
A Grid-enabled Branch and Bound Algorithm for Solving Challenging
Combinatorial Optimization Problems

M. Mezmaz, N. Melab and E-G. Talbi
LIFL, CNRS UMR 8022
INRIA Futurs - DOLPHIN

Université des Sciences et Technologies de Lille
59655 - Villeneuve d’Ascq cedex - France

E-mail: mezmaz,melab,talbi @lifl.fr

Abstract

Solving optimally large instances of combinatorial op-
timization problems requires a huge amount of computa-
tional resources. In this paper, we propose an adaptation
of the parallel Branch and Bound algorithm for computa-
tional grids. Such gridification is based on new ways to
efficiently deal with some crucial issues, mainly dynamic
adaptive load balancing, fault tolerance, global informa-
tion sharing and termination detection of the algorithm. A
new efficient coding of the work units (search sub-trees) dis-
tributed during the exploration of the search tree is pro-
posed to optimize the involved communications. The al-
gorithm has been implemented following a large scale idle
time stealing paradigm (Farmer-Worker). It has been exper-
imented on a Flow-Shop problem instance () that has
never been optimally solved. The new algorithm allowed
to realize a success story as the optimal solution has been
found with proof of optimality, within days using about

processors belonging to Nation-wide distinct clus-
ters (administration domains). During the resolution, the
worker processors were exploited with an average of
while the farmer processor was exploited only of the
time. These two rates are good indicators on the efficiency
of the proposed approach and its scalability.

Keywords: Branch and Bound, Parallel Computing, Grid
Computing, Flow-Shop Problem, Performance Evaluation.

This work is part of the CHallenge in Combinatorial Optimiza-
tion (CHOC) project supported by the National French Research Agency
(ANR) through the High-Performance Computing and Computational
Grids (CIGC) programme.

1-4244-0910-1/07/$20.00 c 2007 IEEE.

1 Introduction

Combinatorial optimization addresses problems for
which the resolution consists in finding the (near-)optimal
configuration(s) among a large finite set of possible
configurations. In practice, most of these problems are
naturally NP-hard and complex. The Branch and Bound
(B&B) algorithm is one of the most popular methods to
solve exactly this kind of problems. This algorithm allows
to reduce considerably the computation time required to
explore all the solution space associated with the problem
being solved. However, the exploration time remains
considerable, and using parallel processing is one of the
major and popular ways to reduce it. Many parallel B&B
approaches have been proposed in the literature [4, 2, 5].
A taxonomy of associated parallel models is presented
in [7]. Four models are mainly identified and studied within
the context of grid computing. These models are briefly
surveyed in the next section. In this paper, we focus on the
most used of them: the parallel exploration of the search
tree.

We are interested in the exploitation and deployment
of this model on a computational grid. The model poses
several issues related to the characteristics of the model
itself and the properties of the grids. The major of these
issues are load balancing, fault tolerance, termination
detection and global information sharing (best solution
found so far). Indeed, the irregular nature of the tree
explored by the algorithm and the volatile and large scale
nature of the grid involves a large amount of load balancing
and checkpointing operations. These operations require
an exorbitant communication and storage cost associated
with the work units (collections of nodes) dynamically
generated. In addition, the large scale nature of the grid

makes it difficult to efficiently exploit the synchronous
mode for the exploration. The asynchronous mode is thus
required which makes hard the termination detection of the
algorithm and the global information sharing particularly
in a large scale grid.

In this paper, we propose a grid-oriented approach
based on special codings of the explored tree and the
work units. These codings allow to optimize the dynamic
distribution and checkpointing mechanisms on the grid,
and to implicitly detect the termination of the algorithm
and efficiently share the global information. The algorithm
has been applied to the Flow-Shop scheduling problem,
one of the hardest challenging problems in combinatorial
optimization. The problem consists roughly to find a
schedule of a set of jobs on a pool of machines that
minimizes the total execution time (makespan). The jobs
must be scheduled in the same order on all machines, and
each machine can not be simultaneously assigned to two
jobs. Using our grid-based algorithm, the problem instance
(50 jobs on 20 machines) has been optimally solved for the
first time. The method allows not only to improve the best
known solution for the problem instance but it also provides
a proof of the optimality of the provided solution. The
experiments have been performed on a grid of over
processors belonging to Grid5000 and different educational
networks of Universit de Lille1 (Polytech’Lille, IEEA, IUT
”A”).

