
A Grid-Based Approach for Processing Group Activity

Log Files

Fatos Xhafa1, Santi Caballé2, Thanasis Daradoumis2 and Nan Zhou3

1Dept. of Languages and Informatics Systems, Polytechnic University of Catalonia

 Jordi Girona Salgado 1-3, 08034 Barcelona, Spain
 fatos@lsi.upc.es

2Open University of Catalonia, Department of Information Sciences

Av. Tibidabo, 39-43, 08035 Barcelona, Spain
{scaballe,adaradoumis}@uoc.edu

3College of Information Science & Technology, Drexel University

 3141 Chestnut Street, Philadelphia, PA 19104-2875
nan.zhou@cis.drexel.edu

Abstract. The information collected regarding group activity in a collaborative

learning environment requires classifying, structuring and processing. The aim

is to process this information in order to extract, reveal and provide students

and tutors with valuable knowledge, awareness and feedback in order to suc-

cessfully perform the collaborative learning activity. However, the large

amount of information generated during online group activity may be time-

consuming to process and, hence, can hinder the real-time delivery of the in-

formation. In this study we show how a Grid-based paradigm can be used to ef-

fectively process and present the information regarding group activity gathered

in the log files under a collaborative environment. The computational power of

the Grid makes it possible to process a huge amount of event information, com-

pute statistical results and present them, when needed, to the members of the

online group and the tutors, who are geographically distributed.

1 Introduction

In the online collaborative learning teams, monitoring, awareness and feedback dur-

ing the group activity are key factors in determining group functioning and task per-

formance and, hence, the success of the learning outcome. Indeed, it is crucial to keep

the group members informed of the progress of their peers in performing the learning

exercise both as individuals and as a group. It is also important for group members to

be aware of the extent to which other members are participating in the collaborative

process as this will influence their decision making [1]. Collaborative learning also

involves a tutor, who is responsible for acquiring information about students' prob-

lem-solving behavior, group processing [2] and performance analysis [3]. To this end,

researchers have tried to provide learning teams and tutors with tools and approaches

that facilitate monitoring and providing awareness and feedback to support the group

activity. Such approaches [4], [5] usually rely on processing group activity data from

different sources.

montse aragues
Texto escrito a máquina
Xhafa, F., Caballé, S., Daradoumis, T., Zhou, N. A grid-based approach for processing group activity log files. A: On The Move Federated Conferences & Workshops. "On the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops: OTM Confederated International Workshops and Posters, GADA, JTRES, MIOS, WORM, WOSE, PhDS, and INTEROP 2004: Agia Napa, Cyprus, October 25-29, 2004: proceedings". Berlín: Springer, 2004, p. 175-186.The final authenticated version is available online at https://doi.org/10.1007/978-3-540-30470-8_35

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

Computer Supported Collaborative Learning (CSCL) applications are character-

ized by a high degree of user-user and user-system interaction and hence generate a

huge amount of information usually maintained in the form of event information. In

order to make this information useful to the group activity, it must be appropriately

collected, classified and structured for later automatic processing by computers as

part of a process of embedding information and knowledge into CSCL applications

(Fig. 1). The aim is to extract essential knowledge about the collaboration and to

make it available to users as awareness and feedback.

Asynchronous collaboration is an important source of group activity data. Data

collected during the online collaborative learning activity is then classified and struc-

tured into group activity data log files. In order to constantly provide group partici-

pants with as much awareness and feedback as possible, it is necessary to efficiently

process these log files so that the extracted data can be used for computing statistical

results, which can be presented to group members whenever needed.

Fig. 1. The process of embedding information and knowledge into CSCL applications

Due to the huge amount of event information gathered in data log files, the proc-

essing requires considerable computational resources beyond those of a single com-

puter. In order to make the extracted information available in real time it is necessary

to reduce the computational time to acceptable levels. As there may be hundreds or

even thousands of students distributed in teams as well as many tutors conducting the

learning exercises, the amount of data produced will place great demands on the

computational resources given that, in such situations, we need to process the infor-

mation related to particular classrooms, specific teams within a classroom and even to

certain phases of the learning exercise. Our experience at the Open University of

Catalonia [6] has shown the need to monitor and evaluate real, long-term, complex,

collaborative problem-solving situations through data-intensive applications that

provide efficient data access, management and analysis. The Virtual Math Teams

(VMT) Project1 at Drexel University [7] aims to develop the first application of digi-

tal libraries to small group collaborative learning, which requires the processing of a

large volume of collaborative activity log files.

