )  2 - n2(R  - R - l )  2 

so that  A = 4R2M~ then. �9 

REMARK 1. - The quanti ty M .  will play a major  rSle in what  follows. Le t  us note 

tha t  M .  > 0 if l n l  > 1. As recorded already in Remark  3 in the Introduction, M .  oc- 

curs essentially already in [1], p. 24. We suggested there  tha t  it be called the Almans i  

determinant. See also Example  1 in Appendix VI. �9 

Returning to the general  case we can now determine the coefficients with the help 

of Cramer 's  rule. Le t  us begin by writing down an expression for the unknown A*, 

A ' A *  

say. We have 

0 1 1 1 

0 x2 xa x4 

~) R ~ R ~  R~4 

c2�9 x2 R ~  x3R ~8 Xa R~4 

or, upon subtracting a suitable multiple of the third row from the fourth, 

A ' A *  

1 1 1 

x2 xa x4 

(q)x2 - ~ ) R  r (q)xs - � 9  ~8 (~PXa - ~ ? ) R  ~4 

or expanding 

A - A *  = (x4 - x3 )(~x2 - ~ ? ~ ) R  ~ + (x2 - Xa )(Q)x3 - ~)qg) R x3 + (x3 - x2 )(q)x4 - ~?q~)R ~4 �9 

On the other  hand, we fred 

[ (R/ t )  ~ (R/ t )  ~8 (R/ t )  ~' ] 

�9 - c$~ = c" (x~ - x3)(xl - x4) + 0 + (x3 - x~)(x~ - x4) + (x4 - xi)(x4 - x3) ; 

[ (R/ t )  ~ (R/ t )  ~2 (R/ t )  ~4 ] 

(Px3 - ~ � 9  = c. (xl - x2)(xl - x4) + (x2 - xl)(x2 - x4) + 0 + (x4 - xl)(x4 - x2) ; 
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( R / t )  ~' 

(~X 4 - -  ( ~ ( ~  ----- C" (X 1 __ X 2 ) ( X l  __ X3 ) 

( R / t )  ~ ( R / t )  ~3 
+ + 

(X 2 - -  X l ) ( X  2 - -  X3)  (X3 - -  X l ) ( X  3 - -  X2)  
o 

Using the above we obtain 

A *  = ~ -  (Xl - x 3 ) ( x l  - x4 ) 

R~8+x2t -x3  RX4 +x2t-x4 + / + 
X3 --  ~1 X4 - -  Xl / 

.{_[ (X2 -- x4)RXl+x3t-Xl R ~ + ~ t - r  
( x l  - x 2 ) ( x l  - x 4 )  + x2 - Xl  u  + 

[ (X 3 _ x 2 ) R X l  +~4 t - ~ l  
+ i (X 1 - -  X 2 ) ( x 1  - -  X 3 )  X 2 - -  X 1 

R~ + ~ t -r  + R ~ + ~ 4 t  -~3 )] 
X 3 - -  X 1 " 

After some simplifications we can write this as 

(9) 

C [ ( (XS- -X4)  R~l+x2 
A * =  ~ -  - ( x l - x 3 ) ( X l - X 4 )  

(x2 - x 3 ) R  ~1+~'  
+ - -  j t- l + 

(~4  --  X2)  R x l + x 3  
+ + 

(X 1 - -  X 2 ) ( x 1  - -  X 4 )  

"1 
( R  ~2 - R ~ 3 ) R  ~4 I ( R ~  - R~4)  R~2 (R~' - R~2)R~8 t - ~  + t-~4 

"~- X2 --  •1 t - x 2  .{. X3 _ X l  X'4 _ X'I J 
which formula can again be written in condensed form as 

c [ ~ (xk - x~)R ~1 +~j t_~l + ~ (R ~k - R~l)R ~i ~'-~] 
A* 

where the summation is carried over all cyclic permutations j k 1 of the indices 2 3 4. 

Exploiting the symmetry we can now likewise write down the corresponding expres- 

Sions for the remaining coefficients B* etc. We find thus corresponding to (9): 

(10) 

(x2  - x 3 ) ( x 2  - x 4 )  

(X 1 -- x3)R~2 +x, 

+ 

(x4  - x l  ) R ~ § ~ + + 
(9C 2 -  X 1 ) ( x 2 -  X 4 )  

t -~1 + 
X 1 - -  X 2 

(R ~4 - R~I)R ~3 (R ~ - R~)R~4 ._~ 1 
x3 - x2 t-~3 + x4 - x2 $ ~ ] 
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(11) 

- 

(Xl - x ~ ) R  ~ + ~  \ 
+ ) + 

(X2 - x4 ) R ~8 + ~1 
+ + 

(X3 -- X2)(X8 -- X4 ) 

(R:e4 _ R X l ) R X 2  (R~,2 _ R X 4 ) R ~  
+ t - ~  + t-~1 + 

X2 - X3 X~ - x8 

(R~I  - R~2)R~4 

x4 - x~ 
t--~4 ] 

and 

(12) 

r( 
D * =  - c ] _  ( X 3 - X l ) R  ~4+~ 

A [  (X 4 -- X 3 ) (x4 -  X 1) 

( x2 - xs ) R ~ + ~ 

( x l  - x~ ) R ~4 + ~8 
+ + 

(X 4 -  X 2 ) (x4 -  X 1) 

(R~8 - R ~ I ) R ~  (R~I - RX2)R~3 (R~2 - R~8)R~I | 
1 

+ X2 -- X4 t -x2 + X3 _ X4 t -x3 + Xl _ X4 t - x l  ] 

Note that ff we move the i-th column to position 1 then the sign of the determinant A 

changes; this explains the presence of a minus in front of c in the above expressions 

(10) and (12). 
As A** = A* + •A, we can using (4) also easily get formulae for the quantities 

A** etc. Fo r  instance, we have 

r [ (  ( x 3 - x a ) R X s + x 4  ( x 4 - x 2 ) R  x2+z' 

(13)  d * *  = - ~  (-~1---x-8)-(-~1 ----~4) + ( x l  - x 2 ) ( x l  - x t )  + 

(X 2 -- xs)RX2+x~ ) + + 

(R~3 - R ~ 4 ) R  ~ (RX4 - R~2)RX3 
+ t - x 2 +  

X2 -- 2Cl ~3 -- X~I t -x8 "~- X4 _ Xl j ,  

and similar formulae for the remaining coefficients B**,  C** and D**. 
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REMARK 2. - The apparent similarity between the expressions for A* etc., on the 

one hand, and A** etc., on the other hand, is connected with the fact that if we replace 
A* etc. by R~IA ** etc., at the same time writing - c in place of c, we get as solution of 

the same system (1) with 1/R in place of R and t /R in place of t. �9 

2. - T h e  F o u r i e r  c o e f f i c i e n t s  f o r  I n l  > 1. 

Specializing to the case x I = n, x~ = 2 + n, xs = - n, x4 = 2 - n (with n ~ 0, -+ 1) 
the formulae (9)-(12) in Section 1 give us at once the corresponding coefficients in the 

Fourier expansion of our Green's function U (see Introduction). Indeed, we fred after 

some rearrangement: 

(1) 

1 [ ? -  1 ) { ( R e n - 1 ) - n 2 ( R  - 2 -  1)}t 2 . ~ -  
A * -  16:rM~ n( 

1 ( R - 2 ~ -  l)t2+~ + n--~-~(R-2~- R2)tn ] _(R 2 -  1 ) t - ~ _  ~ 

(2) 

1 [ 1 {(R 2" - 1) - n 2 (R 2 - 1)} t -~ + 
B * -  16zMn[ n(n + l) 

1 (R-2n _ R - 2 ) t 2 + n  1 [ +(R-2  _ 1)t2-~ + ~ _ _ ~ ( R - 2 n  _ 1)t~ 
J 

(a) 
1 [ 1 {(R -2~ - 1) - n2(R -2 - 1 ) } t  2 + n  - 

C* - 16:~M~ n(n + 1) 
L 

1 ( R 2 ~ _ R e ) t _ ~ +  I ( R 2 ~ _ I ) t 2 _ ~ _ ( R  2 1)t ~] 
n + l  ~ "  - J 

(4) 

I 

D* -- 1 [ 1 {(R - 2 ~ -  1) - n2(R 2- 1)}t ~ + ] 
16zMn [ n(n -1) 

+ l ( R 2 n - 1 ) t - ~ + ( R - 2 - 1 ) t 2 + ~  nl-l(R2~-R-2)t2-n] 

,Here Ms is as in formula (8) in Section 1. 
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REMARK 1. - Note that  we have C~* = A-*n, D* = B - n ,  which is a reflection of the 

fact that  the function U is real valued. This remark  will be exploited in connection 

with our final result  in Section 4. �9 

Similar formulae prevail for A** etc. F o r  instance, we have 

(5) 

A** - l__k__ [ 
16zM~ 

- (R 2 - 1) t -n 

n(n I 1) { (R-2~-  1) - n2(R 2 -  1)}t 2 . n -  ] 

_ l (R_2n _ X)t2 +n + n _ ~ ( R _ 2 n  _ R~)tn ] " 

REMARK 2. - The rule by which a formula like (5) is obtained is, apparently,  the fol- 

lowing: We keep the last three terms but modify the first one by first subtracting the 

quantity Mn from the expression within curly brackets { } and then changing the 

sign of the whole so modified term. �9 

F or  the sake of completeness we write also down the expressions for the quanti- 

ties AAn etc. (cf. formula (3) in Section 1): 

1 t 2 . n  1 t -n 
AA~. = - 16~ n ( n -  1 ) '  AB,~ 16~ n(n + 1 ) '  

1 t 2+n 1 t n 
ACn = - 16z n(n + 1) ' AD,~ 16~ n(n - 1) " 

F rom formulae (1)-(4) we can obtain the following asymptotic expressions for our 

coefficients for n ---> ~:  

1 . t 2 1 
(6) A 2 ~  16~ n 2 t n '  

(7) B * - -  1 . 1 . 1 .  
16z~ n ~ t n ' 

1 t 2 - 1 .  1 
(8) C* - 16z n t --~ ; 

1 t 2 -  1 1 
(9) D * - -  16~ n - ' t  -~" 

Here  we have used the fact that  by our hypothesis 1 < t < R. 
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PROOF OF (6). - (The proof of (7)-(9) is entirely parallel.) I t  follows from (1) 

that  

= 16---zl R2n [ n(nt2- 1) -2n) -2-2~ [(1 - R - n 2 ( R  - R - e ' ) ]  _ t ~ A ~  * 

-2n  t \2n n__~(R-2n_R2)(t)2n + ]. 

I t  follows from (8) in Section 1 that  

R 2n 
lim 

n--> ~ M~ 
- 1 .  

Moreover, by hypothesis we have 1 < t < R. Therefore we find 

t 2 
lira n 2 t ~ A~ * - , 

n - ~  ~ 16~ 

which is precisely the meaning of the symbol - in (6). �9 

Now we observe that  C* = A * .  and D* = B * . .  This follows by inspection from 

(1)-(4)i but is also a reflezLion of the fact that  the function U must be real valued. 

Therefore (6)-(9) can likewise be used to get asymptotic estimates for the same coeffi- 

cients for n - - . -  ~ .  In particular, we can draw from here the following important  

conclusion. 

LEMMA 1. - Assume  that 1 < t < R.  Let  E *  (r) denote the n-th coefficient in the 

Fourier  expansion of  our Green's funct ion  U in the region 1 < Izl < t, i.e. (see the 

Introduction) 

E * ( r ) = A ~ r n + B ~ * r 2 + n + C * r - n + D * r 2 - ~  (n ;~ 0 , - - 1 ) .  

Then we have the estimate 

IE*(r) l  ~< const: max 7 '  ~ ' 

with a constant independent o f  r. �9 

Again it follows from here that  our series converges not only for 1 < Izl < t, as it 

is expected to do, but also for l i t  < Izl <<. 1. Thus, as a corollary, we have obtained 

an explicit biharmonic continuation of  the funct ion  U to the whole region 

1/ t  < Izl < t .  

REMARK 3. - We have treated only the case 1 < I z I < t. The case t < i z I < R can 

be treated in an analogous way. Alternatively one could have relied on the fact that  

the whole set-up is invariant under inversion, z ~ R / z .  �9 
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REMARK 4 .  - (The case R < 1.) Finally we remark that  up to now we have assumed 

that  R > 1. On the other hand, if R < 1, i.e. we have the annulus t~ = {R < I z ] < 1 }, 

we can use exactly the same expressions for the Fourier coefficient: The only thing 
that we have to do is to change the sign in the above formulae (1)-(4). Namely, 

there appears a minus sign in the right hand side of the last 4 of the 8 linear equa- 

tions for the Fourier  coefficients, because change of ,,orientatiom): the coefficients 

with a single s tar  * now correspond to the ,,exterior,) portio {t < Iz[ < 1} of the 

annulus, while the ones with a double star  ** correspond to the ,,interior~ portion 

{R< ]zl <t}. �9 

3. - The case i nl  ~< 1. 

In this section we quickly go through the computations of the Fourier coefficients 

in the exceptional case n = 0, -+ 1. If, as before, the n-th Fourier  coefficient is denoted 

by E~(r) (with an additional superscript * if 1 < ]z I < t, and a superscript ** if 

t < I z] < R), then we have (cf. Appendix I) 

Eo (r) = Ao + Bo r 2 + Co log r 2 + Do r 2 log r 2 ; 

E 1 (r) = A 1 r + B l r  8 + C1 r -1  + D1 r l o g r  2 ; 

E_! (r) = A_l r -1 + B_l rlogr 2 + C_l r + D_i r a 

corresponding to the following bases of biharmonic functions: 

( i '  r2' l~ r21~ ; (z' zr2' l '  zl~ { z - l '  -zl~ -2' -Sr2}" 

We treat  each of these three cases separately. 

~ - ~ .  In this case we are lead to the system of equations 

+2zJBot 2 + ( - 2 ) A C o  

0 + 0 + 4riCo t 2, 

where dAo = Ao** -Ao* etc. Following the same policy as in Section 1 we begin by 

(Ao* + Bo* + 0 + 0 = 0 ;  

0 +2B0* + 2Co* +2Do* = 0 ; 

A~'* + B~'*R2 + C~*logR2 + D~'*R21ogR 2 = 0 ;  

0 +2Bo**R + 2Co**R -1 +2D~*(RlogR2+R)  = 0 ;  

AAo + ABot 2 + dCologt  2 + dDot21ogt 2 =0; 

0 + 2 d B o t  2 + 2ACo +2dDo(t21ogt 2+t  2) =0; 

0 +2ADo(t21ogt ~ + 3t 2) = 0; 

1 +4ADot  2 = 
2Jr 
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first solving the last four equations. One finds 

(1) 
A A  o = 1- i~(2t2  - t21ogt2); dCo ---- 1-i~t2;  

/IBo 1-i~z ( - 2  - logt2) ; A D o -  11__6_~z " 

Using the relations A~* = A~" + dAo etc., we can eliminate the quantities A~* etc. in 

the first four equations. This gives the system 

+ 0 = 0 ;  

2Cd ~ +200* = 0;  

Co**logR 2 + D0** R210gR 2 = q) ; 

Co** +2Do** (R210gR 2 + R 2) = �9  

where 

Ao* + Bo* + 

+2B0. + 

+ B ~ * ( R  2 - 1 ) +  

+2Bo**R 2 +2  

and 

1 = 1--~ [(2R2 - R21ogR 2) + ( - 2  - logR2)  t 2 + R21ogt 2 + t21ogt 2 ] 

1 � 9  = ]-~z [(R2 - R21ogR 2) - t 2 + R21ogt2] .  

