
Vol.:(0123456789)1 3

Requirements Engineering (2021) 26:325–370

https://doi.org/10.1007/s00766-021-00347-3

ORIGINAL ARTICLE

A GRL-compliant iStar extension for collaborative cyber-physical
systems

Marian Daun1 · Jennifer Brings1 · Lisa Krajinski1 · Viktoria Stenkova1 · Torsten Bandyszak1

Received: 1 January 2020 / Accepted: 5 January 2021 / Published online: 4 February 2021

© The Author(s) 2021

Abstract

Collaborative cyber-physical systems are capable of forming networks at runtime to achieve goals that are unachievable for

individual systems. They do so by connecting to each other and exchanging information that helps them coordinate their

behaviors to achieve shared goals. Their highly complex dependencies, however, are difficult to document using traditional

goal modeling approaches. To help developers of collaborative cyber-physical systems leverage the advantages of goal

modeling approaches, we developed a GRL-compliant extension to the popular iStar goal modeling language that takes the

particularities of collaborative cyber-physical systems and their developers’ needs into account. In particular, our extension

provides support for explicitly distinguishing between the goals of the individual collaborative cyber-physical systems and

the network and for documenting various dependencies not only among the individual collaborative cyber-physical systems

but also between the individual systems and the network. We provide abstract syntax, concrete syntax, and well-formedness

rules for the extension. To illustrate the benefits of our extension for goal modeling of collaborative cyber-physical systems,

we report on two case studies conducted in different industry domains.

Keywords Goal modeling · Collaborative cyber-physical systems · iStar · GRL

1 Introduction

Goal orientation has proven useful in the development of

various kinds of systems [1]. Various goal modeling tech-

niques support developers in eliciting, documenting, and

validating stakeholder intentions (e.g., [2–20]). In the devel-

opment of cyber-physical systems (CPS), it has also proven

useful to attribute goals to systems or components rather

than stakeholders [21]. This allows for documenting and rea-

soning about dependencies between the goals of different

systems. For example, an automotive cruise control has

the goal to maintain a safe distance to vehicles ahead. To

achieve this goal, it relies on the electronic stability control

to apply the brakes to the vehicle’s wheels.

Recently there has been a trend to develop highly con-

nected CPS, often referred to as collaborative CPS that form

networks at runtime to achieve goals that cannot be achieved

by individual systems [22]. For example, cooperative adap-

tive cruise control systems allow vehicles to form platoons,

where each vehicle maintains the same speed and a safe

distance to the vehicle ahead. This allows for reducing the

safety distances between the vehicles, which in turn reduces

fuel consumption for all following vehicles. The dependen-

cies between goals in such a network are highly complex.

Besides each system having its own goals, which can depend

on the fulfilment of goals of another system in the network,

the network itself has goals that entirely depend on some

combination of goals fulfilled by the individual systems. For

example, the goal of the platoon to maintain small safety

distances depends on each vehicle in the platoon to main-

tain exactly the preset speed. Moreover, these networks can

vary in size and often contain multiple systems of the same

kind. Consequently, there is not only one possible network

 * Marian Daun

 marian.daun@paluno.uni-due.de

 Jennifer Brings

 jennifer.brings@paluno.uni-due.de

 Lisa Krajinski

 lisa.krajinski@paluno.uni-due.de

 Viktoria Stenkova

 viktoria.stenkova@paluno.uni-due.de

 Torsten Bandyszak

 torsten.bandyszak@paluno.uni-due.de

1 University of Duisburg-Essen, Essen, Germany

http://orcid.org/0000-0002-9156-9731
http://orcid.org/0000-0002-2918-5008
http://orcid.org/0000-0002-4936-1873
http://orcid.org/0000-0002-5770-0652
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-021-00347-3&domain=pdf

326 Requirements Engineering (2021) 26:325–370

1 3

configuration but a multitude of configurations that need to

be considered. So, a goal might not depend on one goal to be

fulfilled by one particular system in the network but rather

that one or a certain number of systems fulfill certain goals.

For example, collaborative transport robots can form fleets

that optimize transportation of goods. They do so, by among

others, maintaining a map of their surroundings. To keep

this map up to date each transport robot depends on all the

other robots to keep their map up to date. Traditional goal

modeling techniques are ill-equipped to handle the complex

dependencies between systems and between systems and the

network [23]. The resulting goal models are difficult to com-

prehend because of their large sizes and their multitude of

dependencies. Hence, there is a need to provide a goal mod-

eling approach that takes the particularities of collaborative

CPS and its developers’ needs into account.

In previous work we evaluated the use of the goal-ori-

ented requirement language (GRL) for modeling collabora-

tive CPS [23]. While we identified that goal modeling with

GRL can considerably contribute to the development of col-

laborative CPS, we identified several shortcomings of GRL

for modeling collaborative CPS. The study was conducted

using two industry case examples and involved workshops

and discussions with industry partners. Hence, application

of GRL for modeling collaborative CPS in industry was the

major concern of the investigation.

To this end, this paper contributes a GRL-compliant

extension to the well-established iStar1 language [21, 24]

to provide support in the engineering of collaborative CPS.

Basing our extension on the iStar 2.0 definition given by

Dalpiaz et al. [21] allows principle compatibility with other

iStar extensions. In addition, as best practices and guidelines

do exist for extending iStar 2.0, this supports the definition

of a coherent extension. GRL compliance is desired as we

determined a severe need for standardization in industry and

the use of GRL2 was highly appreciated by our industry part-

ners. In this paper, we define requirements based on these

shortcomings and provide a GRL-compliant extension of

iStar for modeling collaborative CPS.

The major goal of this extension is to provide developers

with a goal modeling language that leverages the advan-

tages of goal orientation while reducing the complexity by

removing the necessity to explicitly document each indi-

vidual dependency in all possible network configurations.

Thus, in this paper we place emphasis on the graphical

modeling, particularly under consideration of reducing the

complexity of the resulting models. Our aim is to improve

manual analysis, understanding of depicted situations,

and communication. At the current point we do not place

emphasis on automated evaluation of the goal models. This

is particularly for the reason that our industry partners were

more interested in gaining an understanding of the system

to be developed than a formal goal fulfillment analysis. As

industry is typically reluctant to introduce goal modeling

approaches in practice [26, 27], we develop the extension

based on observed industry needs.

Our extension provides various means to reduce the com-

plexity of documenting goals for collaborative CPS while

maintaining precision, comprehensibility, and unambigu-

ousness. In this paper, we provide abstract syntax, concrete

syntax and well-formedness rules for our extension. Our

extension was evaluated using two case studies: an example

from the industry automation domain (a fleet of autonomous

transport robots used in a smart factory) and an example

from the automotive industry (a modern cooperative adap-

tive cruise control system). To show that this extension

serves observed needs [23], we use the same case examples

for investigation. In addition, the same industry partners

were involved in workshops and discussions. Both case

examples were provided by industry partners in the context

of the CrESt-project.3 Beside reporting on this case study

evaluation, we also report findings gained from discussions

of the case study with our industry partners.

This paper is structured as follows: Sect. 2 provides

background information on goal modeling in general and

the iStar modeling language in particular. Furthermore,

we detail the specific characteristics of collaborative CPS

to illustrate the shortcomings of traditional goal modeling

techniques for these kinds of systems and formulate specific

requirements to be addressed by our extension. Section 3

discusses related work and evaluates it w.r.t. these require-

ments in order to highlight the shortcomings of traditional

goal modeling techniques. In Sect. 4 we present our exten-

sion including its foundations, abstract syntax, concrete syn-

tax and well-formedness rules. The evaluation of the exten-

sion is shown in Sect. 5. Section 6 summarizes and discusses

the major findings and threats to validity of our case study

evaluation, while Sect. 7 concludes the paper.
1 iStar was originally proposed by Yu et al. [24] and named i*. Later

on, Dalpiaz et al. [21] defined a new metamodel for the language tak-

ing several extensions into account. This work is typically referred to

as iStar 2.0. In the remainder of the paper, we use iStar to refer to

approaches dealing with i* or iStar 2.0 as long as the distinction is

not relevant for our extension.
2 The goal-oriented requirement language (GRL) is standardized by

Recommendation ITU-T Z.151 [25] which is issued by the Interna-

tional Telecommunication Union. The GRL builds upon iStar so that

a common fundament between iStar and GRL is given.

3 CrESt (Collaborative embedded systems) is a joint research project

publicly funded by the German Federal Ministry for Education and

Research (BMBF).

327Requirements Engineering (2021) 26:325–370

1 3

2 Background

In this section, we will briefly introduce iStar and goal

modeling foundations (Sect. 2.1) and discuss characteris-

tics of collaborative CPS (Sect. 2.2) that result in the need

to define an extension to existing goal modeling approaches

(Sect. 2.3).

2.1 Goal modeling

Goal modeling is an established requirements engineering

technique [28]. Goal modeling helps requirements engineers

in focusing on the intentions of stakeholders and document-

ing these in a structured format which allows for detect-

ing relations between different goals such as dependencies

and conflicts [29]. A variety of goal modeling approaches

exist. Most of these approaches document goals in a tree- or

graph-based fashion, which allows for decomposing goals

into smaller sub-goals. Commonly used are the KAOS goal

modeling language [30, 31], the iStar goal modeling lan-

guage [21, 24], and the GRL [25, 32]. For a recent overview

regarding the state of the art of goal-oriented requirements

engineering, please refer to the systematic review by Horkoff

et al. [28]. Our extension targets the popular iStar modeling

language which forms the basis for the standardized goal-

oriented requirement language (GRL). In Sect. 2.1.1 we pro-

vide a brief overview of iStar and in Sect. 2.1.2 we point out

differences between iStar and GRL.

2.1.1 iStar

The iStar goal modeling language [21, 24] is graph-based—

goal graphs are assigned to different actors (which can be

human or other stakeholders, the system under development,

other systems in the context, or even components of the sys-

tem). Between these actors and the goals (i.e. intentional

elements as goals are further differentiated) dependencies

and contributions can be specified.

Therefore, core concepts underlying iStar include actors,

their intentions (e.g., goals they would like to achieve) and

dependencies between actors. The iStar modeling language

distinguishes two different perspectives. The Strategic

Dependency (SD) model specifies the actors that have inter-

est in the system (and thus provide rationales for system

requirements), and their dependencies. There are several

dependency types. An actor may depend on goals or tasks

that need to be achieved, or resources provided by some

other actor. In contrast, the Strategic Rationale (SR) model

documents the internal intentional elements and their rela-

tionships of an actor and thereby provides a detailed view on

requirements each actor aims to achieve. iStar distinguishes

four different intentional elements: goals, qualities (formerly

called “soft goals”), tasks, and resources. It is also common

to display both the dependencies among actors, as well as

their internal intentional elements in one diagram as a com-

bined or hybrid SD/SR model. This way the actor depend-

encies can be further detailed by, for instance, allowing to

express dependencies between a goal and a task of different

actors.

Figure 1 shows an exemplary iStar model, which repre-

sents an excerpt of a travel booking transaction. It shows

the actors traveler and travel agency. The goal trip booked

is either fulfilled when the task book bundle or the goal trip

parts booked are fulfilled. The task book bundle depends

on the travel agency regarding the dependum trip bundle

booked.

2.1.2 Goal-oriented requirement language (GRL)

The goal-oriented requirement language (GRL) is part of

the User Requirements Notation (URN) as standardized by

the International Telecommunication Union (ITU) in Rec-

ommendation Z.151 URN [25]. GRL is based on a subset

of iStar [33]. While GRL shares many core concepts with

iStar, some differences exist. For example, GRL is less

restrictive than iStar, particularly regarding the usage of

relationships for linking intentional elements [32], which

has also been shown to support the diversity of how goal

models are actually created and used [34]. This is favored

by our industry partners as it gives them more freedom to

express their thoughts and reduces the number of syntacti-

cal errors in their goal models. As GRL does not prevent

users from adhering to the stricter rules set by iStar, we did

not observe any issues arising from the loosening of those

restrictions. For a more detailed discussion regarding the

differences between iStar and GRL, please refer to the work

of Amyot et al. [32]. As the usage of standardized languages

is of importance to our industry partner and previous work

has shown the suitability of GRL for the development of col-

laborative CPS [35], we ensured that the proposed extension

can be used with GRL as well.

2.1.3 GRL-compliant iStar extension

In our extension, we build upon concepts from both GRL

and iStar. This is due to the fact that while being very simi-

lar, small differences exist that come with different advan-

tages and disadvantages. Mainly, we target GRL due to

its simplicity and its popularity among industry partners.