The lack of sufficient computational resources is the main obstacle to processing

data log files in real time and in real situations this processing tends to be done later,

which as it takes place after the completion of the learning activity has less impact on

it. With the emerging Grid technology such a handicap can be overcome by using its

computational power. The concept of a computational Grid [8] has emerged as a way

of capturing the vision of a network computing system that provides broad access not

only to massive information resources, but to massive computational resources as

well. There is currently a lot of research being conducted on how to use the Grid

computing paradigm for complex problem solving [9], processing huge amount of

data in biology and medicine, simulations, and collaborative systems. For such prob-

lems, putting together distributed computing and storage resources is clearly of great

value. Moreover, different technologies such as Globus [10], MPI-Grid2 [11], Con-

dor-G [12], NetSolve [13] and frameworks such as Master-Worker Framework on

computational Grid [14] as well as infrastructures for data-intensive Grid applications

[15] have been proposed to support the development of Grid-based applications.

In this paper we propose a Grid-based approach for processing group activity log

files in order to make the processed information available to the group members in an

efficient manner, to compute statistical results and to present the results to the group

members and tutors, who are in different locations, as a means of facilitating the

group activity, decision making, task accomplishment, and assessment of the progress

of the group etc. Our starting point is the definition of an appropriate structure for the

log files designed as a part of a more generic platform for supporting CSCL applica-

tions [17]. The purpose is to define the structure of event information to be stored in

order to permit the structuring of the event information in log files of different de-

grees of granularity, e.g. corresponding to a single group or to a whole classroom

made up of several groups and/or for a given period of time in the group activity.

Later, we show how to use Grid infrastructure through the Master-Worker paradigm

for processing the log files resulting in a database ready to be used for statistical

computations. Furthermore, the natural parallelism inherent in our data log files, as

well as in our analysis procedures, makes it feasible to use distributed resources effi-

ciently. Indeed, a Grid computing environment includes computing and storage re-

sources with diverse capabilities and hence different degrees of granularities in our

log files, allowing an efficient use of available resources.

The rest of the paper is organized as follows. We give in Section 2 the context that

motivated this research and make reference to other studies in the field. In Section 3

we show the structure of data log file used for gathering the event information gener-

ated during group activity. In Section 4 we present the Master-Worker approach for

processing log files using the Grid infrastructure and, finally, in Section 5 we draw

conclusions and outline ongoing work.

1 For more information, see http://www.cis.drexel.edu/faculty/gerry/vmt/index.html

2 Context and Related Work

Our real context refers to group activity at the Open University of Catalonia (Spain)

and the Math Forum at Drexel University (USA). The former results from applying

the Project-Based Collaborative Learning paradigm to model several online courses,

such as “Software Development Techniques”. These courses involve hundreds of

students, a dozen of tutors and are characterized by intensive collaboration activity

due to the complexity of the learning practices.

To implement the collaborative learning activities and capture the group interac-

tion we use the Basic Support for Cooperative Work (BSCW) system, a groupware

tool that enables asynchronous collaboration over the web [16]. BSCW records the

interaction data into log files, which can be used for interaction analysis and knowl-

edge extraction. However, its centralized architecture does not allow data access,

management and the analysis of BSCW log files.

In particular, BSCW does not incorporate functionalities to process the log files

nor provides the means to calculate and present statistics results. Moreover, BSCW

generates a unique log file at the end of the day, which includes a large volume of

data describing the activity of all virtual groups. Given that log files do not classify or

structure information in any way, there is no possibility of scaling them up. As a

result of this there is no way to access data related to separated workspaces, specific

groups, or phases of the learning practice.

In recent years the popularity of distant collaborative learning among students has

increased enormously. This semester, for example, we have had more than 500 stu-

dents distributed in more than 100 virtual groups composed of 4 to 6 members. All

the groups worked, mainly asynchronously, during 4 months. Due to the large vol-

ume of interaction data generated, the wide geographical distribution of the students,

and the limitations of BSCW, a Grid solution for data-intensive applications and data

analysis becomes imperative to overcome the above-mentioned problems and provide

a more effective service to our students and tutors.

Similarly, the VMT Project has been investigating how small groups of students

meet online and solve mathematical problems collaboratively using Synergeia [18]

(an extension of BSCW) and other similar systems. This study gives great importance

to the processing of transaction logs of the collaboration activities, which is currently

done manually. As the size of transaction logs increases, it will become even more

necessary to develop a means for the automatic processing of data.