The determinant of this system is of the form 4R2Mo where 

Mo = ( logR2) 2 - (R - R -1)2 ] �9 

Mn 
Mo= lim 

n--->O n 2 " 

(2) 

We notice that  

Solving out gives then 

(3) 

1 

Ao* = -Bo* - 16~M, [2(R2 - 1) + 210gR 2 - ( logR2) 2 + 

+ (2(R-2 _ 1) - 2 logR 2 - ( logR2)2) t  2 + 

+ (R 2 -  1 + l o g R  2) log t 2 + 

+ ( -  (R - 2 -  1) + logR2) t210g  t 2] 
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(4) 

Co* - 1 [(R e - 1) + logR e + 
16zMo 

+(R  - 2 -  1 - l o g R  2 -  ( logRe)e ) t  2 + 

+ ( R  2 - 1) log t e + 

+ log R2t~log t 2 ] 

(5) 

[_ 

1 [(R 2 - 1) + logR 2 - (log Re)  e + 
Do*-  16zMo 

+ ( R - 2 -  1 - log R e) t  e + 

+ log Relog t e - 

_ ( R - e  _ 1) tetog t 2 ] 

The coefficients A$* etc. are found using the relations A2* = A~ + AAo etc. along 

with the expressions for LtAo etc. obtained in (1). 

~ .  In this case the system takes the form 

I A~* + B~* 

A~* +3B~' 

A~* R + B~* R 3 

A~*R +3B~** R 3 

A A l t  + zlBlt  s 

AAl t  +3ABl t  s 

O0 +6AB!t~ 

+6AB!t  3 

+ C~* + 0 = 0 ;  

+ ( - 1 )  C~* ~- 2D~* = 0; 

+ C~*R-1 + D ~ * R l o g R  2 = 0 ;  

+ ( - 1 )  C~*R -1 + D ~ * R ( 2 + l o g R  2) = 0 ;  

+ AClt -1 + ADlt  log t 2 = 0 ; 

+ ( - 1 )  AClt -1 + A D l ( 2 t + t l o g t  2) = 0 ;  

+ 2AC1 t-1 + 2ADl t  = 0 ; 

1 
+ ( - 6 )  ACIt -1 + ( - 2 )  ADl t  = 

2 z  

t 2 . 

I t  can be treated in the same way as in the case n = 0 .  In particular, we find that  the 

first four equations give the determinant - 8 R 2 ( R -  R-1)M1 with 

i 

(6) i M1 = (R z - R - 2 )  log R e - 2(R - R - l )  2 

1 
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This time we have the limes relation 

M1 = lim 
n---)l n - 1 " 

The last four equations are solved by 

AA1 - 1 "t log t2; AB: = 1 t -1 
- 16---~ 16---~" 2 ; 

ACI=  1 . - t  8. = 1 
16:v 2 ' AD: --16z " ( - t ) "  

Finally, the sought solution is found to be given by the expressions 

(7) 

AI* = 1 - - [ ( R 2  - R -e - (R 2 + R -2) log R e ) t  + 
16:~M1 

+ ( R  - 2 -  1 + R-21og R2 ) t  8 + 

+(1  - R 2 + R21og R2) t -1  .{_ 

+ ( R -  R-1)2 t  log t 2] 

(8) 

1 [(R -2 _ 1 + R  -2log R 2) t - 
B I * -  16:~M: 

- �89  R2t 8 + 

+ ( R  2 -  1 - �89 R2) t  -1 + 

.6(1 - R - 2 ) t  log t 2] 

(9) 

1 [(1 - R 2 + R~log R2) t  + 
CI* -  16zM1 

+(1  - R -2 - �89 -~log R2) t  3 - 

._�89 Re t -1  + 

-{-(1 - R2) t  log t e ] 
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(10) 

D ~ =  1 [ ( ( R 2 _ R - e )  l o g R 2 _ ( R _ R - 1 ) 2 ) t +  
16;rM1 

+(1 - R-2) t3  + 

+(1 - R 2 ) t - 1  + 

+ ( R  - 2 -  R 2 ) t  log t 2] 

I n  = - 1 ] .  We have the obvious relations A-1 = C1, B-1  =D1, C-1 = A 1  and 
L _ _  

D_I = B1. Therefore we need not even write down the result in this case. Note also 

that the determinant is the same, M-1 = M1. 

REMARK 1. - Alternatively, we could have obtained the coefficient formulae in this 

section by a passage to the limit (n --, 0, 1 or - 1). Let us indicate how this goes in the 

case n = 0. We note that if the basis r ~, r 2+~, r -~, r 2-" is replaced by r ", r 2+~, 

( 1 / n ) ( r  ~ -  r-S), ( 1 / n ) ( r  2+~- r ~-~) then the coefficients A, ,  B~, C~, D~ are replaced 

by A~ + C~, B~ + D~, - nC~, - nD~; note that the expressions for the coefficients 

make sense even if we treat n as a continuous variable, rather than a discrete one, as 

up to now, of course, as long as we avoid the values n = 0, +_1. Thus we obtain 

A0 = lim (A~ + C~ ) ; B0 = lira (B~ + D~ ) ; 
n - ~ 0  n ---) 0 

Co = - lira nC~; Do = - lim nD~. 
n--)O n--)O 

Analogous formulae hold for n = -+ 1. However, the calculations become hardly any 

simpler this way. m 

~l. - Main  result .  

Using the formulae for the Fourier coefficients A~ etc. derived in Section 2 and 3 

we are, finally, in a position to write down an expression for our Green's function U. 

First we recall that up to this moment we have assumed that U has its pole at a point 

on the positive real axis, this mainly for notational simplicity. On the other hand, if 

the pole is situated on a ray forming the angle g; with the x-axis at the distance t > 0 

from the origin, we have simply to replace 0 by 0 - y;. I t  will be convenient to put 

w = te i~ ] . 
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In order to obtain a compact formulation it will further be convenient to introduce 

certain ,,transcendental- functions denoted X, Y, Y+, Y_, Z+,  Z _ .  They are defmed 

by the following series developments: 

(1) 

x<)i)= E 
[hi > 1 lws 

. . . .  ~ 1 R - 2 ~ - l . s  
Y(+t) = A, ~ - - - ~ - - - + t  

In[ > 1 '~ ZVln 

1 R -2s  _ 

Y+ ( ) i ) :  isl~l 

Y- ()i) = ~ , . ,~ , - -R-2"-R-~)I .  
Inl>l n + l  i n  

Z +  ()i) = .t~> 1 
1 1 n(n + 1) 

Z _  ()i) ~ 1 
Inl >1 n(n--- 1) 

( R - 2 <  [)i[ < R 2 ) ;  

(1 < I)i1 < R 2 ) ;  

R 2 
)i s (1 < I)i I < R 2 ) ;  

(R  2s - 1) - n 2 ( R  2 - 1 ) ) i  ~ 

(R  2~ - 1) - n 2 ( R  -2  - 1) )i" 

(1 < ])i I < R 2 ) ;  

(R < ])i] < 1); 

(R -2 < 121 < 1), 

where as before (see formula (8) in Section 1) 

(2) M, = Ms(R) = (R ~ -  R - S )  2 -  n 2 ( R -  R-1)2 = 

= R 2s + R -2~ _ ne(R 2 + R - e )  + 2(n 2 _ 1), 

and where we have indicated, to the right, their respective ranges of conver- 

gence. 

REMARK 1. - These functions will be investigated in some detail in Section 8. Let 

us note here right away only that the simplest and most basic of them is undoubtedly 

X()i). This function admits a meromorphic continuation to the whole punctured plane 

C \ {0} (=  doubly punctured Riemann sphere S 2 \ {0, oo }) with poles at the points 
R • R_+4, R_+6, ..., while the remaining ones are multivalued and display logarith- 

mic singularities. We note also that the function X has the obvious symmetry X(2) = 

= X(1/2), which follows from the fact that M.  is an even function of n, M - s  = Ms.  Fur- 

thermore the three function.,~ Y+, Y_ and Y can be unified by introducing the function 
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Y'`(2), depending on an auxiliary parameter  K (~  ___2, -+3, ...) with the expan- 

sion: 

Y~('~) = I~1 ~> ~ n  1 K R-2~-M~ R2'~'~" (1 < I~t I < R2) .  

Clearly we obtain the previous functions by taking K = 0, -+ 1. I t  is likewise tempting 

to set 

Z ' ` ( 2 )  = ~ 1 ( R  2'~ - 1)  - n 2 ( R  e'` - 1)  ~n. 

I~! > 1 n(n + K) M~ 

Then one covers in one stroke not only Z+ and Z_ (the case ~ = -+ 1), but also the 

function Y =  Yo. indeed, one has Y ( ~ ) = - ~ Z 0 ( 1 / ~ )  where ~ =~(d/d~) (Euler 

operator). " 

Now we can state the following theorem. 

THEOREM 1 . -  Let U = U(z) = U(z, w) be Green's function of the bi-Laplacean ,4 2 

in the annulus t9 = { 1 < I z I < R } with Dirichlet boundary conditions on the bound- 

ary aQ and pole at the interior point w ~ Q, i.e. i f  (~ = 5(z) = 5(z, w) is Dirac's func- 

tion at w, we have 

z J z U = 6  in t~" U =  aU _ 0  on at~ 
' S N  " 

Then U comes as a sum U = Utransc + Uelem of a ,,transcendental. part U t ~ c  and an 

U~lem + ,,elementary. part Uelem. Again the elementary part comes as a sum Ue~em = 0 
1 U~lem and a ,,first order,, part Ulele~. I f1 < i Zl < ]Wl the + U~I~ ofa ,,zeroth order, part o 

transcendental part is given by 

(3) 

( )) +lz l21wl  2 ( R - 2 - 1 ) X ( - ~ ) + Y _ ( z ~ )  

while the elementary one is given by 
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(4) 

1 {2(R 2 - 1) + 2 log R 2 - (log R 2 )  2 - 
U ~  16z~M0 

- ( 2 ( R  2 - 1) + 2 log R 2 - (log R 2 ) 2 ) [ z [  2 + 

+(2 (R-2  _ 1) - 2 log R 2 - -  (log R 2 ) 2 ) [ W [  2 - 

- ( 2 ( R - 2  _ 1) - 2 log R 2 - (log R 2 ) 2 ) [ z [  2 [W[ 2 "{" 

+ ( R  2 - 1 + log R 2) log [z[ 2 + ( R  2 - 1 + log R 2) log [w[ 2 + 

+ (R 2 _ 1 + log R 2 __ (log R 2)2) [ Z [210g [ z [2 + (1 - R - 2 + log R 2) [w ]210g [w [2 _ 

-(R2-1+logR2)lz[210g[w[2+(R-2-1-10gR2-(logR2)2)log [z[2[w[ 2 -  

- ( 1 - R - 2  +logR2)[z[2[w[210g [w[2 +(R-2-1-10gR2)[z[210g [z[2[w[2+ 

+ ( R  2 -  1 ) log  [z[210g [w[ 2 -  (R -2 - 1)[z[210g [z[ 2 [w[210g [w[ 2 + 

+ log R210g [z[ 2 [w[210g [w[2+ log R 2 [z[210g [z[210g]w[ 2} 

and 

(5) 

{ (' U~l~mX - 8~Mll Re ( 1 - R  2 + R 2 1 0 g R  2) ~ + + 

+ (R  2 - R - 2  _ (R 2 + R - 2 )  log R2)z~ - 2R210g  R 2 1_ + 
ZW 

+ ( ( R - 2 - 1 + R - 2 1 o g R 2 ) z ~ + ( R 2 - 1 - 1 R 2 1 o g R 2 ) Z ) [ z ] 2 +  

( ( , )w) + ( R - 2 - 1 + R - 2 1 0 g R 2 ) z ~ +  1 - R  - 2 -  ~ R - 2 1 0 g R  2 ~- Iwl 2 -  

_ 1 R - 2 1 0 g  R2z~lz[2 iw[2 + 

+(((R2-R-2)logR2-(R-R-1)2)z~+(1-R2) z ) log  [z[2+ 

2 W .-]-((R-R-1)2z~)+ (1-R )~)log IW12"~ - 

+(1  - R-e)z~lzl210g Iwl 2 + (1 - R-2)z~ log Izl 2 ]w[ 2 + 

+ ( R  -2 - R 2 ) z w  log I z I2 log  IW121 
) 

where Mo and M 1 are  given by (2) and (3) in Section 3. �9 
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REMARK 2. - Our policy in presenting the elementary part (see (4) and (5)), as well 

as the transcendental part (see (3)) has been to write out everything as a linear combi- 

nation of non-analytic functions with analytic ones as coefficients. [] 

As we have the symmetry U(z, w) = U(w, z)--a standard consequence of the fact 

that A s with Dirichlet boundary conditions determines a self-adjoint operator---we 

obtain as a corollary the following result. 

COROLLARY. - I f  I W I < I Z I < R we  can, interchanging the r61e of z a n d  w, use for  
U the same expressions as in the theorem. In particular, the transcendental part 

comes a8 

Z 

+,z,2( y zo +z +,w,2( + 

Thus the only significant change occurs in the two Z-terms. [] 

REMARK 3. - The above formulae thus look rather symmetric in z and w. To make 

this symmetry perfect let us put into play the following well-known fundamental sol- 

ution of the operator A 2: 

1 wl21og iz w12. E = E ( z )  = E ( z ,  w )  = ~ I z - 

This function has (for w frxed) the Fourier expansion 

E = ~ I  {]wl21og i w ] e + 2 1 z l 2 +  lz]21og~lwi2+ 

+ 2  R e  - z ~  log  Iwl ~ - ~ Iwl ~ - g ~ 

(~= 1 ( z )  ~ ]z 12 + ~ 1 ( z )  n ]w[2)} 
+ 2 R e  

n(n + 1 ) - w  - w  " 2 n = 2 n(n - 1) 

The functions U and E have the same singularities in ~9. It follows that their differ- 

ence U t = U - E, which obviously is symmetric too, is biharmonic in the whole of t~ 
and thus must be represented by the same analytic expression there. That this is so 

can be easily reflected at the hand of the formulae (3)-(4). For instance, if we compare 
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the coefficients of the terms z~ log ] z ]2 and z@ log [w [2 in (4), we see that  their differ- 

ence amounts precisely to MI! If  we turn instead our attention to the transcendental  

part  of U, we express this in terms of the functions Z_+. Let  us introduce two more 

functions Zt+ and Z r defined as follows: 

Zt+(2)=Z+(2)+(1- ~ ) l o g ( 1 - 2 ) -  l + ~-" 
2'  

Z t_ (4) = Z _  (4) - (1 - 4) log(1 - 2) - 2 .  

It  is clear that  these functions are analytic for R -2 < [A[ < R 2 and are in this range 

represented by the series: 

Z*+ (4) = - ~ 1 (R - 2 s -  1) -n2(R  -2 - 1)~n + 

= 2 n ( n  + 1) Ms 

+ s -~= -2 n(n + 1 ) 1  (R 2n - 1) Ms- n2 (R2 - 1) 4 s', 

1 (R - 2 s -  1 ) -  n2(R 2-  1) 
Z*_ (4) n=2A-~ n ( n : -  1) M s 

4 n +  

+ s=_~-2 n(n17- 1) (R 2s - 1) -Msn2(R -2 _ 1) ;t s . 