We target iStar because there are established guidelines

for extending iStar that can support the development of a

high-quality extension. In addition, we reuse useful existing

concepts already proposed by other iStar extensions, which

helps reduce redundancy and increases acceptance.

328 Requirements Engineering (2021) 26:325–370

1 3

In detail, we use existing concepts as illustrated in Fig. 2.

The figure shows the main concepts from GRL, iStar, and

an iStar extension from which we borrow a specific concept.

As can be seen, iStar 2.0 differs from GRL in that it includes

two more specialized relationship types, i.e., qualifies and

needed-by relationship. Regarding the relationships between

intentional elements, we stick to GRL since it is less com-

plex and less restrictive, which better reflects industry needs

as it allows for easier model creation. However, although we

do not include these two specific relationship concepts in

our extension, as we did not see any need, it is still possible

to use them. Furthermore, iStar 2.0 defines roles and agents

as specializations of actors, which we take as the basis for

defining specific actor types for modeling collaborative CPS

and CPS networks. In addition to iStar and GRL concepts,

we use the coordination task concept from a related exten-

sion proposed by Teruel et al. [36].

2.2 Collaborative cyber-physical systems and their
characteristics

CPS are software-intensive systems that closely integrate

physical and software parts [22, 37, 38]. In addition, CPS

are highly interactive with their environment in sensing and

actuating context values and tightly communicating with

other CPS [37, 39]. For example, all vehicles in a platoon

Fig. 1 iStar travel booking example (based on [21])

Fig. 2 Relation between iStar,

GRL and our extension

329Requirements Engineering (2021) 26:325–370

1 3

record their surroundings like other vehicles or road signs

with their sensors and communicate with each other via sen-

sor data in order to offer a high level of safety.

Collaborative CPS can form networks in which different

constituent systems collaborate and coordinate their activi-

ties in order to achieve goals that go beyond the goals an

individual system can achieve (cf. [22]). For example, col-

laborative transport robots can distribute tasks among each

other in such a way that all robots remain in motion and there

are no overloaded or underloaded robots. This enables them

to achieve a higher goal, which means that transport tasks

are distributed in a coordinated manner and thus completed

faster. These networks are highly dynamic as they reshape

at runtime when systems join and/or leave the network. For

example, a platoon reshapes as vehicles enter or leave the

platoon.

Most CPS must be considered safety–critical, which

consequently leads to the need for thorough engineering

processes [40]. Vital parts of these engineering processes

are early safety analyses. It has been shown that the use of

goal models allows for application of safety analyses in very

early phases [41] and is therefore considered beneficial. In

case of collaborative CPS, safety can be increased through

cooperation between individual systems. For example, in the

automotive domain, the term “cooperative vehicle safety” is

used to denote CPS applications that aim at avoiding haz-

ards and accidents through inter-vehicle collaboration [42,

43]. On the other hand, the safety of collaborating CPS also

poses additional challenges, e.g., due to the involvement of

several manufacturers and the lack of a central authority

governing the development and operation of CPS networks

[44, 45]. As will be shown in the remainder of this paper,

the use of goal models illustrating the interplay of individual

systems and the network can further support increasing the

safety of collaborative CPS.

2.3 Requirements for a GRL-compliant iStar
extension for collaborative cyber-physical
systems

Modeling collaborative CPS with iStar/GRL goal mod-

els is challenging as such goal models have the tendency

to become large, complex, and thus unsuitable for human

engineers and analysts. In our previous work [23] we report

empirical results, from which we identified challenges for

goal modeling of collaborative CPS. We conducted two

case studies with industry partners from different domains.

The goal of the two case studies was to systematically iden-

tify challenges and limitations of goal modeling with GRL

related to the representation of typical collaborative CPS

characteristics (see Sect. 2.2). Beside the general obser-

vation that goal models of collaborative CPS can easily

become large and complex, we identified six major chal-

lenges regarding what needs to be represented when mod-

eling goals of collaborative CPS and CPS networks.

We further analyzed and refined these challenges in order

to derive specific, detailed requirements for extending iStar

so that it allows engineers to specify collaborative CPS in a

goal-oriented manner. On the one hand, these requirements

are grounded in the characteristics of collaborative CPS and

CPS networks. On the other hand, the requirements are also

substantiated by empirical evidence from our two case stud-

ies reported in our previous work and are thus aligned with

the specific needs faced by requirements engineers. Moreo-

ver, the requirements are tailored specifically for the iStar

goal modeling language that shall be extended. Figure 3

illustrates the three sources that were considered during the

requirements definition process.

In the following, we briefly summarize the six major

challenges reported in [23] and present the respective iStar

extension requirements we derived from these challenges.

Fig. 3 Requirements sources for

the proposed extension

330 Requirements Engineering (2021) 26:325–370

1 3

2.3.1 Challenge 1: need for distinction between network

and systems

Collaborative CPS form networks with other collaborative

CPS, which allows them to enhance their functionality and

fulfill goals they cannot fulfill on their own. It is impor-

tant to be able to identify the owner of a goal; i.e. it must

be distinguishable whether an individual system strives to

fulfill a certain goal or just contributes to an overall goal of

the network. In some cases, engineers need to reason about

the CPS network’s goals independent of the goals of the

collaborative CPS, and in some cases, engineers need to be

able to reason about the network under consideration of the

individual collaborative CPS that are part of the network and

their goals. Therefore, we can derive the following specific

requirements for an iStar goal modeling extension:

Req-1.1: The iStar extension must allow the distinction

between individual CPS and the network of CPS.

Req-1.2: The iStar extension must allow for flexibil-

ity regarding the visual representation of the relation of

the CPS network and individual CPS. I.e. it must be pos-

sible to specify individual CPS as part of the CPS network

and also allow for comparing the CPS network and CPS at

the same level of abstraction.

2.3.2 Challenge 2: need for mirroring of goals

In many cases goals of the network rely on very similar goals

of the individual systems. For example, the vehicles, which

are the individual systems, have the goal to reduce their indi-

vidual driving time, and the platoon, which forms the col-

laborative CPS network, has the goal to save the overall driv-

ing time of all vehicles. Hence, it is often the case that the

network and the individual system have very similar goals

that mutually depend on each other. Consequently, there is a

need to assign goals to individual CPS as well as to the CPS

network and to document the relations between those goals,

which leads to the following requirements:

Req-2.1: The iStar extension must allow for intentional

elements to be attributable to individual CPS.

Req-2.2: The iStar extension must allow for intentional

elements to be attributable to CPS networks.

Req-2.3: The iStar extension must allow for documenting

of mutual dependencies between intentional elements of the

collaborative CPS network and collaborative CPS.

2.3.3 Challenge 3: need for considering multiple identical

collaborative CPS

A collaborative CPS network may contain multiple col-

laborative CPS of the same type, e.g., a platoon consists

of several identical vehicles. The explicit specification of

each possible network is infeasible as this would require

specifying not only a large number of possible network con-

figurations, but also networks of an extremely large size.

Consequently, not only is the explicit modeling of the goals

for each possible network configuration infeasible, even the

explicit modeling of all individual collaborative CPS in large

networks is infeasible. Consequently, suitable abstractions

are required to enable the modeling of multiple identical

CPS whose number can vary. Therefore, we define the fol-

lowing requirements:

Req-3.1: The iStar extension must allow for documenting

all networks without the need for modeling each possible

network explicitly.

Req-3.2: The iStar extension must allow for documenting

identical collaborative CPS in a network without the need

for modeling each collaborative CPS individually.

2.3.4 Challenge 4: need for dependencies

between systems of the same type

Another common situation that needs to be considered is a

collaborative CPS relying on systems of the same type to

fulfill the same goal. For example, all following vehicles

in a platoon have the goal to avoid collisions, which can

partly be fulfilled by regulating their speed based on each

other’s speeds. As the goal model cannot show each indi-

vidual collaborative CPS that can be part of such a network,

abstraction mechanisms are needed to adequately represent

the occurrence of multiple identical systems and the depend-

encies between them. Particularly, there is a need to consider

dependencies, where one system’s intentional element relies

on an intentional element from other systems of the same

type. Therefore, we can derive the following specific require-

ments for an iStar goal modeling extension:

Req-4.1: The iStar extension must allow for documenting

intentional elements of collaborative CPS of the same type.

Req-4.2: The iStar extension must allow for documenting

dependencies between an intentional element of a collabora-

tive CPS and the same intentional element of other systems

of the same system type.

2.3.5 Challenge 5: need for roles and dynamic role

assignments

Collaborative CPS in networks may have different respon-

sibilities. This might even be true for identical collabora-

tive CPS. For example, in a platoon, all collaborative CPS

are vehicles, but the foremost vehicle has the role of lead

vehicle and thus the responsibility for all vehicles in the

platoon. Therefore, there is a need to assign roles to collabo-

rative CPS in a network. As collaborative CPS networks are

dynamic, and therefore, reshape at runtime as collaborative

CPS join or leave the network, roles must be reassignable

331Requirements Engineering (2021) 26:325–370

1 3

at runtime. Therefore, we can derive the following specific

requirements for an iStar goal modeling extension:

Req-5.1: The iStar extension must allow for documenting

different roles a collaborative CPS can be assigned.

Req-5.2: The iStar extension must allow for documenting

mechanisms to reassign roles.

2.3.6 Challenge 6: need for considering conflicts

between goals of the individual collaborative CPS

and the CPS network

Collaborative CPS join an existing or form a new network

to achieve some goals they cannot achieve by themselves.

However, participating in a network may be a trade-off that

impedes the fulfillment of other goals. Therefore, it is some-

times impossible to assign values to contribution links for

intentional elements of the network actor because the value

can be different depending on the goals of each collaborative

CPS. For example, in a platoon it can happen that vehicles

have a common goal they can reach together but differ in the

other goals. For example, it can be important for one vehi-

cle to drive in an environmentally friendly manner, while

another vehicle in the same platoon may not consider this

important. Therefore, we define the following requirement:

Req-6.1: The iStar extension must allow for contributions

to be assigned variable values that can change depending

on the goals of a collaborative CPS.

2.3.7 Further requirements

As already outlined, the iStar extension shall be GRL-com-

pliant due to the fact that we found GRL well-received by

our industry partners in the previous investigation. In addi-

tion, the extension shall adhere to established guidelines for

iStar extensions [46]. Therefore, Table 1 gives the individual

guidelines and briefly explains how they shall be achieved,

and which section of this paper elaborates on the respective

aspects. Note that some realizations overlap (i.e. the same

approach is taken), in these cases we avoid redundancy by

simply referring to the aforementioned realization.

3 Related work

For discussing the related work, we focus on three kinds

of approaches commonly proposed in the state of the art.

Section 3.1 will introduce goal modeling approaches for

systems-of-systems, which can be interpreted as a network

of collaborative CPS that is designed top to bottom, with

exact knowledge about the partaking systems and their com-

positions. Section 3.2 discusses goal modeling approaches

for multi-agent systems, which are in so far related as

commonly the case is made that the agents in multi-agent

systems collaborate to maximize their goal fulfillment. How-

ever, unlike for collaborative CPS, the network itself is typi-

cally not given the credit of having its own goals. Lastly, in

Sect. 3.3 we review other existing extensions for the iStar

goal modeling language, which we partly build upon, as we

will show in Sect. 3.4.

3.1 Goal modeling approaches
for systems-of-systems

Systems-of-systems (SoS) engineering is a related research

area where the consideration of goals is of particular interest.

Distinguishing goals of the SoS under consideration from

the goals of the individual constituent systems is important

in the requirements engineering for SoS [53]. These two

levels (which are also sometimes called “macro level” and

“micro level” [54]) of goal modeling for SoS allow analyz-

ing collaborations between individual systems by focusing

on how their individual goals contribute to SoS-level goals

[55]. These contributions are conceptually described by

Cavalcante et al. [55], without proposing a specific mod-

eling notation; instead, it is referred to traditional goal

modeling syntax elements, such as actors for modeling both

SoS and its constituent systems. While decomposition links

are mainly used within each goal modeling level, contribu-

tion links also occur between goals on different levels [55].

Additionally, Cavalcante et al. propose a new kind of link,

interaction links, to explicitly account for emergent behavior

through goals whose satisfaction results from interactions

among individual systems.

In addition to such conceptual approaches, there are also

specific guidelines and notations for modeling SoS goals

and constituent system goals. Lewis [53] suggests creating

separate AND/OR goal trees for the individual systems and

the SoS in order to identify common goals in the different

individual systems’ goal models as well as conflicting goals,

both between individual systems and the overall SoS goals.