 In the context of our research, Grid computing [19], [20] has been used to support

the real-time requirements imposed by human perceptual capabilities as well as the

wide range of many different interactions that can take place as one of the most chal-

lenging issues of collaborative computing support. For instance, Grid computing

offers high-throughput and data-intensive computing [17], which greatly facilitate the

process of embedding information and knowledge into CSCL applications making it

possible to provide users with real-time awareness and constant feedback. In the

literature, however, there has been, to the best of our knowledge, little study aimed at

achieving these objectives. As an initial approach, the OCGSA framework [21] pro-

poses an event archiving service, which logs the messages or events communicated

between online users of a group instance into a persistent database. However, in pro-

posing the implementation of the functionality, this framework does not offer any

methodology which takes advantage of the distributed nature of Grid computing to

partition the generated event information for efficient parallel processing.

3 The Structure of Group Activity Log Files

In collaborative learning systems, usual group activity results in a lot of interaction

which generates a huge amount of events. Therefore, CSCL applications have to be

designed to permit the pre-structuring, classification and partitioning of these large

amounts of event information into multiple log files to meet different criteria (e.g.

group or time) in order to correctly capture the group activity and increase the effi-

ciency of data processing.

The existing CSCL applications have several drawbacks in structuring the log files

that prevent efficient processing. To overcome this, we firstly propose a definition

and classification of event information generated in a CSCL system and, secondly, we

explain how to store this information in log files according to different criteria with

the aim of facilitating its later processing in a Grid infrastructure (see also Fig. 1).

3.1 Definition and Classification of Event Information

The most important issue while monitoring group activity in CSCL applications is the

collection and storage of a large amount of event information generated by the high

degree of interaction among the group participants. Such a large amount of informa-

tional data may need a long time to be processed. Therefore, collaborative learning

systems have to be designed in a way that pre-structures and classifies information in

order, on the one hand, to correctly measure the group activity and, on the other hand,

to increase the efficiency during data processing in terms of analysis techniques and

interpretations.

The classification of information in CSCL environments is achieved by distin-

guishing three generic group activity parameters: task performance (i.e. collaborative

learning product), group functioning and scaffolding [17]. Furthermore, in a collabo-

rative learning experience, the group activity is driven by the actions of the partici-

pants on the collaborative learning resources, which are aggregated to the user events

to form another taxonomy in which we can differentiate, at a high level of abstrac-

tion, between active, passive and support user actions (see Fig. 2). Therefore, in

CSCL applications there is a strong need for the classification of all types of events

generated by user actions according to the three generic parameters mentioned. To

this end, a complete and tight hierarchy of events (Fig. 2) is provided to collect and

categorize the identified events generated by user actions during the collaborative

learning activity.

Fig. 2. A hierarchy to collect and classify all events generated during the group activity

In order to implement this classification, we developed a generic, reusable, com-

ponent-based library for the construction of specific CSCL applications [17] in which

a specific component called CSCL Knowledge Management2 was designed represent-

ing the formalization of this hierarchy of events. Note that CLWorkspace in Fig. 2

refers to the log file aggregating event information that is generated in a given work-

space. Such a workspace may correspond to a whole group or to a phase within a

group activity.

3.2 The Structure of the Log Files

In order to prepare the event information for efficient processing, as soon as we clas-

sified and turned it into persistent data, we store it in the system as log files, which

will contain all the information collected in specified fields. Next, we intend to prede-

fine two generic types of log files according to the two basic criteria, time and work-

space, that characterize group collaboration. These log files will represent as great a

degree of granularity as possible regarding both criteria and they will be parameter-

ized so that the administrator can set them up in accordance with the specific analysis

needs. Thus, the finest grain or the smallest log file should be set up to store all events

occurring in each group for the shortest time interval. Therefore, every single work-

space will have its own log file made up of all the events occurring within the work-

space for a given period of time.

During data processing it will be possible to concatenate several log files so as to

obtain the appropriate degree of granularity thus making it possible for a distributed

system to efficiently parallelize the data processing according to the characteristics of

2 CSCL Knowledge Management component is found at: http://cv.uoc.edu/~scaballe/clpl/api/

the computational resources. The aim is to efficiently process large amounts of in-

formation enabling the constant presentation of real-time awareness and constant

feedback to users during the group activity.

