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Abstract

Collaborative cyber-physical systems are capable of forming networks at runtime to achieve goals that are unachievable for 

individual systems. They do so by connecting to each other and exchanging information that helps them coordinate their 

behaviors to achieve shared goals. Their highly complex dependencies, however, are difficult to document using traditional 

goal modeling approaches. To help developers of collaborative cyber-physical systems leverage the advantages of goal 

modeling approaches, we developed a GRL-compliant extension to the popular iStar goal modeling language that takes the 

particularities of collaborative cyber-physical systems and their developers’ needs into account. In particular, our extension 

provides support for explicitly distinguishing between the goals of the individual collaborative cyber-physical systems and 

the network and for documenting various dependencies not only among the individual collaborative cyber-physical systems 

but also between the individual systems and the network. We provide abstract syntax, concrete syntax, and well-formedness 

rules for the extension. To illustrate the benefits of our extension for goal modeling of collaborative cyber-physical systems, 

we report on two case studies conducted in different industry domains.

Keywords Goal modeling · Collaborative cyber-physical systems · iStar · GRL

1 Introduction

Goal orientation has proven useful in the development of 

various kinds of systems [1]. Various goal modeling tech-

niques support developers in eliciting, documenting, and 

validating stakeholder intentions (e.g., [2–20]). In the devel-

opment of cyber-physical systems (CPS), it has also proven 

useful to attribute goals to systems or components rather 

than stakeholders [21]. This allows for documenting and rea-

soning about dependencies between the goals of different 

systems. For example, an automotive cruise control has 

the goal to maintain a safe distance to vehicles ahead. To 

achieve this goal, it relies on the electronic stability control 

to apply the brakes to the vehicle’s wheels.

Recently there has been a trend to develop highly con-

nected CPS, often referred to as collaborative CPS that form 

networks at runtime to achieve goals that cannot be achieved 

by individual systems [22]. For example, cooperative adap-

tive cruise control systems allow vehicles to form platoons, 

where each vehicle maintains the same speed and a safe 

distance to the vehicle ahead. This allows for reducing the 

safety distances between the vehicles, which in turn reduces 

fuel consumption for all following vehicles. The dependen-

cies between goals in such a network are highly complex. 

Besides each system having its own goals, which can depend 

on the fulfilment of goals of another system in the network, 

the network itself has goals that entirely depend on some 

combination of goals fulfilled by the individual systems. For 

example, the goal of the platoon to maintain small safety 

distances depends on each vehicle in the platoon to main-

tain exactly the preset speed. Moreover, these networks can 

vary in size and often contain multiple systems of the same 

kind. Consequently, there is not only one possible network 
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configuration but a multitude of configurations that need to 

be considered. So, a goal might not depend on one goal to be 

fulfilled by one particular system in the network but rather 

that one or a certain number of systems fulfill certain goals. 

For example, collaborative transport robots can form fleets 

that optimize transportation of goods. They do so, by among 

others, maintaining a map of their surroundings. To keep 

this map up to date each transport robot depends on all the 

other robots to keep their map up to date. Traditional goal 

modeling techniques are ill-equipped to handle the complex 

dependencies between systems and between systems and the 

network [23]. The resulting goal models are difficult to com-

prehend because of their large sizes and their multitude of 

dependencies. Hence, there is a need to provide a goal mod-

eling approach that takes the particularities of collaborative 

CPS and its developers’ needs into account.

In previous work we evaluated the use of the goal-ori-

ented requirement language (GRL) for modeling collabora-

tive CPS [23]. While we identified that goal modeling with 

GRL can considerably contribute to the development of col-

laborative CPS, we identified several shortcomings of GRL 

for modeling collaborative CPS. The study was conducted 

using two industry case examples and involved workshops 

and discussions with industry partners. Hence, application 

of GRL for modeling collaborative CPS in industry was the 

major concern of the investigation.

To this end, this paper contributes a GRL-compliant 

extension to the well-established iStar1 language [21, 24] 

to provide support in the engineering of collaborative CPS. 

Basing our extension on the iStar 2.0 definition given by 

Dalpiaz et al. [21] allows principle compatibility with other 

iStar extensions. In addition, as best practices and guidelines 

do exist for extending iStar 2.0, this supports the definition 

of a coherent extension. GRL compliance is desired as we 

determined a severe need for standardization in industry and 

the use of GRL2 was highly appreciated by our industry part-

ners. In this paper, we define requirements based on these 

shortcomings and provide a GRL-compliant extension of 

iStar for modeling collaborative CPS.

The major goal of this extension is to provide developers 

with a goal modeling language that leverages the advan-

tages of goal orientation while reducing the complexity by 

removing the necessity to explicitly document each indi-

vidual dependency in all possible network configurations. 

Thus, in this paper we place emphasis on the graphical 

modeling, particularly under consideration of reducing the 

complexity of the resulting models. Our aim is to improve 

manual analysis, understanding of depicted situations, 

and communication. At the current point we do not place 

emphasis on automated evaluation of the goal models. This 

is particularly for the reason that our industry partners were 

more interested in gaining an understanding of the system 

to be developed than a formal goal fulfillment analysis. As 

industry is typically reluctant to introduce goal modeling 

approaches in practice [26, 27], we develop the extension 

based on observed industry needs.

Our extension provides various means to reduce the com-

plexity of documenting goals for collaborative CPS while 

maintaining precision, comprehensibility, and unambigu-

ousness. In this paper, we provide abstract syntax, concrete 

syntax and well-formedness rules for our extension. Our 

extension was evaluated using two case studies: an example 

from the industry automation domain (a fleet of autonomous 

transport robots used in a smart factory) and an example 

from the automotive industry (a modern cooperative adap-

tive cruise control system). To show that this extension 

serves observed needs [23], we use the same case examples 

for investigation. In addition, the same industry partners 

were involved in workshops and discussions. Both case 

examples were provided by industry partners in the context 

of the CrESt-project.3 Beside reporting on this case study 

evaluation, we also report findings gained from discussions 

of the case study with our industry partners.

This paper is structured as follows: Sect. 2 provides 

background information on goal modeling in general and 

the iStar modeling language in particular. Furthermore, 

we detail the specific characteristics of collaborative CPS 

to illustrate the shortcomings of traditional goal modeling 

techniques for these kinds of systems and formulate specific 

requirements to be addressed by our extension. Section 3 

discusses related work and evaluates it w.r.t. these require-

ments in order to highlight the shortcomings of traditional 

goal modeling techniques. In Sect. 4 we present our exten-

sion including its foundations, abstract syntax, concrete syn-

tax and well-formedness rules. The evaluation of the exten-

sion is shown in Sect. 5. Section 6 summarizes and discusses 

the major findings and threats to validity of our case study 

evaluation, while Sect. 7 concludes the paper.
1 iStar was originally proposed by Yu et al. [24] and named i*. Later 

on, Dalpiaz et al. [21] defined a new metamodel for the language tak-

ing several extensions into account. This work is typically referred to 

as iStar 2.0. In the remainder of the paper, we use iStar to refer to 

approaches dealing with i* or iStar 2.0 as long as the distinction is 

not relevant for our extension.
2 The goal-oriented requirement language (GRL) is standardized by 

Recommendation ITU-T Z.151 [25] which is issued by the Interna-

tional Telecommunication Union. The GRL builds upon iStar so that 

a common fundament between iStar and GRL is given.

3 CrESt (Collaborative embedded systems) is a joint research project 

publicly funded by the German Federal Ministry for Education and 

Research (BMBF).



327Requirements Engineering (2021) 26:325–370 

1 3

2  Background

In this section, we will briefly introduce iStar and goal 

modeling foundations (Sect. 2.1) and discuss characteris-

tics of collaborative CPS (Sect. 2.2) that result in the need 

to define an extension to existing goal modeling approaches 

(Sect. 2.3).

2.1  Goal modeling

Goal modeling is an established requirements engineering 

technique [28]. Goal modeling helps requirements engineers 

in focusing on the intentions of stakeholders and document-

ing these in a structured format which allows for detect-

ing relations between different goals such as dependencies 

and conflicts [29]. A variety of goal modeling approaches 

exist. Most of these approaches document goals in a tree- or 

graph-based fashion, which allows for decomposing goals 

into smaller sub-goals. Commonly used are the KAOS goal 

modeling language [30, 31], the iStar goal modeling lan-

guage [21, 24], and the GRL [25, 32]. For a recent overview 

regarding the state of the art of goal-oriented requirements 

engineering, please refer to the systematic review by Horkoff 

et al. [28]. Our extension targets the popular iStar modeling 

language which forms the basis for the standardized goal-

oriented requirement language (GRL). In Sect. 2.1.1 we pro-

vide a brief overview of iStar and in Sect. 2.1.2 we point out 

differences between iStar and GRL.

2.1.1  iStar

The iStar goal modeling language [21, 24] is graph-based—

goal graphs are assigned to different actors (which can be 

human or other stakeholders, the system under development, 

other systems in the context, or even components of the sys-

tem). Between these actors and the goals (i.e. intentional 

elements as goals are further differentiated) dependencies 

and contributions can be specified.

Therefore, core concepts underlying iStar include actors, 

their intentions (e.g., goals they would like to achieve) and 

dependencies between actors. The iStar modeling language 

distinguishes two different perspectives. The Strategic 

Dependency (SD) model specifies the actors that have inter-

est in the system (and thus provide rationales for system 

requirements), and their dependencies. There are several 

dependency types. An actor may depend on goals or tasks 

that need to be achieved, or resources provided by some 

other actor. In contrast, the Strategic Rationale (SR) model 

documents the internal intentional elements and their rela-

tionships of an actor and thereby provides a detailed view on 

requirements each actor aims to achieve. iStar distinguishes 

four different intentional elements: goals, qualities (formerly 

called “soft goals”), tasks, and resources. It is also common 

to display both the dependencies among actors, as well as 

their internal intentional elements in one diagram as a com-

bined or hybrid SD/SR model. This way the actor depend-

encies can be further detailed by, for instance, allowing to 

express dependencies between a goal and a task of different 

actors.

Figure 1 shows an exemplary iStar model, which repre-

sents an excerpt of a travel booking transaction. It shows 

the actors traveler and travel agency. The goal trip booked 

is either fulfilled when the task book bundle or the goal trip 

parts booked are fulfilled. The task book bundle depends 

on the travel agency regarding the dependum trip bundle 

booked.

2.1.2  Goal-oriented requirement language (GRL)

The goal-oriented requirement language (GRL) is part of 

the User Requirements Notation (URN) as standardized by 

the International Telecommunication Union (ITU) in Rec-

ommendation Z.151 URN [25]. GRL is based on a subset 

of iStar [33]. While GRL shares many core concepts with 

iStar, some differences exist. For example, GRL is less 

restrictive than iStar, particularly regarding the usage of 

relationships for linking intentional elements [32], which 

has also been shown to support the diversity of how goal 

models are actually created and used [34]. This is favored 

by our industry partners as it gives them more freedom to 

express their thoughts and reduces the number of syntacti-

cal errors in their goal models. As GRL does not prevent 

users from adhering to the stricter rules set by iStar, we did 

not observe any issues arising from the loosening of those 

restrictions. For a more detailed discussion regarding the 

differences between iStar and GRL, please refer to the work 

of Amyot et al. [32]. As the usage of standardized languages 

is of importance to our industry partner and previous work 

has shown the suitability of GRL for the development of col-

laborative CPS [35], we ensured that the proposed extension 

can be used with GRL as well.

2.1.3  GRL-compliant iStar extension

In our extension, we build upon concepts from both GRL 

and iStar. This is due to the fact that while being very simi-

lar, small differences exist that come with different advan-

tages and disadvantages. Mainly, we target GRL due to 

its simplicity and its popularity among industry partners. 

We target iStar because there are established guidelines 

for extending iStar that can support the development of a 

high-quality extension. In addition, we reuse useful existing 

concepts already proposed by other iStar extensions, which 

helps reduce redundancy and increases acceptance.
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In detail, we use existing concepts as illustrated in Fig. 2. 

The figure shows the main concepts from GRL, iStar, and 

an iStar extension from which we borrow a specific concept. 

As can be seen, iStar 2.0 differs from GRL in that it includes 

two more specialized relationship types, i.e., qualifies and 

needed-by relationship. Regarding the relationships between 

intentional elements, we stick to GRL since it is less com-

plex and less restrictive, which better reflects industry needs 

as it allows for easier model creation. However, although we 

do not include these two specific relationship concepts in 

our extension, as we did not see any need, it is still possible 

to use them. Furthermore, iStar 2.0 defines roles and agents 

as specializations of actors, which we take as the basis for 

defining specific actor types for modeling collaborative CPS 

and CPS networks. In addition to iStar and GRL concepts, 

we use the coordination task concept from a related exten-

sion proposed by Teruel et al. [36].

2.2  Collaborative cyber-physical systems and their 
characteristics

CPS are software-intensive systems that closely integrate 

physical and software parts [22, 37, 38]. In addition, CPS 

are highly interactive with their environment in sensing and 

actuating context values and tightly communicating with 

other CPS [37, 39]. For example, all vehicles in a platoon 

Fig. 1  iStar travel booking example (based on [21])

Fig. 2  Relation between iStar, 

GRL and our extension
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record their surroundings like other vehicles or road signs 

with their sensors and communicate with each other via sen-

sor data in order to offer a high level of safety.

Collaborative CPS can form networks in which different 

constituent systems collaborate and coordinate their activi-

ties in order to achieve goals that go beyond the goals an 

individual system can achieve (cf. [22]). For example, col-

laborative transport robots can distribute tasks among each 

other in such a way that all robots remain in motion and there 

are no overloaded or underloaded robots. This enables them 

to achieve a higher goal, which means that transport tasks 

are distributed in a coordinated manner and thus completed 

faster. These networks are highly dynamic as they reshape 

at runtime when systems join and/or leave the network. For 

example, a platoon reshapes as vehicles enter or leave the 

platoon.

Most CPS must be considered safety–critical, which 

consequently leads to the need for thorough engineering 

processes [40]. Vital parts of these engineering processes 

are early safety analyses. It has been shown that the use of 

goal models allows for application of safety analyses in very 

early phases [41] and is therefore considered beneficial. In 

case of collaborative CPS, safety can be increased through 

cooperation between individual systems. For example, in the 

automotive domain, the term “cooperative vehicle safety” is 

used to denote CPS applications that aim at avoiding haz-

ards and accidents through inter-vehicle collaboration [42, 

43]. On the other hand, the safety of collaborating CPS also 

poses additional challenges, e.g., due to the involvement of 

several manufacturers and the lack of a central authority 

governing the development and operation of CPS networks 

[44, 45]. As will be shown in the remainder of this paper, 

the use of goal models illustrating the interplay of individual 

systems and the network can further support increasing the 

safety of collaborative CPS.

2.3  Requirements for a GRL-compliant iStar 
extension for collaborative cyber-physical 
systems

Modeling collaborative CPS with iStar/GRL goal mod-

els is challenging as such goal models have the tendency 

to become large, complex, and thus unsuitable for human 

engineers and analysts. In our previous work [23] we report 

empirical results, from which we identified challenges for 

goal modeling of collaborative CPS. We conducted two 

case studies with industry partners from different domains. 

The goal of the two case studies was to systematically iden-

tify challenges and limitations of goal modeling with GRL 

related to the representation of typical collaborative CPS 

characteristics (see Sect. 2.2). Beside the general obser-

vation that goal models of collaborative CPS can easily 

become large and complex, we identified six major chal-

lenges regarding what needs to be represented when mod-

eling goals of collaborative CPS and CPS networks.

We further analyzed and refined these challenges in order 

to derive specific, detailed requirements for extending iStar 

so that it allows engineers to specify collaborative CPS in a 

goal-oriented manner. On the one hand, these requirements 

are grounded in the characteristics of collaborative CPS and 

CPS networks. On the other hand, the requirements are also 

substantiated by empirical evidence from our two case stud-

ies reported in our previous work and are thus aligned with 

the specific needs faced by requirements engineers. Moreo-

ver, the requirements are tailored specifically for the iStar 

goal modeling language that shall be extended. Figure 3 

illustrates the three sources that were considered during the 

requirements definition process.