The rest of the paper is organized as follows. Section
2 gives an overview of the B&B algorithm and its paral-
lelization on the computational grid. The proposed parallel
approach is described in Section 3. Section 4 presents its
implementation based on the farmer-worker paradigm. Sec-
tion 5 describes the experiments performed for solving a
Flow-Shop problem instance that has never been solved op-
timally. Section 6 draws some conclusions and perspectives
of this work.

2 The B&B algorithm and Grid Computing

Solving a problem in combinatorial optimization con-
sists in exploring a search space to provide a (near-)optimal
solution. To each candidate solution of the search space
is associated a cost. Solving exactly a combinatorial op-
timization problem consists in finding the solution having
the optimal cost. For this purpose, the B&B algorithm is
based on an implicit enumeration of all the solutions of
the considered problem. The search space is explored by
dynamically building a tree whose root node represents
the problem being solved and its whole associated search
space. The leaf nodes are the potential solutions and the
internal nodes are subspaces of the total solution space.

The size of these subspaces is increasingly reduced as one
approaches the leaves.

The construction of such a tree and its exploration are
performed using four operators: branching, bounding, se-
lection and elimination. The algorithm proceeds in several
iterations during which the best solution found so far is
progressively improved. The generated and not yet treated
nodes are kept in a list whose initial content is limited to
only the root node. The four operators intervene at each
iteration of the algorithm. The B&B makes it possible to
reduce considerably the computation time necessary to
explore the whole solution space. However, this remains
considerable and parallel processing is thus required to
reduce the exploration time.

In [7], four parallel models are identified for B&B
algorithms: (1) the parallel multi-parametric model, (2) the
parallel tree exploration, (3) the parallel evaluation of the
bounds, and (4) the parallel evaluation of a single bound.
The model (1) consists in launching simultaneously several
B&B processes. These processes differ by one or more
operators, or have the same operators, but parameterized
differently. The trees explored in this model are not
necessarily the same. Model (1) guarantees the implicit
exploration of the whole solution space. Like model
(1), model (2) also consists in launching several B&B
processes. However, all the processes in model (2) are
similar, and explore simultaneously the same tree. Among
the four models, this model is the most popular and studied
one. Unlike the two previous models, models (3) and (4)
suppose the launching of only one B&B process. They
do not allow to parallelize the whole B&B algorithm as
both models (1) and (2) do, but they parallelize only the
bounding operator. In model (3), each process evaluates the
bounds of a distinct pool of nodes, while in model (4) a set
of processes evaluate in parallel the bound of a single node.

In [7], an analysis of these different parallel models is
presented within the context of grid computing. This anal-
ysis takes into account the characteristics of the computa-
tional grid: its multi-administrative domain nature, the dy-
namic availability and heterogeneity of its resources, and
its large scaleness. In this paper, we focus on the paral-
lel model (2) of the B&B algorithm. In addition to the
properties of the computational grid, the characteristics
of the model must be considered: the irregular nature of
the explored search tree and its asynchronous exploration
mode. All these characteristics of the grid and the parallel
model make more challenging several issues: load balanc-
ing, fault tolerance, termination detection and global infor-
mation sharing (best solution found so far). In the next sec-
tion, we propose a new approach to deal with these issues.

2

3 The Proposed Approach: Concepts and
Operators

The proposed approach is based on the parallel tree ex-
ploration model using a depth first search strategy. In this
approach, a list of active nodes is considered. Active nodes
are nodes generated during the exploration but not yet vis-
ited. During the search, this list evolves continuously and
the algorithm stops once this list becomes empty. The list
of active nodes covers a set of tree nodes made up by all the
nodes which can be potentially explored from each node
of the list. The principle of the approach is based on the
assignment of a number to each node of the tree. The num-
bers of any set of nodes, covered by a list of active nodes,
always form an interval (two numbers). The approach thus
defines a relation of equivalence between the concept of list
of active nodes and the concept of interval. Knowing one
the two should make it possible to deduce the other. As its
size is reduced, the interval is used to optimize communica-
tion and check-pointing operations, while the list of active
nodes is used for exploration. In order to switch from one
concept to the other, the approach defines two additional op-
erators: the fold operator and the unfold operator. The fold
operator deduces an interval from a list of active nodes, and
the unfold operator deduces a list of active nodes from an
interval. To define these two operators, three new concepts
are introduced: the node weight, the node number and the
node range.