Thus, concatenating several log files and processing them in a parallel way, it

would be possible to constantly show each group member's absolute and relative

amount of contribution, which would provide participants with essential feedback

about the contribution of others as a quantitative parameter supporting the production

function. In a similar way, real-time awareness is possible by continuously paralleliz-

ing and processing each and every single fine-grained log file of each workspace

involved at the same time in order to permanently notify all workspace members of

what is going on in their groups. Finally, showing the results of complex statistics

after longer periods of time (e.g. at 12 hour intervals) is very important for the group's

tutor to be able to monitor and assess the group activity as a qualitative parameter

supporting acquisition of information about students' problem-solving behavior,

group processing and performance analysis.

4 A Master-Worker Approach for Processing Log Files

The Master-Worker (MW) model (also known as Master-Slave or Task Farming

model) has been widely used for developing parallel applications. In the MW model

there are two distinct types of processors: master and workers. The master processor

performs the control and coordination and assigns tasks to the workers. It also decides

what data will be sent to the workers. The workers typically perform most of the

computational work. The MW model has proved to be efficient in developing appli-

cations using different degrees of granularity of parallelism. Indeed, it has several

advantages such as flexibility and scalability (the worker processors can be imple-

mented in many different ways and they can be easily added if needed) as well as

separation of concerns (the master performs coordination tasks and the worker proc-

essors carry out specific tasks). This paradigm is particularly useful when the defini-

tion of the tasks to be completed by the workers can be done easily and the communi-

cation load between the master and workers is low.

4.1 Master-Worker Paradigm on the Computational Grid

The MW paradigm has been used in developing parallel applications in traditional

supercomputing environments such as parallel machines and clusters of machines.

Over the last few years, Grid computing has become a real alternative for developing

parallel applications that employ its great computational power. However, due to the

complexity of the Computational Grid, the difficulty encountered in developing paral-

lel applications is higher than in traditional parallel computing environments. Thus, in

order to simplify the development of Grid-aware applications several high-level pro-

gramming frameworks have been proposed, among which is the Master-Worker

Framework (MWF) [14].

MWF allows users to easily parallelize scientific computations through the master-

worker paradigm on the computational grid. On the one hand, MWF provides a top

level interface that helps the programming tasks to distribute large computations in a

Grid computing environment; on the other hand, it offers a bottom level interface to

existing grid computing toolkits, for instance, using the Condor system to provide

Grid services. The target applications of MWF are parallel applications with weak

synchronization and reasonably large granularity. As we show next, this framework is

appropriate for processing log files of group activity since we have different degrees

of granularity available so as to guarantee efficiency and, furthermore, there is no

need for synchronization or communication between the worker processors. More-

over, in our application, the communication load between the master and workers is

very low.

4.2 The Architecture of the Application

The architecture of the application (Fig. 3) is made up of three parts: (1) the Collabo-

rative Learning Application Server, which is in charge of maintaining the log files

and storing them in specified locations; (2) the MW application for processing log

files and, (3) the application that uses the resulting information in the data bases to

compute statistical results and present them to the final user.

Fig. 3. The architecture of the application for processing log files

The Master-Worker Application for Processing Log Files. We proceed now to

present more details of the MW application, basically how the master and worker

processors are programmed. The master is in charge of generating new tasks and

submitting them to the MWDriver for distributing them to the worker processors

while the worker processors run in a simple cycle: receiving the message describing

the task from the master, processing the task according to a specified routine and

sending the result back to the master. The MW framework, which schedules the tasks,

manages the lists of workers and of tasks to be performed by the MWDriver. Tasks

are assigned to workers by giving the first task on the list to the first idle worker on

the worker list. We take advantage of the fact that the MWDriver’s interface allows

the task list to be ordered according to a user’s criteria and the list of workers to be

ordered according to their computational power. Thus, we order the task list in de-

creasing order of log file size and the machines in decreasing order of processing

capacity so that “good” machines have priority in receiving the largest log files.

Furthermore, we have a unique type of task to be performed by the workers that

consists in processing a log file. We assume that the workers have the processing

routine available; otherwise, the worker would take a copy of the routine on receiving

a task for the first time and then use a flag to indicate whether it must receive a copy

of the routine or not. The task is described as follows:

Task description:

The master processor is programmed as follows:

We note that the log files generated by the Collaborative Learning Application

Server can be stored either in disk spaces of the same server or at different locations

(machines) available in the Grid. Furthermore, the processed information by the

workers can be stored either in unique or different databases that can be found at

different machines as specified in the tasks to be realized by the worker processors.

address of the location of the log file;
name of the log file;
size of the log file;
address of the location where the processing routine is
 found.
url of the database where the processed information
 will be stored;

 while (true) do
 check for new log files generated from the

Collaborative Learning Application Server;
 update the list of the <log file description>

for the new incoming log files;
 for each new log file generate a task;
 submit the newly generated tasks to the MWDriver;