In the following, we briefly summarize the six major 

challenges reported in [23] and present the respective iStar 

extension requirements we derived from these challenges.

Fig. 3  Requirements sources for 

the proposed extension
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2.3.1  Challenge 1: need for distinction between network 

and systems

Collaborative CPS form networks with other collaborative 

CPS, which allows them to enhance their functionality and 

fulfill goals they cannot fulfill on their own. It is impor-

tant to be able to identify the owner of a goal; i.e. it must 

be distinguishable whether an individual system strives to 

fulfill a certain goal or just contributes to an overall goal of 

the network. In some cases, engineers need to reason about 

the CPS network’s goals independent of the goals of the 

collaborative CPS, and in some cases, engineers need to be 

able to reason about the network under consideration of the 

individual collaborative CPS that are part of the network and 

their goals. Therefore, we can derive the following specific 

requirements for an iStar goal modeling extension:

Req-1.1: The iStar extension must allow the distinction 

between individual CPS and the network of CPS.

Req-1.2: The iStar extension must allow for flexibil-

ity regarding the visual representation of the relation of 

the CPS network and individual CPS. I.e. it must be pos-

sible to specify individual CPS as part of the CPS network 

and also allow for comparing the CPS network and CPS at 

the same level of abstraction.

2.3.2  Challenge 2: need for mirroring of goals

In many cases goals of the network rely on very similar goals 

of the individual systems. For example, the vehicles, which 

are the individual systems, have the goal to reduce their indi-

vidual driving time, and the platoon, which forms the col-

laborative CPS network, has the goal to save the overall driv-

ing time of all vehicles. Hence, it is often the case that the 

network and the individual system have very similar goals 

that mutually depend on each other. Consequently, there is a 

need to assign goals to individual CPS as well as to the CPS 

network and to document the relations between those goals, 

which leads to the following requirements:

Req-2.1: The iStar extension must allow for intentional 

elements to be attributable to individual CPS.

Req-2.2: The iStar extension must allow for intentional 

elements to be attributable to CPS networks.

Req-2.3: The iStar extension must allow for documenting 

of mutual dependencies between intentional elements of the 

collaborative CPS network and collaborative CPS.

2.3.3  Challenge 3: need for considering multiple identical 

collaborative CPS

A collaborative CPS network may contain multiple col-

laborative CPS of the same type, e.g., a platoon consists 

of several identical vehicles. The explicit specification of 

each possible network is infeasible as this would require 

specifying not only a large number of possible network con-

figurations, but also networks of an extremely large size. 

Consequently, not only is the explicit modeling of the goals 

for each possible network configuration infeasible, even the 

explicit modeling of all individual collaborative CPS in large 

networks is infeasible. Consequently, suitable abstractions 

are required to enable the modeling of multiple identical 

CPS whose number can vary. Therefore, we define the fol-

lowing requirements:

Req-3.1: The iStar extension must allow for documenting 

all networks without the need for modeling each possible 

network explicitly.

Req-3.2: The iStar extension must allow for documenting 

identical collaborative CPS in a network without the need 

for modeling each collaborative CPS individually.

2.3.4  Challenge 4: need for dependencies 

between systems of the same type

Another common situation that needs to be considered is a 

collaborative CPS relying on systems of the same type to 

fulfill the same goal. For example, all following vehicles 

in a platoon have the goal to avoid collisions, which can 

partly be fulfilled by regulating their speed based on each 

other’s speeds. As the goal model cannot show each indi-

vidual collaborative CPS that can be part of such a network, 

abstraction mechanisms are needed to adequately represent 

the occurrence of multiple identical systems and the depend-

encies between them. Particularly, there is a need to consider 

dependencies, where one system’s intentional element relies 

on an intentional element from other systems of the same 

type. Therefore, we can derive the following specific require-

ments for an iStar goal modeling extension:

Req-4.1: The iStar extension must allow for documenting 

intentional elements of collaborative CPS of the same type.

Req-4.2: The iStar extension must allow for documenting 

dependencies between an intentional element of a collabora-

tive CPS and the same intentional element of other systems 

of the same system type.

2.3.5  Challenge 5: need for roles and dynamic role 

assignments

Collaborative CPS in networks may have different respon-

sibilities. This might even be true for identical collabora-

tive CPS. For example, in a platoon, all collaborative CPS 

are vehicles, but the foremost vehicle has the role of lead 

vehicle and thus the responsibility for all vehicles in the 

platoon. Therefore, there is a need to assign roles to collabo-

rative CPS in a network. As collaborative CPS networks are 

dynamic, and therefore, reshape at runtime as collaborative 

CPS join or leave the network, roles must be reassignable 
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at runtime. Therefore, we can derive the following specific 

requirements for an iStar goal modeling extension:

Req-5.1: The iStar extension must allow for documenting 

different roles a collaborative CPS can be assigned.

Req-5.2: The iStar extension must allow for documenting 

mechanisms to reassign roles.

2.3.6  Challenge 6: need for considering conflicts 

between goals of the individual collaborative CPS 

and the CPS network

Collaborative CPS join an existing or form a new network 

to achieve some goals they cannot achieve by themselves. 

However, participating in a network may be a trade-off that 

impedes the fulfillment of other goals. Therefore, it is some-

times impossible to assign values to contribution links for 

intentional elements of the network actor because the value 

can be different depending on the goals of each collaborative 

CPS. For example, in a platoon it can happen that vehicles 

have a common goal they can reach together but differ in the 

other goals. For example, it can be important for one vehi-

cle to drive in an environmentally friendly manner, while 

another vehicle in the same platoon may not consider this 

important. Therefore, we define the following requirement:

Req-6.1: The iStar extension must allow for contributions 

to be assigned variable values that can change depending 

on the goals of a collaborative CPS.

2.3.7  Further requirements

As already outlined, the iStar extension shall be GRL-com-

pliant due to the fact that we found GRL well-received by 

our industry partners in the previous investigation. In addi-

tion, the extension shall adhere to established guidelines for 

iStar extensions [46]. Therefore, Table 1 gives the individual 

guidelines and briefly explains how they shall be achieved, 

and which section of this paper elaborates on the respective 

aspects. Note that some realizations overlap (i.e. the same 

approach is taken), in these cases we avoid redundancy by 

simply referring to the aforementioned realization.

3  Related work

For discussing the related work, we focus on three kinds 

of approaches commonly proposed in the state of the art. 

Section 3.1 will introduce goal modeling approaches for 

systems-of-systems, which can be interpreted as a network 

of collaborative CPS that is designed top to bottom, with 

exact knowledge about the partaking systems and their com-

positions. Section 3.2 discusses goal modeling approaches 

for multi-agent systems, which are in so far related as 

commonly the case is made that the agents in multi-agent 

systems collaborate to maximize their goal fulfillment. How-

ever, unlike for collaborative CPS, the network itself is typi-

cally not given the credit of having its own goals. Lastly, in 

Sect. 3.3 we review other existing extensions for the iStar 

goal modeling language, which we partly build upon, as we 

will show in Sect. 3.4.

3.1  Goal modeling approaches 
for systems-of-systems

Systems-of-systems (SoS) engineering is a related research 

area where the consideration of goals is of particular interest. 

Distinguishing goals of the SoS under consideration from 

the goals of the individual constituent systems is important 

in the requirements engineering for SoS [53]. These two 

levels (which are also sometimes called “macro level” and 

“micro level” [54]) of goal modeling for SoS allow analyz-

ing collaborations between individual systems by focusing 

on how their individual goals contribute to SoS-level goals 

[55]. These contributions are conceptually described by 

Cavalcante et al. [55], without proposing a specific mod-

eling notation; instead, it is referred to traditional goal 

modeling syntax elements, such as actors for modeling both 

SoS and its constituent systems. While decomposition links 

are mainly used within each goal modeling level, contribu-

tion links also occur between goals on different levels [55]. 

Additionally, Cavalcante et al. propose a new kind of link, 

interaction links, to explicitly account for emergent behavior 

through goals whose satisfaction results from interactions 

among individual systems.

In addition to such conceptual approaches, there are also 

specific guidelines and notations for modeling SoS goals 

and constituent system goals. Lewis [53] suggests creating 

separate AND/OR goal trees for the individual systems and 

the SoS in order to identify common goals in the different 

individual systems’ goal models as well as conflicting goals, 

both between individual systems and the overall SoS goals. 

Garro and Tundis use stereotypes to characterize the goals 

of stakeholders and of complex SoS used to achieve these 

goals [56]. Additionally, relationships between these goals 

are modeled in a manner similar to UML use case diagrams.

According to Silva et al., closely connected to SoS goals 

is the mission concept [57]. Goals are associated to the mis-

sion of the overall SoS and the mission of the constituent 

systems. Thereby, the goals related to the mission of an SoS 

are achieved through collaboration between the individual 

systems. Hence, Silva et al. [58] propose a mission-centered 

SoS design process, covering a dedicated mission-level, 

where missions of individual systems and the SoS are mod-

eled. For modeling missions in an SoS context, they propose 

the mKAOS approach [58–60] that builds upon the KAOS 

goal modeling language [31] and includes SoS-relevant 

extensions. For operationalizing goals, mKAOS includes 
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two kinds of capability models, one of which is concerned 

with modeling information exchange between individual 

systems and the resulting capabilities the SoS provides 

(denoted “communicational capabilities”). Furthermore, 

mKAOS includes a dedicated emergent behavior model 

that groups and relates such SoS capabilities to resulting 

emergent properties/functionalities. Garcés and Nakagawa 

provide guidelines and recommendations for the creation of 

mKAOS models [61]. These also include global missions 

of a SoS on multiple levels of abstraction by goal refine-

ment and abstraction to identify rationales behind a SoS’s 

missions.

3.2  Goal modeling approaches for multi-agent 
systems

Another related term is that of multi-agent systems (MAS), 

which refers to systems composed of several autonomous 

agents that collaborate in order to autonomously (i.e., 

without human intervention) accomplish tasks (cf. [62]). 

According to Wooldridge [63], apart from autonomy, reac-

tiveness, and proactiveness, an agent has essential social 

abilities allowing the engagement in collaborations and 

interactions to jointly solve complex problems. In such a 

collaboration, however, an agent makes rational decisions 

Table 1  Realization of the iStar extension guidelines from [45]

a The industry professionals partaking have years of experience in their field and were involved in many substantial projects for their companies, 

partly taking leading roles. Thus, we consider them domain experts in the domains of automotive, industry automation and robotics. Among 

the authors of this study are researchers highly experienced with GRL and iStar. They have applied GRL and iStar in various industrial settings, 

published research on this topic (e.g., [23, 35, 48]), have years of experience in teaching GRL and iStar in university master level requirements 

engineering courses (cf. [49, 50]) and have defined an industry course teaching GRL to industry professionals [51]. The course is in use at the 

Schaeffler AG to teach goal modeling for the engineering of automotive CPS [52]. However, please note that the authors are no domain experts 

and the industry participants no GRL/iStar experts

Guidelines taken from [45] Realization

G1 Preserve the language (iStar) original syntax It is a requirement to propose an extension that makes use of the 

original syntax and extends this syntax naturally. The extension of 

the concrete syntax will be shown in Sect. 4.3, the integration of 

new elements with elements of the original syntax can be seen in 

Sect. 5.2

G2 Carry out consistent, complete and without-conflicts extensions and 

follow a process/method to do them

We extend the iStar metamodel systematically to provide a clear 

definition and also for relating elements of the original iStar 

notation to the newly proposed elements. The metamodel of the 

extension can be found in Sect. 4.2

G3 Perform a literature review, include the participation of domain 

experts and iStar experts and model systems of application area 

before extending

We conducted a literature review on the topic to find existing iStar 

extensions that can contribute to the above-mentioned require-

ments. Section 3 will discuss related works and Sect. 3.4 will 

explicitly show, how these extensions can contribute to fulfilling 

the defined requirements. In addition, we conducted a study with 

domain experts to identify industry needs for an iStar extension for 

collaborative CPS [23]a

G4 Describe a clear definition of the extension concepts see G2

G5 Propose concrete and abstract syntax of the extension We specify the abstract syntax using a metamodel that extends the 

iStar 2.0 metamodel. In Sect. 4.1 we introduce a GRL-compliant 

iStar metamodel extension and extend this in Sect. 4.2 to the 

specifics of collaborative CPS. We provide a definition for the con-

crete syntax in Sect. 4.3 and show its application to industrial case 

examples in Sect. 5.2. This application also allows for verifying 

consistency between the defined concept and the concrete syntax

G6 Check consistency between abstract and concrete syntaxes see G5

G7 Relate concepts introduced by the extensions with the iStar concepts see G2

G8 Define extensions with the smallest possible number of modifica-

tions and new representations in order not to complicate the use of 

the modeling language (iStar)

see G2

G9 Propose careful and simple graphical representations, able to be 

drawn on paper without a tool

The concrete syntax extensions are designed to seamlessly integrate 

with the existing iStar syntax. Furthermore, we define the concrete 

syntax based on guidelines proposed by Moody [47] to achieve a 

simple and intuitively usable graphical notation
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w.r.t. maximizing its own benefit according to its agent-

internal goals and interests (cf., e.g., [63]). This is reflected, 

for instance, in the established BDI reference model for 

autonomous agents (cf. [64, 65]), which describes an agent’s 

mental attitudes by information about the current state of its 

surroundings (Beliefs), the set of tasks it principally aims 

to achieve (Desires), and the tasks it is actually carrying 

out (Intentions), all of which determine an agent’s behavior. 

Multiple iStar-based agent-oriented modeling approaches 

have been proposed [66]. Goal-based MAS approaches typi-

cally consider goals as runtime entities that are used during 

operation of agents to coordinate the interaction within a 

MAS as well as single agents (cf., e.g., [67]). Thus, goal del-

egation during operation of a MAS (cf., e.g., [68]) is also an 

important topic for MAS development. Similarly, the opera-

tional semantics of goals as well as their dynamic lifecycle 

are also considered by some approaches [69].

An important concept considered for the development of 

MAS is the role concept. The role concept is essential for 

both describing the static organization and structure of a 

MAS, as well as for enabling the formation of multi-agent 

systems (cf. [70, 71]). Roles an agent can take are typically 

defined by a set of responsibilities and a set of permissions 

[72]. The current roles of an agent define its functionality 

and behavior, as well as the possible interactions with other 

roles that can be taken by other agents (cf. [73, 74]). In par-

ticular, the responsibilities can be seen as required function-

alities related to a certain role [74]. A role can be responsible 

for carrying out a task on its own, but also be involved in a 

collaboration to jointly achieve some task [73]. Such a col-

laboration is sometimes named an “agent group”, i.e. a set 

of agents that are related via interactions of their roles [75]. 

There can be relationships between roles, such as compat-

ibility and dependencies [76, 77]. Roles can also determine 

a hierarchical structure of a MAS [78].

Specific goal modeling approaches for MAS include 

Tropos [2], where, among others, beliefs are considered as 

a dedicated modeling concept, in addition to the original 

iStar goal modeling language it is built upon. The Tropos 

approach comprises a methodology that covers the early 

and late requirements phases, where goal models are used, 

as well as later phases up to the implementation of agent-

based software systems. In the late requirements analysis 

phase, the system under development is introduced as an 

actor and related to stakeholders using dependency relation-

ships. Goal-based reasoning in the Tropos methodology is 

described in detail by Giorgini et al. [79].

The goal modeling approach proposed by Zhong and 

DeLoach [80] explicitly distinguishes goal classes and goal 

instances. The latter are created and assigned to specific 

agents at runtime. Furthermore, they introduce relationship 

types that can materialize between goals in order to spec-

ify control flow structures, such as a goal being triggered 

by another goal, or goal precedence (i.e., a goal requires 

the execution of some other goals before being allowed to 

become active). Goal instances are also explicitly considered 

by Thangarajah et al. [81], where goal models are used to 

identify interaction between different goals an agent may 

be able to achieve simultaneously. Cheong and Winikoff 

use so-called interaction goals, which specify goals of the 

interaction between different agents, to design multi-agent 

systems [82–84]. These interaction goals are modeled in a 

hierarchical goal tree.

