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Radiative energy and momentum transfer due to fluctuations of electromagnetic fields

arising due to temperature difference between objects is described in terms of the cross-

spectral densities of the electromagnetic fields. We derive relations between thermal

non-equilibrium contributions to energy and momentum transfer and surface integrals

of tangential components of the dyadic Green’s functions of the vector Helmholtz

equation. The expressions derived here are applicable to objects of arbitrary shapes,

dielectric functions, as well as magnetic permeabilities. For the case of radiative transfer,

we derive expressions for the generalized transmissivity and generalized conductance

that are shown to obey reciprocity and agree with theory of black body radiative transfer

in the appropriate limit.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Fluctuations of electromagnetic fields lead to thermal
radiative transfer, via energy transfer, and van der Waals
and Casimir forces, via momentum transfer. Diffraction
and interference effects as well as tunneling of evanescent
and surface waves, collectively known as near-field
effects, are not taken into consideration by the classical
theory of radiative transfer. Near-field effects become
important when the length scale of importance becomes
comparable to the characteristic thermal wavelength
(lT � 3000=T mm). For radiative transfer between two
objects, an important length scale is the minimum inter-
object spacing, lgap. When lgap5lT , tunneling of electro-
magnetic waves lead to enhancement of radiative transfer
beyond the classical or far-field limit. Surface texturing,
for instance by creating a periodic 1D or 2D pattern,
introduces a length scale, lp, that characterizes the period
of the pattern. When lp5lT , diffraction effects can lead to
All rights reserved.

x: þ1 212 8543304.

ia.edu

y A, Zheng Y. A Green
Quant Spectrosc
thermal emission patterns not usually associated with a
planar surface [1].

It has been long recognized that near-field enhance-
ment of radiative transfer due to surface polaritons can
result in increased power density as well as efficiency
[2–5]. However, this enhancement of energy transfer has
not been used in any practical device, as yet, because of
our inability to conceive of configurations other than two
parallel surfaces with a thin vacuum gap in which an
enhancement of similar magnitude occurs. Most investi-
gations of near-field radiative transfer have been
restricted to objects of few simple geometric shapes, each
analyzed by a vector eigenfunction expansion method
applicable to that geometry (planar geometry with vector
plane waves [2,6–10], cylindrical surfaces with vector
cylindrical waves [11], two spheres with vector spherical
waves [12–15], sphere-plane with a combination of vec-
tor spherical and plane waves [16]). Even minor changes
to the shape of the object can impose great challenges.
Simulations of thermal emission from textured surfaces
are usually performed using rigorous coupled wave ana-
lysis (RCWA) [17–19] or finite difference time domain
(FDTD) methods [20], which are quite different from
those used for simulations of near-field radiative transfer.
’s function formalism of energy and momentum transfer
Radiat Transfer (2013), http://dx.doi.org/10.1016/
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Nomenclature

E electric field vector
F view factor
G e electric dyadic Green’s function
G m magnetic dyadic Green’s function
G E r � G e

G M r � G m

G o Green’s function of contribution due to back-
ground or source radiation

G
ðscÞ

Green’s function of contribution from waves
scattered by interfaces

Ge linearized conductance for radiative transfer
H magnetic field vector
I identity matrix
J current density
Tl temperature in object l

P poynting vector
Q radiative heat transfer
~Rhn Fresnel reflection coefficients at interfaces

between h and n

Sl closed surface of object l

Te generalized transmissivity for radiative
energy transfer

Tm generalized transmissivity for momentum
transfer

Vl volume of object l

Vd volume of infinitesimal radius surrounding ~r
E matrix of contribution to /EEnSs

H matrix of contribution to /HHnSs

X matrix of contribution to /EHnSs

c speed of light
_ reduced Planck’s constant
k wavevector
kb Boltzmann’s constant
kn n component of wavevector (n¼ x,y,z)
khz z component of wavevector in vacuum
kr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

xþk2
y

q
l thickness of vacuum gap
n̂ unit normal vector
r position vector of observation point

~r position vector of source point
t time
b 0 or 1
d delta function
q distance of points
E Levi-Civita symbol
e permittivity, e0 þ ie00
eo permittivity of free space
Y energy of a photon at temperature T

m permeability, m0 þ im00
mo permeability of free space
n, x 1 or �1
s Maxwell stress tensor
o frequency
R real part
I imaginary part
Tr trace

Superscripts

bb blackbody
e electric field
m magnetic field
pp planar–planar
(h) vacuum
(l) objects (l¼ 1,2, . . . ,N)
(p) transverse magnetic
(s) transverse electric
ðmÞ polarization s or p

T transpose
n complex conjugate

Subscripts

h vacuum
i, p, q Cartesian components 1,2,3
l objects (l¼ 1,2, . . . ,N)
s symmetric summation
1-2 from object 1 to 2
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To design other types of surfaces that can exploit the
enhancement, without posing the hurdles associated with
two parallel surfaces, and also to design surfaces with
new radiative properties by shape modification at nano/
micro scale, we need a general method to predict all types
of nanoscale effects on radiative transfer, irrespective of
the size, shape or properties of the objects involved.

Kruger et al. [11,21] used fluctuational electrodynamics
to develop a scattering matrix and operator formalism for
computing non-equilibrium force and heat transfer inter-
actions between objects with arbitrary shapes and fre-
quency dependent dielectric permittivities. Biehs et al. [9]
developed a formalism of nanoscale radiative transfer
between two parallel surfaces similar to that of Landauer
formalism of electron transport in mesoscopic devices
[22–25]. Ben-Abdallah et al. [26] used Rytov’s theory to
Please cite this article as: Narayanaswamy A, Zheng Y. A Green
in fluctuational electrodynamics. J Quant Spectrosc
j.jqsrt.2013.01.002i
develop a theoretical formalism for radiative transfer
between many objects in the dipole limit. Messina et al.
[27] proposed a scattering matrix version of nanoscale
radiative transfer as well as dispersion forces that is valid
for objects with arbitrary shapes as well as dielectric
functions. Non-equilibrium fluctuational electrodynamical
interactions between objects can be expressed in a scatter-
ing matrix formalism or in a Green’s functions formalism,
just as the electrical conductance for electron transport can
be developed in terms of the scattering matrix or Green’s
function.

The work in this paper is an extension to a prior work
published in this journal by one of the authors [28].
In Ref. [28], the focus was on the relation between
cross-spectral densities of electromagnetic fields in thermal
equilibrium and the dyadic Green’s functions (DGFs) of the
’s function formalism of energy and momentum transfer
Radiat Transfer (2013), http://dx.doi.org/10.1016/
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Fig. 1. Schematic of N objects at temperatures T1 ,T2 , . . . ,TN embedded in

a host medium at Th.
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vector Helmholtz equation. In this paper, the focus is on
thermal non-equilibrium effects, i.e. when the objects are
at different temperatures. Volume integral expressions for
cross-spectral densities of components of the electric and
magnetic fields that can be obtained from Rytov’s theory of
fluctuational electrodynamics are converted into a form
more appropriate (in terms of surface integrals of DGFs of
the vector Helmholtz equation) for computations as well as
comparison with the classical theory of radiative transfer.
Though the focus of this paper is not on developing new
numerical techniques, it is hoped that the formalism
developed here will be used to compute thermal non-
equilibrium energy and momentum transfer between
arbitrarily shaped objects.