The worker processor is programmed as follows:

Efficiency issues of the MW Application. It should be observed that the communi-

cation takes place between master and the workers at the beginning and the end of the

processing of each task. Therefore, our application has weak synchronization between

the master and the workers, which ensures that it can run without loss of performance

in a Grid environment. Moreover, the number of workers can be adapted dynamically

so that if new resources appear they can be incorporated as new workers in the appli-

cation; in addition, if a worker in the Grid becomes unavailable while processing a

task, the task can be reallocated to another worker. Finally, by having different de-

grees of granularity of the log files it is possible to efficiently distribute the load bal-

ance among workers and minimize the transmission of the data log files from their

original locations to the worker machine.

4.3 The Design of the Resulting Database

Once the event information from the log files has been processed, the workers (see

Fig. 3) send back the task reports (e.g. processing time, number of processed events,

etc.) to the collaborative learning application server through the master so as to verify

the results achieved. The results of data processing, which workers send to the data-

base manager system, should have correctly represented all the information contained

in the log files so as to make it possible to consult both the desired data from the

database directly (e.g. number of connected users, type of documents in a certain

workspace, etc.) and the computed complex statistical results from the database.

These statistical results should be obtained by the application server as fast as possi-

ble and presented to group members and tutors in different formats.

Thus, based on the premises argued in [22], we provide3 a logic design of the data-

base, which is generic, efficient and independent from any specific database manager.

We have designed the database in a way to satisfy all of these requirements and to

allow users to consult data regarding the basic entities that take place in any CSCL

environment (users, objects, workspaces, connections, etc.).

4.4 XML representation of the statistical results

The third part of our application uses the resulting information in the databases to

compute statistical results and present them to the members of the online collabora-

3 See the design of the database at: http://cv.uoc.edu/~scaballe/GADA04/DBDesign.pdf

receive the task;
receive the specified log file from the specified
 location in the task description;
run the processing routine on the log file
send to the master the task’s statistics (execution
 time, number of events processed...) upon
 completion of the task;

tive group and the tutors In this context we are studying an XML coding of the statis-

tical results in order to make it possible to present this information to final users in

different forms (see Fig. 1). Considering the fact that the data is highly structured and

the design of the relational database [23], we propose that application be designed as

a middleware [24], which performs the following functions: to extract necessary

information from the databases, to compute statistical measurements as desired, and

to convert the results into XML output. This design will provide sufficient flexibility

as to allow ad hoc statistical measurements to be obtained as well as permitting the

creation of user-specified document type definitions (DTD) to accommodate the dif-

ferent needs of information representation.

5 Conclusions and Ongoing Work

The efficient embedding of information and knowledge about the ongoing group

activity into collaborative learning environments is crucial to the success of the online

collaborative learning activity. Moreover, disposing of such information as fast as

possible makes the use of more computational resources indispensable in order to

process a huge amount of event information generated during the ongoing group

activity. In this study we have shown a Grid-aware approach for processing log files

of group activity in an efficient yet simple manner. Our approach is based on the

Master-Worker paradigm on the Computational Grid and shows its feasibility by

satisfying several conditions such as weak synchronization, dynamic adaptation of

resources, efficient load balancing etc., which ensures that our application can run

without loss of performance in a Grid environment. We have achieved this through a

careful definition of the event information generated during group activity and an

adequate structure for log files that collect the event information. This allows us to

dispose of log files according to different criteria as well as different degrees of

granularity.

We are currently implementing this application that we will test under a real envi-

ronment using a grid infrastructure formed by machines at three Spanish Universities

(Open University of Catalonia, Polytechnic University of Catalonia and University of

Valladolid) within the scope of a joint Spanish Research Project (CICYT). Doing so,

we are using real data coming from workspaces of online collaborative learning

groups at the Open University of Catalonia and those from the VMT Project at Drexel

University.

Acknowledgements. This work has been partially supported by the Spanish MCYT

project TIC2002-04258-C03-03 and NSF VMT project (IERI grant #0325447).

References

1. Dillenbourg, P. (ed.) (1999): Collaborative Learning. Cognitive and Computational Ap-

proaches. Elsevier Science Ltd. 1-19.