3.3  Specific iStar goal modeling extensions

The basic iStar goal modeling language, as described in 

Sect. 2.1.1, has been extended by researchers in several 

ways. A recent survey of iStar extensions was provided by 

Gonçalves et al. [85]. In the following, we will review some 

of the approaches that are related to our approach.

Teruel et al. proposed an iStar extension for collaborative 

systems [36, 86, 87]. In this approach, the term “collabo-

rative system”, however, is not used to denote the kind of 

system that is in focus of our work (cf. Sect. 2.2). Instead, 

it refers to information systems that support the collabora-

tion between humans, e.g., collaborative implementation of 

code with the help of a version control software like git. The 

approach of Teruel et al. aims at specifying requirements of 

such collaborative systems. Hence, the proposed extensions 

to iStar reflect the collaboration between humans, which 

results in the definition of additional concepts. Specifically, 

Teruel et al. propose different task types, i.e., individual 

tasks of single users as well as collaboration tasks, commu-

nication tasks, and coordination tasks. The latter three types 

of tasks are used to model tasks in which two or more users 

are involved and are based on the established 3C conceptual 

model for groupware [88]. Along with these task specializa-

tions, participation links are proposed to model which user is 

involved in which (collaboration, communication, or coordi-

nation) task. Cardinality constraints attached to these partici-

pation links specify the number of users that can be involved 

in a task. Furthermore, responsibility links are used to cap-

ture goal and task responsibilities of users, which separates 

responsibility from actually carrying out some collaboration 

activity. Again, based on the 3C model, Teruel et al. consider 

a user’s awareness of other users’ activities in the form of 

awareness softgoals and awareness resources.

Ali et al. propose a goal modeling approach that enhances 

Tropos goal models with context information [3]. In this 

approach, variability that is present in the context of a sys-

tem under consideration is captured through annotations of 

goals as well as decomposition, dependency, and contri-

bution links. That way, conditional achievement of goals, 

depending on relevant context properties, can be modeled. 

As a result, the overall annotated goal model specifies goal 
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model variants, i.e., different ways goals can be achieved, 

depending on context information. Ali et al. use the contex-

tual goal modeling approach to support the deployment of 

variable systems into environments that also contain variable 

parts [89]. Another approach dealing with variability is pre-

sented by Silva et al. [90]. Goal models are used to explicitly 

document variability of software product lines. Therefore, 

cardinalities are introduced for different intentional ele-

ments as well as for the means-end links connecting variable 

intentional elements. Borba and Silva, additionally to the 

cardinality concept, suggest the explicit mapping of feature 

models and goal models [91].

Another related iStar extension [92] aims at modeling 

ambient intelligent systems that are deeply embedded in 

daily human activities and invisible to their users. Such 

ambient systems, similar to CPS, integrate the physical sur-

roundings and computation, but also human users. Most 

notably, the approach relates to goal modeling for collabo-

rative CPS in that it utilizes actor decomposition relation-

ships to constituent components of ambient systems. That 

way, actors being composed of other actors can be modeled. 

In addition, communication links between actors, includ-

ing communication between users and technology, as well 

as between different technological components/subsystems 

are defined.

Other iStar and GRL extensions often propose the use 

of stereotypes to document additional information. For 

instance, Marosin and Ghanavati propose the annotation of 

vague and informal information in goals, softgoals, and tasks 

via stereotypes [93]. Gailly et al. propose the documentation 

of domain knowledge that is annotated using stereotypes and 

defined using an ontology-based approach [94].

3.4  Requirements evaluation

In summary, there exist a multitude of approaches that can 

contribute to the individual requirements defined in Sect. 2.3. 

Table 2 summarizes the state of the art with respect to the 

requirements. However, existing approaches are typically not 

capable of fulfilling more than one requirement and not all 

requirements can be fulfilled. Nevertheless, the integration 

and harmonizing of existing works can support the definition 

of a coherent solution concept, as we will show in Sect. 4.

4  GRL‑compliant iStar extension 
for modeling collaborative cyber‑physical 
systems

In Sect. 2, we introduced iStar and GRL as the founda-

tion our extension builds upon in detail and discussed the 

requirements for the extension. As already some extensions 

or modifications to the iStar language exist, which at least 

can be partly used to address some of the challenges of goal 

modeling for collaborative CPS, we do not rely on the pure 

version of the iStar language but an adapted one. As out-

lined above, we had the requirement to develop an exten-

sion compliant with the GRL. In addition, we make use of 

different already existing extensions that provided us with 

already established modeling concepts. This is outlined in 

Sect. 4.1. We build our final extension in Sect. 4.2 on this 

initial metamodel consisting of the combination and integra-

tion of proposed concepts from the related work. Based on 

the metamodel introduced in Sects. 4.2, and 4.3 defines the 

concrete syntax for the new modeling elements. In Sect. 4.4 

well-formedness rules are defined and Sect. 4.5 presents tool 

support for creating models according to the extension.

In the following subsections, a cooperative adaptive 

cruise control system (CACC, [95]) is used as a running 

example to motivate the need of the metamodel extensions 

and to illustrate the concrete syntax. A CACC is a mod-

ern version of a common adaptive cruise control (ACC). 

An ACC is a cruise control system that, in addition to the 

cruise control function, also ensures that the distance to the 

vehicle ahead does not underrun a safe minimum distance. 

The CACC is a collaborative CPS that also communicates 

with other CACCs. Thus, they form a platoon (i.e. the CPS 

network) which allows driving with minimized distances 

between the partaking vehicles. This reduces fuel consump-

tion, emissions, and increases traffic throughput on motor-

ways [96].

4.1  Foundations for the metamodel 
of the extension

Figure 4 shows the metamodel for the goal modeling lan-

guage upon which we build our extension. The goal modeling 

language can be considered a combination of the iStar lan-

guage and GRL. The metamodel is similar to the metamodel 

defined by Dalpiaz et al. [21]. In the following we use UML 

class diagrams to define the metamodel. This ensures com-

parability with the definition of iStar 2.0 by Dalpiaz et al. 

[21], who also used UML class diagrams for metamodel 

definition. However, some adjustments have been made to 

maintain compatibility with GRL. For example, we removed 

various restrictions. An intentional element can contribute to 

any other kind of intentional element, not just to softgoals,4 

and all intentional elements can be refined not just goals 

and tasks. Regarding the refinement, the OR-Refinement 

was further separated into an IOR-Refinement and an XOR-

Refinement. A further intentional element, defined by GRL, 

the belief was added. We do not include the agent concept 

4 In accordance with GRL we use the term softgoal instead of qual-

ity.
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here as it will be further specialized in our extension for col-

laborative CPS. All changes made correspond with the GRL 

metamodel presented in Amyot et al. [32].

In the following, we briefly outline the most important 

entities and relationships defined by the metamodel. We 

detail the use of actors, intentional elements, and depend-

encies especially regarding their use for creating goal models 

for collaborative CPS networks.

4.1.1  Actors

Actors are commonly used to specify stakeholder intentions 

or define systems. In our case, we focus on the definition 

of systems. Actors are assigned intentional elements for 

which the actor strives to achieve fulfillment. An actor can 

be linked to another actor through an is-a-relationship or 

a participates-in-relationship. The is-a-relationship defines 

that some actor is of a certain type defined by the other actor. 

For instance, a CACC is also an ACC, thus, sharing parts of 

its intentional elements with a common ACC. The semantics 

of the participates-in relationship is defined by iStar 2.0; it 

depends on the type of actors between which the relation-

ship is modeled. The participates-in relationship resembles a 

“plays” relationship when modeled between an agent as the 

source and a role as the target element, and “part-of” when 

it connects two actors of the same type.

In addition, an actor can be a role (i.e. role as a speciali-

zation of actor). This is a bit counterintuitive, as one would 

Fig. 4  GRL-compliant iStar metamodel
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typically assume that an actor plays a role (e.g., the role of an 

intruder vehicle). However, we want to stay consistent to the 

iStar 2.0 metamodel and thus define role as a specialization 

of actor. This also has the benefit that for modeling the role 

the actor symbol can be used. In the CACC example roles a 

CACC takes in a platoon might be lead or following vehicle.

4.1.2  Intentional elements

An intentional element can be a goal (i.e. “a condition or 

state of affairs in the world that the stakeholders would like 

to achieve” [25]), softgoal (i.e. “a condition or state of affairs 

in the world that the actor would like to achieve, but […] 

there are no clear-cut criteria for whether the condition is 

achieved” [25]), task (i.e. an intentional element that “speci-

fies a particular way of doing something” [25]), resource (i.e. 

“a physical or informational entity” [25]), or belief (i.e. an 

intentional element that is “used to represent design ration-

ale” [25]). A goal of a CACC might be to avoid collisions. 

Intentional elements can contribute to other intentional ele-

ments. This means that the fulfillment of one intentional 

element is supported, satisfied, hindered, or prevented by the 

fulfillment of another intentional element. For further pos-

sible contribution types between intentional elements, please 

refer to the ITU Recommendation Z.151 [25]. All intentional 

elements can be refined (often referred to as decomposed) 

into other intentional elements either through an AND- or 

an OR-refinement. The AND-refinement connects one inten-

tional element with two or more sub-intentional elements, 

where the fulfillment of the intentional element depends 

on the fulfillment of all sub-intentional elements. For OR-

refinements not all sub-intentional elements need to be ful-

filled to achieve fulfillment of the super-intentional element. 

OR-refinements can be characterized either as IOR-refine-

ment or as XOR-refinements. The IOR-refinement connects 

one intentional element with multiple sub-intentional ele-

ments, where at least one sub-intentional element needs to 

be fulfilled to guarantee fulfillment of the super-intentional 

element. The XOR-refinement connects one intentional ele-

ment with multiple sub-intentional elements, where the ful-

fillment of the intentional element can be achieved by only 

one of the sub-intentional elements.

4.1.3  Dependencies

Dependencies describe the relationship between different 

actors and between intentional elements of different actors. 

A dependency defines that one actor is dependent on another 

actor with respect to fulfilling some of its intentional ele-

ments or that the fulfillment of one intentional element of 

one actor depends on another actor in general or a concrete 

fulfillment of one of its intentional elements. A dependency 

can exist between two actors, two intentional elements or 

combinations thereof. For example, two actors, an actor 

and a goal, or a goal and a task can be in a dependency 

relationship. The actor can take the position of a depender, 

who depends on another actor, for example, to perform a 

task or achieve a goal. The actor can also be the dependee, 

who provides the required resource or task execution. An 

intentional element involved in a dependency can be the 

depender element, the dependee element or the dependum. 

The dependum is an intentional element which is the object 

of the dependency. However, the use of a dependum is not 

mandatory in GRL (cf. [25]). For instance, when specify-

ing a dependency between two actors, it might simply be 

unknown to the modeler. Therefore, we altered the multi-

plicities in so far, as we no longer expect each dependency to 

explicitly model a dependum which is not required by GRL.

4.2  Metamodel of the extension

To better support goal modeling for networks of collabora-

tive CPS, we developed an iStar extension according to the 

requirements set out in Sect. 2.3. The metamodel for our 

extension is shown in Fig. 5. All changes done to the meta-

model from Fig. 4 have been highlighted in grey.

We discuss the changes and their rationales again in the 

categories from Sect. 4.1, i.e. for actors (Sect. 4.2.1), for 

intentional elements (Sect. 4.2.2), and for dependencies 

(Sect. 4.2.3).

4.2.1  Actors

Most notable, we differentiate actors into collaborative CPS 

networks, collaborative CPS, and roles. Thus, we refine the 

agent concept of iStar 2.0, which covers concrete, tangible 

actors, into collaborative CPS and collaborative CPS net-

works. For a collaborative CPS network to be formed, at 

least two collaborative CPS need to exist and participate in 

such a network. For instance, in the example of the CACC, 

the platoon can be considered the collaborative CPS network 

and the individual CACCs participate in it. At least two vehi-

cles equipped with CACCs are needed to form a platoon.

While we keep—compared to Fig. 4—the is-a relation 

between actors (although we can now state that the is-a rela-

tion is only acceptable between actors of the same kind), 

we can be now more restrictive regarding the participates-

in relationship, because we consider very specific types of 

“agents”, as mentioned above. We split this dependency 

into two, more fine-grained relationships: The collaborates-

in relationship and the is-assigned relationship. Thus, three 

kinds of actor relationships can be distinguished:

• Is-a relationship: An actor is of the type of another actor. 

For instance, a CACC is also an ACC. Note that in iStar 

and GRL it is prohibited to define that roles are agents 
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and agents are roles. The same is valid here, is-a rela-

tionships only refine actors of the same type (i.e. CPS 

networks, CPS, and roles). For expressing the belonging 

of a CPS to a CPS network, the collaborates-in relation-

ship is used, for expressing the assignment of roles to a 

CPS the is-assigned relationship is used.

• Collaborates-in relationship: A collaborative CPS collab-

orates with other collaborative CPS by partaking in a col-

laborative CPS network (which might be part of another 

greater CPS network). For instance, multiple CACCs 

cooperate to form a platoon (i.e. each CACC participates 

in the platoon). Thus, the collaborates-in-relationship 

denotes the membership of one actor in another actor. 

In particular, an individual collaborative CPS partakes 

in a network of collaborative CPS. In case of the CACC 

example, this means that a CACC participates in a pla-

toon. A collaborative CPS network can also collaborate 

with other networks in some higher-level collaborative 

CPS network, such as a smart city. The collaborates-in 

relationship can be distinguished from the original partic-

ipates-in relationship of iStar 2.0, because we restrict the 

use to CPS and CPS networks and exclude its use for role 

assignments. To assign roles, we define an is-assigned 

relationship to assign a role to a collaborative CPS. For 

example, a CACC in a platoon might be assigned the 

leader role.

• Is-assigned relationship: A collaborative CPS can be 

assigned a role within a collaborative CPS network. 

This subsumes two aspects, having a role and taking 

over a role. First, collaborative CPS can have roles. For 

instance, a CACC can participate in a platoon either as 

lead or as following vehicle. Second, roles in CPS net-

works need to be assigned, i.e. someone has to be respon-

sible for assigning roles to collaborative CPS. This is 

expressed by a coordination task, which can belong to 

any actor (i.e. to a CPS network, a collaborative CPS, 

or a role). For instance, if the lead vehicle exits a pla-

toon, its CACC is responsible for assigning another 

Fig. 5  Metamodel extension
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CACC the role of the lead vehicle. The coordination task 

then defines which role is to be assigned to which CPS 

and, thus, which CPS is assigned which role. Thus, we 

stress the notion of active role assignment (and, possibly 

role change) in our extension, which is not specifically 

emphasized in iStar 2.0, where only “agent plays role” 

relationships are considered.

The use of multiplicities allows us to specify the goals 

of multiple configurations within one diagram. Therefore, 

actors can be assigned multiplicities. This allows us to repre-

sent actors of the same type (e.g., several identical CACCs) 

as one actor. In doing so, we can represent different but simi-

lar compositions of a CPS network in one goal model. For 

instance, we can use a goal model to represent platoons with 

three, four, five, etc., vehicles. However, it must be stressed 

that the actors that are subsumed by the use of multiplicities 

must be of the same type. For instance, an actor for follow-

ing vehicles will only represent following vehicles that are 

equipped with a CACC.

This use of actor multiplicities facilitates the specifica-

tion of CPS networks, as otherwise a multitude of different 

configurations would have to be specified. For instance, a 

platoon can consist of two following vehicles, three fol-

lowing vehicles, four following vehicles and so forth. To 

account for all these configurations, typically all of these 

must be explicitly specified. Thus, the use of multiplicities 

for actors is a way to facilitate specification (or considering 

the number of configurations to be considered) to make goal-

based specification of CPS networks feasible. For analysis, 

however, each of the actors must be considered individually.