In particular, these series are clearly more advantageous from the numerical point of 

view than those for Zt+ and Zr [] 

5. - T he  P o i s s o n  kerne l s .  

We begin by recalling Green's formula which in the case of the operator A e takes 

the form 

(1) f .42f.g = IfA2g + I ( azJ f ag af _ f~Ag ~-ff g - Af -~-~ + - ~  Ag J aN ) 
Q ~ aQ 

where the integration is with respect  to area measure on t9 and arc length on a~9. In 

this connection ~ may be any bounded planar domain with smooth boundary a~2. 

Let  us apply (1) in the case when t9 is our annulus t3 = { 1 < I zl < R}, with the 

boundary coinsisting of the two circles F *  = { Izl = 1} and F** = { lzl = r}, taking 

f = U = our Green's function with pole at the interior point w �9 t~ and, furthermore, 

letting g be biharmonic in ~9,/12g = 0. Writing ~ =glgt~, ~f = (ag/ON) lat~ (restric- 

tion) we obtain the following representation formula for the solution of the homoge- 
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neous Dirichlet problem with data ~, v2: 

(2) g(w) = ] (Pq) + Qv2), 

9t~ 

where we have put P = (aAU) / (ON) la f2  , Q = - AU[ at?. The functions P and Q are 

known as the Poisson kernels at the point w corresponding to this problem. As the 

boundary af2 has connectivity two, the integral in (1) comes as the sum of two, one ex- 

tended over F* and the other over F**, so there are in toto four kernels denoted P*, 

P**, Q* and Q**. We remind that, as functions of w, they are biharmonic 

functions. 

We wish to find explicit expressions for these kernels. To fix the ideas we shall 

concentrate our discussion on P* and Q*. Assuming that 1 < [z[ < [w[ < R let us 

write the function U = U(z) = U(z, w) in the form 

(3) 

where a~ and b~ (n e Z,  j = 1, 2, 3, 4) is a somewhat ad hoc notation for coefficients 

that were in principle determined in Section 2 (see the formula (1)-(4) there); the 

double stroke " is, as in the Introduction, a reminder that the sum has to be conve- 

niently modified ff n = 0, +-1. In fact, we shall concentrate on the ~,transcendental,, 

parts of our Poisson kernels, leaving it to the reader to work out the corresponding 

computations in the ~elementary,, case, I ni ~< 1. 
We begin by writing down the corresponding expression for A U. We first note the 

formulae 

A(z  ~ izl 2) = 4(n + 1)z~; 

Using them and (3) we find 

A(z  ~) = O. 

+ 1) b*l (z~) n + (n + 1)b*2(z~) n ]wl 2 + 

+ ( n + l ) b , ~  ~ ) ~ + ( n + l ) b ~  w 
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the quantities a* have thus disappeared, as they should! Let  now z e F* ,  that  is, 

I zl = 1. From (2) in Section 2 we infer 

1 ( R - 2 ~ -  1);  5"1 = - b*2 - 1 - - ( R - 2 ~  - R - 2 ) ;  
n + l  

(n + 1)b~ = - 1 {(R2~ _ 1) - n 2 (R 2 - 1)}; b,~ = R-2  _ 1. 

Thus we find 

(5) Q*= ~ R e { ~ ]  " n + l  R - 2 " -  I ( z~) ,_  ~,,  R - 2 ~ - R - 2  
n M~ M n (zw)n Iwl2 + 

+ ~ , , 1  ( R 2 " - 1 ) - n 2 ( R 2 - 1 )  z )  ~ R - 2 - 1  } 
n ~/-~ ( w  - ~ " ( n + l ) ~ ( z )  ~'w12 " 

But this formula (5) is susceptible of further simplifications! Let  us have a look at 

the first and the third term iin (5). In the first term we can, taking complex conjugates, 

replace the factor (z~) n by (~w) n , while in the third term the factor (z/wF can, due to 

the relation z~ = 1, be written as (~w) -~ . Changing the summation index to - n in the 

last referred to sum, we can merge these two terms into one: 

(R-2~ _ 1) + n(R 2 - 1) 

Ms 
(~w) ~ . 

We can t reat  the second and the fourth term in a similar way. One finds that  they also 

can be combined into one and the same expression: 

(R-2~ _ 1) - n(R-2 _ 1) 
Iw] 2. 

I t  follows that  (5) can be rewritten as 

(6) 

IX?" (R-2n - 1) + n ( R  2 -  1) 1__ Q, Re 
2z  [ Ms 

(SwF - 

_ ~ , ,  ( R - 2 n  _ 1 )  - -  n(R -2 _ 1) 

Mn 
( wr Iwl } 

In particular, we see Q* can be expressed in terms of the function X(2) (see Section 4), 

actually with the aid of this function and its first derivative. 

In a similar way we can determine P*. Instead of working with the normal deriva- 
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rive 8 /8N  we shall use the Euler derivative (cf. Appendix I): 

8 - 8  e=z  

We note that  @(z"~izl 2) = (n + 2)z~lzl  2 . Using this fact we find with the aid of (4) as 

a generalization: 

,{  [ (7) ~ z l U =  ~ R e  E "  1 Mnn (n + 1)(n + 2) b*l (zw) ~ + (n + 1)(n + 2) b*2 (zw) n I wl 2 + 

+ ( n + l ) ( n + 2 ) b . ~ ( z ) ~ + ( n + X ) ( n + 2 ) b ~ 4 ( ~  Iwl 2 ,zJ e . 

Taking l zi = 1 this gives after some simplifications 

(8) 

P * :  2 ~ R e [ ~  " (n 
+ 4)(R-2~ _ 1) - n(n - 2)(R 2 - 1) 

(~w) n - 

_ ~ , ,  ( n  + 2 ) ( R  -2~ _ 1) + n ( n  - 4 ) ( R - 2  _ 1) Iwl 2 } 

REMARK i. - By formally setting cp = 0, ~f = 5 = 5~ = delta function with the mass 

placed at the point z e F* ,  we see using (2) that  Q*, as a function of w, must  satisfy the 

boundary conditions Q* = 0 ,  8 Q * / S N = ~  on 8~9. Similarly, one finds P * = 5 ,  
8 P * / S N  = O. I t  is indeed an amusing exercise to verify that  this is indeed the case. In 

doing this one has to take account of the following elementary fact: Consider any 
series ~ a ~ z  ~ where Izl = 1 and the a~'s are arbitrary complex numbers. Then the 
value of the real part Re ~ a ~ z  ~ depends only o n  the numbers (a~ + a_~)/2. In 

our case the coefficients are real valued so we can count modulo odd terms in the 

index n. [] 

REMARK 2. - We would like to emphasize that  the above formulae (6) and (8) for P* 

and Q* respectively, as well as their counterparts for P** and Q**--which have not 

bothered to write down--,  are in complete harmony with the results of VILLAT [21] 

recalled in Remark 1 in the Introduction. In particular, we see that  our function X 

must be viewed as a direct generalization of Weierstrass's function ~. [] 

With but a little more work, we can also use the computations above to identify 

the harmonic Bergman kernel for the annulus. Indeed, consider a function g which 

vanishes on at~ and is biharmonic in ~9, A2g = 0. Applying a Laplacian in the w-vari- 
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able in the formula (2), we find 

(9) Ag(w) = - ~-~ .AwA~ U.  
a~J 

Since the fundamental solution for A e is E = E(z)  = (1 /16z)[z]  2 log I zl 2 (see Remark 

3 in Section 4), we have 

1 ] z - w 1 2 1 o g l z - w [ s + a  C ~ function on Q •  U(z, w) = 

Thus 

A w ~ U ( z ,  w) = (~(z - w) + h(z, w) 

where h(z, w)  is C ~ on ~ x Q. Moreover, the function h is also harmonic in each vari- 

able, a fact that we will need shortly. Since h(z, w) coincides with A~Aw U for z ~ w, 

we can write (9) also as 

I 9g .h(z ,w).  Ag(w)  = - 
a~ 

As h has no singularities in ~,  we are at liberty to apply Green's formula once again. 

In view of the above mentioned harmonicity of h and the hypothesis that g vanishes 

on a~2, this gives 

Ag(w)  = - ] zlg(z),  h(z, w), 

or, in terms of the function G = Ag, 

(10) G(w) = - ] G(z) h(z, w) .  
Q 

Since A 2g = 0, the function G = Ag is harmonic; conversely, for harmonic function G 

on Q which is, say, in L1 (~2), there exists a biharmonic function g such that Ag = G and 

= 0 on the boundary (just take g(z) = ~F(z,o ~)G(~),  where F(z,  ~) is the ordinary g 

Green function for the Dirichlet problem AG = g on Q). It follows that (10) holds for 

all integrable harmonic functions G on ~.  In particular, denoting by L~ (I2), the har- 

monic  Bergman  space, the subspace of all harmonic functions in L2(~2), we see 

that 

(11) k(z, w) = - h ( z ,  w) = - A  wA ~ U(z, w) for z # w 

is the reproducing kernel for L~ (•). (See GARABEDIAN [12], where a variant of this 

relation for Bergman spaces with weights is also established.) 
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EXAMPLE 1. - For t9 the unit disc, (11) reduces to the identity 

zAwd~V(z, w) = 1 - 2 R e ( l -  ~z) -2, 

easily verified directly by a short computation. Here V(z, w) is the biharmonic Green 

function for the unit disc, to be described in Section 6 below. �9 

Returning to the particular case of the annulus, we first let 1 < I zt < I wl.  Using 

the formula (4) for zt~ U, we get 

(12) d . d ~ U ( z , w )  2 R e  ~ "  (n + 1) b~2(zw) (n 2 1) 

the quantities b*l and b~ disappear, as they should, since the corresponding terms are 

harmonic in w. Similarly, we get an analogous expression for the double-star case 

]w I < [z I < R. However, since b~ = b~* and b,~ = b,~*, we see that the formula (12) 

is actually valid in both cases, i.e. for all w, z e ~9~--a reflection of the fact that 

h(z, w) is regular in QR- Using the expressions for b~ and b,~ mentioned after (4) and 

supplying the terms corresponding to the special values n = 0, -+ 1 (which is done in a 

completely analogous fashion, so we omit the details here), we finally arrive at the 

formula 

k ( z ,  w )  = (n2  - 1 ) (1  - R - 2 )  + + 

L 

1)(R-2~ - R-2)(z~ ,~  + ~w'~)]  - + (n  + 
J 

1 [(2(1 - R -2) + 2 log R 2 + (logR2) 2) + 
x~M 0 

+(R - 2 -  1 - l o g  R2)(log izl 2 +log Iw12 +4) + (1 -R-2 ) ( log  Izl2 + 2)(log Iwl 2 + 2)] - 

1 -2R-21og R2(z~ + ~w) + 2(1 - R -2) + = + ~- + + 
zM1 w 

+ ( R _ 2 _ R 2 ) (  1 + 1 )] 
w - -  �9 

ZW ZW 

It is a really amusing exercise to verify the reproducing property for k(z, w) directly 

from this. 

REMARK 3. - GARABEDIAN used the explicit formula for k(z, w) to disprove the 
Boggio-Hadamard conjecture for a sufficiently eccentric ellipse: it suffices to show 

that k(z, w) > 0 for some points z and w on the boundary [12], p. 511. However, this 

does not seem to be easily seen in our case, even for z = - w  = 1. �9 
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6. - A l i m i t i n g  case :  t h e  ( p u n c t u r e d )  d i s c .  

The methods of the main body of the this paper work of course also for the punc- 

tured disc. Consider for instance the case of the exterior of the unit circle, ~9 = ~2 ~ = 

= { 1 < [z I < ~ }- Then the corresponding Fourier coefficients A* = As* and A** = 

- As| etc. are determined by a certain system of linear equations. I f n  # 0, + 1 we have 

the six equations 

(1) 

A* + B* + (7* 

n A~ +(2  + n) B* + ( - n )  C* 

A A ~ t  ~ + A B . t  2+n + AC~t -~ 

n A A ~ t  '~ +(2 + n) A B . t  2+s + ( - n )  AC~t -n 

n 2 A A . t  s +(2 + n)2AB~t  2+~ + ( - n ) 2  ACst  -~ 

n3AA~t"  +(2 + n)3AB~t  2+~ + ( - n ) 3 A C s t  -" 

+ D* = 0 ;  

+ ( 2 -  n) D* = 0 ;  

+ AD,~t 2-~ = 0 ; 

+ ( 2 - n )  ADnt  2-'~ = 0 ;  

+ ( 2 -  n) 2 A D s t  2-~ = O; 

+ ( 2 -  n) 3 A D . t  2-~ - l t 2 ,  
i~$g 

where, as before, AA~ = A~'* - A ~ .  But there are still eight unknowns. In order to 

have a unique solution, which is tantamount to the Green's function U = U| to be of 

order o(Iz[ log [z [2) as z tends to infinity, we impose the additional conditions 

A~** = B ~  = 0 if n > 1, C** - ** ,~ - Ds| = 0  if n < l .  

Alternatively, we could directly have passed to the limit R = m in the formulae al- 

ready available to us (see (1)-(4) in Section 2). In any case, we find 

1 1 t2-nl 

A,*~ = lira A*  = ]-6-~z( n(n - 1) ] 

R--,~ 1---~Z "~-L--1--1 1 ( 1 t '~--71t2+n) 

f i n > l ,  

f i n <  - 1 ;  

1 1 t-,~ 

B .  = F l m B , = - i - ~ z ( n ( n §  ) 

~ R - ~  1 ( 1 ~ 1 t2+~l 
- n  t + ~ ] 

if n > l ,  

f i n <  - 1 ;  

and analogous expressions with C*| and D*~. (As C*| = A-*s| and B*.  = D * s .  we 

need not write down these expressions.) In the same way we find e.g. 

0 ( 1) t2 As** = lim A ~ * =  1 _ 1 _ ~ _  _ 
R-~ | -i-6--Z" n(n  - 

1 t 2 + l__i__t l 
n n - 1  ] 

f i n > l ,  

f i n <  - 1 .  

Likewise we can determine the coefficients for n = 0, -+ 1. In this case it is possible to 
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sum the series (it is essentially question of the formula 

(2) 
xn 

log (1 - x) = - --~-, 
n = l  

due to Leibnitz.) We refer the details to Theorem 1 below. The resulting formula can 

be compared with the following known formula for Green's function of the exterior 

disc {1 < tzl ~< r162 

1( lzwl2 ) 
(3) V ( z , w ) =  ~ I z - w l 2 1 o g  ~ -~ -~  + ( 1 - I z i 2 ) ( 1  - twl 2) . 

See e.g. [14], p. 52, where the normalization is a different one, so that the constant 

1/16z can be suppressed; it is also stated there for the unit disc { Izl < 1} itself, not 

the exterior disc { 1 < I z I ~< ~ } as here, but it is easy to convince oneself that the 

same expression (1) can be used in either case. 