2. Kiesler, S. and Sproull, L.S. (Eds.) (1987). Computing and change on campus. New York:

Cambridge Press

3. Daradoumis, T., Xhafa, F. and Marquès, J.M. (2003) Exploring Interaction Behaviour and

Performance of Online Collaborative Learning Teams, 9th Int. Workshop on Groupware,

CRIWG'03, France. Lecture Notes in Computer Science, Vol. 2806, pp. 126-134.

4. Martínez, A., de la Fuente, P., Dimitriadis, Y. (2003) Towards an XML-Based Represen-

tation of Collaborative Action. In: Proc. of the CSCL 2003, Bergen, Norway.

5. Zumbach, J., Hillers, A. & Reimann, P. (2003). Supporting Distributed Problem-Based

Learning: The Use of Feedback in Online Learning. In T. Roberts (Ed.), Online Collabo-

rative Learning: Theory and Practice pp. 86-103. Hershey, PA: Idea

6. Open University of Catalonia http://www.uoc.edu (web page as of August 2004)

7. Virtual Math Team Project http://mathforum.org (web page as of July 2004)

8. Foster, I. and Kesselman, C. (Eds) (1999) The Grid 2e, 2nd Edition Blueprint for a New

Computing Infrastructure. Morgan-Kaufman

9. Arnold, D., Agrawal, S., Blackford, S., Dongarra, J., Miller, M., Seymour, K., Sagi, K.,

Shi, Z. and Vadhiyar, S. (2002) Users' Guide to NetSolve V 1.4.1, Univ. of Tennessee,

Technical Report, ICL-UT-02-05.

10. Globus: http://www.globus.org (web page as of July 2004)

11. MPICH-G2: A Grid-enabled MPI. http://www3.niu.edu/mpi/ (web page as of July 2004)

12. Condor-G: http://www.cs.wisc.edu/condor/condorg/ (web page as of July 2004)

13. Casanova, H. and Dongarra, J. (1998): NetSolve: Network enabled solvers, IEEE

Computational Science and Engineering, 5(3) pp. 57-67.

14. Goux, J.P., Kulkarni, S., Linderoth, J. and Yoder, M. (2000): An enabling framework for

master-worker applications on the computational grid. In 9th IEEE International Sympo-

sium on High Performance Distributed Computing (HPDC'00). IEEE Computer Society.

15. Pérez, M., Carretero, J., García, F., Peña, J.M., and Robles, V. (2003) MAPFS: A Flexible

Infrastructure for Data-Intensive Grid Applications, In 2003 Annual CrossGrid Project

Workshop and 1st European Across Grids Conference, Santiago de Compostela, Spain

16. Bentley, R., Appelt, W., Busbach. U., Hinrichs, E., Kerr, D., Sikkel, S., Trevor, J. and

Woetzel, G. (1997) Basic Support for Cooperative Work on the World Wide Web. Int. J.

of Human-Computer Studies 46(6) 827-846.

17. Caballé S., Xhafa, F., Daradoumis, T. and Marquès, J.M. (2004) Towards a Generic Plat-

form for Developing CSCL Applications Using Grid Infrastructure. In: Proc. of the

CLAG/CCGRID’04, Chicago, USA

18. Stahl, G. (2002) Groupware Goes to School, 8th Int. Workshop on Groupware.

CRIWG'02, La Sirena Chile. LNCS, Vol. 2440, pp. 7-24. ISBN: 3-540-44112-3.

19. Foster, I. and Kesselman, C. The Grid: Blueprint for a Future Computing Infrastructure.

pp. 15-52. Morgan Kaufmann, San Francisco, CA, 1998.

20. Bote-Lorenzo, M. L., Dimitriadis, Y. A., Gómez-Sánchez, E.: Grid Characteristics and

Uses: a Grid Definition. In: Proc. of the 1st European Across Grids Conference (CD),

Santiago de Compostela, Spain, 2003.

21. Amin, K., Nijsure, S., and von Laszevski, G.: Open Collaborative Grid Services Architec-

ture (OCGSA), In: Proc. of the W3C EuroWeb 2002 Conference, Oxford, UK, 2002.

22. Watson, P. (2003) Databases and the Grid In: Grid Computing: Making The Global Infra-

structure a Reality, Berman, F. et al. (eds.) Wiley

23. Fernández, M., Kadiyska, Y., Suciu, D., Morishima, A., and Tan, W. (2002) SilkRoute: A

framework for publishing relational data in XML. In ACM Transactions on Database Sys-

tems (TODS), Vol. 27, Issue 4.

24. Kyung-Soo, J. A design of middleware components for the connection between XML and

RDB. Proceedings of IEEE ISIE 2001, Vol. 3, pp. 1753 - 1756.