4.2.2  Intentional elements

To coordinate role assignment, we define a coordination task 

to be a specific kind of task that handles role assignment 

(i.e. allows collaborative systems changing their role or the 

role of another collaborative CPS). We adopted the idea of 

a coordination task from Teruel et al. [36]. A coordination 

task can belong to the collaborative CPS network, where, 

for instance, a platoon has a coordination task to choose a 

new leader in case the former leader leaves the platoon. This 

could be, for example, a voting mechanism where the pla-

toon members collectively define which vehicle becomes the 

lead and which ones become followers. A collaborative CPS 

or a role that is assigned to a collaborative CPS can also be 

responsible for performing a coordination task. For instance, 

the platoon leader has the coordination task to assign other 

CACCs the role of a following vehicle when new vehicles 

join, or to exclude them from the platoon.

Other changes to the intentional elements have not been 

proposed. The assignment of intentional elements to either 

a network of collaborative CPS, a collaborative CPS, or 

a role is already given by the relation between actor and 

intentional element. Assigning intentional elements to a col-

laborative CPS does not mean that the collaborative CPS 

always aims at fulfilling all these intentional elements at the 

same time. The intentional elements of a collaborative CPS 

rather indicate which intentional elements can be fulfilled 

at some point in time. Considering that a collaborative CPS 

actor can represent multiple identical collaborative CPS, this 

means that identical but individual CPS can pursue differ-

ent goals at the same time. For an example consider our 

CACC with two following vehicles. In addition to platoon-

ing relevant goals, each CACC has its own goals that are 

driver dependent and which might be conflicting. Take for 

instance, the goal to minimize fuel consumption and the goal 

to reach the destination as fast as possible. In the platoon 

the two following vehicles have in principle the same goals 

but the representation as one actor does not mean that both 

vehicles try to achieve the same goals as well. For instance, 

the driver of following vehicle 1 might prefer fast arrival, 

while the driver of following vehicle 2 aims for minimizing 

fuel consumption.

Assigning intentional elements to the collaborative CPS 

network actor means that these intentional elements cannot 

be assigned to an individual collaborative CPS but belong to 

the network. As the network consists only of collaborative 

CPS, it can be argued that each intentional element of a col-

laborative CPS or a role is also an intentional element of the 

network. While this is true, assigning intentional elements 

either to a collaborative CPS/role or the networks allows for 

distinguishing between those intentional elements that are 

under the control of the individual collaborative CPS and 

those that are not.

For Challenge 6, we propose the introduction of a new 

contribution type: configuration-dependent contribution 

value. The configuration-dependent configuration value indi-

cates that the value of a contribution depends on specifics 

emerging from certain configuration aspects. As this concept 

is somewhat related to the unknown contribution value from 

GRL and iStar, we introduce a new label that is related to the 

unknown label. Other means of further defining this particu-

lar relationship with potentially changing values turned out 

to be too complex and unintuitive for it to be of use.

4.2.3  Dependencies

To reduce the size and complexity of the resulting goal 

model, we introduce further—more complex—dependency 

types that allow using fewer dependency links. Therefore, 

we define beside the classic dependency, bidirectional 

dependencies, self-dependencies, and grouped dependen-

cies. In addition, we define multiplicities for dependencies.

A bidirectional dependency is a dependency, where both 

actors or their intentional elements depend on each other 
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(e.g., task A from actor A depends on task B from actor B 

and task B from actor B depends on task A from actor A). 

This type of bidirectional dependency is quite often needed 

for collaborative CPS that are part of a CPS network. The 

CPS network has its own intentional elements. However, 

as the CPS network is no physical entity, the CPS network 

depends on the individual CPS in fulfilling these goals. Vice 

versa, the CPS join the network as this allows fulfilling goals 

they otherwise could not achieve. For a simple example, 

consider the goal of the platoon to reduce the driving time 

to the platoon’s destination. To achieve this goal, the pla-

toon depends on the individual CACCs’ goals to reduce the 

driving time to their destination. Vice versa, the CACCs 

depend on the platoon as the platoon allows for a consider-

able reduction of driving time.

Our extension also includes a self-dependency. Self-

dependencies are used to describe cases where one collab-

orative CPS relies on collaborative CPS of the same type 

(which is not the collaborative CPS itself) to fulfill the same 

goal, execute the same task, etc., for its own goal fulfillment, 

task execution, etc. For instance, to follow the leader of a 

platoon each vehicle (i.e. each CACC of each vehicle) in the 

platoon depends on other following vehicles to fulfill their 

tasks in following the respective vehicle ahead.

Furthermore, we now allow dependencies to be grouped. 

A grouped dependency subsumes several other depend-

encies. This allows building complex dependencies that 

include relations to multiple actors and/or their intentional 

elements. For instance, a network of collaborative CPS relies 

on the fulfillment of one of its tasks on all the participating 

collaborative CPS in fulfilling their tasks (e.g., to drive with 

constant speed the platoon relies on the individual CACCs 

to maintain the individual vehicles’ speed).

As we allow multiplicities for actors to simplify the speci-

fication of multiple actors of the same type (e.g., multiple 

CACCs in the role following vehicle), we need to also con-

sider multiplicities for dependencies that stretch between 

these actors. Thus, we can define that multiple dependers 

of the same type depend on multiple dependees of the same 

type. For instance, for coordinating the opening of a gap 

in a platoon, the CACC of the lead vehicle depends on the 

existence of at least two following vehicles.

4.3  Concrete syntax

4.3.1  Collaborative CPS

In iStar systems are represented as actors. A collaborative 

CPS is a system and is therefore modeled as an actor, as 

shown in Fig. 6. In addition, we use stereotypes to distin-

guish between the different types of actors, e.g. in  Fig. 6 

<<CPS>> defines that Actor A is a collaborative CPS 

and neither a role nor a CPS network. Inspired by Moody’s 

principles for constructing notations [47], the following 

notation follows the principle of semiotic clarity. Accord-

ing to Moody’s principles, the same symbols should not be 

used for different concepts, otherwise a symbol overload 

may occur. However, we want to reduce the number of sym-

bols and use the circle consistently for all actors and the 

stereotypes only for specialization. Here we follow the pat-

tern of approaches from the related work that use symbols 

for denoting the supertype (i.e. the actor) and stereotypes 

for denoting its specializations (cf. [56, 93, 94]). Thus, since 

the notation for actor is specified by iStar, it is supplemented 

by stereotypes which serve to differentiate between network 

CPS and role.

4.3.2  Network of collaborative CPS

The CPS networks are also modeled as actors as shown in 

Fig. 7. Similar to the notation of collaborative CPS, the nota-

tion of the CPS network uses Moody’s principle of semiotic 

clarity [47] by adding a stereotype referring to the CPS net-

work to the existing notation.

To show that CPS belong to a CPS network, the CPS can 

be positioned in a CPS network. According to the princi-

ple of semantic transparency [47], which recommends the 

appearance of a notation should suggest its meaning, the 

CPS that is a part of a CPS network is displayed inside the 

CPS network actor. The idea of graphically nesting CPS 

actors inside of CPS network actors is inspired by the work 

of Guzman et al. [92] (see also Sect. 3.4). An example of our 

notation for nesting actors and thereby relating CPS to a CPS 

network is shown in Fig. 8. The CPS Actor B was modeled 

Fig. 6  Collaborative CPS actor

Fig. 7  Network of collaborative CPS actor
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inside the CPS network Actor A which indicates that Actor 

B participates in the CPS network Actor A.

The nesting of actors, i.e. placing a collaborative CPS 

inside a CPS network, has implications for the intentional 

elements of the actors:

• Intentional elements of the CPS network: For nested 

actors, each intentional element belongs to the actor it is 

directly placed in. This also means, that the intentional 

elements that are not within a CPS boundary but only 

in the CPS network boundary only belong to the CPS 

network. Intentional elements of the CPS network cannot 

be assigned to individual collaborative CPS. However, as 

the CPS network is no physical entity on its own but only 

consists of the physical CPS that form the CPS network, 

all these intentional elements depend on the CPS actors 

placed within the CPS network. To make this relation 

obvious we propose the use of dependency links to the 

respective intentional elements of the CPS they depend 

on.

• Intentional elements of the CPS: They do belong to the 

CPS and as the CPS belongs to the CPS network, they 

obviously are also part of the CPS network. However, 

they do not necessarily need to address purposes of the 

CPS network itself. For instance, a CACC has goals it 

tries to achieve when driving alone. When the CACC 

joins a platoon, it still has these goals, however, as the 

participation in a platoon allows fulfilling other CACC 

goals, the CACC will not try to achieve the original 

goals when in a platoon. Consequently, the correspond-

ing intentional elements do not contribute to the platoon 

and are, thus, just part of the CPS but not intentional 

elements of the platoon.

Consequently, the nested representation of actors allows 

for illustrating the relations between intentional elements 

and actors while supporting the important distinction 

between intentional elements that can be assigned to indi-

vidual systems and those that cannot.

4.3.3  Roles

iStar 2.0 [21] represents roles as shown in Fig. 9 (a). How-

ever, as we define a participates-in relation between actors to 

mean that a collaborative CPS participates in a CPS network, 

we use a is assigned relation to indicate that a collaborative 

CPS assumes a role (cf. Sect. 4.2.1). This is illustrated in 

Fig. 9 (b), where the collaborative CPS Actor B assumes the 

Role C. We allow for further simplification of the notation 

to depict the situation that a collaborative CPS assumes a 

role in one model element as shown in Fig. 9c. This allows 

reducing the size of models but prevents distinction between 

the intentional elements of a collaborative CPS and those of 

its roles. Thus, if the notation of Fig. 9 (c) is used, only the 

intentional elements belonging to the respective role shall 

be modeled. If a certain CPS can participate with different 

roles in the same CPS network, the CPS needs to be mod-

eled multiple times as different actors with different roles. 

If the actor notation is used without definition of a role, 

only intentional elements belonging to the actor in any role 

should be modeled.

4.3.4  Coordination task

In Fig. 10 the concrete syntax for a coordination task is 

shown. Again, we use the well-known symbol of a task and 

use stereotyping to denote the difference. This is in accord-

ance with Moody’s principles [47], to allow users easy iden-

tification of the overall concept (i.e. task). In addition, an 

assignment relation shows which actor (i.e. which type of 

collaborative CPS) is assigned to which role.

4.3.5  Bidirectional dependency

The bidirectional dependency represents a dependency in 

both directions between two actors or intentional elements. 

The direction of a regular dependency is represented by the 

"D". Since we have a dependency in both directions, we use 

the “D” in both directions as this is intuitive according to 

Fig. 8  Nested actors
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the principles of Moody [47]. This is illustrated in Fig. 11. 

Like regular dependencies, bidirectional dependencies can 

be defined including or excluding a dependum.

4.3.6  Self-dependency

In a network of collaborative CPS there can be systems that 

have the same role, the same goals, the same tasks, etc. For 

simplification we represent all these systems using only one 

actor in the goal model, which avoids redundancy. As we 

can represent more than one system as one actor, several 

peculiarities can occur, such as dependencies between the 

goals of these systems (i.e. a system of a certain type or role 

depends on another system of the same type or role). As 

a consequence, we allow for defining dependencies within 

one actor. To indicate the different nature of such as depend-

ency (i.e. to indicate that the system does not depend on 

itself but on the systems of the same type or role), we define 

<<Role>>

Role C

<<CPS>>

Actor B

<<CPS>>

Actor B

<<CPS>>

Actor B

Role C

Role C

Participates in

Is assigned

(a)

(b)

(c)
<<Role>>

Lead Vehicle

<<CPS>>

CACC

<<CPS>>

CACC

<<CPS>>

CACC

Lead Vehicle

Lead Vehicle

Participates in

Is assigned

Concrete Syntax Example

Fig. 9  Roles

<<coordination task>>

Task
<<Role>>

Role C

<<CPS>>

Actor B

assigns

Concrete Syntax Example

<<coordination task>>

Organize Platoon 

Structure <<Role>>

Following 

Vehicle

<<CPS>>

CACC

assigns
<<coordination task>>

Task
<<Role>>

Role C

<<CPS>>

Actor B

assigns

Concrete Syntax Example

<<coordination task>>

Organize Platoon 

Structure <<Role>>

Following 

Vehicle

<<CPS>>

CACC

assigns

Fig. 10  Coordination task
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a self-dependency as a new construct. This dependency is 

represented as shown in Fig. 12 by a D with a * operator as 

it is a well-known symbol for self-properties [97]. The D* 

symbol needs to be placed outside the actor boundary so 

as to avoid misinterpreting this element for a dependency 

within the same instance of an actor.

A self-dependency can exist between different intentional 

elements, but it can also exist for a single intentional element 

and a dependum as is shown in Fig. 13.

Concrete Syntax Example

Dependum

(goal)
Actor A Actor B

Collision 

avoidance

Lead

vehicle

Following

vehicle

Actor A Actor B
Lead

vehicle

Following

vehicle
(a)

(b)

Fig. 11  Bidirectional dependency

Fig. 12  Self-dependency 

between different tasks

Actor A

Task 1

*
Task 2

Concrete Syntax Example

CACC

Regulate 

Speed

*

Communicate 

Speed

Fig. 13  a Self-dependency 

without a dependum and b self-

dependency with a dependum
Actor A

Task

*

Concrete Syntax Example

CACC

Regulate 

Speed
*

Actor A

(a)

(b)
Task 1

Dependum

(resource)

*

*

Actor A

Task 1
Dependum

(resource)

*

*
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Note that traditionally the use of dependencies between 

intentional elements of one actor is discouraged.5 Here, we 

explicitly define a special kind of dependency to be used 

between intentional elements that are modeled within the 

same actor boundary. However, recall that we represent 

multiple actors by displaying just one actor to facilitate the 

specification of CPS networks consisting of multiple dif-

ferent but identical actors. Therefore, this self-dependency 

does not link intentional elements of the same actor but of 

different actors of the same type and is thus in line with the 

common usage of dependencies.

4.3.7  Grouped dependency

The concrete syntax for grouped dependencies is similar to 

logical gates as these provide symbols for AND, IOR, and 

XOR. The AND-dependency is shown in Fig. 14a. Goal A 

depends on both, Goal B and Goal C. An IOR-dependency 

is shown in Fig. 14b Goal A depends on Goal B or Goals 

C. The XOR-dependency is shown in Fig. 14c. The XOR-

dependency shows a dependency, where Goal A can depend 

on either Goal B or Goal C but cannot depend on both. We 

use symbols well known from logic gates for conjunctions 

and disjunctions and combine them with the iStar symbol D 

used for dependencies.

4.3.8  Multiplicities

Multiplicities can be assigned to actors and dependencies. 

The use of multiplicities for actors is shown in Fig. 15. For 

multiplicities we use the well-known notation for multi-

plicities in the UML. Using multiplicities allows to state 

that a certain type of actor is involved multiple times in 

the same goal model. For instance, a platoon consists of 

multiple CACCs. In Fig. 15, this is specified by using a  

[1 … n] multiplicity, showing that at least one CACC must 

exist to form a platoon and the upper bound is unlimited. 

Note that there exist different assumptions on the relation 

between CACCs and platoons, while some developers might 

Goal A

Goal B

Goal C

D
Allow change 

lane

Open gap

Change lane

D

Goal A

Goal B

Goal C

D

Goal A

Goal B

Goal C

D

Owning a driving 

style 

Drive eco-friendly

Drive safe

D

Follow the role

Leader-behavior

Follower-

behavior

D

Concrete Syntax Example

(b)

(c)

(a)

Fig. 14  a AND-dependency, b IOR-dependency and c XOR-dependency

5 For GRL, recommendation Z.151 [25] defines in its abstract gram-

mar a dependency as specialization of ElementLink which links 

GRLLinkableElements (i.e. actors and intentional elements). Each 

ElementLink has a source and a destination. It is not explicitly defined 

that source and destination cannot be identical. However, the detailed 

guidelines for the use of dependencies illustrate six common usage 

scenarios that are explicitly suggested. All of these introduce depend-

encies between different actors, or intentional elements of different 

actors, or between a combination thereof. Thus, it can be assumed 

that the use of dependencies between intentional elements of the 

same actor is not intended.