The weight of a given node , noted , is the
number of leaves of the sub-tree of which is the root node.
Equation (1) defines the weight of a node in a recursive way.
The weight of a leaf is equal to , and the weight of an
internal node is equal to the sum of the weights of its node
children. This definition is at the same time general and
inapplicable. Indeed, it is general since it defines the weight
of a node for any tree, and inapplicable since the size of the
tree is exponential.

(1)
However, the knowledge of the structure of a tree makes

it possible to simplify this definition. Equations (2) and (3)
define in a simpler way the weight of a node for respec-
tively a binary tree and a permutation tree. In these two
definitions, the depth of a node n, noted , is the
number of nodes which separate it from the root node. is
the depth associated with the leaves. A binary tree is a tree
where except the leaves each node has two children. A per-

mutation tree is the tree associated with problems where the
goal is to find a permutation among a finite set of elements.

(2)

(3)

Many combinatorial optimization problems can be mod-
eled as a permutation tree. In such tree, any node , except
the root node, satisfies the condition (4).

(4)

In a binary tree, a permutation tree or any other tree of
regular structure, the nodes of the same depth have the same
weight. Consequently, instead of associating the weights to
the nodes, it is simpler to associate them to the depths, and
to deduce the weight of a node from its associated depth. At
the beginning of the B&B algorithm, a vector which gives
the weight associated with each depth is calculated. Using
this vector, it is possible to find the weight of a node know-
ing its depth. Figure 1 gives an example of the weights
associated with the depths in a permutation tree.

Figure 1. Weight of a node

To each node of the tree is assigned a number noted
. As equation (5) indicates it, the number of a

node can be obtained using the nodes of its path. The path
of a node , noted , is the set of nodes between the
root node and the node . The node and the root node
are always included in . To find the number of a
node , it is sufficient to know the “ ” of each
node in . The “ ” of a node , noted

, is the set of sibling nodes of which are
generated before .

(5)
The definition (5) can be applied to any tree indepen-

dently of its structure. Equation (6) gives a simpler defini-
tion for the trees of regular structure such as the binary or

3

permutation tree. This definition is based on the fact that,
in this kind of trees, nodes of the same depth have a similar
weight. It is sufficient to know the path of a node and the
rank of each node of this path. The rank of a node , noted

, is the position of among its sibling nodes. Dur-
ing the generation of the children of a given node, the rank
of the first generated node is , the of the second gen-
erated node is , and so on. Figure 2 gives an example of
numbers obtained in a permutation tree. These numbers are
inside their associated nodes.

(6)

Figure 2. Illustration of the node number

The range of a node , noted , is the interval
to which belong the node numbers of the sub-tree of which
is the root node. Figure 3 gives an example of the range
associated with each node of a permutation tree. As indi-
cated in equation (7), the beginning of the range of a node
is equal to its number, and its end is equal to the sum of its
number and its weight.

(7)

Figure 3. Illustration of a node range

The role of Fold operator is to deduce from a list of
active nodes the interval to which belong the numbers asso-
ciated to the nodes which are potentially explored using the
nodes of . In this paper, the interval of a list of active
nodes is noted . This is equivalent to the union
of all the ranges of the nodes (see (8)).

(8)

In B&B, the position of the nodes in an active list
depends on the search strategy adopted by the selection op-
erator. Let , ... be the order by which these nodes
appear in the list, and , ... be
their respective ranges. Condition (9) is always checked
when the search strategy adopted is depth first. Therefore,

can be found without knowing all ranges of
the active nodes. As (10) indicates it, it is sufficient to know
the ranges of and . Or more simply, it is enough to
know the numbers associated with these two nodes and the
weight of . Figure 4 gives an example illustrating the
folding of a list of active nodes into an interval.

(9)

(10)
Indeed, in Figure 4 the grey colored active nodes ,

and are considered. The union of ranges associated to
these nodes is . This corresponds exactly to the result
returned by equation (10) i.e.

The Unfold operator deduces from an interval
a list of active nodes noted . As indicated
in (11), is composed by the nodes of the tree
whose range is included in , and for which the range
of their parent is not included in . These two condi-
tions guarantee that is an unique and mini-
mal list. Indeed, it is impossible to find another list whose
length is lower than , and which allows to ex-
plore the nodes with numbers belonging to .