Garro and Tundis use stereotypes to characterize the goals

of stakeholders and of complex SoS used to achieve these

goals [56]. Additionally, relationships between these goals

are modeled in a manner similar to UML use case diagrams.

According to Silva et al., closely connected to SoS goals

is the mission concept [57]. Goals are associated to the mis-

sion of the overall SoS and the mission of the constituent

systems. Thereby, the goals related to the mission of an SoS

are achieved through collaboration between the individual

systems. Hence, Silva et al. [58] propose a mission-centered

SoS design process, covering a dedicated mission-level,

where missions of individual systems and the SoS are mod-

eled. For modeling missions in an SoS context, they propose

the mKAOS approach [58–60] that builds upon the KAOS

goal modeling language [31] and includes SoS-relevant

extensions. For operationalizing goals, mKAOS includes

332 Requirements Engineering (2021) 26:325–370

1 3

two kinds of capability models, one of which is concerned

with modeling information exchange between individual

systems and the resulting capabilities the SoS provides

(denoted “communicational capabilities”). Furthermore,

mKAOS includes a dedicated emergent behavior model

that groups and relates such SoS capabilities to resulting

emergent properties/functionalities. Garcés and Nakagawa

provide guidelines and recommendations for the creation of

mKAOS models [61]. These also include global missions

of a SoS on multiple levels of abstraction by goal refine-

ment and abstraction to identify rationales behind a SoS’s

missions.

3.2 Goal modeling approaches for multi-agent
systems

Another related term is that of multi-agent systems (MAS),

which refers to systems composed of several autonomous

agents that collaborate in order to autonomously (i.e.,

without human intervention) accomplish tasks (cf. [62]).

According to Wooldridge [63], apart from autonomy, reac-

tiveness, and proactiveness, an agent has essential social

abilities allowing the engagement in collaborations and

interactions to jointly solve complex problems. In such a

collaboration, however, an agent makes rational decisions

Table 1 Realization of the iStar extension guidelines from [45]

a The industry professionals partaking have years of experience in their field and were involved in many substantial projects for their companies,

partly taking leading roles. Thus, we consider them domain experts in the domains of automotive, industry automation and robotics. Among

the authors of this study are researchers highly experienced with GRL and iStar. They have applied GRL and iStar in various industrial settings,

published research on this topic (e.g., [23, 35, 48]), have years of experience in teaching GRL and iStar in university master level requirements

engineering courses (cf. [49, 50]) and have defined an industry course teaching GRL to industry professionals [51]. The course is in use at the

Schaeffler AG to teach goal modeling for the engineering of automotive CPS [52]. However, please note that the authors are no domain experts

and the industry participants no GRL/iStar experts

Guidelines taken from [45] Realization

G1 Preserve the language (iStar) original syntax It is a requirement to propose an extension that makes use of the

original syntax and extends this syntax naturally. The extension of

the concrete syntax will be shown in Sect. 4.3, the integration of

new elements with elements of the original syntax can be seen in

Sect. 5.2

G2 Carry out consistent, complete and without-conflicts extensions and

follow a process/method to do them

We extend the iStar metamodel systematically to provide a clear

definition and also for relating elements of the original iStar

notation to the newly proposed elements. The metamodel of the

extension can be found in Sect. 4.2

G3 Perform a literature review, include the participation of domain

experts and iStar experts and model systems of application area

before extending

We conducted a literature review on the topic to find existing iStar

extensions that can contribute to the above-mentioned require-

ments. Section 3 will discuss related works and Sect. 3.4 will

explicitly show, how these extensions can contribute to fulfilling

the defined requirements. In addition, we conducted a study with

domain experts to identify industry needs for an iStar extension for

collaborative CPS [23]a

G4 Describe a clear definition of the extension concepts see G2

G5 Propose concrete and abstract syntax of the extension We specify the abstract syntax using a metamodel that extends the

iStar 2.0 metamodel. In Sect. 4.1 we introduce a GRL-compliant

iStar metamodel extension and extend this in Sect. 4.2 to the

specifics of collaborative CPS. We provide a definition for the con-

crete syntax in Sect. 4.3 and show its application to industrial case

examples in Sect. 5.2. This application also allows for verifying

consistency between the defined concept and the concrete syntax

G6 Check consistency between abstract and concrete syntaxes see G5

G7 Relate concepts introduced by the extensions with the iStar concepts see G2

G8 Define extensions with the smallest possible number of modifica-

tions and new representations in order not to complicate the use of

the modeling language (iStar)

see G2

G9 Propose careful and simple graphical representations, able to be

drawn on paper without a tool

The concrete syntax extensions are designed to seamlessly integrate

with the existing iStar syntax. Furthermore, we define the concrete

syntax based on guidelines proposed by Moody [47] to achieve a

simple and intuitively usable graphical notation

333Requirements Engineering (2021) 26:325–370

1 3

w.r.t. maximizing its own benefit according to its agent-

internal goals and interests (cf., e.g., [63]). This is reflected,

for instance, in the established BDI reference model for

autonomous agents (cf. [64, 65]), which describes an agent’s

mental attitudes by information about the current state of its

surroundings (Beliefs), the set of tasks it principally aims

to achieve (Desires), and the tasks it is actually carrying

out (Intentions), all of which determine an agent’s behavior.

Multiple iStar-based agent-oriented modeling approaches

have been proposed [66]. Goal-based MAS approaches typi-

cally consider goals as runtime entities that are used during

operation of agents to coordinate the interaction within a

MAS as well as single agents (cf., e.g., [67]). Thus, goal del-

egation during operation of a MAS (cf., e.g., [68]) is also an

important topic for MAS development. Similarly, the opera-

tional semantics of goals as well as their dynamic lifecycle

are also considered by some approaches [69].

An important concept considered for the development of

MAS is the role concept. The role concept is essential for

both describing the static organization and structure of a

MAS, as well as for enabling the formation of multi-agent

systems (cf. [70, 71]). Roles an agent can take are typically

defined by a set of responsibilities and a set of permissions

[72]. The current roles of an agent define its functionality

and behavior, as well as the possible interactions with other

roles that can be taken by other agents (cf. [73, 74]). In par-

ticular, the responsibilities can be seen as required function-

alities related to a certain role [74]. A role can be responsible

for carrying out a task on its own, but also be involved in a

collaboration to jointly achieve some task [73]. Such a col-

laboration is sometimes named an “agent group”, i.e. a set

of agents that are related via interactions of their roles [75].

There can be relationships between roles, such as compat-

ibility and dependencies [76, 77]. Roles can also determine

a hierarchical structure of a MAS [78].

Specific goal modeling approaches for MAS include

Tropos [2], where, among others, beliefs are considered as

a dedicated modeling concept, in addition to the original

iStar goal modeling language it is built upon. The Tropos

approach comprises a methodology that covers the early

and late requirements phases, where goal models are used,

as well as later phases up to the implementation of agent-

based software systems. In the late requirements analysis

phase, the system under development is introduced as an

actor and related to stakeholders using dependency relation-

ships. Goal-based reasoning in the Tropos methodology is

described in detail by Giorgini et al. [79].

The goal modeling approach proposed by Zhong and

DeLoach [80] explicitly distinguishes goal classes and goal

instances. The latter are created and assigned to specific

agents at runtime. Furthermore, they introduce relationship

types that can materialize between goals in order to spec-

ify control flow structures, such as a goal being triggered

by another goal, or goal precedence (i.e., a goal requires

the execution of some other goals before being allowed to

become active). Goal instances are also explicitly considered

by Thangarajah et al. [81], where goal models are used to

identify interaction between different goals an agent may

be able to achieve simultaneously. Cheong and Winikoff

use so-called interaction goals, which specify goals of the

interaction between different agents, to design multi-agent

systems [82–84]. These interaction goals are modeled in a

hierarchical goal tree.

3.3 Specific iStar goal modeling extensions

The basic iStar goal modeling language, as described in

Sect. 2.1.1, has been extended by researchers in several

ways. A recent survey of iStar extensions was provided by

Gonçalves et al. [85]. In the following, we will review some

of the approaches that are related to our approach.

Teruel et al. proposed an iStar extension for collaborative

systems [36, 86, 87]. In this approach, the term “collabo-

rative system”, however, is not used to denote the kind of

system that is in focus of our work (cf. Sect. 2.2). Instead,

it refers to information systems that support the collabora-

tion between humans, e.g., collaborative implementation of

code with the help of a version control software like git. The

approach of Teruel et al. aims at specifying requirements of

such collaborative systems. Hence, the proposed extensions

to iStar reflect the collaboration between humans, which

results in the definition of additional concepts. Specifically,

Teruel et al. propose different task types, i.e., individual

tasks of single users as well as collaboration tasks, commu-

nication tasks, and coordination tasks. The latter three types

of tasks are used to model tasks in which two or more users

are involved and are based on the established 3C conceptual

model for groupware [88]. Along with these task specializa-

tions, participation links are proposed to model which user is

involved in which (collaboration, communication, or coordi-

nation) task. Cardinality constraints attached to these partici-

pation links specify the number of users that can be involved

in a task. Furthermore, responsibility links are used to cap-

ture goal and task responsibilities of users, which separates

responsibility from actually carrying out some collaboration

activity. Again, based on the 3C model, Teruel et al. consider

a user’s awareness of other users’ activities in the form of

awareness softgoals and awareness resources.

Ali et al. propose a goal modeling approach that enhances

Tropos goal models with context information [3]. In this

approach, variability that is present in the context of a sys-

tem under consideration is captured through annotations of

goals as well as decomposition, dependency, and contri-

bution links. That way, conditional achievement of goals,

depending on relevant context properties, can be modeled.

As a result, the overall annotated goal model specifies goal

334 Requirements Engineering (2021) 26:325–370

1 3

model variants, i.e., different ways goals can be achieved,

depending on context information. Ali et al. use the contex-

tual goal modeling approach to support the deployment of

variable systems into environments that also contain variable

parts [89]. Another approach dealing with variability is pre-

sented by Silva et al. [90]. Goal models are used to explicitly

document variability of software product lines. Therefore,

cardinalities are introduced for different intentional ele-

ments as well as for the means-end links connecting variable

intentional elements. Borba and Silva, additionally to the

cardinality concept, suggest the explicit mapping of feature

models and goal models [91].

Another related iStar extension [92] aims at modeling

ambient intelligent systems that are deeply embedded in

daily human activities and invisible to their users. Such

ambient systems, similar to CPS, integrate the physical sur-

roundings and computation, but also human users. Most

notably, the approach relates to goal modeling for collabo-

rative CPS in that it utilizes actor decomposition relation-

ships to constituent components of ambient systems. That

way, actors being composed of other actors can be modeled.

In addition, communication links between actors, includ-

ing communication between users and technology, as well

as between different technological components/subsystems

are defined.

Other iStar and GRL extensions often propose the use

of stereotypes to document additional information. For

instance, Marosin and Ghanavati propose the annotation of

vague and informal information in goals, softgoals, and tasks

via stereotypes [93]. Gailly et al. propose the documentation

of domain knowledge that is annotated using stereotypes and

defined using an ontology-based approach [94].

3.4 Requirements evaluation

In summary, there exist a multitude of approaches that can

contribute to the individual requirements defined in Sect. 2.3.

Table 2 summarizes the state of the art with respect to the

requirements. However, existing approaches are typically not

capable of fulfilling more than one requirement and not all

requirements can be fulfilled. Nevertheless, the integration

and harmonizing of existing works can support the definition

of a coherent solution concept, as we will show in Sect. 4.

4 GRL‑compliant iStar extension
for modeling collaborative cyber‑physical
systems

In Sect. 2, we introduced iStar and GRL as the founda-

tion our extension builds upon in detail and discussed the

requirements for the extension. As already some extensions

or modifications to the iStar language exist, which at least

can be partly used to address some of the challenges of goal

modeling for collaborative CPS, we do not rely on the pure

version of the iStar language but an adapted one. As out-

lined above, we had the requirement to develop an exten-

sion compliant with the GRL. In addition, we make use of

different already existing extensions that provided us with

already established modeling concepts. This is outlined in

Sect. 4.1. We build our final extension in Sect. 4.2 on this

initial metamodel consisting of the combination and integra-

tion of proposed concepts from the related work. Based on

the metamodel introduced in Sects. 4.2, and 4.3 defines the

concrete syntax for the new modeling elements. In Sect. 4.4

well-formedness rules are defined and Sect. 4.5 presents tool

support for creating models according to the extension.