 For iStar, Dalpiaz et al. define that “the depender and dependee of a 

dependency should be different actors” [21].
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want to consider open ended platoons, others might rather 

want to work with realistic upper bounds as the platoon is 

typically limited in its length by regulations. In addition, it is 

a rather philosophical question, whether a CACC on its own 

can be a platoon. Thus, also a multiplicity of [2…8] might 

be a valid assumption, depending on the current develop-

ment project.

Fig. 15  Multiplicities, in a a 

single actor in b a nested actor
<<CPS>>

Actor B

[1..n]

<<CPS>>

Actor B

[1..n]

<<CPS network>>

Actor A 

<<CPS>>

CACC

[1..n]

<<CPS>>

CACC

[1..n]

<<CPS network>>

Platoon

Concrete Syntax Example

(a)

(b)

Fig. 16  Self-dependency with 

multiplicities

<<CPS>>

Actor A

[1..n]

Task 1

*
Task 2

Concrete Syntax Example

<<CPS>>

CACC 

[1..n]

Regulate 

Speed

*

Communicate 

Speed
[1..n] [1..n]

[1..n] [1..n]

Task 1 Task 2

[1..n]

Task 1 Task 2

D

D

[1..n][1..n]

(a)

(b)

Lead Platoon
Allow 

Communication

[1..n]

Distribution of 

Tasks
Accept Tasks

D

D

[1..n][1..n]

Concrete Syntax Example

[1..n] [1..n]

Fig. 17  a One-directional dependency and b bidirectional dependency with multiplicities



346 Requirements Engineering (2021) 26:325–370

1 3

Multiplicities can also be assigned to the intentional ele-

ments involved in a dependency. The depender, dependee, 

and dependum can be assigned a multiplicity regardless of 

the kind of dependency (see Figs. 16, 17 and 18). We do not 

restrict multiplicities, but we never came across a need for 

a [0…n] dependency, as this would mean that the depender 

does not necessarily depend on a dependee. Note that in case 

of self-dependencies, it is necessary that the multiplicities 

allow for there to be more than one actor, as self-dependen-

cies do not define dependencies within the same actor but 

between actors of the same type.

Note that in principle iStar and GRL are already equipped 

with the potential to define dependency decompositions. 

However, this always requires the existence of a decompo-

sition between the depender and dependee elements. A brief 

example is given by Fig. 19, which highlights the usefulness 

of our extension that limits the complexity of the model and 

allows for a different use of grouped dependencies. In par-

ticular, our proposed grouped dependency allows expressing 

that an intentional element depends on multiple other inten-

tional elements which do not need to be related to each other.

4.3.9  Configuration-dependent contribution value

To express that the value of a contribution depends on a 

configuration or on certain aspects related to multiple con-

figurations, we define a new label for contributions. This 

contribution is closely related to the unknown contribution 

value relation, where it is also not obvious whether the con-

tribution is positive or negative. However, the difference 

between unknown contributions and configuration-depend-

ent contributions is that for the latter, we can know how the 

contribution impacts but the contribution values are usually 

too complex to define all possibilities in graphical model. 

However, in addition we propose the formal definition of the 

contribution dependence in a comment field or a separate 

referenced document. Thus, we provide an index that can 

be used for reference. The proposed label compared to the 

Goal A

Goal B

Goal C

D
Allow change 

lane

Open gap

Change lane

D

Goal A

Goal B

Goal C

D

Goal A

Goal B

Goal C

D

Owning a driving 

style 

Drive eco-friendly

Drive safe

D

Follow the role

Leader-behavior

Follower-

behavior

D

Concrete Syntax Example

(b)

(c)

(a)

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

 

Fig. 18  a AND-dependency b IOR-dependency and c XOR-dependency (c) with multiplicities
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Goal A

Actor A

Goal B

Actor B

Goal A

Actor A

AND

Goal A1 Goal A2 Goal A3

Goal B

Actor B

AND

Goal B1 Goal B2 Goal B3

Abstract Dependency Between two Goals

Refined Dependency by the Use of AND-Decomposi�ons

Fig. 19  Traditional dependency refinement

Fig. 20  Configuration-depend-

ent contribution value
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labels for unknown contribution values from GRL and iStar 

can be found in Fig. 20.

4.4  Well-formedness rules

We define well-formedness rules using OCL [98] for goal 

models according to the proposed extension to support the 

creation of correct goal models for collaborative CPS as is 

recommended for defining modeling languages or extensions 

to modeling languages [99].

A self-dependency is defined as a dependency between 

actors of the same type, which are represented in a goal 

model by one actor. Therefore, the depender and the 

dependee must be the same actor (Well-formedness rule 1) 

and this actor must have a maximum multiplicity of more 

than one (Well-formedness rule 2), as otherwise there could 

not be more than one actor of this type in a CPS network.

Well-formedness rule 1 Depender and dependee of a self-

dependency must be the same actor or intentional elements 

that belong to the same actor.

context Self-Dependency 

inv: self.depender = self.dependee

Well-formedness rule 2 The actor a self-dependency 

belongs to (i.e. the depender and dependee or the actor the 

depender and dependee elements belong to) must have a 

maximum multiplicity larger than one. This is important as 

the self-dependency is not a dependency between elements 

of the same actor but between elements of actors of the same 

type that are just represented by one single actor element.

context Self-Dependency 

inv: self.depender.multiplicityMax > 1

To prevent inconsistencies regarding multiplicities, we 

stipulate that the following rules must be adhered to. The 

minimum multiplicity of an actor may not be larger than the 

maximum multiplicity of the same actor. The same holds for 

multiplicities related to dependencies (i.e. the multiplicities 

of the depender, the dependee, and the dependum).

Well-formedness rule 3: A maximum multiplicity may 

not be smaller than the corresponding minimum multiplicity.

context Actor inv: self.multiplicityMin <= 

self.multiplicityMax

context Dependency 

inv: self.multiplicityDepdenderMin <= 

self.multiplicityDependerMax

 context Dependency 

inv: self.multiplicityDepdendeeMin <= 

self.multiplicityDependeeMax

The minimum multiplicity of a dependency’s dependee 

may not be smaller than the minimum multiplicity of the 

dependee actor. This prevents cases where the dependency 

would allow for requiring a smaller number of collaborative 

CPS than are actually permissible according to the actor’s 

multiplicity. The same holds for the depender.

Well-formedness rule 4: The minimum multiplicity of a 

dependee/depender may not be smaller than the minimum 

multiplicity of the dependee/depender actor.

context Dependency 

inv: self.multiplicityDependeeMin >= 

self.Dependee.multiplicityMin

context Dependency 

inv: self.multiplicityDependerMin >= 

self.Depender.multiplicityMin

The maximum multiplicity of a dependency’s dependee 

may not be larger than the maximum multiplicity of the 

dependee actor. This prevents cases where the dependency 

would allow for requiring a higher number of collaborative 

CPS than are actually permissible according to the actor’s 

multiplicity. The same holds for the depender.

Well-formedness rule 5 The maximum multiplicity of a 

dependee/depender may not be larger than the maximum 

multiplicity of the dependee/depender actor.

context Dependency 

inv: self.multiplicityDependeeMax <= 

self.Dependee.multiplicityMax

context Dependency 

inv: self.multiplicityDependerMax <= 

self.Depender.multiplicityMax



349Requirements Engineering (2021) 26:325–370 

1 3

Well-formedness rule 6 Grouped dependencies must have 

either the same depender or the same dependee. This rule 

prevents the definition of complex dependency relationships 

that are difficult to comprehend which carry a high risk of 

misinterpretation.

context Dependency 

inv: self.GroupedDependency.Dependency-> 

((forAll(d|d.dependerElmt=self.

dependerElmt) or (forAll(d|d.dependeeElmt= 

self. dependeeElmt)))

4.5  Tool support

We provide tool support for the extension as a Visio stencil. 

Microsoft Visio is a commonly used modeling tool that pro-

vides mechanisms for the definition of modeling languages. 

In our case, the decision to use Microsoft Visio was made 

due to its availability for industry partners from different 

domains. In addition, particularly in the industry automa-

tion domain it is very heavily used for the design of produc-

tion systems. Figure 21 shows the stencil and the shapes it 

defines. We provide shapes for the newly defined constructs 

as well as for the existing constructs. The shapes can be 

drag-and-dropped to the drawing to create a goal model 

for collaborative CPS according to the proposed exten-

sion. The stencils are available for download at https ://doi.

org/10.6084/m9.figsh are.13313 093. While Visio primarily 

focuses on providing support for modeling, add-ins can be 

created to support model validation, such as checks for vio-

lation of syntactic or well-formedness rules. Implementing 

these checks as well as support for goal fulfillment analysis 

is part of future work.

5  Evaluation

We evaluated the proposed extension by conducting two case 

studies in different industry domains. Section 5.1 elaborates 

on the case study research design chosen (cf. [100]). Sec-

tions 5.2 to 5.4 present the results. Subsequently Sect. 6 will 

discuss the findings and limitations of the evaluation.

5.1  Study design

5.1.1  Goals

The study aims at evaluating the proposed extension for goal 

modeling of collaborative CPS. Therefore, we applied the 

iStar goal modeling extension to two industrial case stud-

ies (i.e. a cooperative adaptive cruise control and a fleet of 

collaborative transport robots). Thereby, we evaluate the 

applicability of the approach as well as the benefits of each 

introduced modeling element.

5.1.2  Research questions

To achieve the overall goal of the study, i.e. does the pro-

posed extension aid in goal modeling for collaborative CPS, 

we defined several research questions to be answered in the 

study:

• RQ1: Is the proposed iStar extension applicable to indus-

trial case examples of collaborative CPS?

• RQ2: Does the use of the proposed iStar extension lead 

to more concise models?

• RQ3: Are the proposed modeling elements useful in the 

context of modeling collaborative CPS?

• RQ4: What challenges remain?

We further refine RQ1 and RQ2 with regard to the two 

industrial case examples:

• RQ1.1: Is the proposed iStar extension applicable to 

model a cooperative adaptive cruise control?

• RQ1.2: Is the proposed iStar extension applicable to 

model collaborative transport robots?

For RQ 2, we need to define the meaning of concise. 

Concise means “marked by brevity of expression or state-

ment: free from all elaboration and superfluous detail.”6 

With regard to goal models we refer to a goal model as more 

concise if it has fewer elements than another goal model that 

expresses the same content.

• RQ2.1: Does the use of the proposed iStar extension lead 

to a more concise yet still comprehensible model of the 

cooperative adaptive cruise control?

• RQ2.2: Does the use of the proposed iStar extension lead 

to a more concise yet still comprehensible model of the 

collaborative transport robots?

For RQ3, we need to define the metrics for usefulness. 

Usefulness can be defined as “the quality of having utility 

and especially practical worth or applicability.”7 Thus, addi-

tionally to the investigation of the general applicability of the 

iStar extension (see RQ1), we investigate the applicability 

of each modeling element. Furthermore, it is investigated 

whether industry partners deem the modeling element use-

ful (i.e. is it worth to have the modeling element as part of 

the iStar extension).

6 cf. https ://www.merri am-webst er.com/dicti onary /conci se.
7 cf. https ://www.merri am-webst er.com/dicti onary /usefu lness .

https://doi.org/10.6084/m9.figshare.13313093
https://doi.org/10.6084/m9.figshare.13313093
https://www.merriam-webster.com/dictionary/concise
https://www.merriam-webster.com/dictionary/usefulness
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In addition, we need to further refine this research ques-

tion for all proposed modeling elements, i.e.:

• RQ3.1: Is the use of collaborative CPS and the network 

of collaborative CPS as actors useful?

• RQ3.2: Is the use of the coordination task useful?

• RQ3.3: Is the use of bidirectional dependencies useful?

• RQ3.4: Is the use of self-dependencies useful?

• RQ3.5: Is the use of grouped dependencies useful?

• RQ3.6: Is the use of multiplicities for dependencies use-

ful?

For RQ4, we separate between limitations of the proposed 

iStar extension and the resulting needs to be coped with in 

future work, i.e.:

• RQ4.1: What are limitations of the proposed iStar exten-

sion?

• RQ4.2: What are industry’s needs for future work?

5.1.3  Subject selection

Industry partners and case examples were recruited within 

the CrESt-project, a joint research project, publicly funded 

by the German Federal Ministry of Education. The project, 

aiming at developing engineering methods for model-based 

software engineering of collaborative CPS, started in Feb-

ruary 2017 and concluded in April 2020. Industry partners 

contributed four case example specifications. For the appli-

cation of our extension we chose two case examples. The 

decision was made based upon interest of involved industry 

partners (i.e. the involved partners were highly interested 

in applying goal modeling techniques to investigate their 

case). While each case example was mainly driven by one 

responsible industry partner, other partners from the respec-

tive domain were also involved and contributed to the case 

study. Industry partners thus participated and contributed 

due to their commitment to the project but also due to their 

interest in the case and the definition and evaluation of solu-

tions that foster the model-based engineering of collabora-

tive CPS. While research in the project was partly conducted 

in close collaboration and resulted in co-authored publica-

tions (e.g., [35, 101, 102]), no further interdependence of 

interests exists between the authors of this paper and the 

involved industry partners.

The automotive case example of cooperative adaptive 

cruise control systems was provided by a large automo-

tive supplier located in Germany. In addition, other suppli-

ers—including one of the world largest automotive suppli-

ers—and original equipment manufacturers (all based in 

Germany) were involved in the case example. The transport 

robot case example was provided by a medium-sized Ger-

many-based internationally operating company specialized 

in the production of autonomous transport robots. In addi-

tion, a very large international company with headquarters in 

Germany and multiple interests as well as a broad portfolio 

of products and domains that has a major interest in the 

domain of industry automation was involved.

5.1.4  Procedure

During the case study the approach under investigation (i.e. 

the iStar extension for collaborative CPS) was applied to 

two case examples provided by industry partners. Therefore, 

the following procedure was adhered to, to allow answering 

Research Questions 1–4.

Over the course of 3 years, we conducted a total of twelve 

workshops, one workshop every 3 months. Each workshop 

lasted about 2 days. The workshops were closely integrated 

in the working structure of the surrounding CrESt project. 

Therefore, they were not exclusively used for discussing the 

iStar extension but also for other research related to col-

laborative CPS. We did not use fixed time slots so that it was 

Fig. 21  Visio stencil for the extension
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always possible to have as much discussions as needed. The 

workshops were attended by about a dozen people, among 

them employees from various companies and research 

institutions. First, we were provided with a brief specifi-

cation and description of the case examples. In workshops 

the details of the case example were discussed and answers 

regarding specific aspects that remained unclear from the 

description were given by industry partners. Subsequently, 

initial sketches for the goal models were made. At first this 

was done without using the extension to get an understand-

ing of the shortcomings of iStar/GRL with respect to goal 

modeling for collaborative CPS, for a report on the find-

ings of this phase, please refer to our previous work [23]. 

Sketches were handed in for critique and revised based on 

the feedback. After additional workshops, the goal models 

without the extension were finalized and a number of short-

comings and potential solution concepts were discussed with 

the industry partners.

Next, we created goal models using the proposed exten-

sion for goal modeling of collaborative CPS. To allow for 

comparability, we started with the agreed upon goal mod-

els without the extension and made changes according to 

the extension. After another round of critique and a final 

workshop the final versions were created. In addition to the 

workshops, regular biweekly web conferences presented 

the opportunity to discuss upcoming questions in a timely 

manner. Furthermore, industry partners provided in-depth 

feedback on the extensions and derived models via mail.