(11)

4

Figure 4. Illustration of active nodes and in-
terval

(12)
Finding can be done using a B&B algo-

rithm in which operators, except the elimination operator
(elim), are the same ones as those of the B&B algorithm.
This algorithm is based on the range of a node to choose
between an elimination and a branching operator. As (12)
indicates it, a node is eliminated when its range is in-
cluded in , or when its range and are com-
pletely disjointed. Otherwise, the node is decomposed.
In a tree with a maximum depth , the B&B performs less
than decompositions. This guarantees the low cost of
the unfold operator. As equation (13) indicates it, the list
of is made up by all the eliminated nodes
which their interval is included in . Figure 4 gives an
example illustrating the transformation of an interval in a
list of active nodes.

(13)

4 The Proposed Grid-enabled Parallel B&B

Fold and Unfold operators can be used for the paral-
lelization of the B&B according to different paradigms. In
this paper, the farmer-worker paradigm is used. In this
paradigm, only one processor plays the role of the farmer,
and all the other processors are workers. This paradigm is
relatively simple to use but the farmer can constitute a bot-
tleneck. However, communicating and handling intervals
instead of list of active nodes allow to significantly reduce
the communication costs and the farmer load.
In the adopted farmer-worker approach, the workers per-

form the B&B processes, and the farmer hosts the coordi-
nator. Each B&B process explores an interval of node num-
bers, and manages the local best solution found so far. On

the other hand, the coordinator keeps a copy of all the not
yet explored intervals, and manages the global best solu-
tion found so far. The copies of the intervals are kept in a
set noted , and the global best solution in
a variable noted . Figure 5 gives an example
with three B&B processes and a coordinator. In this exam-
ple, three intervals are being explored, and the fourth one is
waiting for a free available B&B process.

Figure 5. An example with B&B processes
and a coordinator

In addition to balancing the load between B&B pro-
cesses, other issues must be taken into account. Indeed, the
B&B processes make three assumptions about the workers.
They suppose that they are likely to break down and can be
behind fire-walls. Consequently, these processes are fault
tolerant, are launched according to the cycle stealing model,
and exchange their messages according to the pull model.
The only assumption of the coordinator about the farmer is
that it can fail. The coordinator manages only the possible
failures of the farmer. The following sections explain how
this farmer-worker approach deals with the quoted issues.

The coordinator manages a possible failure of the
farmer by periodically saving, in two files, the contents of

and . If a farmer failure
occurs, the coordinator initializes and

by the contents of these files. The B&B
processes manage the worker failures by regularly updating
the copy of their local interval in , and
by informing the coordinator each time a new solution is
found. When a worker fails the last copy of its interval is
either entirely given by the coordinator to another B&B
process, or shared between several B&B processes.

B&B processes update the copy of their interval using
the intersection operator. This operator updates the inter-
val being explored and its copy in . Let

be an interval being explored in a B&B process, and

5

its copy in . During the exploration
process, the two intervals and evolve con-
tinuously. Indeed, a B&B process, by exploring ,
increments the value of and does not change the value
of . While the load balancing mechanism, explained in
the following section, decrements the value of and does
not change the value of . The beginning of an interval
is likely also to be incremented by several B&B processes.
This occurs when the load balancing mechanism attributes
the same interval to several processes. As indicated in (14),
the intersection between two intervals is done by consider-
ing the maximum of their beginnings and the minimum of
their ends.

(14)

In this approach, the work unit of a B&B process is
the exploration of an interval. A B&B process requests an
interval when it joins the calculation for the first time, and
when it finishes the exploration of its interval. The role of
the coordinator is then to assign an interval to it. This is
done using two interval operators: the selection operator
and partitioning operator. The role of the former is to
select an interval from , and the role of
the latter is to divide the selected interval. The partitioning
operator divides an interval into two intervals
and . The holder process, the one to which belongs

, keeps since it already explores it starting
from , while the requesting process, the one which
requests a new interval, obtains . After a certain time,
the holder process is also informed to limit its exploration
to instead of . Indeed, as mentioned in the
previous subsection, the B&B processes regularly contact
the coordinator to update their intervals.

After a partitioning operation, the set
is updated by replacing with , and by adding

to . Both intervals and
do not have necessarily the same length. Indeed,

the requesting and the holder processes are deployed in an
environment where the hosts are heterogeneous, volatile
and not dedicated. Consequently, the lengths of the two
intervals must be proportional to the participation of each
one in the calculation. The choice of the partitioning
point depends on the power and the availability of
the processors which host the holder and the requesting
processes.