REMARK 1. - The simplest way of proving (3) is otherwise via conformal invariance 

using Bojarski's theorem [5], which reduces everything to the case w = 0 (in the case 

of the disc). The corresponding general formula for the iterates zl p (p = 1, 2, ...) is 

due to HAYMAN and KORENBLUM [13]; it can be established in an analogous fashion. 

(For details see [11].) �9 

REMARK 2 .  - We can also treat the case Hedenmaim's operator (see Appendix II). 

This is the limiting case R = :r of the formulae given in that appendix. If  the par- 

ameter fl is an integer we get then a new proof of Hedenmalm's generalization of 

(3) [14], Theorem 4.6: 

I ) 
Z - - W  12 

V~(z, w )  = !-!-fi -~" I z - w l 2zlog ~ + finitely many lower order terms . �9 
16z 

Finally, let us clarify the point that was skipped over in the above discussion. 

Namely, one might easily be led to believe that the ,,exterior, Green's function V co- 

incides with the limit, say, U~ of the Green's function U = UR for the annulus ~ = 

= QR = {1 < ]z I < R} as R tends to infinity. But this by all means not  the case: Al- 

though, as we have seen, the Fourier coefficients agree for In] > 1, they do not agree 

for n = 0, +-1. We shall set forth this in a moment but first we must make a slight 

detour. 
As it is somewhat cumbersome to deal with biharmonic functions at the point at 

infinity, we prefer to change our set up, taking instead R < 1 and eventually letting R 

tend to zero. By a previous remark (see Remark 3 in Section 2) we know that in this 

new situation the only thing we have to do is to change the sign of the Fourier coeffi- 

cient As etc. Let the unit disc the interior of the unit circle--be denoted by ~o = 

= {Iz] < 1 } and its corresponding Green's function by V; we know that for V we can 

use the same analytic expression as given by (3) in the exterior case. Similarly, we re- 
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tain the notation U0 for the limit of the Green's function U = UR for the annu- 

lus: 

Vo 

(It is assumed that, throughout this process of limit, the point w, i.e. the pole of the 

Green's function, remains fixed.) Then one has the following result. 

THEOREM 1. - I n  t h e  notation just introduced holds 

(4) U0 = V -  (1 - Izl 2 + Izl21og [z12) . (1  - Iwl 2 + Iwl21og Iwl2) .  

REMARK 3. - For R-- .  :r one can similarly obtain 

u ~  = v -  (1 - Izl 2 + log Iz l2 ) . (1  - t 2 + log t2) .  

This can also be inferred directly from the reflection principle (Corollary to Lemma 8 

in Appendix I). �9 

PROOF. - Let [wl = t. With no loss of generality we may assume that w lies on the 

positive real axis, in other words, that w = t. Let us begin by writing V in the form 

(cf. (3)) 

1 ( , z _ w l 2 1 o g ]  z-w 12 ) v=~  1 - z ~  + ( 1 - 1 z 1 2 ) ( 1 - 1 w l  ~) = 

16~  " 

Assuming that t < I z ] < 1 and using (2), we obtain from this the series expansion (we 
omit for a moment the additional term (1 - I z l 2 ) ( 1  - t2) )  

(5) V= ~ Izl21og[zl2+t21oglzle-2Re(tzloglzl2)+ 

~ lt~z-~lzl 2 t 3 ~ lt2+~z-~ +2 Re -tz - -~ z -~ + 
n=2 n = 2  

2 2 1 § +t 2 + -~ + t2+~z + 
= 2  n = 2  n - 1 

1 2 + n z n  - +tz]zl2+ ~ lt~zn]z[~'+ taz + ~ -~t 
n = 2  n = 2  

_ ~ 1 tnzn_t2,z,2_ lt3z,z,e - ~ 1 t2+~Z~[Z,2]) 
n = 2 n - - 1  n = 2 n - - 1  " 
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In particular, the constant term (n = 0) gives the contribution 

(6) Izi21oglz] 2 + t21og tzl 2 + 2t 2 -  2t 2 lzi 2. 

On the other hand, we find using (3)-(5) in Section 3 

lira A~' = - lim B~ = 1 R-~o R-~0 1--~Z (2t2 -- t21og t2) ;  

1 t 2 . lira Co*= , 
~--*0 

1 2 t 2 lira Do* = 1-~z(t  - t 2 1 o g  ). 

Here  we have also taken into account that  

Mo 
lim - 1 

R-~0 R - 2  

and we have further remembered  to change the sign twice (sic!). I t  follows that  the 

contribution of these terms to the corresponding expansion U0 is 

(7) (2t 2 -  t21ogt2)(1 - Izl 2) + t21oglzl  2 + (t 2 -  t21og t2)lzl21og Izl 2. 

Forming the difference of (7) and (6) yields 

2t 2 - t21og t ~ _ 2t 2 Izl 2 + t21og t 2 ]Zl 2 + t210g ]z] 2 + t 2 Iz[210g Iz] 2 - 

- t210g  t 2 izt210g Izl 2 -  tzl210g Izl 2 -  t210g Izl 2 -  2t 2 + 2t 2 Izl 2 

which simplifies to 

- t210g  t 2 Izl 2 -  t210g t2(1 - lzl 2 ) -  ( 1 -  t~)lzl210g Izl 2. 

I f  we restore the missing term ( 1 -  Iz]2)(1 - t  2) we obtain the expression 

- ( 1  - Izt 2 + [zlelog Iz l2) ' (1  - t 2 + t21og t2).  

We see that  as regards the constant order terms the difference U0 - V agrees with 

the formula that  we set out to prove, viz. (4). 
In the same way as we determined the limits (7) we find now using (7)-(10) in Sec- 
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tion 3 

(8) 

1 t 8 = + ) ;  

c , *  = - t ; 

= 

Here we have also taken into account that 

M1 
lim 
R-~0 R -elog R e 

-- - - 1 .  

Now a pleasant discovery lies ahead! We see that the terms in the expansion of Uo 
with n = -+ 1, arising from (8) and its counter-part with - 1, are balanced by the cor- 

responding terms coming from the expansion (5) of V. 

In the same way we treat the case I nl > 1, which is actually already implicit in 
what we did in the beginning of this section. We find, e.g. for n > 1, 

l i m A : =  1 ( l t 2 + n  1------~-t")- 
R-~o 16~ ~ n - 1  ' 

lim B * =  1 ( 1  . _  1 t2+.  ) 
R-~0 16~ ~ t  n + 1 ; 

lim C * = -  1 . 1 t2+~. 
R-~0 16Z n(n+ 1) ' 

lim D* = 1 1 t . ,  
R~0 16Z n ( n -  1) 

which is again balanced against the corresponding terms in (5). Alternatively, we can 

base the proof on the following purely conceptual argument: The expression of a term 

with I nl > 1 in the expansion for the difference Uo - V--note that this is a biharmon- 

ic function--depends on fottr coefficients. But the corresponding terms cannot blow 

up as we make z = 0. Therefore only two non-zero coefficients remain. But, if we take 

into account the boundary conditions for I zl = 1, we see that the latter must vanish 
too. 

So in any case, as only the constant term remains, we have proved that (4) must 
hold. �9 

Let us give a simple application of the above result to the Boggio-Hadamard con- 
jecture (the question of the sign of the biharmonic Green's function). However, a 
much stronger assertion will be proved in the next section. 
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COROLLARY. - -  I f  the inner (outer) radius R of the annulus t2 = ff2 R is sufficiently 
small (big) then the Green's function cannot have constant sign. 

PROOF. - To fix the ideas let us again assume that  R < 1 making eventually R tend 

to 0. I t  suffices to show that,  for fLxed w e ~2o, the difference 

V -  (1 - izl 2 + Iz[~log ]z l2) ' (1  - ]w[ 2 + [w[21og [w[ 2) 

takes negative values for a suitable choice of z. We may assume again that  w is on the 

positive real axis, w = t with 0 < t < 1. We take z too real but  not necessarily positive, 

writing z = x with - 1 < x < 1, and consider the real valued function 

f (x)  ( x -  t)21og( ~ ) 2 -_ + 
\ i-~x 

+ ( 1  - x 2 ) ( 1  - t 2 ) -  ( 1  - x 2 + x21og x2)(1 - t 2 + t 2 1 o g  t 2 ) ,  

t reat ing t as a constant. We see at once that  

f (0 )  = t21og t 2 + 1 - t 2 -  (1 - t 2 + t21og t 2) = 0.  

Differentiating yields 

t - x  + ( x -  Lt-:- x + -  f , (x )  = 2(x _ t) log( l ___Z__~x ) 2 t)2[ - 2  

whence 

2t ] - 2 x ( 1 - t  ~ ) -  
1 - tx J 

- ( - 2 x  + 2x log x 2 + 2x)(1 - t 2 + t21og t2) ,  

[ 2 ]  
S ( 0 ) = - 2 t l o g t  2 + t  2 - - ~  + 2 t  = 2 t [ - l o g t  2 + t  ~ - 1 ] .  

I t  is easy to see that  this is a positive number  provided 0 < 1 < t. Hence, by elemen- 

t a ry  calculus, f is increasing in a neighborhood of 0 and thus takes negative values in 

an interval ( -  e, 0), e > 0. Therefore  also UR for R sufficiently small is susceptible of 

negative values, m 

REMARK 4. - The above counter-example to the Boggio-Hadamard conjecture is 

not entirely new. We owe this information to MARK ASHBAUGH and we are ve ry  grate-  

ful to him for this. Fo r  the sake of completeness we quote him verbatim [2]: 

The story of the Green's function for annular regions is somewhat more compli- 
cated than you may have been led to believe. First of all, the proof is indirect. It 
works off the fact that the first eigenfunction of the annular region is not of one sign 
(and is, in fact, doubly degenerate), ff the ratio of the inner radius to the outer radius 
is sufficiently small. For such regions the Green's function could not possibly be of 
one sign since by Perron-Frobenius type arguments this would imply the constancy 
of the sign of the first eigenfunction. The argument showing that the first eigenfunc- 
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tion is not of one sign is due to DUFFIN and SHAFFER, with later related papers by 
COFFMAN, DUFFIN and/or SHAFFER (see [10], [6], [7]). 

I t  is apparently a mat ter  of taste which one of the two approaches is to be pre-  

ferred. Let  us remark that  one virtue of our method is that  it easily lends itself to a 

somewhat more precise statement: the existence of an ,dsland, of negativity situated 

on the diametrically opposite side of the annulus to the point w. 

Professor ASHBAUGH has also kindly directed our attention to the importance in 

this connection of the work of GABOR SZEG(~ (see [19], Vol. 3). We take the liberty to 

quote him once more [3]: 

In the comments to SZEG~)'s paper On Membranes and Plates (paper 50-2, in the 
notation of the Collected Papers), ASKEY says ,,When the Green's function or some 
iterate is positive, the hypothesis Szeg5 assumed is satisfied, as he remarked in 62- 
1,. This is on page 194 of the Collected Papers, Vol. 3. The reference here to paper 
62-1 is actully a misprint; the correct reference is to paper 52-1 (to be quoted from 
below, and which may :perhaps be of greatest interest to you for its discussion of 
Hadamard's conjecture). In paper 52-1, Szeg5 ends his paragraph discussing 
Hadamard's conjecture with, ~,Needless to say, the question of the first non-vanish- 
ing eigenfunction is not decided by these considerations. It would follow for instance 
from the positivity of any kernel arising from F(p, q) by repeated iteratiom,. 

Finally, in paper 53-2 (On the Vibrations of a Clamped Plate), SZEG0 says, ,,Ac- 
cording to a theorem of Jentzsch on integral equations, the positivity of the kernel G 
implies the lack of sign variations for the first characteristic function. This sufficient 
condition is of course very restrictive. Indeed, if we form the so-called iterated ker- 
nels, the characteristic functions remain all the same consequently the positivity of 
any iterated kernel implies just as well the lack of sign variations for the first char- 
acteristic function,. �9 

REMARK 6. - Another, perhaps more instructive proof of Corollary 1 goes as fol- 

lows. Let  Zo = e i~176 be a point on the boundary of D taking again w = t with 0 < t < 1. 

We wish to compute the Hessian, say, H of the function Uo at the point zo (t is treated 

as a constant). In view of the boundary conditions imposed on Uo, zo is certainly a 

critical point and, moreover, all higher order partial derivatives containing a bound- 

ary direction vanish. Therefore it suffices to expand Uo((1 + ~])Zo) where ~] is real. 

One finds 

Uo((1 + ~])Zo) = 2~]~/ (1 - t2) 2 
I 1  - zotl 2 

Thus H vanishes precisely when 

(1 - t 2 + t21og t2)) + 0073). 

t ( l + t  2 ) l o g t  2 + 2 ( 1 - t  2) 
cos0o = Rezo = ~ .  1 - t 2 + t21og t 2 ' 

which determines 0o up to sign. Using Mathematica we found that Icos0o[ = min = 

= -0.175258 if t = 0.260800 corresponding to 00 = _+ 1.74696 or, what is the same, 
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Fig. 1. 

= - 100 ~ 5' 37". (Note that  as t runs through [0,1] then cos 00 runs through the whole 

interval [ 0 , -  0.17528].) Thus the ,,nodal line~ { U 0 ( z ) =  0} hits the per iphery inside 

two narrow symmetrically situated arcs (roughly 90 ~ to 100 ~ and - 90 ~ to - 100 ~ re- 

spectively). In fig. 1 we have plotted some level lines of U0, but  not the appropriate  

nodal line itself, for t = 0.5. Due to poor convergence of our series we have not been 

able to do the corresponding work in the case of UR with R > 0. Nevertheless this 

gives some idea about what  the ,,phase portrait~ might look like also in the general  

case. [] 

REMARK 7. - Le t  us likewise point out tha t  the function U0 has an interpretat ion as 

a Green's function for the punctured disc ~ 0 \ { 0 }. Namely, as the boundary of the 

lat ter  consists of two components, a circle and a point, we can as boundary conditions 

take the usual Dirichlet conditions on I zl = 1 and impose an additional condition(s) on 
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the growth rate of the function (or of its normal derivative) at the origin. Note that 

this is something which is typical for higher order elliptic operators; for Laplace oper- 

ator A this does not make sense. �9 

We end this section by a general result for the biharmonic equation in a punctured 

disk. Both the limit function Uo and its normal derivative 8Uo/SN vanish on the unit 

circle T, and Uo moreover vanishes at the origin. Naively, one would like 8Uo/SN to 

vanish at the origin too. This is easily seen not to be possible, as follows from the fol- 

lowing theorem. 

THEOREM 2 . -  Assume that A 2 u = O  in D \ { 0 } ,  u = S u / S N = O  on T, and 

u( O) = O. Then 

u(z)  = (Cz + D~)(1 - Iz] 2 + log Izl 2) 

for some complex numbers C and D. In  particular, i f  either u(z) = o([z I log Iz[ 2) as 

z ---) 0 or the radial derivative 8u/Sr  stays bounded near the origin, then u =- O. 