The paper is arranged as follows. In Section 2, the
fluctuation-dissipation theorem and DGFs are used to
express the electric and magnetic field correlation func-
tions in terms of the volume integrals of the DGFs. In
Section 3, Green’s identities for dyadic functions are used
to derive expressions for the field correlations in terms of
surface integrals of tangential components of the DGFs.
For radiative transfer between two objects, a generalized
transmissivity function that is expressed in terms of
double surface integrals on the surfaces of the two objects
is derived in Section 4. In Section 5, the theoretical
formalism developed in Section 4 is applied to the cases
of radiative heat transfer between two parallel half
spaces. We also show that the generalized transmissivity
function agrees with the theory of blackbody radiation in
the appropriate limit. Finally, we also discuss the implica-
tions of the theoretical formalism developed here for
computation of heat transfer and non-equilibrium forces.

2. Fluctuational electrodynamics and Green’s function
formalism

We briefly describe our notation regarding electro-
magnetic fields and their Fourier transforms here. A field
Aðr,tÞ and its Fourier transform, Aðr,oÞ, are related by
Aðr,tÞ ¼ ð1=2pÞ

R1
�1

Aðr,oÞe�iot do. Since the same symbol
is used to identify a field as well as its Fourier transform,
explicit dependence on time will be included when
referring to the time domain field. Explicit dependence
on o is suppressed from Aðr,oÞ so that it is written as AðrÞ.
Explicit dependence of relative dielectric permittivities,
magnetic permeabilities, and DGFs on o is also
suppressed.

Let us consider N objects (see Fig. 1) with relative
dielectric permittivities elðoÞ and magnetic permeabilities
mlðoÞ at temperatures Tl, where l¼ 1,2, . . . ,N. These
objects are assumed to be embedded in vacuum that is
at temperature Th. The object l is confined to the volume
Vl and the closed surface Sl is the boundary of this object
with the host medium. The outward normal on the sur-
face of object l at r is represented by nlðrÞ. The fluctuations
of the electric and magnetic current densities, which give
rise to the dispersion forces and radiative transfer, are
related to temperature by fluctuation-dissipation theo-
rems of the second kind [29–31]:

/Je
pðrÞJ

en
q ð~rÞS¼ 2oeoe00Yðo,TÞdðr�~rÞdpq ð1aÞ
Please cite this article as: Narayanaswamy A, Zheng Y. A Green
in fluctuational electrodynamics. J Quant Spectrosc
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/Jm
p ðrÞJ

mn

q ð~rÞS¼ 2omom00Yðo,TÞdðr�~rÞdpq ð1bÞ

/Je
pðrÞJ

mn

q ð~rÞS¼ 0 ð1cÞ

where p, q¼ 1,2,3 are the labels for the Cartesian compo-
nents of the vector, eo and mo are the permittivity and
permeability of free space, Je

p and Jm
p are the Cartesian

components of the electric and magnetic current densi-
ties, Yðo,TÞ ¼ ð_o=2Þ cothð_o=2kbTÞ, e00 and m00 are the
imaginary parts of the dielectric permittivity and mag-
netic permeability, respectively, at the location r which is
in local thermodynamic equilibrium at temperature T, zn

is the complex conjugate of z, and /S denotes the
ensemble average. 2p_ is the Planck constant and kb is
the Boltzmann constant. The presence of dpq implies that
we assume all materials to be isotropic, and that of dðr�~rÞ
implies that the correlations of sources are local. The
Fourier transforms of the electric and magnetic fields in
the host medium (volume Vh in Fig. 1) due to sources in
object l (volume V1) are given by

Eð~rÞ ¼

Z
Vl

½pðrÞ � G eðr, ~rÞ�Jm
ðrÞ � G Eðr, ~rÞ� dr ð2aÞ

Hð~rÞ ¼

Z
Vl

½mðrÞ � G mðr, ~rÞþJe
ðrÞ � G Mðr, ~rÞ� dr ð2bÞ

where pðrÞ ¼ iomomðrÞJ
e
ðrÞ, mðrÞ ¼ ioeoeðrÞJm

ðrÞ, ~r 2 Vh,
G Eðr, ~rÞ ¼r � G eðr, ~rÞ and G Mðr, ~rÞ ¼r � G mðr, ~rÞ. G eðr, ~rÞ
and G mðr, ~rÞ are DGFs of the vector Helmholtz equation
that satisfy the following boundary conditions on the
interface Sl between object l and the host medium:

n̂ lðrlÞ � ðmlðrlÞG eðrl, ~rÞ�mhðrhÞG eðrh, ~rÞÞ ¼ 0 ð3aÞ

n̂ lðrlÞ � ðG Eðrl, ~rÞ�G Eðrh, ~rÞÞ ¼ 0 ð3bÞ

n̂ lðrlÞ � ðelðrlÞG mðrl, ~rÞ�ehðrhÞG mðrh, ~rÞÞ ¼ 0 ð3cÞ

n̂ lðrlÞ � ðG Mðrl, ~rÞ�G Mðrh, ~rÞÞ ¼ 0 ð3dÞ

where rl and rh are position vectors of points on either
side of Sl in volume Vl and Vh, respectively, (9rl�rh9-0).
In addition, the DGFs satisfy the following reciprocity
’s function formalism of energy and momentum transfer
Radiat Transfer (2013), http://dx.doi.org/10.1016/
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relations:

mðrÞG
T

e ðr, ~rÞ ¼ mð~rÞG eð~r,rÞ ð4Þ

eðrÞG
T

mðr, ~rÞ ¼ eð~rÞG mð~r,rÞ ð5Þ

G
T

Eðr, ~rÞ ¼ G Mð~r,rÞ ð6Þ

where A
T

is the transpose of A .
Radiative transfer can be determined from the Poynt-

ing vector, Pð~rÞ ¼/Eð~r,tÞ �Hð~r,tÞS, whose components
are given by

Pið~rÞ ¼ Eipq/Epð~r,tÞHqð~r,tÞS ð7Þ

where Eipq is the Levi-Civita symbol. To determine van der
Waals pressure and radiative transfer, we need equal
time correlations of various components of the electric
and magnetic field vectors, such as /Epð~r,tÞEqð~r,tÞS,
/Hpð~r,tÞHqð~r,tÞS, and /Epð~r,tÞHqð~r,tÞS. van der Waals
pressure in vacuum can be determined from the Maxwell
stress tensor, s ¼ s e

þsm
, where s e

and sm
are the

electric and magnetic field contributions, respectively.
s e

and sm
are given by

s e
ð~rÞ ¼ eo½/Eð~r,tÞEð~r,tÞS�1

2I/E2
ð~r,tÞS� ð8Þ

sm
ð~rÞ ¼ mo½/Hð~r,tÞHð~r,tÞS�1

2I/H2
ð~r,tÞS� ð9Þ

where /Eð~r,tÞEð~r,tÞS and /Hð~r,tÞHð~r,tÞS are matrices
whose components are /Epð~r,tÞEqð~r,tÞS and /Hpð~r,tÞ
Hqð~r,tÞS, respectively, p, q¼ 1,2,3, and I is the identity
matrix.