In this approach, it is possible that some intervals are
not assigned to any process. This occurs at the beginning
of a calculation or after a farmer or worker failure. Such

intervals are managed by supposing that they belong to a
virtual process which has a null power. Consequently, the
partitioning point of these intervals is equal to . They
are thus assigned entirely to the requesting process. To
avoid obtaining intervals of small size (granularity issue),
the partitioning operator is parameterized by a threshold.
An interval which has a length lower than this threshold is
duplicated instead of being divided. The coordinator keeps
only one copy of a duplicated interval, even if it is assigned
to several processes. Duplication is very important during
the termination phase of the algorithm. Indeed, if some
intervals are assigned to slower processors their duplication
on more powerful processors will allow to speed up the
search.

In addition to the choice of the partitioning point, the
choice of the interval to be divided is another is-
sue taken into account by the coordinator. The goal is to
assign, to the requesting process, the greatest available in-
terval. The selection operator does not choose the great-
est interval of , but the one which
produces the greatest interval . Such interval is suffi-
ciently long (coarse-grained work unit) to be assigned to a
new requesting process.

The management of the termination detection is another
issue which is crucial in a grid. In this approach, the
resolution stops once becomes empty. At
the beginning, contains only one interval
which corresponds to the whole tree. The beginning of this
interval is equal to , the smallest number of the tree, and
its end is equal to the greatest number of the tree. In other
words, is initialized by the range of the
root node.

During the exploration process, the cardinality of
is almost equal to the number of the

B&B processes, while its size continuously decreases. The
cardinality of is the number of intervals
that it contains, and the size of is the sum
of the lengths of its intervals. This size corresponds to the
number of the not yet explored solutions of the search space.

Any empty interval (with a beginning higher than the
end) of is automatically removed. During
the resolution, the size of decreases con-
stantly. Calculation stops once becomes
empty, and its size is thus equal to . When
is empty, a B&B process, which contacts the coordinator to
update/ask for an interval, is informed by the coordinator
that it must terminate.

6

In this farmer-worker approach, the solution sharing is
done by using . As mentioned in Section 4,

contains the global optimal solution. In ad-
dition to this variable, each B&B process manages its own
local optimal solution found so far. The objective of the
solution sharing is to reflect any improvement of any local
optimal solution in all the other B&B processes. This is
achieved using three rules: A B&B process (1) initializes
its local optimal solution by ; (2) immedi-
ately informs the coordinator each time its local solution is
improved ; (3) regularly reads to update its
local optimal solution.

5 Experimentation

The Flow-Shop problem is one of the numerous schedul-
ing problems that has received a great attention given its
importance in many industrial areas. The problem can be
formulated as a set of jobs to be sched-
uled on machines. The machines are critical resources
as each machine can not be simultaneously assigned to two
jobs. Each job is composed of consecutive tasks

, where designates the task of the job
requiring the machine . To each task is associated

a processing time and a starting time . The problem
being tackled here is more exactly the permutation Flow-
Shop problem. In this problem, jobs must be scheduled in
the same order on all the machines. The objective is to min-
imize the total completion time called makespan and noted

. This problem is NP-hard[8], and can be formulated
as follows:

(15)

The application of the proposed approach to the Flow-
Shop problem has been experimented on one of the in-
stances proposed by [3]. More exactly, it is the sixth in-
stance generated for problems of 50 jobs on 20 machines
called Ta0561. This instance has never been solved opti-
mally. The best known solution of Ta056 has a cost of 3681.
It is found by [9] using a meta-heuristic (near-optimal reso-
lution method).

The grid-based B&B algorithm has been experimented
using the experimental grid detailed in Table 1 and il-
lustrated by Figure 6. It is made up of processors
1http://www.eivd.ch/ina/Collaborateurs/etd/default.htm

belonging to clusters. Three clusters belong to three
different education departments of Universit de Lille1
(IUT-A, Polytech’Lille, IEEA-FIL), and six clusters belong
to Grid’50002. Grid’5000 is a nation-wide experimental
grid composed by clusters distributed over several French
universities (Bordeaux, Lille, Rennes, Sophia, Toulouse,
Orsay, Lyon, Grenoble and Nancy). Only the first six
clusters are exploited in our experiments. Unlike the
university machines, which are mono-processors, all the
machines of Grid’5000 are bi-processors.