PROOF. - By Almansi's theorem [1] (see Theorem 1 of Appendix I), we have 

u(z) = ~ a,~z ~ + ~, b,~'5 ~ + A log [z 12 + 
n n 

+ Z c ,  Izl2z ~ + Z d ~  Izt2~" +BIz]21oglz l  2 + Cz log Izt 2 + n ~ l o g l z l  2. 
n n 

To avoid duplicity, we set bo = do = c-1 = d_~ = 0. The condition u(0) = 0 implies that 
A = 0 and 

a,~e'~O+b.e-ni~ for all n~<0 and all 0,  

or a .=b~=cn_2=d._2=O for all n <~ 0. The conditions U[T=0 and (Su/SN)[.r=O 
then give 

co oo 

~,a~e ~ie + S'b e -'ie + ~c,~e "~ie + x-, .  _-~io Z, a,~e = 0 ,  
t 1 0 1 

co oc, oo 

na,~ e nio + ~ nb~ e -,~o + ~:(n + 2) c~ e'~i~ + ~ ( n  + 2) d,~ e -,~io + 2 B + 2Ce io + 2 De -io = O. 
1 1 0 1 

Comparing the coefficients at e €176 we see that a~ = b , =  c~ = d , =  0 for n >/2, 

Co = B = 0, and 

a 1 T c I = 0 ~ -  a 1 T 3c 1 § 2C, 

bl + dl = 0 = bl § 3dl  + 2D, 
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or a I - - C ,  C 1 = - - C ,  bl = D, d l =  - D .  This proves (9). The radial derivative then 

equals 

2u = (Ceie + De -ie)(3 - 3 r  2 + log r 2) 
3r 

which blows up at the origin unless C = D = 0. I 

COROLLARY. - Suppose that z12g = 6t in D \ { 0 } ,  g = ag /aN = 0 on "F, g(O) = O, 

and 3g/gr stays bounded near the origin. Then g(z) = Uo (z, t). 

PROOF. - I t  follows from (3) that  Uo is C ~ is a neighbourhood of the origin. Hence 

the function u(z) = g(z) - Uo (z, t) satisfies the hypotheses of Theorem 2. [] 

7. - A p p l i c a t i o n s  to  t h e  B o g g i o - H a d a m a r d  c o n j e c t u r e .  

!n  this section we apply our main result, viz. the explicit formula for U = UR, to 

disprove the Boggio-Hadamard conjecture for the case of annuli. 

THEOREM 1. - For each R > 1, the Green funct ion U = UR is not positive: there 

exist points z and w in ~9 = ~gR such that U(z, w) < O. 

PROOF. - Without loss of generali ty we can of course, as always, assume that  the 

point w sits on the positive real axis, writing w = t with 1 < t < R. We observe that  

since both U and the normal derivative a U / g N  vanish on the boundary, it suffices to 

find a point e ~e on the unit circle at which ~ U / 3 N  2 is negative - u(re i~) will then be 

negative for r close enough to 1. We have 

5~U 
r = l :  ~--.~ n ( )  , 

F t e nie 
9N 2 

where 

( i )  

F~ = n(n - t ) A *  + (n + 2)(n + 1)B* + ( - n ) ( - n  - 1)C* + 

+ (2  - n)(1 - n ) D * ,  

F1 = 6B~* + 2C1" + 2D~*, 

F -1  = 2 A ' 1  + 2 B ' 1  + 6D-'1 = F1, 

Fo = 2Bo* - 2Co* + 6D0*. 

In I > 1, 

The relations A *_ n = C* etc. imply that  F~ = F _ . .  Thus, we can write 

a2U I = 2 R e f ( e  io) 
aN 2 z = ~io 
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where the function 

f(z) = E 
d e f  0 

fo= Fo/2, f , =  F ,  for n ~ > l ,  

is holomorphic in the unit disc D. Of course, f depends on R and t. We need to show 

that for any R, there is always a t for which Ref(e  i~ < 0 at some 0, i.e.for which the 

image under f of D does not lie wholly in the (closed) right half-plane. Equivalently, 

the function 

1 - f ( z )  
(2) g(z) - 1 +f(z)  ' z �9 D,  

should not map D wholly into the closed unit disc D. 

Let us now recall the famous algorithm of I. ScHux [18]. Suppose that g maps D 
- -  d e f  

into D. Then 7o = g(0) satisfies 17o I ~< 1. If 17o I = 1, g = ~o identically by the maxi- 

mum principle. If 17ol < 1, then the holomorphic function 

g#(z) def 1 g(z)--~O z e D ,  
z 1 - 70g(z) ' 

- -  d e f  # 

also maps D into D, by the Schwarz lemma. This again means that 71 = g  (0) is of 

modulus at most one, and either g # - - 7 1  (when 1711 = 1) or the function 

g ~ ( z ) ~  f l "  g#(z) - 71 z e D ,  

z 1 _ ~lg#(z)  ' 

maps D holomorphically i n t o D  (when [71[ < 1). Thus 72 d----efg#~ (0) is of modulus at 

most one, etc. The argument can plainly be iterated ad infinitum, but we shall not 

need that: we are going to show that for our function g given by (2) and for t close to 1, 
one has 

(3) 17ol < 1, 171l < 1, but 1721 > 1. 

Hence g cannot map D into D, and f cannot map 8D into the closed right half-plane, 
and we will be done. 

It is easy to see that the Schur parameters 70, 71, and 72 can be expressed in 
terms of the Taylor coefficients of g: if g(z) = go + glz + g~z 2 + .... then 

(4) 

7o = go, gl 

7 i -  1 -  17ol 2' 

72 = 1 - 17112 1 - I r o  12 J 
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The Taylor coefficients of our function g can in turn be expressed in terms of those of fi 

( 5 )  

go= l + f o '  

�9 - - 2 j ~  

g l =  ( l + f i ) 2 '  

2f~ - 2f2(1 +f0) 

g2 = (1 +fo) s 

where thus (in our case) 

fo = Fo/2,  f l  = F1, f2= F2. 

Substituting (5) into (4) gives--this calculation is valid also if f is a general 

function-- 

( 6 )  

7 o - 1 +  ~ ' 

l + f o  - A  
71= l + f i  2 R e f i '  

1 + f0 f~ - 2)'~. Refo 

72 = 1 +f0 " 4(Refo) 2 - If112" 

REMARK !. - Let us note that if we formally rep lacefby  a multiple, say, t tfwhere t~ 

is any positive real number, then only the phase of the Schur parameters is changed 

(from index 1 on). This has a nice group theoretic interpretation. Indeed, one sees that 

the function g is replaced by ~ o g where ~2 is a suitable Moebius selfmap of D, given by 

a unimodular quasi-unitary matrix, an element of the group SU(2). Let us introduce 

the notation ~ ~ where ~ e D to denote the Moebius selfmap of D defined by 

to :)(1 
= 1 - 

It is well-known that this map ~ r is characterized up to phase by the property of map- 

ping ~ onto the origin 0 and, in view of this uniqueness, one has for any ? e SU(2) the 

formula ~v(~> o ~2 = k o ~ where k denotes a suitable rotation about 0. So it follows 
that the Schur transform (~p og)~ of ~f og is obtained from g~ by multiplication by a 

unimodular number, m 

Next, we seek expressions for the coefficients F0, F1, F~ (n > 2) using the formu- 

las (1)-(4) in Section 2 (for Fn) and analogous formulas in Section 3 (for n = 0, 1). From 
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formula (1), we find 

(7) 

F o ( t )  - 

F l ( t )  = 

F . ( t )  = 

+4(1 - n  + n R  2 -R2"~) t -'~ + 4 ( - 1  - n + n R - 2  + R2") t2 -,~] 

1 [ - 4 ( l og  R2) 2 + 4(log R2)2t2 + 
16zMo (R) 

+,4(1 - R 2 + log R 2) log t 2 + 4(1 - R -2 _ log R 2 ) t 2 l o g  t 2 ] ; 

1 [4(R -2 - R 2 + (R 2 + R -2) log R 2 ) t  + 
16zM1 (R) 

+4(1 - R - 2 -  R - 2 1 o g R 2 ) t  3 + 

+ 4 ( - 1  + R  2 - R 2 1 o g R 2 ) t - 1  + 4 ( 2 - R  2 - R - 2 ) t  log t2] ;  

1 [ 4 ( l + n _ n R 2 _ R - 2 , ) t , + 4 ( n _ l _ n R _ 2 + R - 2 ~ ) t ~ + 2 +  
16zMn(R)  

(if Inl > 1 ) .  

Here  Mo, M1 and Mn have the same meaning as in Sections 1 and 3: 

(8) 

Mo(R) = (log R2) 2 - (R - R - ! ) 2 ,  

M1 (R) (R 2 - R - 2 )  log R 2 - 2(R - R -1)2, 

M , ( R )  (R ~ - R - n ) 2  _ n 2 ( R  _ R-1 )2 .  

Note that  M0 < 0, while M1 ,  i 2 > 0. Observe also that  if n = 2 the last line in (8) can 

also be writ ten as 

(9) M2(R) = (R - R -1)4, 

which observation will be used below. 

F rom now on, we fix R and regard  Fn (t) solely as functions of t. Le t  us look more  

closely at the case when t is close to one. 

CLAIM 1. - We have 

(10) 

F . ( 1 )  = 0,  

1 ,  
F ' ( 1 )  = 

1 + 2 

1 
F ~ ( 1 ) =  ~ 1 + 2  

1 - - 4  

(R 2 - R -2) _ 2 logR 2 
f i n = 0 ,  

Mo(R)  

(R 2 - R -2) _ (R 2 + R - 2 )  log R 2 

M1 (R) 

(R 2 - R -2)(R - R - l )  2 

M2(R) 
i f n > l .  

if n = l ,  
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PROOF OF CLAIM 1. - Again let us indicate the proof in the case n = 0. Put 

Fo (t) = 
16zMo 

[ao +r iot  2 + ~'olog ~2 + 5ot21og t 2] 

where the values of the coefficients ao etc. can be taken from the formula (7). Differ- 

entiating twice and putting t = 1 yields 

(11) 

Fo(1) = 1----~-- [ao +f lo] ;  
16zMo 

F g ( 1 ) =  1 6 1 M o [ 2 f l o + 2 7 0 + 2 5 o ] ;  

F~'(1) = 161Mo [2fi o - 27o + 65o]. 

From the said formula we see at once that ao + flo = 0 and likewise that 2rio + 2yo + 

+ 250 = 8Mo, proving the two first lines in (10). Using the last identity we see that the 

last (third) line in (10) again can be rewritten as 

1 [ 8 M o -  4yo + 450]. 
F~' (1) - 16:vMo 

Using the values of flo and 70 the sought expression for F~'(1) follows readily. The 

proof in the cases n = 1 and n > 1 goes along similar lines. �9 

In what follows only Fo, F1 and F2 will matter (and f i ,  fl and J~). It will be conve- 

nient to have a special notation for the second Taylor coefficients of these functions 

about the point t = 1, so we put 

1(1 ) 
Fo(t )= (h-~ah 2+0(h8) )  or j~ ( t )=  ~ ~ h +  ~ + O ( h  3) ; 

Fl( t )  =f1($) = ~ ( h  + bh 2 + O(ha)) ; 

F2(t) =f2(t)  = ~ ( h  + ch 2 + O(ha)), 

where we have written t = 1 + h and where the values of a, b and c can be readily in- 

ferred from formula (10). Using (6) above, we now see that 

yo = 

1 {1 h O(h2)) 1 -  + 

• ) 1+ 2 z  ~ 2 + O(h2) 
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and 

- (1  + b h  + O(h 2)) 2b - c - a + O ( h )  

~1= l + ah + O(h e) ; ~e = 2 ( a - b ) + O ( h )  

REMARK 2. - Notice that  in full agreement  with Remark 1 the factor 1 / 2 z  has no 

influence here. Since all our quantities are real the phase factor too has disap- 

peared. �9 

I t  follows f r o m  here that (3) will  follow i f  we can show that 

(12) a > b and 4b > 3a + c .  

Le t  us first turn to the first inequality in (12). Using (10), we have 

(13) M o M l ( a - b ) = ( R e - R - e - 2 1 o g R e ) M l - ( R e - R - e - ( R e + R  -e ) log Re)  Mo. 

Substituting for Mo and M1 the expressions (8), we obtain (the proof is indicated in 

the next  paragraph) 

(14) M o M l ( a  - b) = (R -4 - R a) + 2(R e - R - e )  _ 

- 1 2  log R e + 6(R e + R -e)  log R e - 3(R e - R-e ) ( log  Re)  e + (R e + R-~)( log  R2) a . 

Now make the substitution R 2 = e v (so logR e = v). Then we can rewrite (14) in te rms 

of hyperbolic sine and cosine 

(15) MoM1 (a - b) = 2 coshv .v  a - 6 s i n h v . v  e + 

+ 12(coshv - 1)v - 2 sinh 2v + 4 s inhv .  

PROOF OF (14) AND/OR (15).  - In order  to obtain a streamlined proof of these formu- 

lae it will be convenient to introduce the ad hoc notation S = 2 cosh(v/2)  = R + R - 1  

(sum) and D = 2 s i n h ( v / 2 ) =  R -  R -1 (difference). (This will be used also below in 

connection with the proof of the second inequality (12).) Notice that  S 2 -  D e =  4, 

which is the well-known formula coshev - sinhev = 1 in slight disguise. In this nota- 

tion we have (see (8) and (9)) 

(16) Mo = v2--  De; MI  = D ( S v -  2 D ) ;  M e = D 4 .  

In particular, the right hand side of (13) can now be writ ten as 

(SD - 2 v ) D ( S v  - 2D) - (SD - (S 2 - 2) v)(v e - D e ) ,  

which after  expanding is 

(17) (S e - 2 )v  8 - 3SDv e + 6Dev  - SD 3 . 

Note that  this a cubic polynomial in v. Reinstating to the hyperbolic functions gives 

(15). �9 
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i f  we now use the well-known Taylor expansions of sinh and cosh, we can expand 

the right hand side of (15) as 

V 2k" V 3 
2 

k ~-'= o (2k)! k • O  
V2k+ 1"V2 

6 = (2k + 1)! 

v2k.  v 
+ 12 k~ 

= 1 (2k)! 

(2v)2k + 1 
2 X-J 

k=o (2k + 1)! 

~=0 v2k + 1 
+ 4  = (~-~-~ ~)! . 

This sum can be rewritten as a single series: 

(18) [22k-1 2k a + 3 k  2 k 2]. 
V 2k -t- 1 

MoM1 (a - b) = - 8 . . . .  
k=4 (2k + 1)! 

Notice that  the terms of index up to k = 3 drop out, in accordance with what  can be in- 

ferred already from (15). In order to establish the left inequality in (12) it suffices 

thus, as M0 < 0 and M1 > 0, to show that  the expression within brackets [ ] in the gen- 

eral term of the series in (18) is positive. This is an elementary number theoretic 

fact. 

CLAIM 2. - W e  have 22k-1 >I 2 k  ~ - 3 k  3 + k + 2 f o r  all pos i t i ve  in tegers  w i t h  equal i -  

t y  i f  a n d  on l y  i f  k = 1, 2, 3. 

PROOF. - That equality holds for k = 1, 2, 3 is trivial to check (and, by the way, we 

know it already). So factoring the polynomial part  we see that  it suffices to show that  

2 ~*-1 > k ( k  - 1)(2k - 1). (Note that  ( 1 / 2 ) k ( k  - 1) is an integer!) We now just  have to 

use the two more elementary inequalities 2 ~ > k ( k  - 1) and 2 k-~ > 2k - 1, valid for all 

positive integers k and k > 3 respectively, and multiply them together. For  instance 

the former can be proved for k > 4 using the binomial expansion 2 k = (1 + 1) k = 1 + 

+ ( ~ ) + ( k ) + . . . + l  (and, for k = 4 ,  by inspection). The proof of the latter is 

similar. [] 

The second inequality (12) can be proved along similar lines. By (10) we 

have 

(4b - 3a - c ) M o M 1 M 2  = 2(R 2 - R - 2 ) ( R  - R - 1 ) 2 M o M 1  - 

- 3 ( R  2 - R -2 _ 2 log R 2 ) M 1 M 2  + 4(R 2 - R -2 _ (R 2 + R -2) log R 2 ) M o M 2 .  