Since the fields are assumed to be stationary,
/Eð~r,tÞEð~r,tÞS, /Hð~r,tÞHð~r,tÞS, and /Eð~r,tÞHð~r,tÞS are
independent of time [32]. The equal time correlation
functions are related to the cross-spectral densities by

/Epð~r,tÞEqð~r,tÞS¼
Z 1

0

do
2p

/Epð~rÞE
n

qð~rÞSs

¼

Z 1
0

do
2p

/Epð~rÞE
n

qð~rÞþEn

pð~rÞEqð~rÞS ð10Þ

/Hpð~r,tÞHqð~r,tÞS¼
Z 1

0

do
2p

/Hpð~rÞH
n

qð~rÞSs

¼

Z 1
0

do
2p

/Hpð~rÞH
n

qð~rÞþHn

pð~rÞHqð~rÞS

ð11Þ

/Epð~r,tÞHqð~r,tÞS¼
Z 1

0

do
2p

/Epð~rÞH
n

qð~rÞSs

¼

Z 1
0

do
2p

/Epð~rÞH
n

qð~rÞþEn

pð~rÞHqð~rÞS ð12Þ

where the subscript s in Eqs. (10)–(12) implies a sym-
metric sum. Using Eqs. (1) and (2), we can express the
cross-spectral densities of the components of the electric
and magnetic fields at ~r 2 Vh as

/Eð~rÞEn
ð~rÞSs ¼ 2omo

XN

l ¼ 1

YðlÞl ð
~rÞþYhE

ðhÞ
ð~rÞ

" #
ð13Þ

/Hð~rÞHn
ð~rÞSs ¼ 2oeo

XN

l ¼ 1

YlH
ðlÞ
ð~rÞþYhH

ðhÞ
ð~rÞ

" #
ð14Þ
Please cite this article as: Narayanaswamy A, Zheng Y. A Green
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/Eð~rÞHn
ð~rÞS¼

XN

l ¼ 1

YlX
ðlÞ
ð~rÞþYhX

ðhÞ
ð~rÞ ð15Þ

where Yl ¼Yðo,TlÞ, and /Eð~rÞEn
ð~rÞSs, /Hð~rÞHn

ð~rÞSs, and

/Eð~rÞHn
ð~rÞS are matrices whose components are

/Epð~rÞE
n

qð~rÞSs, /Hpð~rÞH
n

qð~rÞSs, and /Epð~rÞH
n

qð~rÞS, respec-

tively. Even though components of /EHnSs are necessary

to compute radiative transfer, we persist with /EHnS.

The reason for computing /EHnS as opposed to /EHnSs

will be clarified in Section 3.

The matrices E
ðlÞ
ð~rÞ, H

ðlÞ
ð~rÞ, and X

ðlÞ
ð~rÞ are contribu-

tions to /Eð~rÞEn
ð~rÞSs, /Hð~rÞHn

ð~rÞSs, and /Eð~rÞHn
ð~rÞS

(l¼ 1,2, . . . ,N,h) from sources in volume Vl. For l 2

f1,2, . . . ,Ng, E
ðlÞ
ð~rÞ, H

ðlÞ
ð~rÞ, and X

ðlÞ
ð~rÞ are given by

E
ðlÞ
ð~rÞ ¼ 2R

Z
Vl

dr½m00ðrÞG
T

Eðr, ~rÞ � G
n

Eðr, ~rÞ

þe00ðrÞ9mðrÞ92 o2

c2
G

T

e ðr, ~rÞ � G
n

e ðr, ~rÞ� ð16aÞ

H
ðlÞ
ð~rÞ ¼ 2R

Z
Vl

dr½e00ðrÞG
T

Mðr, ~rÞ � G
n

Mðr, ~rÞ

þm00ðrÞ9eðrÞ92 o2

c2
G

T

mðr, ~rÞ � G
n

mðr, ~rÞ� ð16bÞ

X
ðlÞ
ð~rÞ ¼ i2

o2

c2

Z
Vl

½e00ðrÞmðrÞG
T

e ðr, ~rÞ � G
n

Mðr, ~rÞ

þm00ðrÞenðrÞG
T

Eðr, ~rÞ � G
n

mðr, ~rÞ� dr ð16cÞ

The expressions for E
ðhÞ
ð~rÞ, H

ðhÞ
ð~rÞ, and X

ðhÞ
ð~rÞ have to be

modified to take into account the singularity of the DGFs

in the integrals in Eqs. (17a)–(17c) as 9r�~r9-0. The

modified expressions for E
ðhÞ
ð~rÞ, H

ðhÞ
ð~rÞ, and X

ðhÞ
ð~rÞ are

E
ðhÞ
ð~rÞ ¼ lim

Vd-0
2R

Z
Vh

m00ðrÞG
T

Eðr, ~rÞ � G
n

Eðr, ~rÞ:

�

þe00ðrÞ9mðrÞ92 o2

c2
G

T

e ðr, ~rÞ � G
n

e ðr, ~rÞ

�
dr

þe00h2R
mh

enh
L � G

ðscÞ

e ð~r, ~rÞþ
mh

enh
G
ðscÞT

e ð~r, ~rÞ � L

! 

ð17aÞ

H
ðhÞ
ð~rÞ ¼ lim

Vd-0
2R

Z
Vh

e00ðrÞG
T

Mðr, ~rÞ � G
n

Mðr, ~rÞ:

�

þm00ðrÞ9eðrÞ92 o2

c2
G

T

mðr, ~rÞ � G
n

mðr, ~rÞ

�
dr

þm00h2R
eh

mn

h

L � G
ðscÞ

m ð~r, ~rÞþ
eh

mn

h

G
ðscÞT

m ð~r, ~rÞ � L

! 