Thus, information was collected during workshops and 

web conferences, as well as from documents. These docu-

ments included case descriptions of the case studies, require-

ments for modeling approaches for networks of collaborative 

CPS, and goal models in various stages of completion. These 

documents were created in close collaboration between 

domain experts and goal modeling experts under the auspice 

of the respective experts. Thus, we did not use specific ques-

tionnaires to answer the research questions but used an open 

and exploratory approach. We took notes on the meetings 

and the documents and models created over the course of the 

project were iterated regularly. In addition, written feedback 

was also received from industry partners. The workshops 

were used to discuss the case examples, the requirements, 

and the goal models. These discussions involved clarifica-

tion of misunderstandings, detailed discussions of interest-

ing aspects, discussions of created goal models and the pro-

posed extension. These discussions were documented during 

the workshop. The notes taken during the workshops served 

as input for the proposed extension as well as the evalua-

tion results. This allowed everyone involved to provide input 

according to their opinions. However, participants were also 

free to keep opinions to themselves.

Results from the application (RQ1) and the impact on the 

resulting models (RQ2) can be found in Sect. 5.2. To answer 

RQ3 (see Sect. 5.3) we discussed the proposed modeling ele-

ments of the approach with our industry partners to ensure 

that these are adequately reflecting the respective complex 

situations, are not misunderstood, and are deemed support-

ive. For RQ4, we discussed remaining challenges with our 

industry partners, particularly with respect to the severity of 

the various needs.

5.1.5  Case examples

To show the benefits of the proposed extension, we con-

ducted two case studies, one in the automotive and one in 

the industry automation domain. Section 5.1.5.1 introduces 

the cooperative adaptive cruise control case example and 

Sect. 5.1.5.2 the collaborative transport robots.

5.1.5.1 Cooperative adaptive cruise control Cooperative 

adaptive cruise control (CACC) systems allow vehicles to 

form a platoon [95]. A platoon is a network of vehicles driv-

ing behind one another with small distances between them. 

A platoon consists of a lead vehicle and at least one fol-

lowing vehicle. The lead vehicle is the first vehicle of the 

platoon and thus bears the responsibility for the platoon, 

since it has to decide, for example, which maneuvers to 

execute. All other platoon vehicles are following vehicles, 

as they usually adopt the driving style of the preceding vehi-

cle and reproduce it. Platooning offers many advantages, as 

the reduced distance between the vehicles allows driving in 

the slipstream of the previous vehicle. As a result, the fol-

lowing vehicles consume less fuel. Furthermore, platooning 

can reduce congestion on streets, is safer, and provides more 

comfort to drivers [96]. Having a CACC allows vehicles to 

participate in a platoon, as it enables the vehicles to commu-

nicate with each other within a platoon. With this commu-

nication, vehicles can agree on a common speed, a common 

destination, or a common driving style.

5.1.5.2 Collaborative transport robots Collaborative trans-

port robots are tasked with transporting materials and prod-

ucts between machines and conveyor belts and with dis-

posing of material that is no longer used. They can do so 

without getting in each other’s way and more efficiently by 

forming a fleet [103]. In order to form a fleet, the robots 

need to communicate with each other about their current 

positions, tasks, battery statuses, etc. Forming a fleet allows 

the individual robots to be better utilized, as the individual 

tasks can be divided evenly between the robots. There are 

further advantages to having transport robots collaborate as 

a fleet rather than individually. For example, if there is an 

obstacle in a route, it is included in the map so that all robots 

know that the route cannot be taken and that they have to 

find an alternative route [104]. In addition, the robots can 

automatically visit a charging station if the remaining bat-
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tery is at a previously set remaining level. If the workload 

is high and a large number of transport tasks have to be 

executed, the value of the battery life, at which the robot is 

to visit a station, can be set to a lower value so that it can 

still complete as many transport tasks as possible. Further-

more, since there are different types of transport robots that 

are used for different products and materials, for example 

because they differ in their load capacity, the fleet can take 

this into account when distributing transportation orders.

5.2  Application results

This section introduces the application of the approach in the 

context of the case studies. Therefore, Sect. 5.2.1 shows the 

goal model of the cooperative adaptive cruise control case 

example, Sect. 5.2.2 shows the goal model of the collabora-

tive transport case example. For comparison in both sections 

goal models for case examples are shown with the proposed 

extension and without the proposed extension.

5.2.1  Application to the cooperative adaptive cruise 

control case example (RQ1.1)

We applied the iStar extension to the case example of a 

cooperative adaptive cruise control from the automotive 

domain. Figure 22 shows the resulting goal model. As can 

be seen, the CACC itself is not directly represented by an 

actor. A platoon, a lead vehicle, and a following vehicle are 

depicted as actors. The platoon represents the network which 

is formed by the collaboration of multiple vehicles equipped 

with a CACC. A CACC takes part in only one of two pos-

sible roles in a platoon, one CACC is the lead vehicle, the 

other CACCs have the role following vehicle. Hence, the 

three actors shown represent the roles a CACC can take and 

the collaborative network a CACC takes part in.

Each actor has its own intentional elements. However, as 

can be seen, the actors, and thus their intentional elements, 

heavily rely on each other. Particularly, the platoon’s inten-

tional elements depend on goals and tasks of the vehicles. 
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Fig. 22  Goal model cooperative adaptive cruise control platoon with extension
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This is not surprising in so far as the platoon does only exist 

in the interplay of its physically partaking CACCs. There-

fore, each functionality the platoon shall exhibit must origi-

nate from at least one CACC. For example, the platoon shall 

be able to allow new vehicles to enter the platoon (i.e. it has 

the goal allow new vehicles to join). To fulfill this goal, the 

platoon depends on the vehicles in the platoon that need 

to open a gap so that a new vehicle can join the platoon by 

entering this gap. Hence, the goal allow new vehicles to join 

of the platoon depends on the CACC tasks open gap.

There are also mutual dependencies between the platoon 

and the vehicles, for example, the goal reduced individual 

(driving) time of the CACC depends on the goal reduced 

overall (driving) time of the platoon and vice versa. This is 

shown by the bidirectional dependency between those goals.

Furthermore, dependencies between the different roles 

exist and are modeled. For example, a following vehicle must 

be able to execute the task follow previous vehicle. Therefore, 

it depends on other CACCs (either in the role following vehi-

cle or lead vehicle). In this way it is specified that each follow-

ing vehicle needs to follow another vehicle. In cases where the 

vehicle ahead is also a following vehicle, a self-dependency 

is used to show that a following vehicle depends on another 

following vehicle regarding the fulfillment of the task follow 

previous vehicle. This self-dependency possesses a condition 

whereby the dependency only exists if there are more than one 

following vehicle in the platoon, because otherwise a follow-

ing vehicle could not follow another following vehicle.

With respect to RQ1.1 we can state that the iStar exten-

sion is applicable to model the case example of a CACC. 

Important aspects of the case example can be specified and 

the existing mutual dependencies between the different roles 

of the collaborative CPS and the collaborative network can 

be defined accordingly.

Lead platoon

Common driving 

speed

Eco-friendly

Platoon

Collision 

avoidance

Collision 

avoidance

Less traffic jam

Higher overall fuel 

efficiency
Reduced overall 

time

Higher individual 

fuel efficiency
Reduced individual 

time

Join platoon

Leave platoon

Perform 

communication

Execute role 

distribution

Reliable sensors

Drive common 

speed

AND

Reliable 

communication

Change lane

Network security

Collision 

avoidance

Reduced individual 

time

Join platoon

Leave platoon

Perform 

communication

Reliable sensors

Drive common 

speed
AND

Change lane

Organize platoon 

structure
Guide platoon

Close gap

Open gap

Regulate speed

Allow change lane

Follow previous 

vehicleAND

Regulate speed

Vehicle information

Vehicle information

Allow leaving

Allow new 

vehicles to join

Allow splitting

Allow creating

Allow change 

leader

Allow fusion

Allow change 

order

Allow dissolving

Allow 

communication

Encryption of 

information

Collision 

avoidance

Higher individual 

fuel efficiency
Reduced individual 

time

Join platoon

Leave platoon

Perform 

communicationReliable sensors

Drive common 

speed

AND

Change lane Close gap

Open gap

Regulate speed

Follow previous 

vehicle

Vehicle information

Higher individual 

fuel efficiency

AND

<<role>>

Lead vehicle

<<CCPS>>

CACC

<<role>>

Following

vehicle

<<CCPS>>

CACC

<<role>>

Following

vehicle

<<CCPS>>

CACCLead 

vehicle

Following 

vehicle

Following 

vehicle

Fig. 23  Cooperative adaptive cruise control platoon without extension
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5.2.2  Comparison with original iStar notation 

for the cooperative adaptive cruise control case 

example (RQ1.2)

To investigate RQ1.2 Fig. 23 shows a goal model for the 

CACC that has been created without the proposed exten-

sion. As can be seen, this model is considerably more com-

plex and contains more connections. For instance, another 

actor is needed representing another following vehicle. As 

it would otherwise not be possible to describe that the task 

follow previous vehicle depends on other following vehicles 

to also follow the previous vehicle. Among others, the bidi-

rectional dependency and the grouped dependency reduce 

the number of lines which improves the readability of the 

model. In summary, we can state that the goal model from 

Fig. 22 which was created using the iStar extension is more 

concise than the goal model from Fig. 23.

5.2.3  Application to the collaborative transport robots case 

example (RQ2.1)

Figure 24 shows the resulting goal model for the case of the 

collaborative transport robots. As can be seen, the collabo-

rative transport robot (CTR) is directly represented by an 

individual actor as no roles need to be distinguished. How-

ever, as a CTR partakes in a collaborative network, i.e. in 

a collaborative transport robot fleet (CTRF), another actor 

is used to represent this network. Like for the CACC case 

example, the nested representation for network and CPS is 

used. As only one type of CTR does exist and no roles need 

to be distinguished, the network does not depend in its goal 

fulfillment on multiple CPS of different types or roles. Con-

sequently, unlike for the CACC case, no grouped dependen-

cies have been used. However, self-dependencies do exist, 

which describe dependencies between identical CTRs. For 

Fig. 24  Goal model collaborative transport robot fleet with extension
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instance, for calculating a new route, a CTR depends on the 

current routes of the other partaking CTRs as otherwise the 

goal avoid imminent collision and consequently the network 

goal avoid collisions overall could not be reached.

As in the CACC case, there are goals that both the robot 

and the robot fleet share, such as avoid collision overall and 

avoid imminent collision. These differ in that the robot fleet 

wants to achieve the goals for all robots while the individual 

robot is primarily concerned with its own goals. But as these 

goals are interdependent, they are linked in the goal model 

by a bidirectional dependency.

With respect to RQ2.1 we can state that it is possible 

to document the goals of the CTRF and the goals of the 

CTR and relate them to each other. Hence, the proposed 

iStar extension is also applicable to the case of collaborative 

transport robots.

Fig. 25  Goal model collaborative transport robot fleet without extension

Fig. 26  CTR actor nested in CTRF actor
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5.2.4  Comparison with original iStar notation 

for the collaborative transport robots case example 

(RQ2.2)

For the collaborative transport robots, we also investigate 

RQ2.2 by comparing the goal model shown in Fig. 24 to a 

goal model that does not use the extension. This goal model 

is shown in Fig. 25. Although this model is not as large 

and complex as the goal model for the CACC example, it 

can be easily seen, that the model is much larger and more 

complex than the CTR goal model that uses the extension. 

This is particularly due to the need for more dependency 

links. Again, two CTR actors are necessary to express the 

self-dependency between different identical robots. There-

fore, we can state that Fig. 24 is more concise than Fig. 25. 

Also discussions with industry partners showed that industry 

professionals do not miss any information in the goal model 

using the extension compared to the other goal model but do 

find Fig. 24 more intuitive and comprehensible than Fig. 25, 

as the number of dependencies limits the overall readability.

5.3  Usefulness of proposed modeling elements

We will illustrate the usefulness of the individual modeling 

elements using excerpts from the models of the case exam-

ples. Furthermore, we discuss our major insights gained 

from the application and discussion with domain experts.

5.3.1  The use of actors (RQ3.1)

Particularly, the use of the nested representation of CPS net-

work and collaborative CPS partaking was considered very 

helpful as this allows getting an intuitive picture of what the 

composition of the CPS network looks like. Figure 26 gives 

a brief fragment of the nested actor notation from the CTR 

example. As the CTR is a part of the CTRF, the CTR actor 

is modeled inside the CTRF actor. Still, the intentional ele-

ments of the CTR are separated from those of the CTRF by 

the actor boundary of the CTR.

<<CPS 

network>>

Transpor-

taon System

Exchange informaon

<<CPS>> 

CTR
[2..n]

<<CPS>> 

Conveyor 

Belt

Send informaon

<< CPS network>>

CTFR

Reliable communicaon

Fig. 27  Distinction between collaborative CPS belonging to the CPS network and collaborative CPS Not belonging to the CPS network

Fig. 28  A coordination task in the CACC case example to assign the 

role of following vehicle
Fig. 29  Bidirectional dependency between two tasks
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Another advantage was not included in the original case 

example description but revealed during discussions. The 

CTRF typically does not operate on its own but also interacts 

with other systems in a smart factory, production machines, 

storage capacities, and even with other transportation sys-

tems. Hence, the nested representation is particularly suit-

able for displaying such systems separately from each other. 

As in Fig. 27, the conveyor belt is not part of the CTRF. 

It can still communicate with the CTR to announce goods 

in need of pickup. This way even further nesting might be 

useful to express different degrees of cohesion and collab-

oration. For instance, in the CTR case, a smart factory is 

composed of several collaborative CPS, some of which are 

assigned transportation tasks. The collaborative CPS with 

transportation tasks can, thus, be composed to the transport 

system of the smart factory. Hence, the conveyor belt and the 

CTRF can be nested into the transport system, which itself 

may be nested into the smart factory.

The extension also allows for defining a collaborative 

CPS (without defining a role) and a role this collaborative 

CPS can assume in the same goal model. The need to do so 

never arose in any of the case studies. In practice, it is usu-

ally relevant to either investigate the overall goals of a CPS 

(i.e. without considering a specific role) or to investigate 

issues that relate to the roles the CPS take.

5.3.2  The use of the coordination task (RQ3.2)

It has been shown that in the two case examples investigated, 

coordination tasks are less often needed as has been assumed 

upfront. However, the coordination task has shown useful 

to indicate that a certain role is assigned by a particular 

task, belonging to a particular actor. This helps engineers in 

defining responsibilities, i.e. which entity of the CPS net-

work shall be responsible for the assignment of roles. This 

is shown in Fig. 28, the CACC in the role lead vehicle has 

the task to organize the platoon, i.e. it coordinates which 

CACC joins the platoon and which CACC needs to leave the 

platoon. Therefore, it is able to assign the role of a following 

vehicle to another CACC.

5.3.3  The use of bidirectional dependencies (RQ3.3)

The main benefit of the bidirectional dependency is seen 

in reducing the number of dependencies displayed. This is 

illustrated in Fig. 29, which displays two actors: the col-

laborative system network CTRF and the individual CTR. 

Both systems have the task to fulfill an optimal goods trans-

portation. The task of the CTRF refers to the entire network 

of collaborative CPS and is therefore called optimal overall 

goods transportation, while the task of the CTR refers only 

to the robot itself and its current task, therefore it is called 

optimal current goods transportation. Both tasks depend 

on each other as the individual CTR can only reach an opti-

mal transportation solution when the overall routes (i.e. also 

the routes of the other CTR) are optimized so that no colli-

sions and backups occur. However, to achieve this the CTRF 

depends on each individual CTR to find optimal routes 

within the existing optimized overall routes. Hence, both 

tasks depend on each other. Using the bidirectional depend-

ency, not only the number of dependency links is reduced, 

but as shown, the bidirectional dependency also indicates a 

very close relation between both tasks. This allows engineers 

to easily detect parts of the collaborative CPS network that 

can only be achieved in collaboration and must therefore be 

given particular care during implementation.