In order to expand this expression we use the above method. In terms of the quanti- 

ties v, S and D the right hand side can be written as 

2 S D  . D 2 M o M 1  - 3 (SD - 2 v ) M I M 2  + 4 ( S D  - (S  2 - 2 ) v ) M o M 2  
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or again, using the formulae for the M's (16), as 

2 S D . D 2 ( v  2 - D 2 ) . D ( S v  - 2D) - 3(SD - 2 v ) . D ( S v  - 2 D ) . D  4 + 

+4(SD - (S 2 - 2 )v) ' (v  2 - D 2 ) ' D  a. 

Expanding this yields the expression 

D 4 { - 2 D 2 v  3 + 6 S D v  2 - D 2(D 2 + 24)v + 6 S D 3 } .  

It  is easily seen from this that  this quantity behaves as O(v 7) at the origin. In particu- 

lar, the fact that  we have isolated a factor D a is conspicuous, and is of great  service to 

us: as D 4 is always positive, we need to worry only about the expression within the 

curly brackets. 

Now, remembering the meaning of S and D, we reintroduce the hyperbolic func- 

tions. We find that  the said expression inside the curly brackets equals to 

- 4 ( c o s h v -  1 )v3+ 12 s inhv-v 2 - 

- (2 cosh2v + 40 coshv - 42)v + (12 sinh 2v - 24 s inhv).  

Following the same strategy as in the previous case, we use Taylor expansions for 

sinh and cosh to rewrite this as 

v2k.v3 ~ v2k + I .v  2 
- 4  - -  + 1 2  

k = 1 (2k)! k~'~o= (2k + 1)! 

2 ~ (2v)2k'v 

k=0 (2k)! 

V2 k 
40 .v 

= 0 (2k)! 

(2v)2k+ 1 
~ 7  

+12/~0= (2k + 1)! 

and then combine everything into a single series: 

(4b - 3a - c ) M o M I M 2  

D 4 

v2k + 1 
= - 16 

~=5 (2k + 1)! 

- -  + 4 2 v +  

~ 0  v2k + 1 
24 = ( 2 k + l ) !  

[ ( 2 k -  11)22k-8 + 2k 3 -  3k 2 + 3k + 4]. 

Again, the terms up to k = 4 have cancelled out. As before, in order to establish the 

second inequality in (12), it suffices to show that  the expression inside the last square 

brackets is always positive, for any k >I 5. This time the situation turns out to be even 

more elementary: since 2k 3 - 3k 2 = k2(2k - 3) > 0, it follows that  the said expres- 

sion is positive for k ~> 6, while a direct calculation reveals that  it is positive for k = 5 

too (and, in fact, vanishes for k between 2 and 4). This completes the proof of nonposi- 

tivity of the biharmonic Green's function. �9 

REMARK 3. - In view of ~he above proof one is tempted to make the conjec ture  that  

the Green's function of a clamped plate takes negative values whenever the underly- 

ing planar domain is of higher connectivity. At least we are not aware of any counter- 

example to such a hypothesis. �9 
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REMARK 4. - Most of the calculations above (as well as in much of the rest of this 

paper) were checked by the W.R.I. program Mathematica. �9 

REMARK 5. - The method above is not constructive in the sense that it does not tell 

at which point on the unit circle the second normal derivative is negative. Taking 

guidance from the limiting case R--~ 0 (or R-- .  + ~ ) in Section 6, one can expect 

negative values when z lies ~mpposite, t, i.e. when z / t  < 0. It would certainly be desir- 
able to have some numerical evidence in this matter. �9 

8. - D i s c u s s i o n  o f  s o m e  t r a n s c e n d e n t a l  f u n c t i o n s .  

In this section, which may be read independently of the rest of the paper, we study 

in some detail the function X as well as the related functions Y, Y+, Y_, Z+,  Z_ intro- 

duced in Section 4, and used there and in Section 5. 

We shall establish a result on the meromorphic continuation of X(4) already men- 

tioned there (see Remark 1 of Section 4). In order to formulate it we introduce for 

each integer k = 0, 1, 2, ... the following function for 141 < 1 given by the expan- 

sion 

(1) H~(4) = ~ n2k,~ n. 
n = 2  

It is clear that Hk (2) is a rational function with a pole of order 2k + 1 at 4 = 1. Indeed, 

we have 

( d)2k( ,  k=l,2, , 1 1 - 2 ;  Hk(4 )=  4-~- 1 4 (2) H0(4) -  1 - 4  

REMARK 1. - Consider quite generally 

( j =  1,2,  ...) 

where we have introduced the notation (Euler operator) 

d 

Then one has 

bjp~ 
f ~  ~ ( j  = 1, 2 . . . .  ), 

p=l ( 1 - ; t )  p+I 

where the coefficients b are in a simple way related to Stirling's numbers of the sec- 

ond kind, bjp = pV. 8(p)a . �9 
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Below we use Pochhammer 's  notation: 

(a)N = a(a + 1)(a + 2 ) . . . ( a  + N -  1). 

THEOREM 1. - Consider the funct ion  X(,~ ) defined for  R -2 < [A I < R 2 by the series 

development 

~ 1  > ~  
X(;~) = 

I 1M~ 

Here, as before (see (8) in Section 1) Ms = (R ~ - R - ~ )  2 - n 2 ( R  - R -1)3. Then X(A) 

can be continued to a meromorphic funct ion  in C \ {0} with poles at the points  

R +-2 , R • R • ... o f  order 1, 3, 5, . . . .  Indeed~ one has the partial fraction expan- 

sion 

( ) (3) X(~,) ---- Z (R - R -1)2k (2k + 2)N_ k ~ + 
N=o k=o - ~ 1 ~ - ~  " Ilk R2(N+I) 

+ ~ (R - R -1)2k (2k + 2)N-k 1 
N=0k=0 (-/V:k-)i  H~ R2(N+i)A , 

where Ilk is given by (2). We have furthermore 

�9 

PROOF. - I t  suffices to consider separately each of the series 

X + (~,) = and X -  (~,) = . 
~ = 2 M ~  - M,~ 

As M_~ = Ms,  we clearly have 

Therefore  it suffices to consider X + only. With no loss of generali ty we may assume 

that  R > 1. 

Le t  us write for n > 1 

(6) 

As 

1 1 1 
M. (Rn-R )2 ( ) 

1 - n  2 R _ R _ I  2 
R ~ , R - ~  

n2k(R - R -1)2k 

= k=o2 

R - R - 1  
0 <  < 1  f o r n > l  ( o r n < - l )  

R ~ - R - ~  
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it is clear tha t  this series is convergent. (We have assumed that  R > 1.) We note that  

all the series encountered in this context are absolutely convergent so that  all manip- 

ulations involved are justified. Thus, interchanging the order of summation we obtain 

from (6) 

n 2 k ( R  R-1)2k 

k=o n=2 (R n - R-n)2(k + 1) 

)I ~ . 

Next we write 

1 1 1 

(R ~ - R- '~) 2(k+1) R 2n(k+ 1) (1 - R -2" )  2(k+ 1) 

~-~ (2k + 2)~ 1 
v~= 0 ~! R 2n(k + ~ + 1) ' 

where the series converges as n > 1 and R > 1. This gives 

) X+ (9.) = (2k + 2)~ -1)~ ~t 
k=o ~=o v . T - -  ( R  - R  n 2k = n=2 R 2(k+v+l) 

~ (2k + 2)~ _l)2kHk(R2(k+~+l))" 
k=0 ~=o v! ( R - R  )~ 

Putting N = k + v and rearranging terms gives 

(2k + 2)N_ k )~ 
x + (4) ~ (R -1 2k = - R  ) Ilk R2(N+I ) 

N = o k : o - ( Y  : 

A~s this is the analogue of (3) for the function X + and a similar formula holds with X - ,  

this proves also formula (3) itself for the function X itself. �9 

REMARK 2. - An alternative approach can be based on first writing 

1 ( 1 1 ) 
M~ 2 n ( R  R -1 )  R ~ - R - ~ - n ( R - R  -1 )  R ~ - R - ~  + n ( R - R  -1 )  " 

This suggests to consider the series 

(7) E ! 
I~l>l n R ~ _ R - ~ + n ( R _ R - 1 )  " 

They may be treated in an analogous manner. Note, however, that  owing to the factor 

1 / n  we obtain m u l t i v a l u e d  functions with logarithmic singularities. Again this can be 

evaded by instead taking 

(s) 1 
I< > 1 R '~ - R -~ ++- n ( R  - R -I ) ' 
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without this unpleasant factor. Cf. also the analogous computation connected with the 

series 

1 2 ~ 

I-I>0 n R ~ - R - ~ '  

in Appendix V. It is not clear if it is possible to obtain product representations of the 

type encountered there in the present situation. We note also that series involving a 

divisor of the type R ~ - R -~ + n ( R  - R -1) occur in [12], formula (36), p. 512, as we 

alluded to already in Remark 3 in the Introduction. �9 

REMARK 3. - It is easy to see now that the function X satisfies the following func- 

tional equation: 

X(R22) + X ( R - 2 2 )  - 2X(2) - (R - R-1)2~2X(2) = - (2 + 2-1 + 1). 

Thus our theory is connected with the difference-differential operator: 

f(~) ~f (R2~)  +f(R-2~) - 2f(~) - (R - R - 1 ) 2  ~ f ( ~ ) ,  

which may be viewed as a natural generalization of the operator 

f ( 2 )  ~ f ( R ~ )  - f ( R  - ~ 2 ) ,  

which is basic for q u a n t u m -  or q- func t ion  theory (t). It is however not clear at this 

stage how far this analogy can be carried. In case of the series (7) and (8) we en- 

counter the somewhat simpler operator. 

f ( , ~ ) ~ f ( R 2 )  - f ( R - ~ 2 )  - (R - R - l )  ~f(2).  �9 

Now we turn our attention to the remaining functions Y, Y+, Y_, Z+,  Z _ .  A 

glance at how they were defmed (see (1) in Section 4) reveals that they arise essen- 

tially by integration from the function X. Due to the residues at the points ;t = 
= R -+2(N+l) (N = 0, 1, 2, .... ) they display however a logarithmic singularity a these 

points. 

(4) As indicated in a previous footnote (in the Introduction), one usually puts q = R 2 and then 
the operator considered is f ( 2 ) ~ f ( q 2 ) - f ( ~ ) .  
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We shall limit ourselves to writing down a number of functional relations connect- 

ing them. In order to indicate the dependence on R we shall write X0~) = X(~, R) etc. 

Then it is easy to see that one has the following symmetries: 

(9) 

1 1 

Y()~, R )  = - Y -~ , - ~  ; 

(11) 
Y _  (~, R )  = - Y+ -~ , , 

1 

1 1 

Moreover, one can prove that 

(10) 

and, similarly, 

(1) (1) 
(11) Z _ ( 4 ) = - ( R - 2 - 1 ) X ( ) ~ ) - Y _  ~- + Y  ~- . 

Thus one can in principle dispense with the two functions Z•  Finally, one has 

(12) 

We see that the functions Y, Y_+ arise from X via a process of integration. Due to this 

we see also that these are not meromorphic (single valued) functions but are multival- 
ued with logarithmic singularities at the points R _+2, R _+4, R _+6, . . . .  
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Appendices 

Appendix I. Biharmonic continuation and related issues. 

In this appendix we have collected some salient facts about biharmonic functions 

in general. Much of this is probably known but perhaps not so readily accessi- 
ble (5). 

We begin by putting into play the Euler operator 

8 8 
= r ~ r  = X~x 

8 8 
+ Y ~y = Z ~z + -5 ~z . 

We recall also the operational formula 

(1) A q ~ = ~ A + 2 a ~  8 
8x 8x 

- - - -  + 2  8 ~ ~  + z l ~ ,  
8y 8y 

where ~ stands for any function ~ (acting as a multiplication operator). With the aid of 

(1) it is easy to establish the following lemmata. 

LEMMA 1. - A~ = ~A + 2A. 

PROOF. - Using (1) we fred 

A x =xA-~x + 2  

y 8 )  8 

= x  + 2 - - "  
8x 2 8x 8x 2 ' 

8y 2 = y  A + 2  Y 8y ~ ' 

where we used also in the last link the fact that A commutes with the operators 8/8x 
and 8/8y. Adding up gives the desired result. �9 

COROLLARY. - I f  U is harmonic so is the function ~u.  �9 

LEMMA 2. - Ar 2 = r2A + 4~ + 4. 

PROOF. - The proof of this lemma is even simpler. Indeed, the result follows direct- 

(5) We refer, in particular, to the monograph [4]; although the bulk of this book is devoted to 
polyharmonic functions of infinite order, Chap. 1 lists many references of interest from our point 
of view. 
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ly from (1) applied to the function ~v = r 2 = x 2 + y2, noting that  in this case 

9__~_~ = 9~o = 2 y ,  A~0 = 4 .  [] 
9x 2x , 3y 

Next we provide a self-contained proof of Almansi's theorem [1] (the theorem it- 

self has already been re fe r red  to in the Introduction)(6). 

THEOREM 1 (Almansi [1] ) . -  Let u be biharmonic in the annulus t9 = { 1 < [ z [ <  R}. 

Then u can be u~tten in the form 

(2) u = h0 + r 2 h~ + B~ log r 2 + Dz log r e 

where ho and hi are harmonic functions in ~ and B and D are complex numbers. The 

numbers B and D are uniquely determined but not the functions ho and hi: any other 

representation of the type (2) is obtained by replacing ho and h i by harmonic func- 

tions hg and hl of the form 

h~ = ho + Az + C~, h ; = h l - A  1 - C  1 
Z Z 

where A and C are arbitrary complex numbers. Conversely, every such function u is 
biharmonic. 

REMARK 1. - I f  U is real valued we can take ho and hi real  in (2), and likewise 

D=-B. " 

PROOF. - We begin by establishing the converse. Assume thus that  the function u 

admits a representat ion of the type (2) with h0 and hi and certain constants B and D. 

Le t  us set 

(3) s = B~ log r 2 + Dz log r 2 ; 

we think of s as the ,,singulars, par t  of u. We have 

4 4 
(4) As = B-~ + D z ,  

implying that  s is biharmonic. Using Lemma 2 we then obtain 

4 4 
(5) Au = Aho + r2Ahl + 4~hl + 4hl + As = 4~h~ + 4hl + B ~  + D z ,  

(6) Although Almansfs theorem is often quoted in the literature, not many people seem to ha- 
ve read his memoir, as it is seldom mentioned that this author actually considered not only the ca- 
se of the disk but the much harder case of the annulus (and several other things too). In our case 
we read [1], regretfully, only at a rather late stage, and likewise we did with [12], another classic 
in this area. 
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where we used Aho = Ahl = 0 in the last step, along with (4). Using now the Corollary 

of Lemma 1 we find that  u is indeed biharmonic. 