In the following subsections, a cooperative adaptive

cruise control system (CACC, [95]) is used as a running

example to motivate the need of the metamodel extensions

and to illustrate the concrete syntax. A CACC is a mod-

ern version of a common adaptive cruise control (ACC).

An ACC is a cruise control system that, in addition to the

cruise control function, also ensures that the distance to the

vehicle ahead does not underrun a safe minimum distance.

The CACC is a collaborative CPS that also communicates

with other CACCs. Thus, they form a platoon (i.e. the CPS

network) which allows driving with minimized distances

between the partaking vehicles. This reduces fuel consump-

tion, emissions, and increases traffic throughput on motor-

ways [96].

4.1 Foundations for the metamodel
of the extension

Figure 4 shows the metamodel for the goal modeling lan-

guage upon which we build our extension. The goal modeling

language can be considered a combination of the iStar lan-

guage and GRL. The metamodel is similar to the metamodel

defined by Dalpiaz et al. [21]. In the following we use UML

class diagrams to define the metamodel. This ensures com-

parability with the definition of iStar 2.0 by Dalpiaz et al.

[21], who also used UML class diagrams for metamodel

definition. However, some adjustments have been made to

maintain compatibility with GRL. For example, we removed

various restrictions. An intentional element can contribute to

any other kind of intentional element, not just to softgoals,4

and all intentional elements can be refined not just goals

and tasks. Regarding the refinement, the OR-Refinement

was further separated into an IOR-Refinement and an XOR-

Refinement. A further intentional element, defined by GRL,

the belief was added. We do not include the agent concept

4 In accordance with GRL we use the term softgoal instead of qual-

ity.

335Requirements Engineering (2021) 26:325–370

1 3

Ta
b

le
 2

 P

o
ss

ib
le

 c
o
n
tr

ib
u
ti

o
n
s

fr
o
m

 t
h
e

st
at

e
o
f

th
e

ar
t

to
 a

ch
ie

v
e

th
e

re
q
u
ir

em
en

ts

R
eq

u
ir

em
en

t
C

o
n
tr

ib
u
ti

o
n
 f

ro
m

 s
ta

te
 o

f
th

e
ar

t

R
eq

-1
.1

T
h
e

iS
ta

r
ex

te
n
si

o
n
 m

u
st

 a
ll

o
w

 t
h
e

d
is

ti
n
ct

io
n
 b

et
w

ee
n
 i

n
d
iv

id
u
a

l
C

P
S
 a

n
d
 t

h
e

n
et

w
o
rk

o
f

C
P

S

D
iff

er
en

ti
at

io
n
 o

f
ac

to
rs

,
as

 i
s

co
m

m
o
n
ly

 s
u
g
g
es

te
d
 t

o
 b

e
d
o
n
e

b
y
 u

si
n
g
 s

te
re

o
ty

p
es

 (
cf

[5
5
,
9
3
,
9
4
])

,
ca

n
 c

o
n
tr

ib
u
te

 t
o
 t

h
e

fu
lfi

ll
m

en
t

o
f

th
is

 r
eq

u
ir

em
en

t

R
eq

-1
.2

T
h
e

iS
ta

r
ex

te
n
si

o
n
 m

u
st

 a
ll

o
w

 f
o
r

fl
ex

ib
il

it
y

re
g
a

rd
in

g
 t

h
e

vi
su

a
l

re
p

re
se

n
ta

ti
o
n
 o

f
th

e

re
la

ti
o
n
 o

f
th

e
C

P
S
 n

et
w

o
rk

 a
n
d
 i

n
d
iv

id
u
a

l
C

P
S
.
I.

e.
 i

t
m

u
st

 b
e

p
o
ss

ib
le

 t
o
 s

p
ec

if
y

in
d
iv

id
u
a

l
C

P
S
 a

s
p

a
rt

 o
f

th
e

C
P

S
 n

et
w

o
rk

 a
n
d
 a

ls
o
 a

ll
o
w

 f
o
r

co
m

p
a

ri
n
g
 t

h
e

C
P

S

n
et

w
o
rk

 a
n
d
 C

P
S
 o

n
 t

h
e

sa
m

e
le

ve
l

o
f

a
b
st

ra
ct

io
n

T
h
e

co
m

p
o
si

ti
o
n
 o

f
ac

to
rs

 (
cf

.
[9

2
])

 w
h
ic

h
 a

ll
o
w

s
fo

r
d
ep

ic
ti

n
g
 h

o
w

 a
 C

P
S

 n
et

w
o
rk

 c
an

b
e

m
o
d
el

ed
 a

s
co

m
p
o
se

d
 o

f
in

d
iv

id
u
al

 c
o
ll

ab
o
ra

ti
v
e

C
P

S
,
ca

n
 c

o
n
tr

ib
u
te

 t
o
 t

h
e

fu
lfi

ll
-

m
en

t
o
f

th
is

 r
eq

u
ir

em
en

t

R
eq

-2
.1

T
h
e

iS
ta

r
ex

te
n
si

o
n
 m

u
st

 a
ll

o
w

 f
o
r

in
te

n
ti

o
n
a

l
el

em
en

ts
 t

o
 b

e
a

tt
ri

b
u
ta

b
le

 t
o
 i

n
d
iv

id
u
a

l

C
P

S

S
p
ec

if
y
in

g
 s

ep
ar

at
e

g
o
al

 m
o
d
el

s
fo

r
th

e
in

d
iv

id
u
al

 s
y
st

em
s

an
d
 t

h
e

o
v
er

al
l

sy
st

em
 (

cf
.

[5
3
])

 c
an

 c
o
n
tr

ib
u
te

 t
o
 t

h
e

fu
lfi

ll
m

en
t

o
f

th
is

 r
eq

u
ir

em
en

t

R
eq

-2
.2

T
h
e

iS
ta

r
ex

te
n
si

o
n
 m

u
st

 a
ll

o
w

 f
o
r

in
te

n
ti

o
n
a

l
el

em
en

ts
 t

o
 b

e
a

tt
ri

b
u
ta

b
le

 t
o
 C

P
S

n
et

w
o
rk

s

se
e

R
eq

-2
.1

R
eq

-2
.3

T
h
e

iS
ta

r
ex

te
n
si

o
n
 m

u
st

 a
ll

o
w

 f
o
r

d
o
cu

m
en

ti
n
g
 o

f
m

u
tu

a
l

d
ep

en
d
en

ci
es

 b
et

w
ee

n
 i

n
te

n
-

ti
o
n
a

l
el

em
en

ts
 o

f
th

e
co

ll
a

b
o
ra

ti
ve

 C
P

S
 n

et
w

o
rk

 a
n
d
 c

o
ll

a
b
o
ra

ti
ve

 C
P

S

In
te

ra
ct

io
n

 l
in

k
s,

 t
o
 e

x
p
li

ci
tl

y
 a

cc
o
u
n
t

fo
r

em
er

g
en

t
b
eh

av
io

r
th

ro
u
g
h
 g

o
al

s
w

h
o
se

 s
at

is
-

fa
ct

io
n
 r

es
u
lt

s
fr

o
m

 i
n
te

ra
ct

io
n
s

am
o
n
g
 i

n
d
iv

id
u
al

 s
y
st

em
s.

 (
cf

.
 [

5
6
])

 c
an

 c
o
n
tr

ib
u
te

 t
o

th
e

fu
lfi

ll
m

en
t

o
f

th
is

 r
eq

u
ir

em
en

t

U
si

n
g
 U

M
L

 u
se

 c
as

e-
li

k
e

d
ia

g
ra

m
s

to
 e

x
p
re

ss
 t

h
e

re
la

ti
o
n
 b

et
w

ee
n
 i

n
d
iv

id
u
al

 g
o
al

s
an

d

n
et

w
o
rk

 g
o
al

s
(c

f.
 [

5
7
])

 c
an

 c
o
n
tr

ib
u
te

 t
o
 t

h
e

fu
lfi

ll
m

en
t

o
f

th
is

 r
eq

u
ir

em
en

t

A
 m

is
si

o
n

 c
o
n
ce

p
t

to
 e

x
p

re
ss

 t
h
at

 g
o
al

s
o
f

in
d
iv

id
u
al

 s
y
st

em
s

ar
e

u
se

d
 t

o
 a

ch
ie

v
e

th
e

o
v
er

al
l

sy
st

em
’s

 g
o
al

s
(c

f.
 [

5
6
])

 c
an

 c
o
n
tr

ib
u
te

 t
o
 t

h
e

fu
lfi

ll
m

en
t

o
f

th
is

 r
eq

u
ir

em
en

t

R
eq

-3
.1

T
h
e

iS
ta

r
ex

te
n
si

o
n
 m

u
st

 a
ll

o
w

 f
o
r

d
o
cu

m
en

ti
n
g
 a

ll
 n

et
w

o
rk

s
w

it
h
o
u
t

th
e

n
ee

d
 f

o
r

m
o
d
-

el
in

g
 e

a
ch

 p
o
ss

ib
le

 n
et

w
o
rk

 e
xp

li
ci

tl
y

–

R
eq

-3
.2

T
h
e

iS
ta

r
ex

te
n
si

o
n
 m

u
st

 a
ll

o
w

 f
o
r

d
o
cu

m
en

ti
n
g
 i

d
en

ti
ca

l
co

ll
a

b
o
ra

ti
ve

 C
P

S
 i

n
 a

 n
et

-

w
o
rk

 w
it

h
o
u
t

th
e

n
ee

d
 f

o
r

m
o
d
el

in
g
 e

a
ch

 c
o
ll

a
b
o
ra

ti
ve

 C
P

S
 i

n
d
iv

id
u
a

ll
y

T
h
e

co
n
ce

p
t

o
f

m
u
lt

ip
li

ci
ti

es
 a

n
d
 c

ar
d
in

al
it

ie
s

fr
o
m

 v
ar

ia
b
il

it
y
 m

o
d
el

in
g
 a

n
d
 s

o
ft

w
ar

e

p
ro

d
u
ct

 l
in

e
en

g
in

ee
ri

n
g
 c

an
 b

e
u
se

d
 t

o
 d

ep
ic

t
ac

to
rs

 t
h
at

 c
an

 o
cc

u
r

m
u
lt

ip
le

 t
im

es
 [

3
,

9
0
,
9
1
],

 w
h
ic

h
 c

an
 c

o
n
tr

ib
u
te

 t
o
 t

h
e

fu
lfi

ll
m

en
t

o
f

th
is

 r
eq

u
ir

em
en

t

R
eq

-4
.1

T
h
e

iS
ta

r
ex

te
n
si

o
n
 m

u
st

 a
ll

o
w

 f
o
r

d
o
cu

m
en

ti
n
g
 i

n
te

n
ti

o
n
a

l
el

em
en

ts
 o

f
co

ll
a

b
o
ra

ti
ve

C
P

S
 o

f
th

e
sa

m
e

ty
p

e

se
e

R
eq

-3
.2

R
eq

-4
.2

T
h
e

iS
ta

r
ex

te
n
si

o
n
 m

u
st

 a
ll

o
w

 f
o
r

d
o
cu

m
en

ti
n
g
 d

ep
en

d
en

ci
es

 b
et

w
ee

n
 a

n
 i

n
te

n
ti

o
n
a

l

el
em

en
t

o
f

a
 c

o
ll

a
b
o
ra

ti
ve

 C
P

S
 a

n
d
 t

h
e

sa
m

e
in

te
n
ti

o
n
a

l
el

em
en

t
o
f

o
th

er
 s

ys
te

m
s

o
f

th
e

sa
m

e
sy

st
em

 t
yp

e

–

R
eq

-5
.1

T
h
e

iS
ta

r
ex

te
n
si

o
n
 m

u
st

 a
ll

o
w

 f
o
r

d
o
cu

m
en

ti
n
g
 d

iff
er

en
t

ro
le

s
a

 c
o
ll

a
b
o
ra

ti
ve

 C
P

S
 c

a
n

b
e

a
ss

ig
n
ed

In
tr

o
d
u
ci

n
g
 a

 r
o
le

 c
o
n
ce

p
t

(c
f.