5.3.4  The use of self-dependencies (RQ3.4)

The major use of self-dependencies must be seen in its abil-

ity to reduce the number of actors shown in the CPS network 

as every system type or role is only displayed once regard-

less of how many instances are actually partaking in the sys-

tem network. For instance, a collaborative system such as a 

platoon consists of several individual CACCs collaborating. 

Follow previous vehicle

*

[n..n]

<<Role>>

Following  

vehicle
[1..19]

<<CPS>>

CACC

<<CPS Network>>

Platoon

Fig. 30  Self-dependency link



358 Requirements Engineering (2021) 26:325–370

1 3

It is not feasible to represent all these configurations in mod-

els as CPS networks are dynamic, thus resulting in a large 

number of similar albeit slightly different configurations, 

nor is it feasible to represent large configurations such as 

platoons consisting of more than five vehicles in one model 

if each vehicle is depicted separately. Therefore, the CACC 

represents all instances of the CACC in a platoon.

In Fig. 30 it is shown that CACCs in the role Following 

vehicle are part of the platoon. And, to allow driving in a 

platoon formation, each following vehicle needs to follow its 

predecessor, i.e., the previous vehicle. Therefore, it depends 

on other following vehicles, which also need to each follow 

their predecessor. This is represented by a self-dependency. 

While this construct is seen as useful, care must be given 

to avoid misinterpretations, i.e. an individual system does 

Fig. 31  Initial situation
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not depend on itself but on other systems of the same type. 

However, using the asterisk was deemed very helpful as it 

indicates that it is not a normal dependency. People famil-

iar with the self-*-properties directly—most likely out of 

the context of their domain knowledge—related this self-

dependency not to the individual system on an instance level 

but as desired on a type level, i.e. that system of this type are 

self-dependent on other systems of this type.

5.3.5  The use of grouped dependencies (RQ3.5)

Grouped dependencies allow to further reduce the num-

ber of dependency links to be displayed. Instead of hav-

ing multiple separate dependency links, dependencies are 

grouped, the dependency symbol is only shown once, and 

each involved intentional element connects only with one 

line to the symbol.

For an illustrative example, Fig. 31 shows the actors 

CTRF and CTR. The goal Distribution of tasks and the 

tasks Finish task and Accept task are connected through 

three dependency links with each other. For example, the 

task Finish task depends on the goal Distribution of tasks, 

since a CTR can only process and complete a task if it has 

been previously assigned to it. In addition, the goal Distri-

bution of tasks depends on Accept task, since this goal is 

only achieved if a CTR who is assigned a transportation task 

also accepts this assignment. In this simplified model this 

may look comprehensible, but with an increasing number of 

actors and their goals and tasks, the number of dependencies 

can also increase.

Therefore, as shown in Fig. 32, the two actors are con-

nected by using a grouped dependency. This allows us to 

express that the task Distribution of tasks depend on the 

tasks Finish task and Accept task. Please note that in this 

case we could also have reduced the complexity by using a 

bidirectional dependency between Distribution of tasks and 

Accept task.

Actually, in the early stages of the development of the 

extension, we aimed for always needing just one dependency 

link between two or more connected intentional elements. 

However, this was not achievable, as the resulting depend-

ency constructs were complex and often misunderstood. We 

illustrate this in Fig. 33, which shows the initial idea to use 

only one multidirectional connector to connect all incoming 

and outgoing edges. As shown in Fig. 33, however, this is 

comparatively more difficult to understand than the example 

in Fig. 32.

5.3.6  The use of multiplicities for dependencies (RQ3.6)

Much akin to the discussion for the self-dependency, the 

multiplicities for dependencies were a necessary means 

to achieve displaying just one actor that represents all 

collaborative CPS of the same type and in the same role. 

Otherwise, it would not be possible to distinguish, e.g., the 

following two situations: (1) an intentional element of one 

collaborative CPS of a certain type depends on an intentional 

element of one collaborative CPS of another type, and (2) 

an intentional element of one CPS of a certain type depends 

on intentional elements of multiple/all CPS of another type 

that do exist. Therefore, the use of multiplicities is neces-

sary. From our observations the use was quite intuitive as 

multiplicities are well known from UML class diagrams and 

other modeling languages and, thus, their use did not lead to 

any misinterpretations.

The use of multiplicities also shows the need to separate 

specification and analysis of goal models for collaborative 

CPS. For specification purposes, we need abstractions to 

reduce the complexity of the models and allow specification 

of CPS networks in a manageable fashion. Therefore, we use 

the concept of multiplicities to cope with the sheer number 

of configurations to be specified at design time. For analysis 

purposes, however, we need to ensure proper functionality 

in all situations. Thus, for runtime analysis all possible con-

figurations need to be considered.

During specification we define what configurations may 

exist and thus need to be considered, however, we do not 

place emphasis on how these form or dissolve. The specifi-

cation using multiplicities defines that the number of actors 

will vary in a known range at runtime but not how these 

variations occur at runtime. For example, in the robot case 

example, if we model that the fleet consists of three to eight 

identical robots that have the same role, it does not state how 

the fleet can actually vary between three and eight robots. 

If we want to state that, for instance, a robot might break 

down, we need to explicitly specify another actor type robot 

in the role “defect robot” and a coordination task can then 

be used to explicitly define how a robot can be assigned the 

role “defect robot”.

5.4  Remaining challenges

5.4.1  Limitations of the iStar extension (RQ4.1)

Despite the usefulness of the proposed extension and the 

overall applicability of the proposed extension, we have 

found some limitations. While, so far, we have briefly men-

tioned some remaining challenges in Sect. 4 and sketched 

limitations throughout Sects. 5.2 and 5.3 in this section we 

will discuss the most important limitations in more detail 

and provide insights into rationales.

5.4.1.1 Contribution links depending on  the  current CPS 

network configuration As outlined in Sect.  2.3.6 there is 

a need to allow modeling contributions where the value of 

the contribution depends on the current configuration. We 
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use multiplicities for actors and dependencies to specify 

multiple configurations within one single goal model. Thus, 

multiple configurations are incorporated in one model and 

hence the nature of a contribution might be ambiguous. 

As briefly discussed in Sect. 4.2.3, we propose the use of 

configuration-dependent contribution value labels for these 

situations. This simple solution is a result of the inability to 

define this complex problem with a precise but at the same 

time comprehensible notation. Hence, the current solu-

tion for Challenge 6 is largely based on a tradeoff between 

expressiveness and proposing an easy to use iStar extension. 

We decided to go for simplicity to provide easy access for 

industry professionals, thus limiting the expressiveness of 

varying contribution links depending on the CPS network 

configuration.

Industry professionals have stressed the importance of 

investigating and analyzing these situations closer. So far, 

our solution to this need is by modeling concrete configura-

tions in distinct models that allow detailed investigation and 

comparison. In doing so, the benefits of having only one 

model to maintain and analyze vanish and the effort needed 

increases. In addition, when it comes to automated sup-

port, the current solution is also not sufficient as a precisely 

defined contribution depending on the respective configura-

tions is needed to allow for any kind of automation.

5.4.1.2 Missing support for  in-depth analysis of  concrete 

instance configurations There is not only a need to define 

and investigate the impact a contribution link has based on 

different configurations but more generally to investigate 

concrete investigations in-depth. Due to the use of abstrac-

tions in the specification (i.e. representing CPS of similar 

type with just one actor having multiplicities), it becomes 

difficult to reason about similar CPS that try to achieve dif-

ferent goals at the same time. For instance, two CTR might 

collaborate in a CTRF, while they have in principle the same 

goals due to the current context situation the robots try to 

achieve different goals. As an example, both robots might 

have different battery-levels. Depending on the current bat-

tery level, the goals to be fulfilled change. With lower bat-

tery-levels robots shall aim for resource preservation, while 

with higher battery-level the maximum number of transpor-

tation tasks shall be processed. Therefore, a means to gener-

ate and investigate concrete instance level configurations is 

needed. We have already shown the applicability, effective-

ness, and usefulness of such generations for scenario model 

using ITU Message Sequence Charts (cf. [105, 106]). Due 

to the feedback we received from our industry partners, we 

are confident that this is transferable to goal models and will 

allow more in-depth analysis on the impact of certain con-

figurations.

5.4.1.3 Interpreting complex relations involving multiplici-

ties The interpretation of complex relations that involve 

multiplicities may be error prone. Due to the high amount 

of information to be processed for correctly interpreting 

the meaning of grouped dependencies with multiplicities 

involving actors with multiplicities, there is a risk of misin-

terpretation. However, the reduced size of the model itself 

due to the use of these constructs was very much appreci-

ated.

Currently, we assume that the fulfillment of a depend-

ency with multiplicities means that all depender elements 

are fulfilled if all dependee elements (AND-dependency), 

at least one dependee element (OR-dependency), or exactly 

one dependee element (XOR-dependency) are fulfilled. So 

far, we found this definition to be sufficiently comprehensive 

and intuitive. However, there might be the need to express 

that just one of the depender elements will be fulfilled or 

just a certain number. For instance, due to access restrictions 

a resource might be only accessible by exactly one CPS. 

Therefore, not all depending CPS can access this resource 

at the same time and therefore, only one CPS can fulfill its 

goals that depend on this resource. Furthermore, it is also 

conceivable that not all, at least one, exactly one dependee 

elements shall be fulfilled but a concrete number (or within 

a concrete range). This is, for instance, the case if measure-

ments shall be validated across different members of a CPS 

network. To do so, it is not necessary for the measurement to 

be provided by all elements, but by at least two or three (as 

otherwise no meaningful detection of outliers is possible).

5.4.1.4 Goal fulfillment analysis and semantics of the iStar 

extension Semantics for iStar and GRL are typically 

defined based on goal fulfillments [107, 108]. Recommen-

dation Z.151 refers to this as the “GRL model satisfaction 

analysis”. For instance, the semantics of an AND-decom-

position is defined such that the super-intentional element 

is fulfilled if all intentional elements it is composed of are 

fulfilled. Therefore, typically values for qualitative (e.g., 

high satisfaction, medium satisfaction, low satisfaction) and 

quantitative analysis (e.g., 0–100% contribution to the satis-

faction) are defined. This allows, among others, automated 

analysis of the overall goal fulfillments (i.e. can the overall 

goals be sufficiently achieved) or calculating optimized goal 

fulfillments (i.e. which subgoals—under consideration of 

conflicts, etc.—should be fulfilled to reach the best possible 

goal fulfillment).

So far, we have focused on modeling collaborative CPS 

and manual analysis by human engineers. However, due to 

the complexity automated support based on clear seman-

tics is desired. Particularly, goal fulfillment analyses can 

support engineers in identifying problematic CPS network 
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configurations, etc. Thus, the aforementioned precise seman-

tics for goal fulfillments will need to be established. Par-

ticularly, the semantics for goal fulfillment of multiplici-

ties, i.e. the impact on the actors with multiplicities, and on 

the intentional elements involved with dependencies with 

multiplicities need to be precisely defined. At this point, 

we have gathered a broad understanding from the engineers 

about what it means when a goal is fulfilled. From what we 

have learned so far in collaborative CPS networks different 

degrees of goal fulfillment must be considered. For instance, 

the CTRF will not always fulfill a goal to 100% but in many 

cases to a point where it suffices. I.e. equal battery consump-

tion across all CTRs will, depending on the configuration, 

not be achievable. However, for many of these configurations 

a less then optimal equality is also acceptable. Thus, when it 

comes to goal fulfillments and automated analyses thereof, 

more precise means are needed to express such complex 

situations depending on the configuration.

5.4.1.5 Circular dependencies Related to the afore-

mentioned point, when analyzing goal fulfilment circu-

lar dependencies are a problem, as this typically can be 

interpreted as a  deadlock, however, for collaborative CPS 

expressing such circular dependencies is important.

As could be seen from the application of the case exam-

ples, circular dependencies occurred regularly. Furthermore, 

we even introduced some elements (e.g., bi-directional 

dependencies) that contradict the fulfillability of the overall 

model in general as these are circular per definition. How-

ever, we deem these elements important. For instance, it is 

necessary to express that a CPS network cannot fulfill its 

goals if the goals of the individual systems are not fulfilled 

and vice versa. A CACC wanting to reduce the overall travel 

time depends on the platoon to reach this goal. However, 

the platoon depends on each CACC in the platoon trying to 

reach this goal as well. In other words, the platoon can only 

drive as fast as its slowest member.

The many circular dependency relations between multiple 

intentional elements of a CPS network and partaking CPS 

were not identified as problematic by industry professionals. 

Even more, they were highly appreciated as they express the 

inherently collaborative parts of the interplay between the 

individual CPS and the CPS network. Thus, these constructs 

are severely needed by industry professionals to foster their 

analysis in early stages. However, they are problematic for 

goal fulfillment analysis, which was also seen as desirable 

to support the development of collaborative CPS.

5.4.1.6 Tool support While we provide Visio stencils to 

create goal models for networks of collaborative CPS, the 

tool cannot prevent modelers from creating goal models that 

violate syntactical or well-formedness rules. Consequently, 

the responsibility for adhering to those rules lies completely 

with the modeler. This can be problematic for inexperienced 

modelers who are not that familiar with the rules and there-

fore more likely to create flawed goal models for networks 

of collaborative CPS.

Additionally, the tool does not provide automated analysis 

support for goal fulfillment. Goal models can be analyzed 

automatically to reason about goal fulfilment. This, how-

ever, is currently not implemented, leaving the requirements 

engineer with the task of having to analyze the goal models 

manually.

Currently, we are using Microsoft Visio as modeling tool, 

which also allows implementing feasibility checks and the 

goal fulfillment analysis via add-ins. Due to the popularity of 

Visio, we intend to keep and enhance this, instead of using 

another modeling tool which has already basic checks for 

goal models implemented. The main reason for this is the 

broad availability of Microsoft Office products in German 

industry. This leads to easy application as modelers already 

have sufficient experience with the tool.

5.4.2  Industry needs for future work (RQ4.2)

Based on the limitations discussed above, the need for future 

work arises. While we have already briefly discussed this 

need in Sect. 5.4.1. In this section, we briefly summarize 

the major needs identified. Particularly, we found needs for:

Contribution links depending on the configuration. The 

solution needs to allow for precise definition of the impact 

certain configurations or changes in a configuration have 

on the value of a contribution link and at the same time 

must be reasonably easy to model and comprehend that 

it is of value for manual analyzes and discussions in early 

development phases.

Providing support for interpreting complex relations 

involving multiplicities. Correctly interpreting dependen-

cies with multiplicities and/or dependency groups can be 

difficult. While having groups and multiplicities allow for 

reducing the size of the goal model considerably (as oth-

erwise each dependency would have to be modeled indi-

vidually), there is an increased risk of misinterpretation. 

One possible solution to this issue could be the illustra-

tive generation of model excerpts focusing on a particular 

dependency that allow for examining this dependency in 

the familiar style with no groups or multiplicities.

Automated goal fulfilment analysis and formal defini-

tion of semantics. Some new constructs (e.g., circular 

dependencies, grouped dependencies) hinder the use of 

established goal-fulfilment analysis approaches. To pro-

vide automated support for goal fulfilment analysis for 

goal models of networks of collaborative CPS, a precise 

definition of formal semantics is necessary. Particularly, 
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Table 3  Short summary of the principal findings for each research question

Research 

questions

Findings

RQ1.1 Is the proposed iStar extension applicable to model a coopera-

tive adaptive cruise control?

The iStar extension is applicable and the application resulted in a 

valid model for the cooperative adaptive cruise control that has 

been evaluated by industry professionals as sufficient and helpful 

in the engineering process

RQ1.2 Is the proposed iStar extension applicable to model collabora-

tive transport robots?

The iStar extension is applicable and the application resulted in a 

valid model for the collaborative transport robots that has been 

evaluated by industry professionals as sufficient and helpful in 

the engineering process

RQ2.1 Does the use of the proposed iStar extension lead to a more con-

cise yet still comprehensible model of the cooperative adaptive 

cruise control?