ð17bÞ

X
ðhÞ
ð~rÞ ¼ i2

o2

c2
lim

Vd-0

Z
Vl

e00ðrÞmðrÞG
T

e ðr, ~rÞ � G
n

Mðr, ~rÞ:

�

þm00ðrÞenðrÞG
T

Eðr, ~rÞ � G
n

mðr, ~rÞ

�
dr

�i2
e00h
eh

L � G
ðscÞn

M ð~r, ~rÞþ
m00h
mn

h

G
ðscÞT

E ð~r, ~rÞ � L

! 
ð17cÞ
’s function formalism of energy and momentum transfer
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where Vd is volume of infinitesimal radius surrounding ~r,

L is a shape dependent dyad [33], and G eðr, ~rÞ ¼

G oðr, ~rÞþG
ðscÞ

e ðr, ~rÞ, G mðr, ~rÞ ¼ G oðr, ~rÞþG
ðscÞ

m ðr, ~rÞ, G Eðr, ~rÞ ¼

r � G oðr, ~rÞþG
ðscÞ

E ðr, ~rÞ, and G Mðr, ~rÞ ¼r � G oðr, ~rÞþ

G
ðscÞ

M ðr, ~rÞ. G oðr, ~rÞ is the DGF when no scatterers are

present, and G
ðscÞ
ðr, ~rÞ is the contribution from presence

of scatterers. G
ðscÞ
ðr, ~rÞ is always finite. The volume inte-

grals in Eqs. (17a)–(17c) are finite even though eh ¼ mh ¼ 0

because of the singularity in the DGFs. The last line of
Eqs. (17a)–(17c) are identically equal to zero for non-
absorbing materials, including vacuum. However, we
choose to retain them since they are essential for calcula-
tions of cross-spectral densities in absorbing media. We
have neglected terms independent of the configuration of
the scatterers. These terms are infinite because of the
assumption that the thermal sources at any two locations
are uncorrelated. They can be made finite by eliminating
the local assumption in Eq. (1) but that will not affect the
calculations of forces or heat transfer except at gaps
smaller than the correlation length. Usually, the correla-
tion length is of the order of the atomic spacing in
dielectrics or the electron mean free path in metals. More
detailed discussion of the singularity in DGFs and calcula-
tion of cross-spectral densities is given in Ref. [28].
3. Surface integral dyadic Green’s function formalism

While the volume integrals in Eqs. (16a)–(17c) can in
principle be used to compute forces and radiative heat
transfer, they are undesirable for the following reasons:
(1) evaluating classical radiative transfer between two
objects requires the computation of the view factor
between them. But for objects with simple geometries,
computation of the view factor between two objects
requires, in general, not the evaluation of a volume
integral but the evaluation of a double integral over the
surfaces of the two objects, (2) the expressions in Eqs.
(16a)–(17c) do not reflect the different reciprocity rela-
tions and boundary conditions satisfied by the DGFs, and
(3) evaluation of volume integrals are computationally
more expensive than that of surface integrals. These
undesirable features can be overcome by converting Eqs.
(16a)–(17c) into appropriate surface integrals using
Green’s theorems for dyadic functions [34]. The surface
integral representations for the cross-spectral densities
are as follows:

E
ðlÞ
ð~rÞ ¼ 2I

I
Sl

½mðrÞG
T

e ðr, ~rÞ�n � ½nlðrÞ � G Eðr, ~rÞ� dr ð18aÞ

H
ðlÞ
ð~rÞ ¼ 2I

I
Sl

½eðrÞG
T

mðr, ~rÞ�n � ½nlðrÞ � G Mðr, ~rÞ� dr ð18bÞ

X
ðlÞ
ð~rÞ ¼ �

I
Sl

½G
T

Eðr, ~rÞ:ðnlðrÞ � G
n

Mðr, ~rÞÞ

þ
o2

c2
mðrÞG

T

e ðr, ~rÞ:ðnlðrÞ � eðrÞG mðr, ~rÞÞn� dr ð18cÞ
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E
ðhÞ
ð~rÞ ¼ �2

XN

l ¼ 1

I

I
Sl

mnðrÞG
nT

e ðr, ~rÞ � ðnlðrÞ � G Eðr, ~rÞÞ dr

þIð2mhG eð~r, ~rÞÞ ð18dÞ

H
ðhÞ
ð~rÞ ¼�2

XN

l ¼ 1

I

I
Sl

enðrÞG
nT

m ðr, ~rÞ � ðnlðrÞ � G Mðr, ~rÞÞ dr

þIð2ehG mð~r, ~rÞÞ ð18eÞ

X
ðhÞ
ð~rÞ ¼

XN

l ¼ 1

I
Sl

½G
T

Eðr, ~rÞ � ðnlðrÞ � G
n

Mðr, ~rÞÞ

þ
o2

c2
mðrÞG

T

e ðr, ~rÞ � ðnlðrÞ � eðrÞG mðr, ~rÞÞn� dr

�i2IðG Mð~r, ~rÞÞ ð18fÞ

If the host medium is dissipative, the functions

Ið2mhG eð~r, ~rÞÞ, Ið2ehG mð~r, ~rÞÞ, and IðG Mð~r, ~rÞÞ in Eqs. (18d),

(18e) and (18f), respectively, should be replaced by

Ið2mhG
ðscÞ

e ð~r, ~rÞÞ, Ið2ehG
ðscÞ

m ð~r, ~rÞÞ, and IðG
ðscÞ

M ð~r, ~rÞÞ. Using

Eqs. (18a)–(18f), Eqs. (13)–(15) can be re-written as

/EEnSs ¼ 2omo

XN

l ¼ 1

ðYl�YhÞE
ðlÞ
ð~rÞþ2omoYhIð2mhG eð~r, ~rÞÞ

ð19Þ

/HHnSs ¼ 2oeo

XN

l ¼ 1

ðYl�YhÞH
ðlÞ
ð~rÞþ2oeoYhIð2ehG mð~r, ~rÞÞ

ð20Þ

/EHnS¼
XN

l ¼ 1

ðYl�YhÞX
ðlÞ
ð~rÞ�i2YhIG Mð~r, ~rÞ ð21Þ

The terms Ið2mhG eð~r, ~rÞÞ and Ið2ehG mð~r, ~rÞÞ are thermal

equilibrium contributions to E
ðhÞ
ð~rÞ and H

ðhÞ
ð~rÞ, respec-

tively. They give rise to the van der Waals stresses as
predicted by Lifshitz theory when eh ¼ mh ¼ 1. The reason

for persisting with /EHnS, as opposed to /EHnSs ¼

EHn
þEnH, is to show that there is indeed an equilibrium

contribution to /EHnS. However, when we compute

/EHnSs, the equilibrium contribution vanishes since radia-
tive energy transfer between two objects at the same
temperature must be zero.

Radiative transfer between two objects is discussed
further in Section 4. Before proceeding to Section 4, we
wish to remark on the form of the non-equilibrium
contributions in Eqs. (18a)–(18f). Using the property that

A ¼ nðn � A Þ�n� n� A , we see that all the surface inte-
grals in Eqs. (18a)–(18f) feature only tangential compo-
nents of the dyadic Green’s functions that are continuous
across an interface between two materials.