 [
7
0
,
7
1
])

 t
o
 d

iff
er

en
ti

at
e

b
et

w
ee

n
 d

iff
er

en
t

ro
le

s
th

at
 a

 c
o
l-

la
b
o
ra

ti
v
e

C
P

S
 n

ee
d
s

to
 t

ak
e

w
it

h
in

 t
h
e

C
P

S
 n

et
w

o
rk

 c
an

 c
o
n
tr

ib
u
te

 t
o
 t

h
e

fu
lfi

ll
m

en
t

o
f

th
is

 r
eq

u
ir

em
en

t

R
eq

-5
.2

T
h
e

iS
ta

r
ex

te
n
si

o
n
 m

u
st

 a
ll

o
w

 f
o
r

d
o
cu

m
en

ti
n
g
 m

ec
h
a

n
is

m
s

to
 r

ea
ss

ig
n
 r

o
le

s
U

si
n
g
 t

h
e

co
n
ce

p
t

o
f

co
o

rd
in

at
io

n
 t

as
k

s
(c

f.
 [

3
6
,
8
6
,
8
7
])

 t
o
 e

x
p
re

ss
 t

h
e

as
si

g
n
m

en
t

o
f

a

ro
le

 t
o
 a

 c
er

ta
in

 a
ct

o
r

ca
n
 c

o
n
tr

ib
u
te

 t
o
 t

h
e

fu
lfi

ll
m

en
t

o
f

th
is

 r
eq

u
ir

em
en

t

R
eq

-6
.1

T
h
e

iS
ta

r
ex

te
n
si

o
n
 m

u
st

 a
ll

o
w

 f
o
r

co
n
tr

ib
u
ti

o
n
s

to
 b

e
a

ss
ig

n
ed

 v
a

ri
a

b
le

 v
a

lu
es

 t
h
a

t

ca
n
 c

h
a

n
g
e

d
ep

en
d
in

g
 o

n
 t

h
e

g
o
a

ls
 o

f
a

 c
o
ll

a
b
o
ra

ti
ve

 C
P

S

–

336 Requirements Engineering (2021) 26:325–370

1 3

here as it will be further specialized in our extension for col-

laborative CPS. All changes made correspond with the GRL

metamodel presented in Amyot et al. [32].

In the following, we briefly outline the most important

entities and relationships defined by the metamodel. We

detail the use of actors, intentional elements, and depend-

encies especially regarding their use for creating goal models

for collaborative CPS networks.

4.1.1 Actors

Actors are commonly used to specify stakeholder intentions

or define systems. In our case, we focus on the definition

of systems. Actors are assigned intentional elements for

which the actor strives to achieve fulfillment. An actor can

be linked to another actor through an is-a-relationship or

a participates-in-relationship. The is-a-relationship defines

that some actor is of a certain type defined by the other actor.

For instance, a CACC is also an ACC, thus, sharing parts of

its intentional elements with a common ACC. The semantics

of the participates-in relationship is defined by iStar 2.0; it

depends on the type of actors between which the relation-

ship is modeled. The participates-in relationship resembles a

“plays” relationship when modeled between an agent as the

source and a role as the target element, and “part-of” when

it connects two actors of the same type.

In addition, an actor can be a role (i.e. role as a speciali-

zation of actor). This is a bit counterintuitive, as one would

Fig. 4 GRL-compliant iStar metamodel

337Requirements Engineering (2021) 26:325–370

1 3

typically assume that an actor plays a role (e.g., the role of an

intruder vehicle). However, we want to stay consistent to the

iStar 2.0 metamodel and thus define role as a specialization

of actor. This also has the benefit that for modeling the role

the actor symbol can be used. In the CACC example roles a

CACC takes in a platoon might be lead or following vehicle.

4.1.2 Intentional elements

An intentional element can be a goal (i.e. “a condition or

state of affairs in the world that the stakeholders would like

to achieve” [25]), softgoal (i.e. “a condition or state of affairs

in the world that the actor would like to achieve, but […]

there are no clear-cut criteria for whether the condition is

achieved” [25]), task (i.e. an intentional element that “speci-

fies a particular way of doing something” [25]), resource (i.e.

“a physical or informational entity” [25]), or belief (i.e. an

intentional element that is “used to represent design ration-

ale” [25]). A goal of a CACC might be to avoid collisions.

Intentional elements can contribute to other intentional ele-

ments. This means that the fulfillment of one intentional

element is supported, satisfied, hindered, or prevented by the

fulfillment of another intentional element. For further pos-

sible contribution types between intentional elements, please

refer to the ITU Recommendation Z.151 [25]. All intentional

elements can be refined (often referred to as decomposed)

into other intentional elements either through an AND- or

an OR-refinement. The AND-refinement connects one inten-

tional element with two or more sub-intentional elements,

where the fulfillment of the intentional element depends

on the fulfillment of all sub-intentional elements. For OR-

refinements not all sub-intentional elements need to be ful-

filled to achieve fulfillment of the super-intentional element.

OR-refinements can be characterized either as IOR-refine-

ment or as XOR-refinements. The IOR-refinement connects

one intentional element with multiple sub-intentional ele-

ments, where at least one sub-intentional element needs to

be fulfilled to guarantee fulfillment of the super-intentional

element. The XOR-refinement connects one intentional ele-

ment with multiple sub-intentional elements, where the ful-

fillment of the intentional element can be achieved by only

one of the sub-intentional elements.

4.1.3 Dependencies

Dependencies describe the relationship between different

actors and between intentional elements of different actors.

A dependency defines that one actor is dependent on another

actor with respect to fulfilling some of its intentional ele-

ments or that the fulfillment of one intentional element of

one actor depends on another actor in general or a concrete

fulfillment of one of its intentional elements. A dependency

can exist between two actors, two intentional elements or

combinations thereof. For example, two actors, an actor

and a goal, or a goal and a task can be in a dependency

relationship. The actor can take the position of a depender,

who depends on another actor, for example, to perform a

task or achieve a goal. The actor can also be the dependee,

who provides the required resource or task execution. An

intentional element involved in a dependency can be the

depender element, the dependee element or the dependum.

The dependum is an intentional element which is the object

of the dependency. However, the use of a dependum is not

mandatory in GRL (cf. [25]). For instance, when specify-

ing a dependency between two actors, it might simply be

unknown to the modeler. Therefore, we altered the multi-

plicities in so far, as we no longer expect each dependency to

explicitly model a dependum which is not required by GRL.

4.2 Metamodel of the extension

To better support goal modeling for networks of collabora-

tive CPS, we developed an iStar extension according to the

requirements set out in Sect. 2.3. The metamodel for our

extension is shown in Fig. 5. All changes done to the meta-

model from Fig. 4 have been highlighted in grey.

We discuss the changes and their rationales again in the

categories from Sect. 4.1, i.e. for actors (Sect. 4.2.1), for

intentional elements (Sect. 4.2.2), and for dependencies

(Sect. 4.2.3).

4.2.1 Actors

Most notable, we differentiate actors into collaborative CPS

networks, collaborative CPS, and roles. Thus, we refine the

agent concept of iStar 2.0, which covers concrete, tangible

actors, into collaborative CPS and collaborative CPS net-

works. For a collaborative CPS network to be formed, at

least two collaborative CPS need to exist and participate in

such a network. For instance, in the example of the CACC,

the platoon can be considered the collaborative CPS network

and the individual CACCs participate in it. At least two vehi-

cles equipped with CACCs are needed to form a platoon.

While we keep—compared to Fig. 4—the is-a relation

between actors (although we can now state that the is-a rela-

tion is only acceptable between actors of the same kind),

we can be now more restrictive regarding the participates-

in relationship, because we consider very specific types of

“agents”, as mentioned above. We split this dependency

into two, more fine-grained relationships: The collaborates-

in relationship and the is-assigned relationship. Thus, three

kinds of actor relationships can be distinguished:

• Is-a relationship: An actor is of the type of another actor.

For instance, a CACC is also an ACC. Note that in iStar

and GRL it is prohibited to define that roles are agents

338 Requirements Engineering (2021) 26:325–370

1 3

and agents are roles. The same is valid here, is-a rela-

tionships only refine actors of the same type (i.e. CPS

networks, CPS, and roles). For expressing the belonging

of a CPS to a CPS network, the collaborates-in relation-

ship is used, for expressing the assignment of roles to a

CPS the is-assigned relationship is used.

• Collaborates-in relationship: A collaborative CPS collab-

orates with other collaborative CPS by partaking in a col-

laborative CPS network (which might be part of another

greater CPS network). For instance, multiple CACCs

cooperate to form a platoon (i.e. each CACC participates

in the platoon). Thus, the collaborates-in-relationship

denotes the membership of one actor in another actor.

In particular, an individual collaborative CPS partakes

in a network of collaborative CPS. In case of the CACC

example, this means that a CACC participates in a pla-

toon. A collaborative CPS network can also collaborate

with other networks in some higher-level collaborative

CPS network, such as a smart city. The collaborates-in

relationship can be distinguished from the original partic-

ipates-in relationship of iStar 2.0, because we restrict the

use to CPS and CPS networks and exclude its use for role

assignments. To assign roles, we define an is-assigned

relationship to assign a role to a collaborative CPS. For

example, a CACC in a platoon might be assigned the

leader role.

• Is-assigned relationship: A collaborative CPS can be

assigned a role within a collaborative CPS network.

This subsumes two aspects, having a role and taking

over a role. First, collaborative CPS can have roles. For

instance, a CACC can participate in a platoon either as

lead or as following vehicle. Second, roles in CPS net-

works need to be assigned, i.e. someone has to be respon-

sible for assigning roles to collaborative CPS. This is

expressed by a coordination task, which can belong to

any actor (i.e. to a CPS network, a collaborative CPS,

or a role). For instance, if the lead vehicle exits a pla-

toon, its CACC is responsible for assigning another

Fig. 5 Metamodel extension

339Requirements Engineering (2021) 26:325–370

1 3

CACC the role of the lead vehicle. The coordination task

then defines which role is to be assigned to which CPS

and, thus, which CPS is assigned which role. Thus, we

stress the notion of active role assignment (and, possibly

role change) in our extension, which is not specifically

emphasized in iStar 2.0, where only “agent plays role”

relationships are considered.

The use of multiplicities allows us to specify the goals

of multiple configurations within one diagram. Therefore,

actors can be assigned multiplicities. This allows us to repre-

sent actors of the same type (e.g., several identical CACCs)

as one actor. In doing so, we can represent different but simi-

lar compositions of a CPS network in one goal model. For

instance, we can use a goal model to represent platoons with

three, four, five, etc., vehicles. However, it must be stressed

that the actors that are subsumed by the use of multiplicities

must be of the same type. For instance, an actor for follow-

ing vehicles will only represent following vehicles that are

equipped with a CACC.

This use of actor multiplicities facilitates the specifica-

tion of CPS networks, as otherwise a multitude of different

configurations would have to be specified. For instance, a

platoon can consist of two following vehicles, three fol-

lowing vehicles, four following vehicles and so forth. To

account for all these configurations, typically all of these

must be explicitly specified. Thus, the use of multiplicities

for actors is a way to facilitate specification (or considering

the number of configurations to be considered) to make goal-

based specification of CPS networks feasible. For analysis,

however, each of the actors must be considered individually.

4.2.2 Intentional elements

To coordinate role assignment, we define a coordination task

to be a specific kind of task that handles role assignment

(i.e. allows collaborative systems changing their role or the

role of another collaborative CPS). We adopted the idea of

a coordination task from Teruel et al. [36]. A coordination

task can belong to the collaborative CPS network, where,

for instance, a platoon has a coordination task to choose a

new leader in case the former leader leaves the platoon. This

could be, for example, a voting mechanism where the pla-

toon members collectively define which vehicle becomes the

lead and which ones become followers. A collaborative CPS

or a role that is assigned to a collaborative CPS can also be

responsible for performing a coordination task. For instance,

the platoon leader has the coordination task to assign other

CACCs the role of a following vehicle when new vehicles

join, or to exclude them from the platoon.

Other changes to the intentional elements have not been

proposed. The assignment of intentional elements to either

a network of collaborative CPS, a collaborative CPS, or

a role is already given by the relation between actor and

intentional element. Assigning intentional elements to a col-

laborative CPS does not mean that the collaborative CPS

always aims at fulfilling all these intentional elements at the

same time. The intentional elements of a collaborative CPS

rather indicate which intentional elements can be fulfilled

at some point in time. Considering that a collaborative CPS

actor can represent multiple identical collaborative CPS, this

means that identical but individual CPS can pursue differ-

ent goals at the same time. For an example consider our

CACC with two following vehicles. In addition to platoon-

ing relevant goals, each CACC has its own goals that are

driver dependent and which might be conflicting. Take for

instance, the goal to minimize fuel consumption and the goal

to reach the destination as fast as possible. In the platoon

the two following vehicles have in principle the same goals

but the representation as one actor does not mean that both

vehicles try to achieve the same goals as well. For instance,

the driver of following vehicle 1 might prefer fast arrival,

while the driver of following vehicle 2 aims for minimizing

fuel consumption.