The resulting model is more concise than a comparable model 

created without the extension. Particularly, the number of actors 

shown is reduced and the number of dependency links needed 

is significantly smaller. Furthermore, other approaches need to 

define a single model for each configuration, thus, the number 

of diagrams needed to describe the entire CPS network is also 

reduced considerably

RQ2.2 Does the use of the proposed iStar extension lead to a more 

concise yet still comprehensible model of the collaborative 

transport robots?

The resulting model is more concise than a comparable model 

created without the extension. Particularly, the number of actors 

shown is reduced and the number of dependency links needed 

is smaller. However, the effect is not as large as observed for 

RQ2.1. Nevertheless, also in this case, other approaches would 

need to define a single model for each configuration, thus, the 

number of diagrams needed to describe the entire CPS network 

is also reduced considerably

RQ3.1 Is the use of collaborative CPS and the network of collaborative 

CPS as actors useful?

The differentiation between collaborative CPS and the CPS net-

work allows for expressing goals on different levels of abstrac-

tion and relating them to each other. I.e. it can be expressed how 

CPS network goals can be achieved based on the collaborative 

CPS’ goals. Particularly, the use of stereotypes allows to easily 

distinguish both actor concepts and the use of nesting results 

in smaller models while at the same time making the hierarchy 

between CPS network and collaborative CPS intuitively clear

RQ3.2 Is the use of the coordination task useful? The coordination task is useful as it allows to document changes 

of roles that may occur during runtime and indicate how they 

are triggered and who is responsible for changing the role of an 

actor. Thus, the coordination task concept allows to express a 

complex situation by using just one intentional element

RQ3.3 Is the use of bidirectional dependencies useful? Bidirectional dependencies considerably reduce the size and 

complexity of the resulting models. Collaborative CPC are—as 

is quite obvious—collaborating and therefore, often rely on each 

other, furthermore often the CPS network relies on the indi-

vidual CPS and vice versa. Thus, the bidirectional dependency 

reduces the number of dependencies used and adds the notion of 

mutuality which is not given by having two independent depend-

ency links

RQ3.4 Is the use of self-dependencies useful? The self-dependency allows to express that one system depends 

on another system of the same type and role. Thus, the self-

dependency allows expressing different systems of the same type 

with just one actor element Consequently, the size of the goal 

model can considerably be reduced, and the clarity of the models 

is improved
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a solution for the needed circular dependencies must be 

provided.

Advanced tool support. To better support developers in 

creating goal models for networks of collaborative CPS, 

future tool support should also include checks for adher-

ence to modeling rules as well as support for automated 

goal fulfillment analysis. As current tool support already 

provides stencils for creating goal models for networks 

of collaborative CPS, these analysis functionalities can 

be implemented as Visio add-ins, so that already created 

goal models can be analyzed,

6  Discussion

6.1  Summary and major findings

In this paper, we developed a GRL-compliant extension to 

the existing iStar goal modeling language for goal modeling 

of collaborative CPS and CPS networks. With the choice 

of iStar, we have adopted a widely used goal modeling 

approach. To do so, we integrated our extensions into the 

iStar metamodel and defined the concrete syntax to specify 

what the goal modeling extension looks like graphically con-

sidering best practices for model notation creation. Further-

more, the well-formedness rules were defined to describe 

constraints for the goal models. Our extension was evaluated 

using two industrial case examples: a CACC (cooperative 

adaptive cruise control system) from the automotive industry 

as well as a CTRF (collaborative transport robot fleet) from 

the industry automation domain.

For the main results of our evaluation we can state that:

• RQ1: Our evaluation shows that the iStar extension is 

applicable to industrial case examples of collabora-

tive CPS. The resulting models were well received by 

industry professionals and rated as very helpful in the 

engineering process as the goals of a multitude of con-

figurations to be considered can be easily expressed in 

manageable models.

• RQ2: The goal models with the extension include fewer 

actors and dependency lines compared to the goal mod-

Table 3  (continued)

Research 

questions

Findings

RQ3.5 Is the use of grouped dependencies useful? Grouped dependencies can reduce the number of dependencies to 

be modeled and therefore reduce the size of the model and add 

to model clarity. However, it is to mention that in some cases the 

use of grouped dependencies can result in too complex to read 

dependencies. This is particular the case when dependent inten-

tional elements are spatially distant. Therefore, this modeling 

element should not be used regardless of the layout of the model, 

but the current layout should be taken into account. However, 

in several situations the model complexity can considerably be 

reduced

RQ3.6 Is the use of multiplicities for dependencies useful? As is the case for self-dependencies, this modeling element allows 

to model different systems of the same type with just one actor 

element. Consequently, the size of the goal model can consider-

ably be reduced, and the clarity of the models is improved

RQ4.1 What are limitations of the proposed iStar extension? As advanced automated support is desired, the proposed iStar 

extension is limited as no formal semantics are provided yet. 

This is particularly the case when it comes to circular depend-

encies and the proper interpretation of complex dependencies 

that involve multiplicities. Furthermore, by providing simplified 

type-level specifications using abstractions to allow for concise 

models, the ability to reason about concrete, potentially hazard-

ous, instance configurations is limited

RQ4.2 What are industry’s needs for future work? There is particularly a need for revisiting the solution for Chal-

lenge 6 by semantically defining contribution links, where the 

contribution value depends on the configuration of the CPS 

network (i.e. is related to actor multiplicities). Furthermore, 

there is a need to define formal semantics for analyzing circular 

dependencies and to allow for automated goal fulfillment 

analysis. Furthermore, automated support for analyzing concrete 

instance-configurations is needed. These automated aspects can 

also be supported by adequately developing the tool support 

further
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els without the extension, although the same situation is 

shown in both. Therefore, the use of the iStar extension 

results in more concise goal models.

• RQ3: We have shown that each of the proposed modeling 

elements contributes to modeling complex situations 

in a clear and concise way and thus yields the creation 

of extensive and yet easily readable models. Accord-

ing to Moody’s principle of complexity management, 

it was shown that the modeling elements of the exten-

sion are suitable to reduce the complexity of the iStar 

models when modeling collaborative CPS that interact 

in dynamic CPS networks.

• RQ4: Finally, we have investigated shortcomings of the 

extension and needs for future work. Among the remain-

ing challenges, most notably is the proper definition of 

formal semantics that also consider circular and bidirec-

tional dependencies, take multiplicities for contributions 

into account and, thus, allow for automated goal fulfill-

ment analysis.

For a summary of the major findings for each sub-

research question, please refer to Table 3.

6.2  Threats to validity

To evaluate our proposed extension, we used a commonly 

used evaluation approach (e.g., [17, 100, 109]). However, 

like all evaluation approaches, case study evaluations have 

some drawbacks [110, 111]. As recommended [112], we 

discuss those drawbacks in terms of conclusion, external, 

internal, and construct validity.

6.2.1  Conclusion Validity

Conclusion validity deals with drawing correct conclusions 

from the application results and findings. As case studies 

usually draw conclusions from few cases studies, conclu-

sion validity must be considered rather low. To somewhat 

alleviate this threat, we conducted two case studies in dif-

ferent domains. We showed that both case examples can be 

modeled appropriately using the proposed extension. We 

furthermore showed that industry professionals found the 

created models easy to understand and helpful. However, at 

this point we cannot make any claims as to how well indus-

try professionals can create goal models using the extension 

on their own.

6.2.2  External validity

External validity deals with the ability to generalize results 

to cases outside those studied. Collaborative CPS networks 

are of a diverse nature and exist in a variety of domains (such 

as energy, aviation, etc.) with specific characteristics. We 

cannot rule out the need for further adjustment to the exten-

sion for goal models of collaborative CPS for those domains. 

However, our case study has shown the applicability of the 

proposed extension for goal models of collaborative in two 

different domains, automotive and industry automation. We 

expect the proposed extension to be at least somewhat ben-

eficial to the development of collaborative CPS from other 

domains.

Another remaining threat is if industry will ever use the 

extension on their own. Particularly, there is a threat that 

goal models at all will not be used by industry as recent 

studies have shown industry’s reluctance to the use of goal 

modeling [26, 27]. While we cannot rule out this possibility, 

we want to highlight that we have shown for the automotive 

industry that goal models are welcomed when the introduc-

tion is accompanied with training and tutoring sessions [52]. 

Regarding the robot case example, the idea of using goal 

models was very well-received as it was a good match for 

how engineers thought of their robots. We found that the 

engineering was already centered around the goals, the indi-

vidual robots have and around questions like when shall a 

robot fulfill which goal, etc. However, previously this was 

not made explicit and, therefore, the benefits of using goal 

models were quite obvious to our partners.

6.2.3  Internal validity

Internal validity deals with the ability to infer a causal rela-

tionship between treatment and outcome. As the goal models 

were largely created by the same persons that created the 

extension, a certain degree of bias cannot be dismissed com-

pletely. However, all goal models were frequently reviewed 

by industry professionals not involved in the development 

of the extension.

Due to being part of the CrESt-project, the timing of the 

workshops, data collection procedures, etc., were not com-

pletely under our control, but we made use of the means the 

project setup provided. Nevertheless, there was always suf-

ficient space for industry feedback either in writing as com-

ments to the models or during discussions. While we gave 

all participants the opportunity to give their opinion publicly 

or privately, we cannot rule out that some participants might 

have kept their opinions to themselves.

6.2.4  Construct validity

Construct validity deals with the generalizability of the 

results found for the particular case example to the underly-

ing theory. I.e. in our case it must be questioned whether the 

case studies are indeed good representatives for collabora-

tive CPS and whether the effects observed during applica-

tion can be attributed to the proposed extension or whether 

these are only particular to the case example. Hence, there 
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is a risk as the requirements for the iStar extension were 

based on findings from the evaluation case examples, that 

the proposed extension does only address specific issues for 

the two case examples under investigation, but that these are 

not representative for collaborative CPS at large.

One further aspect is the generalization beyond the use 

for specifying collaborative CPS. Therefore, it is to note 

that some of the modeling elements we use are not specific 

for collaborative CPS. Furthermore, we make also use of 

other proposed extensions that aimed at other system types. 

Consequently, we cannot state that the proposed extension 

is limited to the specification of collaborative CPS, nor can 

we state that there will be no collaborative CPS that cannot 

be modeled using our extension. However, the applicability 

on two case examples of collaborative CPS indicates that 

the proposed extension allows modeling collaborative CPS. 

Nevertheless, we assume that also other system types might 

be documented using the extension, particularly those we 

have briefly sketched in the related work section. However, 

we cannot make any reliable claim on this as this was not in 

the focus of our evaluation.

6.3  Inferences

In this paper, we have proposed a GRL-compliant iStar 

extension to support goal modeling of collaborative CPS 

that partake in dynamic CPS networks. The proposed mod-

eling elements have been created based on needs identified 

in industrial applications of goal modeling and have been 

evaluated for their ability to solve these needs. In addition, 

the resulting overall goal models have shown valid, useful, 

and concise. Hence, we can state that the proposed extension 

is an adequate solution to an industrial problem situation. 

However, it must be questioned whether goal models in gen-

eral are a valid approach for supporting the engineering of 

collaborative CPS. Particularly, for collaborative CPS it is 

the case that goal modeling is seen as an intuitive approach 

as it can be expressed that the individual CPS have their 

own goals to fulfill, which might be contradictory from one 

system to another as well as the overall goals of the CPS 

network. Insights derived from the workshops conducted 

with industry partners corroborate this claim. It was seen 

as very valuable to identify collaborative CPS and CPS net-

work goals right from the beginning and already discuss 

dependencies and conflicts arising from the interplay of the 

individual CPS. Particularly, for the CTR case example it 

was confirmed that initial conceptual goal models can sup-

port the overall development as the industry partner involved 

follows a goal-oriented implementation approach. I.e. the 

defined goals are each instantiated by code and deployed on 

the robot. Additionally, key performance indicators (KPI) 

are defined to allow monitoring of the goal fulfillment 

of each goal and decision-making which goal fulfillment 

should be optimized in which situation.

Although the approach was only evaluated using two case 

examples, they have shown that the proposed extension is 

a valid and valuable solution at least for these. However, as 

the case examples were taken from different domains and 

the results were also discussed with partners working on 

other collaborative CPS and also stem from other domains, 

we are confident that the approach can be a valuable con-

tribution in general. Particularly, the application of goal 

modeling for supporting the engineering of collaborative 

CPS seems very reasonable as discussing goal conflicts 

between individual collaborative CPS as well as between 

individual collaborative CPS and CPS network is vital for 

the engineering of these systems. Thus, the use of goal mod-

els can improve the engineering of these systems already 

in the early stages and – as, for instance, the application to 

the CTR case has shown – can also be used to structure the 

engineering process of these systems.

6.4  Future work

So far, we have identified limitations and needs for future 

work regarding the extension and its evaluation, which we 

will summarize in this section. As discussed in Sect. 5.4.1 

some limitations to the proposed GRL-compliant iStar 

extension still exist. These lead to the need for further 

improvements to the extension as discussed in Sect. 5.4.2. In 

addition, we have discussed limitations originating from the 

threats to validity of the evaluation as outlined in Sect. 6.2, 

which have been identified as needs for future evaluation 

efforts in Sect. 6.3.

Thus, two major research directions exist that need to be 

coped with in future work:

• Extending and improving the proposed GRL-compliant 

iStar extension for collaborative CPS. Most notably there 

still exists a need for a formal definition of semantics to 

allow for automated analyses and reasoning about goal 

fulfillment relations. In addition, industry needs exist 

regarding the documentation of contribution links with 

values depending on the different configurations as well 

as extended tool support.

• Extending the evaluation of the proposed GRL-compliant 

iStar extension for collaborative CPS. In the evaluation 

of the proposed extension, we have shown that the exten-

sion can be used to adequately model the goals for the 

two selected industry case examples. We have further 

shown that industry professionals regard the extension 

as helpful. Beside the need for further evaluation using 

different case examples, it is also of interest to study the 

use of the extension by industry professionals not only as 
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interpreters of the models but their ability to create goal 

models using the extension themselves.

7  Conclusion

In this paper, we have presented a GRL-compliant iStar 

extension for collaborative CPS. Collaborative CPS form 

CPS networks in which they can achieve goals that cannot 

be achieved by individual CPS on their own [22]. In previ-

ous work we have investigated how suitable GRL/iStar is to 

model such collaborative CPS that form CPS networks [23]. 

We found that goal modeling – particularly using GRL – is 

a promising approach to specify collaborative CPS and ana-

lyze the interdependencies between the individual CPS and 

the CPS network. However, we also found that some spe-

cific characteristics of collaborative CPS and CPS networks 

are not sufficiently covered by the iStar modeling language 

so far. Therefore, in this paper we defined requirements for 

extending GRL/iStar to allow for consideration of these 

aspects. Based on these requirements, we have developed a 

GRL-compliant iStar extension and shown its applicability 

and usefulness by employing two industrial case examples. 

We used a cooperative adaptive cruise control system that 

dynamically forms platoons at runtime from the automotive 

industry and autonomous transport robots that form fleets of 

robots to fulfill transportation tasks in smart factories from 

the industry automation domain.

While we have shown the applicability of the approach to 

industrial case examples and made the case for its usefulness 

as seen by industry partners, we have also identified remain-

ing challenges for future work. In this paper we focused on 

defining an appropriate extension to foster graphical mod-

eling in the development of collaborative CPS. This means 

that we mainly addressed communication aspects, support 

for early comprehension and representation of complex rela-

tions within the CPS network, and manual analyses of goal 

relations. This was well-received by industry partners and 

has been shown to be applicable and useful for collaborative 

CPS and CPS networks. Thus, we believe this extension is a 

good starting point for further advanced analysis techniques 

to support requirements engineering of collaborative CPS 

and CPS networks. This is substantiated by the discovered 

desire for automated support in analyzing goal fulfillment 

relations and for identifying and in-depth analysis of con-

crete potentially hazardous instance-level configurations. 

Therefore, in the next step, a thorough definition of goal 

fulfillment semantics is needed. These must also consider 

challenging model elements such as circular and bidirec-

tional dependencies or contributions whose value depends 

on the respective configuration.
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