I t  is clear that  the sum ho + r ~h~ remains unaffected if we replace ho and h i  by 

h g = h o + A z + C ~  and h ~ = h l - A ( 1 / - i ) - C ( 1 / z )  with arbitrary constants A and C. 

In order to prove the converse we prove first that, given a biharmonic function u, 

there exist a harmonic function hi and suitable constants B and D such that  

Lax + hi = I~A(u - B-5 log r 2 - Dz log r 2) ---- I A ( u  -- S) .  

Writing v = ( 1 / 4 ) A ( u - s )  we see that  we are faced with an equation of the 

type 

(6) d(rh) _ v 
dr 

with v harmonic in ~9. Being harmonic the function v admits an expansion of the 

type 

(7) v = a + b log r + ~ ' ( a , z "  + b , ~ - ~ ) ,  

where the single stroke ' indicates that  we take the summation over all integers n ~ 0. 

We have the following general result, the proof of which will be given below. 

LEMMA 3. - The differential equation (7) has a solution h which is a harmonic  

funct ion  i f  and only i f  a-1 = b-1 = O. The solution is unique up  to a term 
A(1/~) + C(1/z) .  

This lemma clearly is applicable in our special case, viz. v = ( 1 / 4 ) A ( u -  s), be- 

cause we can adjust the constants B and D occurring in the expression of s (see (3)) in 

such a way that  the hypothesis a-1 = b-1 = 0 is fulfilled. 

Finally, we put ho = u - r 2 h~ - s. By the computation in the first half of the proof 

we see that  ho is harmonic. This gives the representation (2). As ho is unique up to a 

linear function of the form Az + C5, this completes the proof. �9 

PROOF OF LEMMA 3. - I f  a-1 = b-1 = 0, direct integration of (7) gives 

h = a + b(log r - 1) + ~ '  n - - ~ ( a ~ z "  + b~-~ ~) + r - i f ( o ) ,  

f(O) being an arbi trary function of 0. As Av  = ( f + f " ) / r  8 , the function h is harmonic if 

and only i f f + f " =  0, o r f = r ( A / ~ +  C/z). On the other hand, if ak = bk = 0 for all 

k ~ - 1, we fmd in the same way that  the only harmonic solution is 

log z log 5 A C 
h = a_l - - -~-  + b_l ~ q- -=- q- 

z "~' 

which is not single-valued in the annulus unless a-1 = b _ l - - 0 .  �9 
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As a simple application of Theorem 1 we have the following result. 

COROLLARY. - LeE u be biharmonic in a neighborhood of  the circle I zl = 1. Then 

the funct ion  u a, defined by 

(1) 
u * ( z ) =  l z i2u z ' 

likewise defined in a neighborhood of  the ]z] = 1, but perhaps a different one, is hi- 

harmonic too. 

PROOF. - By rescaling, Theorem 1 is applicable to any annulus, so we may assume 

that  u admits a representation of the type (2). Then we obtain 

u �9 = ho r + r 2 h ~  - Dz log r 2 - B~ log r 2 , 

where ho r and h ~  are given by 

(1) 
h~ = hi z ; g ; 

by Kelvin's theorem (reflection) they are again harmonic functions. The conclusion 

follows now by the reverse part  of Theorem 1. [] 

REMARK 2. - The condition that  u be defined in a neighborhood of a circle is super- 

fluous. Indeed, the conclusion of the corollary remains in force for biharmonic func- 

tions defined in an arbi trary open set not containing the origin. This again is but a 

very special case of a general theorem due to BOJARSKI [5] concerning conformal or 

Moebius invariance of the iterated operators A p (p = 1, 2, ...), not only in two but in 

any number of dimensions. [] 

We now come to the question of biharmonic continuation. What  we have in mind 

is an extension of Kelvin's reflection for harmonic functions to the biharmonic case. So 

let u be biharmonic in the annulus ~9 and assume that  it satisfies Dirichlet boundary 

conditions on the inner circle: 

au _o  for I z l = l  (8) u -  9N ' 

where N denotes the normal. Note that  the second equality in (8) can also be written 

as ~ u  = 0. 

THEOREM 2. - The above func t ion  u has a biharmonic cont inuat ion ~ to the annu-  

lus ~-2 = {R -1 < Izl < 1}. 

PROOF. - Let  us begin by rewriting the representation formula (2) in Theorem 1 in 

a form more suitable for the present purpose. Instead of s we use as singular part  the 
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function S, 

(9) S(z)  = Bi,~(log r 2 + 1 - r 2) + Dz(log r 2 + 1 - r2) .  

Clearly S is biharmonic too and it vanishes for r = I zl = 1. To see that  also the normal 

derivative vanishes we compute ~S.  We find 

~ S = B ~ ( l o g r  2 + 1 - r  2) + B-~r ~ - 2r  + Dz(log r 2 + 1 - r  2) + Dzr  - 2r  . 

F r o m  this fo rmula  it is c lear  t h a t  ~ S  = 0 for  r = I zl = 1. 

Next we modify ho and hi replacing them by the harmonic functions h~, h~, 

h to = ho + hi,  h ti = hi + B~ + Dz . 

So in place of (2) we have now the formula 

(10) u = ho t + (r 2 -  1)hi t + S .  

We have not yet  utilized that  u satisfies the boundary condition. From (10) we see 

directly that  ho t = 0 ff I zl = 1. Differentiating yields 

~ u  = ~hto + 2r2h~ + (r 2 - 1) ~hl  t + ~ S .  

Hence ~ho t + 2h1 t = 0 if I z I = 1. This suggests that  we change our notation once more, 
putting 

1 ~ho t. U=hr K = h •  + 

Then (10) can be stated as 

(11) u = H + ( r  2 -  1 ) ( - I ~ H  + K ) + S .  

We summarize: I n  this formula  H and K are harmonic in t~ and both vanish i f  I z I = 

= 1, and S, given by (9), is biharmonic and satisfies the boundary condition (8). 

Now it is easy to perform the continuation. The functions H and K are continued 
to harmonic funct ions /~  a n d / ~  in D by reflection, 

Finally, we set  

(1) 
# I ( z )  = - H -# , for z e ~ .  

~ = / t  + (r2 - 1) ( -  1 ~ / t  + /~)  + S .  

I t  is clear that  ~ is biharmonic in ~ and extends u (as both functions satisfy the 
Dirichlet boundary condition (8) on Izl = 1). �9 

Let  us also have a look at the more general situation when u has isolated singular- 
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i t ies  in t~. To fix the ideas let us assume that  u is biharmonic but  for a single pole of 

s trength one at the point t of the positive halfaxis (1 < t < R), in other words, that  u 

satisfies the equation A 2 u = 5 t, where 5 t is the Dirac delta function at the point t; it is 

still assumed that  the boundary condition (8) is fulfilled. 

THEOREM 3. - N o w  u has  a c o n t i n u a t i o n  ~ w h i c h  is b i h a r m o n i c  in  ~ but  f o r  a 

tr iple  pole at  the po in t  l i t .  

PROOF. - Let  V be Green's function for the exterior disc { 1 < I z I ~< ~ } with pole 

at t. This function will be discussed in Appendix IV; in particular, it will be seen there 

that  it has the same type of singularities. So it suffices to apply Theorem 2 to the dif- 

ference u - V. " 

Appendix II. On Hedenmalm's weighted bi-Laplace operator. 

Now we extend our result  for A 2 to the case of the more general operator  

/I Iz1-2~zJ (where a > - 1 )  considered by HEDENMALM [14]. I t  will be convenient to 

put fl = a + 1, so that  fl > 0 while the case fl = 1 corresponds to the initial case of the 

operator  A 2. Let  us refer  to null solutions of this operator  as f l -b iharmonic  

f u n c t i o n s .  

It  is easy to extend Almansi's theorem, even for the annulus (cf. Appendix I), the 

case of the disc having been t reated by Hedenmalm himself ([14], Lemma 3.1): in 

place of r 2 h I w e  must  write r 2z hi and, if fi is an integer (fl = 1, 2, ...), we must  modify 
the ,,singular- par t  taking z ~ log r 2 and 5~ log r 2 instead ofz  log r 2 and ~ log r2; iffl is 

not an integer there  will be no singular part. 

Similarly, one can show that  fl-biharmonic functions are invariant under the 

transformation 

1 
U ( Z ) ~ ! Z i 2 ~ U (  z ) ; 

of course, we cannot expect Moebius invariance unless fl = 1. 

Now we indicate the computations of the Fourier  coefficients of the fl-biharmonic 

Green's functions for the annulus ~9 = { 1 < I z I < R}. In fact, a pleasant surprise lies 

ahead, as it turns out that  the result  now becomes much more symmetric (7). The gen- 

eral f ramework set up in Section 1 is applicable with the multipliers x given by (cf. (1) 

in Section 1) 

xl  = n ,  x2 = 2fl + n ,  x8 = - n , x4 = 2fl - n . 

(7) This is another instance of an often observed fact that, in mathematics, complicated things 
sometimes become much more transparent when looked upon from a sufficiently general 
angle. 
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In this case the sums of the multipliers are determined by the matrices (cf. Examples 

(xi - x~) = 

in Section 1) 

and 

0 -2f l  2n -2f l  + 2n)  

2fl 0 2 f  + 2n 2n 

- 2 n  -2 f l  - 2 n  0 -2f l  

2fl - 2 n  - 2 n  2fl o 

�9 2fl + 2n 0 2fl 

) (xi + xk) = 2fl + 2n �9 2fl 4fl 

0 2fl �9 2fl - 2n 

2fl 4fl 2fl - 2n 

respectively. This gives in the first place the determinant A = 4R2~M,r with (cf. (8) 
in Section 1) 

M ~  = M~,,z(R) = fl2(R~ - R-~)2 _ n 2 (R ~ _ R-~)2.  

We observe right away that this expression is skew-symmetric in n and fl; further- 

more, it is an even function in each of these variables. For the Fourier coefficients of 
the Green's function we find now e.g. that  

1 [ 1 { f2R2n  _ n2R-2fl  _~_ ( n  2 _ f 2 ) }  t2~-n _ 
(1) A* - 16~M, z L fin(,, - f )  

and 

--R ~ I t -n  + R - 2 n - l t 2 ~ + n  + R - 2 n - R 2 ~ t n  1 
f - n  n - f  J 

B: - 

1 [ 1 { f2R2n  _ n2R2~ + (n 2 _ f2)} t -~ - 

16zMn~ L f n ( n  + f )  

+ 
"1 

- R -2~ _ R - 2 ~  R - 2 ~  | R -2~ 1 t 2 ~ _ .  + t 2 ~ + .  - i t  n 
f n + f  n J" 

So far we have not investigated the corresponding series. 

REMARK l. - As a possible higher order generalization of the Hedenmalm operator 
considered above one may conceive the operator 

of order 2m, where the fl's are given numbers > 0. A basis of ,,holomorphic- solutions 
of the corresponding homogeneous partial differential equation (in a circular region) 
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is given by the functions 

z ", . . . ,  Izl  --,z n 

where we have written 71 = ill,  Y2 = fil + fi2 . . . .  , 7m-1 = fll + f12 + ... + tim-l; it is 
understood that if any of the numbers y is of the form _+ n these expressions have to 

be conveniently modified by introducing logarithms. It seems that the special case 

fll = ...fi,~-i = fi is the most productive one. In particular, we expect that the above 

symmetry of the Fourier coefficients of the Green's function recurs once 

more. [] 

Appendix III. The case of a strip. 

The strip enters in a dual way. On the one hand, by Moebius invariance we could 

have considered in principle, instead of the annulus, more generally domains bounded 

by any two circles. So as a limiting case we have the case of two tangent circles. Per- 

forming a suitable Moebius transformation we can, in view of Bojarski's theorem [5], 

always put ourselves in the situation of a strip, say, the standard strip { 0 < Re z < 1 }. 

Again the Green's function U for A 2 can be found using Fourier methods. Only in- 

stead of Fourier series one encounters now Fourier i n t e g r a l s .  We defer the detailed 

discussion to the end of this appendix. 

REMARK 1. - (Am even more general case.) What is common between these two 

cases? Well, both the annulus and the strip admit a one parameter group of Moebius 

transformations. So one can ask in what happens if we have a general domain with the 

said property. (For a similar point of view in a different context, see [17].) In particu- 

lar, we have in mind the case of a domain bounded by two circular arcs making non- 

zero angles with each other--a lunula. We note that making a preliminary Moebius 

transform we can always pass to the model situation of an angle with vertex placed at 

the origin. It seems that in this case the corresponding Green's function has been de- 

termined explicitly by VENSKE (cf. the discussion in the Introduction). [] 

On the other hand, the strip arises via uniformization. It is clear that the universal 

covering space of the annulus (in the sense of topology) can be taken to be the strip. In 

order to get a suitable uniformizing parameter we recall that we have written for the 

generic point z = re  ~e where r and 0 are the usual polar coordinates, with r > 0 and 0 

being counted modulo 2z. This suggests to set r = e ~ at the same time dropping the 

restriction on 0. Let us write s = a + iO. Then we obtain a strip of width A = log R in 

the s-plane and lying over the annulus, while the operator A is replaced by 

(1) 
+ a 
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its square A 2 by 

A basis of null-solutions for the operator in (2) is given by the quadruple family of 

functions 

e+-~o+i$o, e(2-+ ~)o + i~o 

corresponding to the functions R • e~nO, Re+_~ ei~O down on the annulus. It follows that 

we obtain general solutions u given by the Fourier integral: 

a o  

u(a) = ~ [a(~)e ~~ + b(~)e (2+q)~ + c(~)e -~~ + d(~)e(2-~)~ 
- -  o o  

with essentially arbitrary functions a(~) etc. When taking account of boundary condi- 

tions we obtain linear equations for these coefficients which are analogous to those 

encountered in Section 1 in the case of the annulus. Therefore we can, in principle, 

carry over our previous results to obtain a formula for the corresponding Green's 

function U str , say, also in this case. There is, of course, also the additional difficulty, to 

be taken care of, that the functions in (3) are not linearly independent if ~ = 0, + 1. It 

is not clear that the resulting integrals are any easier to handle than the previous infi- 

nite series. 
Let us note that if we know the Green's function in the case of the strip U ~tr, then 

the one for the annulus U ~ (previously written just U) can be obtained simply by 
averaging: 

uann(z ) -- vper(8 ) dej Z ustr(8 -~ 2 z i m )  (z = e ~ = e~176 
m e g  

This is, formally speaking, a consequence of Poisson's summation formula. By virtue 

of the results in Section 7, we immediately get as a corollary the following result, 

which is analogous to a result, for the operator d 2 itself, due to DUFFIN [9] (also re- 
ferred to in [12], p. 510). 

COROLLARY.- The Green function U~t~ for the operator (2) on the strip is not of one 

sign. �9 

The above can be given yet another twist, namely, we can pass to the limit A --~ 0. 

Indeed, making the substitution s ~ A s ,  that is, a ~ A a ,  O ~ A O ,  we get the normal- 

ized strip 0 < a < 1 and, instead of (1), the partial differential operator 

A-2e-2Ao[ 8__2__ 2 8 82 ] 
2 + + . 