Assigning intentional elements to the collaborative CPS

network actor means that these intentional elements cannot

be assigned to an individual collaborative CPS but belong to

the network. As the network consists only of collaborative

CPS, it can be argued that each intentional element of a col-

laborative CPS or a role is also an intentional element of the

network. While this is true, assigning intentional elements

either to a collaborative CPS/role or the networks allows for

distinguishing between those intentional elements that are

under the control of the individual collaborative CPS and

those that are not.

For Challenge 6, we propose the introduction of a new

contribution type: configuration-dependent contribution

value. The configuration-dependent configuration value indi-

cates that the value of a contribution depends on specifics

emerging from certain configuration aspects. As this concept

is somewhat related to the unknown contribution value from

GRL and iStar, we introduce a new label that is related to the

unknown label. Other means of further defining this particu-

lar relationship with potentially changing values turned out

to be too complex and unintuitive for it to be of use.

4.2.3 Dependencies

To reduce the size and complexity of the resulting goal

model, we introduce further—more complex—dependency

types that allow using fewer dependency links. Therefore,

we define beside the classic dependency, bidirectional

dependencies, self-dependencies, and grouped dependen-

cies. In addition, we define multiplicities for dependencies.

A bidirectional dependency is a dependency, where both

actors or their intentional elements depend on each other

340 Requirements Engineering (2021) 26:325–370

1 3

(e.g., task A from actor A depends on task B from actor B

and task B from actor B depends on task A from actor A).

This type of bidirectional dependency is quite often needed

for collaborative CPS that are part of a CPS network. The

CPS network has its own intentional elements. However,

as the CPS network is no physical entity, the CPS network

depends on the individual CPS in fulfilling these goals. Vice

versa, the CPS join the network as this allows fulfilling goals

they otherwise could not achieve. For a simple example,

consider the goal of the platoon to reduce the driving time

to the platoon’s destination. To achieve this goal, the pla-

toon depends on the individual CACCs’ goals to reduce the

driving time to their destination. Vice versa, the CACCs

depend on the platoon as the platoon allows for a consider-

able reduction of driving time.

Our extension also includes a self-dependency. Self-

dependencies are used to describe cases where one collab-

orative CPS relies on collaborative CPS of the same type

(which is not the collaborative CPS itself) to fulfill the same

goal, execute the same task, etc., for its own goal fulfillment,

task execution, etc. For instance, to follow the leader of a

platoon each vehicle (i.e. each CACC of each vehicle) in the

platoon depends on other following vehicles to fulfill their

tasks in following the respective vehicle ahead.

Furthermore, we now allow dependencies to be grouped.

A grouped dependency subsumes several other depend-

encies. This allows building complex dependencies that

include relations to multiple actors and/or their intentional

elements. For instance, a network of collaborative CPS relies

on the fulfillment of one of its tasks on all the participating

collaborative CPS in fulfilling their tasks (e.g., to drive with

constant speed the platoon relies on the individual CACCs

to maintain the individual vehicles’ speed).

As we allow multiplicities for actors to simplify the speci-

fication of multiple actors of the same type (e.g., multiple

CACCs in the role following vehicle), we need to also con-

sider multiplicities for dependencies that stretch between

these actors. Thus, we can define that multiple dependers

of the same type depend on multiple dependees of the same

type. For instance, for coordinating the opening of a gap

in a platoon, the CACC of the lead vehicle depends on the

existence of at least two following vehicles.

4.3 Concrete syntax

4.3.1 Collaborative CPS

In iStar systems are represented as actors. A collaborative

CPS is a system and is therefore modeled as an actor, as

shown in Fig. 6. In addition, we use stereotypes to distin-

guish between the different types of actors, e.g. in Fig. 6

<<CPS>> defines that Actor A is a collaborative CPS

and neither a role nor a CPS network. Inspired by Moody’s

principles for constructing notations [47], the following

notation follows the principle of semiotic clarity. Accord-

ing to Moody’s principles, the same symbols should not be

used for different concepts, otherwise a symbol overload

may occur. However, we want to reduce the number of sym-

bols and use the circle consistently for all actors and the

stereotypes only for specialization. Here we follow the pat-

tern of approaches from the related work that use symbols

for denoting the supertype (i.e. the actor) and stereotypes

for denoting its specializations (cf. [56, 93, 94]). Thus, since

the notation for actor is specified by iStar, it is supplemented

by stereotypes which serve to differentiate between network

CPS and role.

4.3.2 Network of collaborative CPS

The CPS networks are also modeled as actors as shown in

Fig. 7. Similar to the notation of collaborative CPS, the nota-

tion of the CPS network uses Moody’s principle of semiotic

clarity [47] by adding a stereotype referring to the CPS net-

work to the existing notation.

To show that CPS belong to a CPS network, the CPS can

be positioned in a CPS network. According to the princi-

ple of semantic transparency [47], which recommends the

appearance of a notation should suggest its meaning, the

CPS that is a part of a CPS network is displayed inside the

CPS network actor. The idea of graphically nesting CPS

actors inside of CPS network actors is inspired by the work

of Guzman et al. [92] (see also Sect. 3.4). An example of our

notation for nesting actors and thereby relating CPS to a CPS

network is shown in Fig. 8. The CPS Actor B was modeled

Fig. 6 Collaborative CPS actor

Fig. 7 Network of collaborative CPS actor

341Requirements Engineering (2021) 26:325–370

1 3

inside the CPS network Actor A which indicates that Actor

B participates in the CPS network Actor A.

The nesting of actors, i.e. placing a collaborative CPS

inside a CPS network, has implications for the intentional

elements of the actors:

• Intentional elements of the CPS network: For nested

actors, each intentional element belongs to the actor it is

directly placed in. This also means, that the intentional

elements that are not within a CPS boundary but only

in the CPS network boundary only belong to the CPS

network. Intentional elements of the CPS network cannot

be assigned to individual collaborative CPS. However, as

the CPS network is no physical entity on its own but only

consists of the physical CPS that form the CPS network,

all these intentional elements depend on the CPS actors

placed within the CPS network. To make this relation

obvious we propose the use of dependency links to the

respective intentional elements of the CPS they depend

on.

• Intentional elements of the CPS: They do belong to the

CPS and as the CPS belongs to the CPS network, they

obviously are also part of the CPS network. However,

they do not necessarily need to address purposes of the

CPS network itself. For instance, a CACC has goals it

tries to achieve when driving alone. When the CACC

joins a platoon, it still has these goals, however, as the

participation in a platoon allows fulfilling other CACC

goals, the CACC will not try to achieve the original

goals when in a platoon. Consequently, the correspond-

ing intentional elements do not contribute to the platoon

and are, thus, just part of the CPS but not intentional

elements of the platoon.

Consequently, the nested representation of actors allows

for illustrating the relations between intentional elements

and actors while supporting the important distinction

between intentional elements that can be assigned to indi-

vidual systems and those that cannot.

4.3.3 Roles

iStar 2.0 [21] represents roles as shown in Fig. 9 (a). How-

ever, as we define a participates-in relation between actors to

mean that a collaborative CPS participates in a CPS network,

we use a is assigned relation to indicate that a collaborative

CPS assumes a role (cf. Sect. 4.2.1). This is illustrated in

Fig. 9 (b), where the collaborative CPS Actor B assumes the

Role C. We allow for further simplification of the notation

to depict the situation that a collaborative CPS assumes a

role in one model element as shown in Fig. 9c. This allows

reducing the size of models but prevents distinction between

the intentional elements of a collaborative CPS and those of

its roles. Thus, if the notation of Fig. 9 (c) is used, only the

intentional elements belonging to the respective role shall

be modeled. If a certain CPS can participate with different

roles in the same CPS network, the CPS needs to be mod-

eled multiple times as different actors with different roles.

If the actor notation is used without definition of a role,

only intentional elements belonging to the actor in any role

should be modeled.

4.3.4 Coordination task

In Fig. 10 the concrete syntax for a coordination task is

shown. Again, we use the well-known symbol of a task and

use stereotyping to denote the difference. This is in accord-

ance with Moody’s principles [47], to allow users easy iden-

tification of the overall concept (i.e. task). In addition, an

assignment relation shows which actor (i.e. which type of

collaborative CPS) is assigned to which role.

4.3.5 Bidirectional dependency

The bidirectional dependency represents a dependency in

both directions between two actors or intentional elements.

The direction of a regular dependency is represented by the

"D". Since we have a dependency in both directions, we use

the “D” in both directions as this is intuitive according to

Fig. 8 Nested actors

342 Requirements Engineering (2021) 26:325–370

1 3

the principles of Moody [47]. This is illustrated in Fig. 11.

Like regular dependencies, bidirectional dependencies can

be defined including or excluding a dependum.

4.3.6 Self-dependency

In a network of collaborative CPS there can be systems that

have the same role, the same goals, the same tasks, etc. For

simplification we represent all these systems using only one

actor in the goal model, which avoids redundancy. As we

can represent more than one system as one actor, several

peculiarities can occur, such as dependencies between the

goals of these systems (i.e. a system of a certain type or role

depends on another system of the same type or role). As

a consequence, we allow for defining dependencies within

one actor. To indicate the different nature of such as depend-

ency (i.e. to indicate that the system does not depend on

itself but on the systems of the same type or role), we define

<<Role>>

Role C

<<CPS>>

Actor B

<<CPS>>

Actor B

<<CPS>>

Actor B

Role C

Role C

Participates in

Is assigned

(a)

(b)

(c)
<<Role>>

Lead Vehicle

<<CPS>>

CACC

<<CPS>>

CACC

<<CPS>>

CACC

Lead Vehicle

Lead Vehicle

Participates in

Is assigned

Concrete Syntax Example

Fig. 9 Roles

<<coordination task>>

Task
<<Role>>

Role C

<<CPS>>

Actor B

assigns

Concrete Syntax Example

<<coordination task>>

Organize Platoon

Structure <<Role>>

Following

Vehicle

<<CPS>>

CACC

assigns
<<coordination task>>

Task
<<Role>>

Role C

<<CPS>>

Actor B

assigns

Concrete Syntax Example

<<coordination task>>

Organize Platoon

Structure <<Role>>

Following

Vehicle

<<CPS>>

CACC

assigns

Fig. 10 Coordination task

343Requirements Engineering (2021) 26:325–370

1 3

a self-dependency as a new construct. This dependency is

represented as shown in Fig. 12 by a D with a * operator as

it is a well-known symbol for self-properties [97]. The D*

symbol needs to be placed outside the actor boundary so

as to avoid misinterpreting this element for a dependency

within the same instance of an actor.

A self-dependency can exist between different intentional

elements, but it can also exist for a single intentional element

and a dependum as is shown in Fig. 13.

Concrete Syntax Example

Dependum

(goal)
Actor A Actor B

Collision

avoidance

Lead

vehicle

Following

vehicle

Actor A Actor B
Lead

vehicle

Following

vehicle
(a)

(b)

Fig. 11 Bidirectional dependency

Fig. 12 Self-dependency

between different tasks

Actor A

Task 1

*
Task 2

Concrete Syntax Example

CACC

Regulate

Speed

*

Communicate

Speed

Fig. 13 a Self-dependency

without a dependum and b self-

dependency with a dependum
Actor A

Task

*

Concrete Syntax Example

CACC

Regulate

Speed
*

Actor A

(a)

(b)
Task 1

Dependum

(resource)

*

*

Actor A

Task 1
Dependum

(resource)

*

*

344 Requirements Engineering (2021) 26:325–370

1 3

Note that traditionally the use of dependencies between

intentional elements of one actor is discouraged.5 Here, we

explicitly define a special kind of dependency to be used

between intentional elements that are modeled within the

same actor boundary. However, recall that we represent

multiple actors by displaying just one actor to facilitate the

specification of CPS networks consisting of multiple dif-

ferent but identical actors. Therefore, this self-dependency

does not link intentional elements of the same actor but of

different actors of the same type and is thus in line with the

common usage of dependencies.

4.3.7 Grouped dependency

The concrete syntax for grouped dependencies is similar to

logical gates as these provide symbols for AND, IOR, and

XOR. The AND-dependency is shown in Fig. 14a. Goal A

depends on both, Goal B and Goal C. An IOR-dependency

is shown in Fig. 14b Goal A depends on Goal B or Goals

C. The XOR-dependency is shown in Fig. 14c. The XOR-

dependency shows a dependency, where Goal A can depend

on either Goal B or Goal C but cannot depend on both. We

use symbols well known from logic gates for conjunctions

and disjunctions and combine them with the iStar symbol D

used for dependencies.