4. Generalized transmissivity for radiative energy transfer

The steady state radiative heat transfer from object 1
to object 2 in Fig. 1, Q1-2, is given by

Q1-2 ¼�

I
S2

Pð1Þð~rÞ � n2ð~rÞ d~r ð22Þ
’s function formalism of energy and momentum transfer
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where Pð1Þð~rÞ is the Poynting vector at ~r 2 S2 due to
thermally fluctuating sources within V1. The ‘‘�’’ sign in
front of the surface integral is because n2ð~rÞ is the
outward pointing normal on the surface S2. The net heat
transfer between objects 1 and 2 is given by Q1,2 ¼

Q1-2�Q2-1. The components of Pð1Þð~rÞ are given by

Pð1Þi ð
~rÞ ¼ Eiqp/Eqð~r,tÞHpð~r,tÞSð1Þ ð23Þ

where /Eqð~r,tÞHpð~r,tÞSð1Þ is the contribution to /Eqð~r,tÞ
Hpð~r,tÞS from sources within V1. The object indices 1 and
2 can be replaced by any m,n 2 f1,2, . . . ,Ng. From Section
2, we know that /Eqð~r,tÞHpð~r,tÞSð1Þ ¼

R1
0 ðdo=2pÞ

/Eqð~r,oÞHn

pð~r,oÞSð1Þs . Using Eqs. (15), (21), (18c) and
(23), Eq. (22) for Q1-2 can be re-written as

Q1-2 ¼�

Z 1
0

do
2p

Yðo,T1Þ

I
S2

d~rn2ið~rÞEipq2RX ð1Þpq ð~rÞ

¼

Z 1
0

do
2p Yðo,T1ÞT

e
1-2ðoÞ

) Te
1-2ðoÞ ¼�

I
S2

d~rn2ið~rÞEipq2RX ð1Þpq ð~rÞ

¼ �

I
S2

d~rEqipn2ið~rÞ2RX ð1Þpq ð~rÞ

¼ �2R

I
S2

d~rðn̂2ð~rÞ � X
ð1Þ
ð~rÞÞqq

¼�2R Tr

I
S2

d~rðn̂2ð~rÞ � X
ð1Þ
ð~rÞÞ ð24Þ

where Te
1-2ðoÞ is a generalized transmissivity for radia-

tive energy transport between objects 1 and 2, and

TrðA Þ ¼
P3

p ¼ 1 App. The superscript e in Te
1-2ðoÞ stands

for ‘‘energy’’. Substituting the expression for X
ð1Þ

from

Eq. (18c) in the last line of Eq. (24), Te
1-2ðoÞ can be shown

to be

Te
1-2ðoÞ ¼ 2R Tr

I
S1

dr
I

S2

d~r
o2

c2

�

�½n̂2ð~rÞ � m2G eð~r,rÞ� � ½n̂1ðrÞ � en1G
n

mðr, ~rÞ�

þ½n̂2ð~rÞ � G Eð~r,rÞ� � ½n̂1ðrÞ � G
n

Eðr, ~rÞ�� ð25Þ

where n̂1ðrÞ is the outward pointing normal on the sur-

face S1, as shown in Fig. 1. For any two vectors a, b and

dyads A , B , the following property can be shown to be

true: Trfða� A Þ � ðb� B Þg ¼ Trfðb� A
T
Þ � ða� B

T
Þg. Using

this property, and the reciprocity relations (Eqs. (4)–(6)),
we can derive the following equations:

R Tr½n̂2ð~rÞ � m2G eð~r,rÞ� � ½n̂1ðrÞ � en1G
n

mðr, ~rÞ�

¼R Tr½n̂1ðrÞ � m1G eðr, ~rÞ� � ½n̂2ð~rÞ � en2G
n

mð~r,rÞ� ð26aÞ

R Tr½n̂2ð~rÞ � G Eð~r,rÞ� � ½n̂1ðrÞ � G
n

Eðr, ~rÞ�

¼R Tr½n̂1ðrÞ � G Mðr, ~rÞ� � ½n̂2ð~rÞ � G
n

Mð~r,rÞ� ð26bÞ

With the aid of Eq. (26), Te
1-2ðoÞ can also be shown to be

Te
1-2ðoÞ ¼ 2R Tr

I
S1

dr

I
S2

d~r
o2

c2

�

�½n̂1ðrÞ � m1G eðr, ~rÞ� � ½n̂2ð~rÞ � en2G
n

mð~r,rÞ�

þ½n̂1ðrÞ � G Mðr, ~rÞ� � ½n̂2ð~rÞ � G
n

Mð~r,rÞ�� ð27Þ
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The generalized transmissivity from object 2 to object 1,

Te
2-1ðoÞ can be determined from Eq. (27) (or Eq. (25)) by

interchanging the subscripts 1 and 2 (r 2 S1 and ~r 2 S2 are
dummy variables and do not affect the value of the double

integral). Te
2-1ðoÞ is given by

Te
2-1ðoÞ ¼ 2R Tr

I
S2

d~r
I

S1

dr
o2

c2

�

�½n̂2ð~rÞ � m2G eð~r,rÞ� � ½n̂1ðrÞ � en1G
n

mðr, ~rÞ�

þ½n̂2ð~rÞ � G Mð~r,rÞ� � ½n̂1ðrÞ � G
n

Mðr, ~rÞ�� ð28Þ

That the expressions for generalized transmissivity
derived earlier Eq. (25) or Eq. (27) satisfy the principle
of reciprocity in thermal radiative transfer, i.e.

Te
2-1ðoÞ ¼ Te

1-2ðoÞ, can be established by using Eq.

(26b) to modify the expression for Te
2-1ðoÞ as follows:

Te
2-1ðoÞ ¼ 2R Tr

I
S2

d~r

I
S1

dr
o2

c2

�

�½n̂2ð~rÞ � m2G eð~r,rÞ� � ½n̂1ðrÞ � en1G
n

mðr, ~rÞ�

þ½n̂1ðrÞ � G Eðr, ~rÞ� � ½n̂2ð~rÞ � G
n

Eð~r,rÞ��

¼ Te
1-2ðoÞ ðEq: ð25ÞÞ ð29Þ

Though expressions for Te
1-2ðoÞ in Eqs. (25) and (27)

are surface integrals, they are in fact derived from a
volumetric integral over V1 (Eq. (16c)). Similarly, energy

emission from the object Vl (l¼ 1,2, . . . ,N) is derived from
a volumetric integration over Vl. For this reason, the

formulae derived for Te
1-2ðoÞ and Te

2-1ðoÞ (Eqs. (25),

(27), or Eq. (29)) can be described as ‘‘interior formulae.’’

The integration over V1 (for Te
1-2ðoÞ) or V2 (for Te

2-1ðoÞ)
is made explicit by the presence of e1, m2 (in Eq. (25)) or

e2, m1 (Eqs. (27) and (29)). The corresponding ‘‘exterior

formula’’ should not involve, or appear not to involve, any
of these properties in the formula for transmissivity. The

exterior formula for Te
1-2 can be derived by using the

boundary conditions (Eqs. (3a)–(3d)) and converting
Eq. (27) into the following equation:

Te
1-2ðoÞ ¼ 2R Tr

I
S1

dr

I
S2

d~r
o2

c2

�

�½n̂1ðrÞ � mhG eðr, ~rÞ� � ½n̂2ð~rÞ � enhG
n

mð~r,rÞ�

þ½n̂1ðrÞ � G Mðr, ~rÞ� � ½n̂2ð~rÞ � G
n

Mð~r,rÞ�� ð30Þ

There is a correspondence between the ‘‘direct’’ and
‘‘indirect’’ methods [35–37] and the ‘‘interior formula’’
and ‘‘exterior formula’’ derived above. It can be shown
that the ‘‘exterior formula’’ is a generalization of the
‘‘indirect’’ method to include problems of near-field ther-
mal radiative energy transfer between two objects, in
addition to the calculation of thermal emission from
objects for which it is currently used. This correspondence
will be undertaken in a future work and is not pursued
any further in this paper.