Figure 6. The experimental nation-wide grid

Inside all clusters, except that from IUT-A, the machines
are interconnected by a Gigabit Ethernet. The IUT-A clus-
ter uses a Megabit Ethernet connection. The three uni-
versity clusters are interconnected by a Gigabit connection.
The Grid5000 clusters and the clusters of the university are
interconnected, using the Gigabit RENATER3 nation-
wide network.

The Taillard’s instance Ta056 of the Flow-Shop problem
is difficult, CPU time intensive and has never been solved
exactly. Two runs have been performed, and at each time
the optimal solution is found with a cost equal to .
This solution is the following schedule:

(14, 37, 3, 18, 8, 33, 11, 21, 42, 5, 13, 49, 50, 20, 28, 45,
43, 41, 46, 15, 24, 44, 40, 36, 39, 4, 16, 47, 17, 27, 1, 26,
10, 19, 32, 25, 30, 7, 2, 31, 23, 6, 48, 22, 29, 34, 9, 35, 38,
12).

In the first experiment, the algorithm has been initialized
with an upper bound equal to . The run lasted about

2http://www.grid5000.fr
3http://www.renater.fr

7

CPU (GHz) Domain No.
P4 1.70 24
P4 2.40 IEEA-FIL 48
P4 2.80 (Lille1) 59
P4 3.00 27
AMD 1.30 14
Celeron 2.40 35
Celeron 0.80 14
Celeron 2.00 Polytech’Lille 13
Celeron 2.20 (Lille1) 28
P3 1.20 12
P4 3.20 12
P4 1.60 22
P4 2.00 18
P4 2.80 IUT-A(Lille1) 45
P4 2.66 57
P4 3.00 41
AMD 2.2 Bordeaux(Grid5000) 2x47
AMD 2.2 Lille(Grid5000) 2x54
Xeon 2.4 2x64
AMD 2.2 Rennes(Grid5000) 2x64
AMD 2.0 2x100
AMD 2.0 Sophia(Grid5000) 2x107
AMD 2.2 Toulouse(Grid5000) 2x58
AMD 2 Orsay(Grid5000) 2x216

Total 1889

Table 1. The computational pool

one month and three weeks using an average of pro-
cessors with a peak of processors. The goal of the
second run is to get more statistics in order to learn more
about the behavior of the proposed approach. In the second
experiment, the algorithm has been initialized with an upper
bound equal to . Table 2 summarizes the most impor-
tant statistics recorded during the second run, and Figure 7
plots the evolution of the number of exploited processors
over the time.
As reported in Table 2, the resolution lasted 25 days

with an average of processors, a maximum of
available processors, and a cumulative computation time of
about 22 years. During the resolution, the B&B processes
requested the load balancingmechanism approximately
thousand times. More than million checkpointing opera-
tions were done by the B&B processes, while the coordi-
nator does its checkpoint every minutes. About bil-
lion nodes were explored. In the proposed approach, some
nodes can be explored by several B&B processes. This oc-
curs mainly when an interval is duplicated. Table 2 shows
that the rate of the redundant explored nodes is lower than

. The worker processors were exploited with an aver-
age of while the farmer processor was exploited .

Figure 7. The evolution of the number of
available processors

These two rates are good indicators on the parallel effi-
ciency of this approach and its scalability. In the farmer-
worker paradigm, a good approach must maximize the ex-
ploitation rate of the worker processors and must minimize
the exploitation rate of the farmer processor.

Running wall clock time 25 days
Total cpu time 22 years

Average number of workers 328
Maximum number of workers 1,195
Worker CPU exploitation 97%
Coordinator CPU exploitation 1.7%
Checkpoint operations 4,094,176
Work allocations 129,958
Explored nodes 6,50874 e+12
Redundant nodes 0.39%

Table 2. The execution statistics

In terms of the exploited computational power, the sec-
ond resolution of Ta056 ranks second. Table 3 compares
and gives the positions of the most known success stories.
More information about these stories can be found in [6]
and [1]. To the best of our knowledge, Sw24978 is the only
instance in the combinatorial optimization history which re-
quires more computational power than Ta056. Sw24978 is
an instance of the Traveling Salesman Problem. It consists
in finding the shortest path to visit towns of Swe-
den. The cumulative time of the resolution of Sw24978 is
equivalent to about years of the computational power of
an Intel Xenon GHz.