So in the limit (ignoring the factor A -2) we get back the operator A e, thus the case 



372 M I R O S L A V  E N G L I S  - JAAK PEETRE: A Green's function, etc. 

with which we set out in the beginning of this appendix. It  is conceivable that  the 
(renormalized) periodic Green's function 

1 uper 

gives when A--> 0 the corresponding Green's function for A 2 in the normalized 

strip. 
We say now a few words about the latter. Let us changes notation writing z = x + 

§ iy in place of s = (r + iO. Thus we seek our function U subject to the conditions 

[A2U:~t for 0 < x < l ;  
] 

~[ U -  3U - 0  f o r x = 0 , 1  
ax 

where ~t is the Dirac function placed at the point t on the unit interval, 0 < t < 1. 
Then U must  admit Fourier expansions of the form (cf. the Introduction in the case of 

the annulus) 

ao 

U =  [ [A*(~)e ~ + B * ( ~ ) x e  ~ + C*(~)e - ~  + D*(~) ( -x )e -~]e i~Yd~ if x < t; 
- -  o o  

co 

U =  j [A**(~)e ~ + B**(~)xe ~ + C**(~)e -x~ + D**(~)( -x)e-~]ei~Yd~ if x > t ,  
- -  o o  

where the coefficients A* etc. and A** etc. are determined from a certain system of 

linear equations. 

Appendix IV. The singularities of Green's function. 

Let us re tm~ to a point left open in Appendix I. By inspection we see from the for- 

mula (already encountered in Section 6) 

1 ( I z - w  1 2 + ( l _ , z , 2 ) ( 1 _ , w , 2 ) ) .  (1) V(z ,w)= ~ ]z-wl21og 1 z~ 

that the Green function V for the exterior disc { 1 < ]z[ < ~ } admits a continuation 
to { Iz[ < 1} which is biharmonic except at the point l /N:  The same expression can 

used for the entire punctured plane C \ { 1 /~} so we are going to keep the notation 

V. It  remains to investigate the nature of the singularity at the point 1/~.  

THEOREM 1. - The point 1 /~  is a pole of order three. More precisely, we have the 

equation 

(2) A2V = d z - c 3 1 / - ~ - ( 1 -  lw! 2) - ~  + ~ - ~  d l / ~ -  ~ ~ 
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PROOF. - For  convenience let us take w on the positive halfaxis, writing w = t 

(with 1 < t < oo) so that  1 / ~ =  1/t. Then V comes as the difference of two 

terms: 

V= ~1 [ z_ t [2 1 0 g [ z_ t [2_  16---zl [z_ t[210g[ l_z t [2 .  

(We can ignore the term (1 - [z[2)(1 - t 2) which is biharmonic in the whole plane.) 

As we are interested in what happens near z = 1/t, we may concentrate on the second 

term, call it ( 1 /16z )H .  (The first term is biharmonic off the point z = t.) We 

have 

[1 I 
H = Iz - tl21og I1 - ztl  2 = Iz - tI210g t 2 - [z - tl210g -~ - z = 

I 1J21 ll2 = ] z - t [ 2 1 o g t  z -  z - T  log z - ~ -  - 

_ 1 _ 1 1 2 "  I 
The first term clearly is biEharmonic and so can be disregarded. Shifting the origin to 

the point 1/t let us look at the three functions 

//1 = [z[21og [z[ 2, //2 = x log [z[ 2 and //8 = log Izl ~ 

and apply the operator A 2 to each of them. 

Case i. Clearly A ell1 = 16z5. 

Case ii. Using formula (1) in Appendix I we obtain 

(3) AHz = 2 8 log Izl 2 8x + xA log [z[ 2 

Now recall that  (1 /4z)  log r 2 is the fundamental solution of the operator A, that  is 

A log [z[ 2=  4z5. I t  follows that  the second term in (2) vanishes: xA log [z[ z =  

= 2zx5 = 0. Hence applying A to (3) we find 

AgH2 2 8A log]z[ 2 8D 
= 8x = 8~ - ~ x"  

Caseiii. By the same device A2H3 = 4zAS. 

Collecting all this information (eases i-iii), shifting the origin back to z = 0 and di- 

viding by 16z, we obtain 

2 1 H ) 851/t 1 (t - 1/t)2A51/t . 
--" - ~ l / t  "~ (t  - 1 / t )  8x 4 

This establishes (2). �9 
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Appendix V. Green's funct ion for Laplace operator in the annulus.  

This appendix is written mainly for the benefit of the reader so that he or she can 

quickly see how the corresponding computations go in the case of d. (Recall that, as 

was related in the Introduction, the treatment in [8] is a different one (s).) 

We seek to determine the Green's function U subject to the conditions 

[ A U = b t  in { 1 <  Iz[ < R } ;  
/ 

! Y = 0  for Iz] = 1  and Iz] = R ,  

where 6t is the Dirac function placed at the point t on the real axis, 1 < t < R. We 

have the Fourier expansion 

U = A ~ "  + B o * l o g r +  E ( A * r ~  + B * r - " ) e  i~~ 
Inl > 1 

in { 1 <  Izl < t } ;  

U = A 6 * * + B o * * l o g r +  E ( A * * r ~ + B * * r - n ) e  i~~ in { t <  ]z] < R } .  
Ini > 1 

For n ~ 0 we have the system of linear equations 

I 
A * + B * = O ;  

t ~ n A * *  + R - n R * *  = 0 " 

A A ~ U  + A B ~ t - ~  = O; 

A A ~ n t  '~ + A B e (  - n ) t  -~ = 2--~' 

where we have written AA~ = A** - A : ,  AB~ = B** - B*.  It is readily seen that the 

solution is given by 

1 1 _ R ~ t - n + R - ~ t  ~ 

A * =  - B * -  4 z  n R ~ - R - n  , 

A * *  = - ~ ' - 2 n R * *  = 1 1 R n t - n -  R - ~ t  ~ 

*~ - n  4 ~  n R ~ - R - n  

The case n = 0 is settled in a similar way and one finds 

_l~ t - log R .  A0** = - log R ; B~'* = 1 
A0* = O ; B0* = 2z  log R ' ~zz log t .  

Inserting this into the series and making some formal manipulations one obtains the 

expression of the Green's function U in terms of (the logarithm of) Jacobi theta func- 

tions given in [8], pp. 335-337. 
Let us indicate the main idea of the ~,manipulations- just referred to at the hand of 

(s) Yet another proof is indicted in [12], pp. 497-498. 
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the model series (cf. the proof of Theorem 1 in Section 6) 

n = l  n R n Z - R - n "  

Let us write (assuming that R > 1) 

1 _ R _ ~  1 _ ~.~ R - ( 2 v + l ) n  

R ~ - R - ~  1 - R -2n . = o 

Hence, inserting and interchanging the order of the n and the v summation, we 

obtain 

1 ~ _ 1 R 
n= 1 n R n R - n  n v=O =1 

-(2~+1)~A~ = _ ~ log(1 -AR-(2~+I)) = 
v=0 

= log r I  (1 - AR -(2~ + 1) )-1. 
v=0 

One sees that the product is a product of the type that usually enters in the expansion 

of a theta function. 

A p p e n d i x  V I .  O n  a n  i n t e r p o l a t i o n  p r o b l e m .  

In the basic computation in Section 1 we encountered the problem of inverting the 

matrix 

1 1 1 1 

Xl X2 ~3 X4 

(1) R ~' R~ ~ R~ 3 R ~4 ; 

xl R ~1 x2 R ~ x3 R~3 X4 Rx4 

in particular, we evaluated the corresponding determinant. Indeed, (1) is a special 

case of more general matrices, for instance, matrices formed in an analogous way with 

arbitrary many exponents x. Matrices of the last type arise also in connection with the 

following interpolation problem: to reconstruct a function f of the type f ( x )  = P ( x )  + 

+ e ~ Q(x),  where P and Q are polynomials of fLxed degrees, say, m and n, given its 

values at m + n points xl, x, ..., xm+~. This leads to a m + n times m + n matrix 

whose typical column has entries 1, x i ,  ..., x ~  -1, e I'~i, Xi e~xi, . . . ,  x n - l  e ~ i  (i = 

= 1, ..., m + n). Clearly, if m = n = 2 writing R = e ' we are in the case of (1). Even 

more general matrices arise if we allow more general exponential-polynomials; for in- 

stance, f ( x )  = P ( x )  + el'~Q(x) + e ~ R ( x )  would be the next case in order of complexi- 

ty. Finally, we remark that the matrices (or determinants) referred to here may be 

viewed as natural generalizations of Vandermonde matrices (or determinants); this 

corresponds to the case of interpolation of ordinary polynomials (Lagrange's interpo- 

lation formula etc.). Generalizing our previous terminology (see Remark 1 in Section 

1) we should perhaps even here speak of Almansi matrices (and determinants). 
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EXAMPLE 1. - The main situation considered throughout  this pape r  concerns the  

case Xl = n,  x.~ = 2 + n, x8 = - n, x4 = 2 - n (see (2) in Section 1). As a generalization 

tet us t ake  

x l = n ,  x 2 = 2  + n ~  x 3 = 4  + n ,  x4 = - n ,  x s = 2 - n ,  x ~ = 4 - n ,  

which amounts  to passing to the cube A 3 of the Laplacean.  Le t  us also again write 

e z = R. Using Mathemat ica  we found tha t  the corresponding de terminant  (a 6 • 6 de- 

terminant)  is, except for trivial factors, given by  

M~(R)  = - 4R 3~ + 4R -3~ + (n ~ -  2n  8 + n 4 ) R  4+~ + ( - n  2 - 2n s - n a ) R  4 - "  + 

+ ( 8 n  2 + 4n 3 - 4 n 4 ) R  u+n + ( - 8 n  2 + 4n  a + 4 n 4 ) R  2-n  + 

+(12  - 18n 2 + 6 n 4 ) R  ~ + ( - 1 2  + 18n 2 -  6 n 4 ) R  -~ + 

+ ( 8 n  2 _ 4n  3 _ 4 n 4 ) R - 2 + ~  + ( _ 8 n  2 _  4n  3 + 4 n a ) R - 2 - ~  + 

+ ( n  2 + 2n 3 + n 4 ) R - 4 + ~  + ( _ n  2 + 2n  8 _  n 4 ) R - 4 - ~  

and, moreover ,  tha t  tlfis expression has a factorization of the form 

M ~ ( R )  = R - 3 ~ p ~ ( R ) q ~ ( R )  

where p~ and % are  cubic polynomials in R ~. This should be  compared  to the factor-  

izations (corresponding to Li p) 

R ~ - R - ~ = R - ~ ( R  , ~ + I ) ( R  ~ - 1 )  - - t h e  c a s e p = l ;  

(R n - R -n)2 _ n 2 ( R  2 _ R -2)2 = ((R n _ R -r~) + n ( R  2 _ R -2)) • 

•  - - t h e  case p = 2 ,  

the presen t  case being the case p = 3. Continuing we tr ied with the  case p = 4 (the 

8 • 8 case). However,  in this situation we (or r a t he r  Mathematica)  failed to detect  a 

corresponding factorization. 

Acknowledgement .  We are obliged to JONATHAN ARAZY, MARC ASHBAUGH and 

PER JAN H ~  HEDENMALM for interest ing correspondence and /o r  other  valuable 

information. 

R E F E R E N C E S  

[1] E. ALM~SI, SuUe integrazione dell'equazione differenziale A 2n = 0, Ann. Mat. Pura Appl., 

2 (1898), pp. 1-51. 
[2] M. ASHBAUGH, Electronic mail, May 17, 1994. 
[3] M. ASgBAUGH, Electronic mail, March 2, 1995. 



MIROSLAV ENGLIS - JAAK PEETRE: A Green's function, etc. 377 

[4] N. ARONSZAJN - TH. M. CREESE - L. J. LIPKIN, Polyharmonic Functions, Clarendon Press, 
Oxford (1983). 

[5] B. BOJARSKI (BoYARSKID, Remarks on polyharmonic functions operators and conforraal 
mappings in space, in Trudy Vsesoyuznogo Simposiuma v Tbilisi 21-23 aprelya 1982 g., pp. 
49-56 (Russian). 

[6] C.V. COFFMAN - R. J. DUFFIN, On the fundamental eigenfunctions of a clamped punctured 
disc, Adv. Appl. Math., 13 (1992), pp. 142-151. 

[7] C. V. COFFMAN - R. Z. r}UFFIN - D. H. SHAFFER, The fundamental mode of vibration of a 
clamped annular plate is not of one sign, in C. V. DUFFIN - R. J. SHAFFER (eds.), Construc- 
tive Approaches to Mathematical Models, pp. 267-277, Academic Press, New York 
(1979). 

[8] R. COURANT - D. HILBERT, Methoden der Mathematischen Physik I, 3. Aufl., Springer-Vet- 
lag, Berlin-Heidelberg-New York (1968). 

[9] R.J.  DUFFIN, On a question of Hadamard concerning super-biharmonic functions, J. Math. 
Phys., 27 (1949), pp. 253-258. 

[10] C. V. DUFFIN - R. J. SHAFFER, On the modes of vibration of a ring-shaped plate, Bull. Am. 
Math. Soc., 58 (1952), p. 652. 

[11] M. ENGLI~ - J. PEETRE, Covariant differential operators and Green functions, Ann. Polon. 
Math., to appear. 

[12] P. R. GARABEDIAN, A partial differential equation arising in conformal mapping, Pac. J. 
Math., 1 (1951), pp. 485-523. 

[13] W. K. HAYMAN - B. KORENBLUM, Representation and uniqueness of polyharmonic func- 
tions, J. Anal. Math., 60 (1993), pp. 113-133. 

[14] P. J. H. HEDENMALM, A computation of Green functions for the weighted biharmonic opera- 
tors A Iz 1-2aA, with a > - 1 ,  Duke Math. J., 75 (1994), pp. 51-78. 

[15] S. JANSON - J. PEETRE, Harmonic interpolation, in Interpolation Spaces and Allied Topics 
in Analysis, Proceedings, Lund, 1983, Lecture Notes in Mathematics, 1070, pp. 92-124, 
SpI%uger-Verlag, Berlin-Heidelberg-New York-Tokyo (1984). 

[16] G. KOWALEWSKY, Einffthrung in die Dete~minantentheorie einschliessend der unendlichen 
und der Fredholmschen Determinanten, Veit, Leipzig (1909). 

[17] J. PEETRE, Orthogonal polynomials arising in connection with Hankel forms of higher 
weoht, Bull. Sci. Math. (2), 116 (1992), pp. 265-284. 

[18] I. SCHUR, Uber Potenzreihen, die im Innern des Einheitskreises beschrSmkt sind, J. Reine 
Angew. Math., 147 (1917), pp. 205-232; English translation: I. GOHBERG (editor), L Schur 
methods in operator theory and signal processing, pp. 31-88 (Operator Theory: Advances 
and Applications, vol. 18), Birkh~iuser, Basel (1986). 

[19] G. SZEG0, Collected Papers, Vol. 3, 1945-1972 (edited by RICHARD ASKEY), Birkh$iuser, 
Basel-Boston-Stuttgart (1982). 

[20] O. VENSKE, Zur Integration der Gleichung AAu = 0 fi~r ebene Bereiche, Nachr. K. Gesell. 
Wiss. GSttingen No. 1 (1890), pp. 27-33. 

[21] H. VILLAT, Le problOme de Dirichlet dans une aire annulaire, Rend. Circ. Mat. Palermo, 33 
(1912), pp. 134-175. 