4.3.8 Multiplicities

Multiplicities can be assigned to actors and dependencies.

The use of multiplicities for actors is shown in Fig. 15. For

multiplicities we use the well-known notation for multi-

plicities in the UML. Using multiplicities allows to state

that a certain type of actor is involved multiple times in

the same goal model. For instance, a platoon consists of

multiple CACCs. In Fig. 15, this is specified by using a

[1 … n] multiplicity, showing that at least one CACC must

exist to form a platoon and the upper bound is unlimited.

Note that there exist different assumptions on the relation

between CACCs and platoons, while some developers might

Goal A

Goal B

Goal C

D
Allow change

lane

Open gap

Change lane

D

Goal A

Goal B

Goal C

D

Goal A

Goal B

Goal C

D

Owning a driving

style

Drive eco-friendly

Drive safe

D

Follow the role

Leader-behavior

Follower-

behavior

D

Concrete Syntax Example

(b)

(c)

(a)

Fig. 14 a AND-dependency, b IOR-dependency and c XOR-dependency

5 For GRL, recommendation Z.151 [25] defines in its abstract gram-

mar a dependency as specialization of ElementLink which links

GRLLinkableElements (i.e. actors and intentional elements). Each

ElementLink has a source and a destination. It is not explicitly defined

that source and destination cannot be identical. However, the detailed

guidelines for the use of dependencies illustrate six common usage

scenarios that are explicitly suggested. All of these introduce depend-

encies between different actors, or intentional elements of different

actors, or between a combination thereof. Thus, it can be assumed

that the use of dependencies between intentional elements of the

same actor is not intended.

 For iStar, Dalpiaz et al. define that “the depender and dependee of a

dependency should be different actors” [21].

345Requirements Engineering (2021) 26:325–370

1 3

want to consider open ended platoons, others might rather

want to work with realistic upper bounds as the platoon is

typically limited in its length by regulations. In addition, it is

a rather philosophical question, whether a CACC on its own

can be a platoon. Thus, also a multiplicity of [2…8] might

be a valid assumption, depending on the current develop-

ment project.

Fig. 15 Multiplicities, in a a

single actor in b a nested actor
<<CPS>>

Actor B

[1..n]

<<CPS>>

Actor B

[1..n]

<<CPS network>>

Actor A

<<CPS>>

CACC

[1..n]

<<CPS>>

CACC

[1..n]

<<CPS network>>

Platoon

Concrete Syntax Example

(a)

(b)

Fig. 16 Self-dependency with

multiplicities

<<CPS>>

Actor A

[1..n]

Task 1

*
Task 2

Concrete Syntax Example

<<CPS>>

CACC

[1..n]

Regulate

Speed

*

Communicate

Speed
[1..n] [1..n]

[1..n] [1..n]

Task 1 Task 2

[1..n]

Task 1 Task 2

D

D

[1..n][1..n]

(a)

(b)

Lead Platoon
Allow

Communication

[1..n]

Distribution of

Tasks
Accept Tasks

D

D

[1..n][1..n]

Concrete Syntax Example

[1..n] [1..n]

Fig. 17 a One-directional dependency and b bidirectional dependency with multiplicities

346 Requirements Engineering (2021) 26:325–370

1 3

Multiplicities can also be assigned to the intentional ele-

ments involved in a dependency. The depender, dependee,

and dependum can be assigned a multiplicity regardless of

the kind of dependency (see Figs. 16, 17 and 18). We do not

restrict multiplicities, but we never came across a need for

a [0…n] dependency, as this would mean that the depender

does not necessarily depend on a dependee. Note that in case

of self-dependencies, it is necessary that the multiplicities

allow for there to be more than one actor, as self-dependen-

cies do not define dependencies within the same actor but

between actors of the same type.

Note that in principle iStar and GRL are already equipped

with the potential to define dependency decompositions.

However, this always requires the existence of a decompo-

sition between the depender and dependee elements. A brief

example is given by Fig. 19, which highlights the usefulness

of our extension that limits the complexity of the model and

allows for a different use of grouped dependencies. In par-

ticular, our proposed grouped dependency allows expressing

that an intentional element depends on multiple other inten-

tional elements which do not need to be related to each other.

4.3.9 Configuration-dependent contribution value

To express that the value of a contribution depends on a

configuration or on certain aspects related to multiple con-

figurations, we define a new label for contributions. This

contribution is closely related to the unknown contribution

value relation, where it is also not obvious whether the con-

tribution is positive or negative. However, the difference

between unknown contributions and configuration-depend-

ent contributions is that for the latter, we can know how the

contribution impacts but the contribution values are usually

too complex to define all possibilities in graphical model.

However, in addition we propose the formal definition of the

contribution dependence in a comment field or a separate

referenced document. Thus, we provide an index that can

be used for reference. The proposed label compared to the

Goal A

Goal B

Goal C

D
Allow change

lane

Open gap

Change lane

D

Goal A

Goal B

Goal C

D

Goal A

Goal B

Goal C

D

Owning a driving

style

Drive eco-friendly

Drive safe

D

Follow the role

Leader-behavior

Follower-

behavior

D

Concrete Syntax Example

(b)

(c)

(a)

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

Fig. 18 a AND-dependency b IOR-dependency and c XOR-dependency (c) with multiplicities

347Requirements Engineering (2021) 26:325–370

1 3

Goal A

Actor A

Goal B

Actor B

Goal A

Actor A

AND

Goal A1 Goal A2 Goal A3

Goal B

Actor B

AND

Goal B1 Goal B2 Goal B3

Abstract Dependency Between two Goals

Refined Dependency by the Use of AND-Decomposi�ons

Fig. 19 Traditional dependency refinement

Fig. 20 Configuration-depend-

ent contribution value

Unknown Contribu�on Value in GRL

+
- ? unknown

+
- CD

Unknown Contribu�on Value in iStar Configura�on-Dependent Contribu�on Value

for Contribu�on i

i

348 Requirements Engineering (2021) 26:325–370

1 3

labels for unknown contribution values from GRL and iStar

can be found in Fig. 20.

4.4 Well-formedness rules

We define well-formedness rules using OCL [98] for goal

models according to the proposed extension to support the

creation of correct goal models for collaborative CPS as is

recommended for defining modeling languages or extensions

to modeling languages [99].

A self-dependency is defined as a dependency between

actors of the same type, which are represented in a goal

model by one actor. Therefore, the depender and the

dependee must be the same actor (Well-formedness rule 1)

and this actor must have a maximum multiplicity of more

than one (Well-formedness rule 2), as otherwise there could

not be more than one actor of this type in a CPS network.

Well-formedness rule 1 Depender and dependee of a self-

dependency must be the same actor or intentional elements

that belong to the same actor.

context Self-Dependency

inv: self.depender = self.dependee

Well-formedness rule 2 The actor a self-dependency

belongs to (i.e. the depender and dependee or the actor the

depender and dependee elements belong to) must have a

maximum multiplicity larger than one. This is important as

the self-dependency is not a dependency between elements

of the same actor but between elements of actors of the same

type that are just represented by one single actor element.

context Self-Dependency

inv: self.depender.multiplicityMax > 1

To prevent inconsistencies regarding multiplicities, we

stipulate that the following rules must be adhered to. The

minimum multiplicity of an actor may not be larger than the

maximum multiplicity of the same actor. The same holds for

multiplicities related to dependencies (i.e. the multiplicities

of the depender, the dependee, and the dependum).

Well-formedness rule 3: A maximum multiplicity may

not be smaller than the corresponding minimum multiplicity.

context Actor inv: self.multiplicityMin <=

self.multiplicityMax

context Dependency

inv: self.multiplicityDepdenderMin <=

self.multiplicityDependerMax

 context Dependency

inv: self.multiplicityDepdendeeMin <=

self.multiplicityDependeeMax

The minimum multiplicity of a dependency’s dependee

may not be smaller than the minimum multiplicity of the

dependee actor. This prevents cases where the dependency

would allow for requiring a smaller number of collaborative

CPS than are actually permissible according to the actor’s

multiplicity. The same holds for the depender.

Well-formedness rule 4: The minimum multiplicity of a

dependee/depender may not be smaller than the minimum

multiplicity of the dependee/depender actor.

context Dependency

inv: self.multiplicityDependeeMin >=

self.Dependee.multiplicityMin

context Dependency

inv: self.multiplicityDependerMin >=

self.Depender.multiplicityMin

The maximum multiplicity of a dependency’s dependee

may not be larger than the maximum multiplicity of the

dependee actor. This prevents cases where the dependency

would allow for requiring a higher number of collaborative

CPS than are actually permissible according to the actor’s

multiplicity. The same holds for the depender.

Well-formedness rule 5 The maximum multiplicity of a

dependee/depender may not be larger than the maximum

multiplicity of the dependee/depender actor.

context Dependency

inv: self.multiplicityDependeeMax <=

self.Dependee.multiplicityMax

context Dependency

inv: self.multiplicityDependerMax <=

self.Depender.multiplicityMax

349Requirements Engineering (2021) 26:325–370

1 3

Well-formedness rule 6 Grouped dependencies must have

either the same depender or the same dependee. This rule

prevents the definition of complex dependency relationships

that are difficult to comprehend which carry a high risk of

misinterpretation.

context Dependency

inv: self.GroupedDependency.Dependency->

((forAll(d|d.dependerElmt=self.

dependerElmt) or (forAll(d|d.dependeeElmt=

self. dependeeElmt)))

4.5 Tool support

We provide tool support for the extension as a Visio stencil.

Microsoft Visio is a commonly used modeling tool that pro-

vides mechanisms for the definition of modeling languages.

In our case, the decision to use Microsoft Visio was made

due to its availability for industry partners from different

domains. In addition, particularly in the industry automa-

tion domain it is very heavily used for the design of produc-

tion systems. Figure 21 shows the stencil and the shapes it

defines. We provide shapes for the newly defined constructs

as well as for the existing constructs. The shapes can be

drag-and-dropped to the drawing to create a goal model

for collaborative CPS according to the proposed exten-

sion. The stencils are available for download at https ://doi.

org/10.6084/m9.figsh are.13313 093. While Visio primarily

focuses on providing support for modeling, add-ins can be

created to support model validation, such as checks for vio-

lation of syntactic or well-formedness rules. Implementing

these checks as well as support for goal fulfillment analysis

is part of future work.

5 Evaluation

We evaluated the proposed extension by conducting two case

studies in different industry domains. Section 5.1 elaborates

on the case study research design chosen (cf. [100]). Sec-

tions 5.2 to 5.4 present the results. Subsequently Sect. 6 will

discuss the findings and limitations of the evaluation.

5.1 Study design

5.1.1 Goals

The study aims at evaluating the proposed extension for goal

modeling of collaborative CPS. Therefore, we applied the

iStar goal modeling extension to two industrial case stud-

ies (i.e. a cooperative adaptive cruise control and a fleet of

collaborative transport robots). Thereby, we evaluate the

applicability of the approach as well as the benefits of each

introduced modeling element.

5.1.2 Research questions

To achieve the overall goal of the study, i.e. does the pro-

posed extension aid in goal modeling for collaborative CPS,

we defined several research questions to be answered in the

study:

• RQ1: Is the proposed iStar extension applicable to indus-

trial case examples of collaborative CPS?

• RQ2: Does the use of the proposed iStar extension lead

to more concise models?

• RQ3: Are the proposed modeling elements useful in the

context of modeling collaborative CPS?

• RQ4: What challenges remain?

We further refine RQ1 and RQ2 with regard to the two

industrial case examples:

• RQ1.1: Is the proposed iStar extension applicable to

model a cooperative adaptive cruise control?

• RQ1.2: Is the proposed iStar extension applicable to

model collaborative transport robots?

For RQ 2, we need to define the meaning of concise.

Concise means “marked by brevity of expression or state-

ment: free from all elaboration and superfluous detail.”6

With regard to goal models we refer to a goal model as more

concise if it has fewer elements than another goal model that

expresses the same content.

• RQ2.1: Does the use of the proposed iStar extension lead

to a more concise yet still comprehensible model of the

cooperative adaptive cruise control?

• RQ2.2: Does the use of the proposed iStar extension lead

to a more concise yet still comprehensible model of the

collaborative transport robots?