8

Order Problem Instance Description Computation power
1 TSP Sw24978 24,978 towns of Sweden 84 years/Intel Xeon 2.8 GHz
2 Flow-Shop Ta056 50 jobs on 20 machines 22 years
3 TSP D15112 15,112 towns of Germany 22 years/Compaq Alpha 500 MHz
4 QAP Nug30 7 years/HP-C3000 400MHz
5 TSP Usa13509 13,509 towns of USA 4 years

Table 3. The comparison of the most known resolutions

6 Conclusions and Future Works

Solving exactly large instances of combinatorial opti-
mization problems requires a huge amount of computa-
tional resources. Parallel B&B algorithms based on the par-
allel exploration of the search tree have successfully been
applied to solve these problems. However, experiments are
often limited to few tens of processors. Designing and im-
plementing B&B algorithms for a large scale computational
grid is a great research challenge as several crucial issues
must be tackled: dynamic load balancing of an irregular
tree, fault tolerance due to the volatile nature of the grid,
termination detection of asynchronous processes, global in-
formation sharing in a large scale context.

In this paper, we have proposed a new grid-enabled B&B
algorithm together with new approaches allowing to effi-
ciently tackle the problems quoted above. The approach
consists in an efficient coding associated with the explored
tree and work units (collections of nodes). Each node of
the explored tree is assigned a node number. A work unit is
delimited by two leaves of the explored tree, and thus repre-
sented by an interval whose beginning and end are the num-
bers associated with the two leaves. Such coding approach
allows to optimize the communications induced by the load
balancing, checkpointing-based fault tolerance and global
information sharing operations. The termination detection
is naturally ensured by the load balancing mechanism and
no additional communication is required. The proposed ap-
proach includes two operators allowing to convert a collec-
tion of nodes into an interval and conversely.

The approach has been implemented following a large
scale idle time stealing Farmer-Worker paradigm. It
has been experimented on a Flow-Shop problem instance
() that has never been solved optimally. The instance
has been solved within 25 days on processors, be-
longing to Nation-wide clusters (administration domains).
During the resolution, the worker processors were exploited
with an average to while the farmer processor was ex-
ploited . These two rates are good indicators on the
parallel efficiency of this approach and its scalability.

These experimental results must be “enforced” with a
theoretical analysis. An analytical study is currently in

progress in order to evaluate the complexity of the proposed
approach and then compare it with the principal methods of
the literature. It is also planned to use the approach with a
peer to peer paradigm. This paradigm makes it possible to
push far the scalability limits of the method. The objective
is to exploit more and more processors and to solve more
and more complex instances.

Acknowledgment

We would like to thank the technical staffs of the
Grid’5000, IEEA-FIL, IUT-A and Polytech’Lille for mak-
ing their clusters accessible and fully operational.

References

[1] D. Applegate, R. E. Bixby, V. Chvatal, and W. Cook. On
the solution of travelling salesman problem. In Documenta
Mathemitica, pages 645–656, 1998.

[2] V. D. Cung, S. Dowaji, B. Le Cun, T. Mautor, and C. Rou-
cairol. Parallel and distributed branch-and-bound/A* algo-
rithms. Technical Report 94/31, Laboratoire PRISM, Univer-
sité de Versailles, 1994.

[3] E.Taillard. Banchmarks for basic scheduling problems. Euro-
pean Journal of European Research, pages 23:661–673, 1993.

[4] B. Gendron and T.G. Crainic. Parallel Branch and Bound
Algorithms: Survey and Synthesis. Operations Research,
42:1042–1066, 1994.

[5] A. Iamnitchi and I. Foster. A Problem-Specific Fault-
Tolerance Mechanism for Asynchronous, Distributed Sys-
tems. In Intl. Conf. on Parallel Processing, pages 4–14, 2000.

[6] Goux J.P., Anstreicher K.M., Brixius N.W., and Linderoth
J. Solving large quadratic assignment problems on computa-
tional grids. In Mathematical Programming, pages 341–357,
2001.

[7] Nouredine Melab. Contributions à la rsolution de problèmes
d’optimisation combinatoire sur grilles de calcul. PhD thesis,
LIFL, USTL, Novembre 2005.

[8] Garey M.R., Johnson D.S., and Sethi R. The complexity of
flow-shop and job-shop scheduling. Mathematics of Opera-
tions Research, 1:117–129, 1976.

[9] R. Ruiz and T. Stutzle. A simple and effective iterated greedy
algorithm for the flowshop scheduling problem. In Technical
report, submitted to EJOR, 2004.

9