Since Te
2-1ðoÞ ¼ Te

1-2ðoÞ, the net radiative exchange
between objects 1 and 2, Q1,2, is given by

Q1,2 ¼

Z 1
0

do
2p ½Yðo,T1Þ�Yðo,T2Þ�T

e
1-2ðoÞ ð31Þ
’s function formalism of energy and momentum transfer
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From Eq. (31), a linearized conductance for radiative
transfer between objects 1 and 2 can be defined as

Ge
1,2ðTÞ ¼ lim

T1 ,T2-T

Q1,2

T1�T2
¼

Z 1
0

do
2p

@Y
@T

Te
1-2ðoÞ ð32Þ

4.1. Generalized transmissivity for radiative momentum

transfer?

Though expressions for generalized transmissivity in
terms of DGFs (Eqs. (25), (27), (29) and (30)) have been
derived for energy transfer,we have been unable to obtain
equivalent expressions for generalized (vectorial) trans-
missivity or conductance of thermal non-equilibrium
momentum transfer. Why this is so can be explained by
considering the nature of the Poynting vector and the
electromagnetic stress tensor. It is a well-known property
of Maxwell’s equations that the electric field at any
location due to sources within a particular object,for
instance object 1 in Fig. 1,can be expressed in terms of
surface integrals of tangential electric and magnetic fields
on the surface of that object. This property of electro-
magnetic fields forms the basis for the boundary element
method for numerical solution of electromagnetic scatter-
ing problems. The normal component of the Poynting
vector on the surface of object 2, ðEð~r,tÞ �Hð~r,tÞÞ� n2ð~rÞ,has
an additional property that it can be written as
½ðn2ð~rÞ � Eð~r,tÞÞ � ðn2ð~rÞ �Hð~r,tÞÞ� � n2ð~rÞ. This ensures that
the radiative heat transfer between objects1 and 2 can be

expressed in terms of tangential electric and magnetic fields

on the surfaces of both objects. This property of radiative
heat transfer is reflected in the different expressions for
Te

1-2ðoÞ because they contain only tangential compo-
nents of the DGFs on the surfaces of both objects.
However,the electric and magnetic stress tensors in
Eqs. (8) and (9) do not share this property. The force
exerted by object 1 on object 2 requires knowledge of not
only the tangential components of E and H on the surface
of object 2 but also the normal components. While our
inability to deduce an appropriate form for the transmis-
sivity for momentum transfer does not mean that such a
transmissivity does not exist, Eqs. (19) and (20) can still
be used to determine s e

ðrÞ (Eq. (8)) and sm
ðrÞ (Eq. (9)) for

specific geometric configuration of objects, from which
thermal non-equilibrium van der Waals forces between
objects can be computed.
Fig. 2. Two multilayered half spaces at T1 and T2 separated by a

vacuum gap.
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5. Application to specific geometries or properties

5.1. Planar multilayered media

Since theoretical analysis of radiative transfer and ther-
mal non-equilibrium van der Waals forces between planar
multilayered objects has been published in literature, the
expressions derived in Section 3 are applied to objects
shown in Fig. 2 and the resultant expressions compared
with those in literature. The half spaces in Fig. 2, marked 1
and 2, can be homogeneous materials or can be composed of
planar multilayer films. The only requirement is that the
temperature gradients within 1 and 2 are negligible enough
that they can be approximated as thermal reservoirs at
temperatures T1 and T2. The vacuum layer of thickness l

separating the two objects is equivalent to the host medium
in Fig. 1. The planar media lie in the x2y plane and the unit
vector in the z direction, ẑ, is directed from object 1 to object
2. The interfaces of objects 1 and 2 with vacuum are at
coordinates z¼ z1 and z¼ z2 (9z2�z19¼ l). The polarization
dependent reflection coefficient of electromagnetic plane
wave originating in vacuum and incident at the surface of
half space 1 (in the absence of half space 2) is denoted
as ~R

ðmÞ
h1 , where m¼ sðtransverse electricÞ, p (transverse

magnetic). A similar reflection coefficient for waves incident
on half space 2, in the absence of half space 1, is denoted
~R
ðmÞ
h2 . G oðr, ~rÞ for any two locations r and ~r within the vacuum

layer is given by

G oðr, ~rÞ ¼
i

4p

Z
dkrkr

khz
eikr�ðq� ~qÞ

�
X

m ¼ s,p

x̂
ðmÞ
ðþkhzÞx̂

ðmÞ
ðþkhzÞe

iðz�~zÞkhz if z4 ~z

x̂
ðmÞ
ð�khzÞx̂

ðmÞ
ð�khzÞe

ið~z�zÞkhz if zo ~z

(

ð33Þ

where kq ¼ krk̂r ¼ kxx̂þkyŷ, x̂
ðsÞ
ð7khzÞ ¼ k̂r � ẑ ¼

ðkyx̂�kxŷÞ=kr, x̂
ðpÞ
ð7khzÞ ¼ ð8khzk̂qþkrẑÞ=kh, and

k2
hzþk2

r ¼ k2
h . For vacuum, mh ¼ eh ¼ 1 and kh ¼o=c. The

scattered DGF, G
ðscÞ

e ðr, ~rÞ, is given by

G
ðscÞ

e ðr, ~rÞ ¼
i

4p

Z
dkrkr

khz

X
m ¼ s,p

eikr�ðq� ~qÞ

DðmÞ

�
X

n ¼ 71

X
x ¼ 71

CðmÞn,xx̂
ðmÞ
ðnkhzÞx̂

ðmÞ
ðxkhzÞe

iðnz�x~zÞkhz ,

ð34Þ

where

DðmÞ ¼ 1� ~R
ðmÞ
h1
~R
ðmÞ
h2 ei2khzl ð35Þ

and

CðmÞn,x ¼

~R
ðmÞ
h1
~R
ðmÞ
h2 ei2khzl if n¼ x

~R
ðmÞ
h2 ei2khzz2 if n¼�1, x¼ 1

~R
ðmÞ
h1 e�i2khzz1 if n¼ 1, x¼�1

8>>><
>>>:

ð36Þ

The total DGF, G eðr, ~rÞ, is given by G oðr, ~rÞþG
ðscÞ

e ðr, ~rÞ. The

reflection coefficients ~R
ðmÞ
h1 and ~R

ðmÞ
h2 at the interface between

two homogeneous media are given by the usual Fresnel
reflection coefficients. For multilayered media, they can be
’s function formalism of energy and momentum transfer
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computed using the transfer matrix method or by using

recursion relations [38]. Since both r and ~r are within the

same layer, G mðr, ~rÞ and G Mðr, ~rÞ can be determined by
simply replacing all occurrences of eðoÞ by the correspond-

ing mðoÞ and vice versa. Explicit expressions for G
ðscÞ

m ðr, ~rÞ,

G
ðscÞ

E ðr, ~rÞ, and G
ðscÞ

M ðr, ~rÞ are given below:

G
ðscÞ

m ðr, ~rÞ ¼
i

4p

Z
dkrkr

khz

X
m ¼ s,p

eikr �ðq� ~qÞ

Dðm
0 Þ

�
X

n ¼ 71

X
x ¼ 71

Cðm0Þn,x x̂
ðmÞ
ðnkhzÞx̂

ðmÞ
ðxkhzÞe

iðnz�x~zÞkhz

ð37Þ

where m0 ¼ p if m¼ s and m0 ¼ s if m¼ p. Defining

k̂
ð7 Þ

h ¼ ðkrk̂r7khzẑÞ=kh, we have the following relations:

k̂
ð7 Þ

h � x̂
ðsÞ
ð7khzÞ ¼ �x̂

ðpÞ
ð7khzÞ and k̂

ð7 Þ

h � x̂
ðpÞ

ð7khzÞ ¼ x̂
ðsÞ
ð7khzÞ. Using these relations, we obtain

G
ðscÞ

E ðr, ~rÞ ¼
�1

4p

Z
dkrkr

khz
kh

X
m ¼ s,p

eikr �ðq� ~qÞ

DðmÞ

�
X

n ¼ 71

X
x ¼ 71

ð�1ÞbCðmÞn,xx̂
ðm0 Þ
ðnkhzÞx̂

ðmÞ
ðxkhzÞe

iðnz�x ~zÞkhz

ð38Þ

G
ðscÞ

M ðr, ~rÞ ¼
�1

4p

Z
dkrkr

khz
kh

X
m ¼ s,p

eikr�ðq� ~qÞ

Dðm
0 Þ

�
X

n ¼ 71

X
x ¼ 71

ð�1ÞbCðm0Þn,x x̂
ðm0 Þ
ðnkhzÞx̂

ðmÞ
ðxkhzÞe

iðnz�x~zÞkhz

ð39Þ

where b¼ 0 if m¼ p and b¼ 1 if m¼ s.
A key distinction between the ‘‘direct’’ and ‘‘exterior’’

methods can be illustrated through the example being
considered here. Let us assume that the half space L is
composed of multiple planar films. In the direct method
[35,36], the contribution of each layer is evaluated sepa-
rately and added subsequently to determine the heat flux
in the vacuum layer due to half space L. This requires
finding the DGFs when ~r belongs to the vacuum layer and
r lies in each of the thin films that makes up the half
spaces L. On the other hand, the exterior method, which is
used to derive Eqs. (40)–(41), requires only knowledge of
the DGFs when r and ~r belong to the vacuum layer.
Though one can derive the same results, but with more
algebraic manipulations, for layered media, the ease of
using the exterior method should become apparent when
one tries to model near-field radiative transfer in more
complicated geometries, for instance between two coated
spheres.

5.1.1. Two parallel half spaces: radiative transfer

For the two half spaces in Fig. 2, the surface normal
vectors n̂ðrÞ and n̂ð~rÞ in Eq. (30) are given by ẑ and �ẑ,
respectively. G eðr, ~rÞ, G mðr, ~rÞ, G Eðr, ~rÞ, and G Mðr, ~rÞ derived
using Eqs. (33) and (34) are substituted into Eq.
(30) to obtain, Te,pp

1-2, the generalized transmissivity of
energy transfer between planar half spaces (the super-
script pp is short for ‘‘planar–planar’’ and is used to
indicate the type of objects). After some manipulations,
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Te,pp
1-2 can be shown to be
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Z o=c

0

krdkr
2p

X
m ¼ s,p

ð1�9 ~R
ðmÞ
h1 9

2
Þð1�9 ~R

ðmÞ
h2 9

2
Þ

91� ~R
ðmÞ
h1
~R
ðmÞ
h2 ei2khzl92

þ

Z 1
o=c

krdkr
2p

X
m ¼ s,p

4Ið ~R
ðmÞ
h1 ÞIð

~R
ðmÞ
h2 Þe

�29khz9l

91� ~R
ðmÞ
h1
~R
ðmÞ
h2 e�29khz9l92

ð40Þ

This expression for Te,pp
1-2ðoÞ is in agreement with expres-

sions for transmissivity of energy transfer across half
spaces [9]. For the case of two homogeneous half spaces,
we have also confirmed that volume integral expres-
sion (Eq. (16c)) as well as surface integral expressions
(Eqs. (25), (30)) yield the same result. Two interesting
features of Eq. (40) need to be emphasized: (1) Eq. (40) is
valid for energy transfer not just between two homoge-
neous half spaces but also between two half spaces
comprising planar thin films, (2) it is valid for isotropic
materials with electric as well as magnetic polarizabil-
ities, with frequency dependent e and m.

5.1.2. Two parallel half spaces: Non-equilibrium pressure

Since we have not been able to derive a generalized
transmissivity for momentum transfer, we use Eqs. (8)
and (9) to derive the van der Waals pressure in the
vacuum gap. Because the film is perpendicular to the z

direction, the van der Waals pressure is given by the zz

component of the stress tensor, szz. Using the expressions

for G eðr, ~rÞ and G Eðr, ~rÞ in Eq. (19) and G mðr, ~rÞ and G Mðr, ~rÞ
in Eq. (20), a generalized transmissivity for momentum flux

from L to R is given by
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The superscript m in Tm,pp
1-2ðoÞ stands for ‘‘momentum.’’

Using the same notation as Antezza et al. [39], the non-
equilibrium pressure in the vacuum layer due to tem-
perature TL of half space L while TR ¼ 0 K, denoted by

PneqðTL,TR ¼ 0,lÞ, is calculated using the formula

PneqðTL,TR ¼ 0,lÞ ¼
R1

0 ðdo=2pÞYðo,TLÞT
m,pp
1-2ðoÞ. It is inter-

esting to note that Eq. (41), which is valid for half spaces
with arbitrary e and m, coincide with the expressions for
non-equilibrium van der Waals pressure and radiative
transfer derived in Refs. [39,9] even though the authors of
Refs. [39,9] derived it only for the case when m¼ 1
everywhere.

5.2. Agreement with theory of blackbody radiative transfer

Computing radiative transfer between two arbitrarily
shaped isotropic objects using Eqs. (25), (27), or Eq. (30) is
computationally involved because of the need to compute
the appropriate DGFs. However, for one class of objects,
namely blackbodies (or objects those can be approxi-
mated as blackbodies), the expression for generalized
transmissivity derived here can be used to obtain useful
’s function formalism of energy and momentum transfer
Radiat Transfer (2013), http://dx.doi.org/10.1016/

http://dx.doi.org/10.1016/j.jqsrt.2013.01.002
http://dx.doi.org/10.1016/j.jqsrt.2013.01.002
http://dx.doi.org/10.1016/j.jqsrt.2013.01.002
http://dx.doi.org/10.1016/j.jqsrt.2013.01.002


A. Narayanaswamy, Y. Zheng / Journal of Quantitative Spectroscopy & Radiative Transfer ] (]]]]) ]]]–]]] 9
results irrespective of the shape. Blackbody radiative
transfer is derived from Planck’s theory of blackbody
radiation and Kirchoff’s laws, both of which are conse-
quences of thermodynamics applied to relatively simple
electrodynamical systems (for example, photon gas in a
piston with perfectly reflective walls). Using thermody-
namic arguments, this idea is generalized to arbitrarily
shaped objects to yield Qbb

1,2 ¼ A1F1,2sSBðT
4
1�T4

2Þ, where sSB

is the Stefan–Boltzmann constant, the superscript bb

stands for ‘‘blackbody’’, and F1,2 is the view factor
between objects 1 and 2. The view factor F1,2 between
the two objects in Fig. 1 is given by

F1,2 ¼
1

A1

I
S1

dr
I

S2

d~r
ð�n1 � R̂Þðn2 � R̂Þ

pR2
ð42Þ

where R̂ ¼ ðr�~rÞ=9r�~r9, R¼ RR̂ ¼ r�~r, r 2 S1, and ~r 2 S2,
and A1 is the area of S1.

A blackbody is one that absorbs all radiation incident
on it and scatters none. For an object in vacuum
(eh ¼ mh ¼ 1), this can be achieved by a region of space
(the blackbody) with permittivity and permeability given
by e¼ 1þ id, m¼ 1þ ig such that d, g-0, ensuring that
there is no scattering by the object. The nominal dimen-
sion L should be such that dkLb1 or gkLb1, where
k¼o=c and c is the speed of light in vacuum, ensuring
that all the radiation entering the object is absorbed.
Because the properties of the objects differ infinitesimally
from that of the host medium, scattering can effectively
be neglected and the DGFs, G eðr, ~rÞ and G mðr, ~rÞ, are simply
given by the DGF in free space, which is

G oðr, ~rÞ ¼
eikhR

4pR
R̂R̂ �i

2

khR
þ

2

k2
hR2

 !"

þðI�R̂R̂Þ 1þ
i
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�
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k2
hR2

 !#
ð43Þ

When the spacing between objects is large compared to
the wavelength, Eq. (43) reduces to

G eðr, ~rÞ ¼ G mðr, ~rÞ ¼ G oðr, ~rÞ ¼
eikhR

4pR
ðI�R̂R̂Þ ð44Þ

Similarly, G Eðr, ~rÞ and G Mðr, ~rÞ can be written as

r � G oðr, ~rÞ ¼ G Oðr, ~rÞ ¼ ikh
eikhR

4pR
ðR̂ � I Þ ð45Þ

To derive the generalized transmissivity between two
blackbodies, the following derivations are useful:

R Tr½ðn̂1ðrÞ � mhG eðr, ~rÞÞ � ðn̂2ð~rÞ � ehG mð~r,rÞÞn�

¼R Tr½ðn̂1ðrÞ � G oðr, ~rÞÞ � ðn̂2ð~rÞ � G oð~r,rÞÞn�

¼ ½n̂1ðrÞ � ðI�R̂R̂Þ�ij½n̂2ð~rÞ � ð
I�R̂R̂Þ�ji

ð4pRÞ2

¼
½n̂1ðrÞ � ðĥĥþ/̂/̂Þ�ij½n̂2ð~rÞ � ðĥĥþ/̂/̂Þ�ji

ð4pRÞ2

¼
�2ðn̂1ðrÞ � R̂Þðn̂2ð~rÞ � R̂Þ

ð4pRÞ2
ð46Þ

R Tr½ðn̂1ðrÞ � G Mðr, ~rÞÞ � ðn̂2ð~rÞ � G Mð~r,rÞÞn�

¼R Tr½ðn̂1ðrÞ � G Oðr, ~rÞÞ � ðn̂2ð~rÞ � G Oð~r,rÞÞn�
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Substituting Eqs. (46) and (47) in Eq. (30), the generalized
transmissivity between two blackbodies in the far-field is

Tbb
1-2ðoÞ ¼
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and Qbb
1,2 is given by
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The agreement of obtained results in the examples of
Section 5.1 with earlier published works [9,39] and the
above derivation for the radiative heat transfer between
blackbodies attest to the correctness of our definitions of
the generalized transmissivity (Eqs. (25), (27) and (30)).
Extension of the proof given here to obtain Eq. (49) to the
case of gray body radiative transfer is not a simple one
because we consider only specular reflection at surfaces.

6. Summary

In this paper, we have developed a dyadic Green’s
function formalism to determine radiative heat transfer
and non-equilibrium van der Waals/Casimir forces
between objects of arbitrary shapes, sizes, and with
frequency dependent dielectric permittivity and magnetic
permeability. The cross-spectral densities of electromag-
netic fields are necessary to evaluate Poynting vector and
electromagnetic stress tensor from which radiative trans-
fer and forces between objects can be evaluated. Using
Rytov’s fluctuational electrodynamics, expressions for
cross-spectral densities in terms of volume integrals of
products of DGFs are obtained. Green’s identities for
dyadic functions are then used to convert these volume
integral expressions into surface integrals of products of
tangential components of the DGFs on the surfaces of
scatterers. The spectral radiative transfer between two
objects is described in terms of a single quantity – the
generalized transmissivity – which can be represented as
a double integral of products of tangential components
over the surfaces of the two objects. The spectral integral
of Te

1-2ðoÞ weighted by the temperature derivative of the
Bose–Einstein function yields the thermal radiative con-
ductance between the two objects. In the geometric optics
limit, the thermal radiative conductance between two
blackbodies, as derived from the generalized transmissiv-
ity, is shown to agree with the predictions of the classical
theory of radiative transfer.
’s function formalism of energy and momentum transfer
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While many computational methods, such as finite
element method, vector eigenfunction expansion, or
T-matrix method, can be employed to compute Te

1-2ðoÞ,
the surface integral expression in Eq. (30) points towards
the surface integral equation method (SIEM) as best-
suited for the purpose. The main advantage of a surface
integral equation based method is the potential reduction
in computational cost due to restriction of the discretiza-
tion domain to a surface rather than a volume. This
advantage becomes more important as the size of the
object becomes larger. After the submission of this work,
we were made aware of a recently released free software
titled SCUFF-EM (Surface CUrrent Field Formulation of
Electro-Magnetism)1 based on a surface integral formula-
tion of the electromagnetic scattering problem [40,41].
The similarities between photon and phonon transport
lead us to wonder whether such a surface integral
formulation for phonon energy transport in mesoscale
structures in the harmonic limit is also possible.
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