For RQ3, we need to define the metrics for usefulness.

Usefulness can be defined as “the quality of having utility

and especially practical worth or applicability.”7 Thus, addi-

tionally to the investigation of the general applicability of the

iStar extension (see RQ1), we investigate the applicability

of each modeling element. Furthermore, it is investigated

whether industry partners deem the modeling element use-

ful (i.e. is it worth to have the modeling element as part of

the iStar extension).

6 cf. https ://www.merri am-webst er.com/dicti onary /conci se.
7 cf. https ://www.merri am-webst er.com/dicti onary /usefu lness .

https://doi.org/10.6084/m9.figshare.13313093
https://doi.org/10.6084/m9.figshare.13313093
https://www.merriam-webster.com/dictionary/concise
https://www.merriam-webster.com/dictionary/usefulness

350 Requirements Engineering (2021) 26:325–370

1 3

In addition, we need to further refine this research ques-

tion for all proposed modeling elements, i.e.:

• RQ3.1: Is the use of collaborative CPS and the network

of collaborative CPS as actors useful?

• RQ3.2: Is the use of the coordination task useful?

• RQ3.3: Is the use of bidirectional dependencies useful?

• RQ3.4: Is the use of self-dependencies useful?

• RQ3.5: Is the use of grouped dependencies useful?

• RQ3.6: Is the use of multiplicities for dependencies use-

ful?

For RQ4, we separate between limitations of the proposed

iStar extension and the resulting needs to be coped with in

future work, i.e.:

• RQ4.1: What are limitations of the proposed iStar exten-

sion?

• RQ4.2: What are industry’s needs for future work?

5.1.3 Subject selection

Industry partners and case examples were recruited within

the CrESt-project, a joint research project, publicly funded

by the German Federal Ministry of Education. The project,

aiming at developing engineering methods for model-based

software engineering of collaborative CPS, started in Feb-

ruary 2017 and concluded in April 2020. Industry partners

contributed four case example specifications. For the appli-

cation of our extension we chose two case examples. The

decision was made based upon interest of involved industry

partners (i.e. the involved partners were highly interested

in applying goal modeling techniques to investigate their

case). While each case example was mainly driven by one

responsible industry partner, other partners from the respec-

tive domain were also involved and contributed to the case

study. Industry partners thus participated and contributed

due to their commitment to the project but also due to their

interest in the case and the definition and evaluation of solu-

tions that foster the model-based engineering of collabora-

tive CPS. While research in the project was partly conducted

in close collaboration and resulted in co-authored publica-

tions (e.g., [35, 101, 102]), no further interdependence of

interests exists between the authors of this paper and the

involved industry partners.

The automotive case example of cooperative adaptive

cruise control systems was provided by a large automo-

tive supplier located in Germany. In addition, other suppli-

ers—including one of the world largest automotive suppli-

ers—and original equipment manufacturers (all based in

Germany) were involved in the case example. The transport

robot case example was provided by a medium-sized Ger-

many-based internationally operating company specialized

in the production of autonomous transport robots. In addi-

tion, a very large international company with headquarters in

Germany and multiple interests as well as a broad portfolio

of products and domains that has a major interest in the

domain of industry automation was involved.

5.1.4 Procedure

During the case study the approach under investigation (i.e.

the iStar extension for collaborative CPS) was applied to

two case examples provided by industry partners. Therefore,

the following procedure was adhered to, to allow answering

Research Questions 1–4.

Over the course of 3 years, we conducted a total of twelve

workshops, one workshop every 3 months. Each workshop

lasted about 2 days. The workshops were closely integrated

in the working structure of the surrounding CrESt project.

Therefore, they were not exclusively used for discussing the

iStar extension but also for other research related to col-

laborative CPS. We did not use fixed time slots so that it was

Fig. 21 Visio stencil for the extension

351Requirements Engineering (2021) 26:325–370

1 3

always possible to have as much discussions as needed. The

workshops were attended by about a dozen people, among

them employees from various companies and research

institutions. First, we were provided with a brief specifi-

cation and description of the case examples. In workshops

the details of the case example were discussed and answers

regarding specific aspects that remained unclear from the

description were given by industry partners. Subsequently,

initial sketches for the goal models were made. At first this

was done without using the extension to get an understand-

ing of the shortcomings of iStar/GRL with respect to goal

modeling for collaborative CPS, for a report on the find-

ings of this phase, please refer to our previous work [23].

Sketches were handed in for critique and revised based on

the feedback. After additional workshops, the goal models

without the extension were finalized and a number of short-

comings and potential solution concepts were discussed with

the industry partners.

Next, we created goal models using the proposed exten-

sion for goal modeling of collaborative CPS. To allow for

comparability, we started with the agreed upon goal mod-

els without the extension and made changes according to

the extension. After another round of critique and a final

workshop the final versions were created. In addition to the

workshops, regular biweekly web conferences presented

the opportunity to discuss upcoming questions in a timely

manner. Furthermore, industry partners provided in-depth

feedback on the extensions and derived models via mail.

Thus, information was collected during workshops and

web conferences, as well as from documents. These docu-

ments included case descriptions of the case studies, require-

ments for modeling approaches for networks of collaborative

CPS, and goal models in various stages of completion. These

documents were created in close collaboration between

domain experts and goal modeling experts under the auspice

of the respective experts. Thus, we did not use specific ques-

tionnaires to answer the research questions but used an open

and exploratory approach. We took notes on the meetings

and the documents and models created over the course of the

project were iterated regularly. In addition, written feedback

was also received from industry partners. The workshops

were used to discuss the case examples, the requirements,

and the goal models. These discussions involved clarifica-

tion of misunderstandings, detailed discussions of interest-

ing aspects, discussions of created goal models and the pro-

posed extension. These discussions were documented during

the workshop. The notes taken during the workshops served

as input for the proposed extension as well as the evalua-

tion results. This allowed everyone involved to provide input

according to their opinions. However, participants were also

free to keep opinions to themselves.

Results from the application (RQ1) and the impact on the

resulting models (RQ2) can be found in Sect. 5.2. To answer

RQ3 (see Sect. 5.3) we discussed the proposed modeling ele-

ments of the approach with our industry partners to ensure

that these are adequately reflecting the respective complex

situations, are not misunderstood, and are deemed support-

ive. For RQ4, we discussed remaining challenges with our

industry partners, particularly with respect to the severity of

the various needs.

5.1.5 Case examples

To show the benefits of the proposed extension, we con-

ducted two case studies, one in the automotive and one in

the industry automation domain. Section 5.1.5.1 introduces

the cooperative adaptive cruise control case example and

Sect. 5.1.5.2 the collaborative transport robots.

5.1.5.1 Cooperative adaptive cruise control Cooperative

adaptive cruise control (CACC) systems allow vehicles to

form a platoon [95]. A platoon is a network of vehicles driv-

ing behind one another with small distances between them.

A platoon consists of a lead vehicle and at least one fol-

lowing vehicle. The lead vehicle is the first vehicle of the

platoon and thus bears the responsibility for the platoon,

since it has to decide, for example, which maneuvers to

execute. All other platoon vehicles are following vehicles,

as they usually adopt the driving style of the preceding vehi-

cle and reproduce it. Platooning offers many advantages, as

the reduced distance between the vehicles allows driving in

the slipstream of the previous vehicle. As a result, the fol-

lowing vehicles consume less fuel. Furthermore, platooning

can reduce congestion on streets, is safer, and provides more

comfort to drivers [96]. Having a CACC allows vehicles to

participate in a platoon, as it enables the vehicles to commu-

nicate with each other within a platoon. With this commu-

nication, vehicles can agree on a common speed, a common

destination, or a common driving style.

5.1.5.2 Collaborative transport robots Collaborative trans-

port robots are tasked with transporting materials and prod-

ucts between machines and conveyor belts and with dis-

posing of material that is no longer used. They can do so

without getting in each other’s way and more efficiently by

forming a fleet [103]. In order to form a fleet, the robots

need to communicate with each other about their current

positions, tasks, battery statuses, etc. Forming a fleet allows

the individual robots to be better utilized, as the individual

tasks can be divided evenly between the robots. There are

further advantages to having transport robots collaborate as

a fleet rather than individually. For example, if there is an

obstacle in a route, it is included in the map so that all robots

know that the route cannot be taken and that they have to

find an alternative route [104]. In addition, the robots can

automatically visit a charging station if the remaining bat-

352 Requirements Engineering (2021) 26:325–370

1 3

tery is at a previously set remaining level. If the workload

is high and a large number of transport tasks have to be

executed, the value of the battery life, at which the robot is

to visit a station, can be set to a lower value so that it can

still complete as many transport tasks as possible. Further-

more, since there are different types of transport robots that

are used for different products and materials, for example

because they differ in their load capacity, the fleet can take

this into account when distributing transportation orders.

5.2 Application results

This section introduces the application of the approach in the

context of the case studies. Therefore, Sect. 5.2.1 shows the

goal model of the cooperative adaptive cruise control case

example, Sect. 5.2.2 shows the goal model of the collabora-

tive transport case example. For comparison in both sections

goal models for case examples are shown with the proposed

extension and without the proposed extension.

5.2.1 Application to the cooperative adaptive cruise

control case example (RQ1.1)

We applied the iStar extension to the case example of a

cooperative adaptive cruise control from the automotive

domain. Figure 22 shows the resulting goal model. As can

be seen, the CACC itself is not directly represented by an

actor. A platoon, a lead vehicle, and a following vehicle are

depicted as actors. The platoon represents the network which

is formed by the collaboration of multiple vehicles equipped

with a CACC. A CACC takes part in only one of two pos-

sible roles in a platoon, one CACC is the lead vehicle, the

other CACCs have the role following vehicle. Hence, the

three actors shown represent the roles a CACC can take and

the collaborative network a CACC takes part in.

Each actor has its own intentional elements. However, as

can be seen, the actors, and thus their intentional elements,

heavily rely on each other. Particularly, the platoon’s inten-

tional elements depend on goals and tasks of the vehicles.

<<CPS network>>

Platoon

Collision

avoidance

Reduced individual

time

Join platoon

Leave platoon

Perform

communication
Reliable sensors

Drive common

speed

Change lane
<<Coordination Task>>

Organize platoon

structure
Guide platoon

Regulate speed

Vehicle information

Higher individual

fuel efficiency

Collision

avoidance

Higher individual

fuel efficiency

Reduced individual

time

Join platoon

Leave platoon

Perform

communication

Reliable sensors

Drive common

speed

Change lane

Close gap

Open gap

Regulate speed

Follow previous

vehicle

Vehicle information

AND

AND

Collision

avoidance

Less traffic jam

Higher overall fuel

efficiency

Reduced overall

time

Execute role

distribution

Reliable

communication

Network security

Allow change lane

Allow leaving

Allow new

vehicles to join

Allow splitting

Allow creating

Allow change

leader

Allow fusion

Allow change

order

Allow dissolving

Allow

communication

Encryption of

information

AND

D

AND

D

D

D

D

DD

D

D

D
*

<<role>>

Following vehicle

<<CPS>>

CACC

<<role>>

Lead vehicle

<<CPS>>

CACC

[1..1]

[1..19]

assigns

[n..n]

*

*

Lead platoon

Common driving

speed

Eco-friendly

Fig. 22 Goal model cooperative adaptive cruise control platoon with extension

353Requirements Engineering (2021) 26:325–370

1 3

This is not surprising in so far as the platoon does only exist

in the interplay of its physically partaking CACCs. There-

fore, each functionality the platoon shall exhibit must origi-

nate from at least one CACC. For example, the platoon shall

be able to allow new vehicles to enter the platoon (i.e. it has

the goal allow new vehicles to join). To fulfill this goal, the

platoon depends on the vehicles in the platoon that need

to open a gap so that a new vehicle can join the platoon by

entering this gap. Hence, the goal allow new vehicles to join

of the platoon depends on the CACC tasks open gap.

There are also mutual dependencies between the platoon

and the vehicles, for example, the goal reduced individual

(driving) time of the CACC depends on the goal reduced

overall (driving) time of the platoon and vice versa. This is

shown by the bidirectional dependency between those goals.

Furthermore, dependencies between the different roles

exist and are modeled. For example, a following vehicle must

be able to execute the task follow previous vehicle. Therefore,

it depends on other CACCs (either in the role following vehi-

cle or lead vehicle). In this way it is specified that each follow-

ing vehicle needs to follow another vehicle. In cases where the

vehicle ahead is also a following vehicle, a self-dependency

is used to show that a following vehicle depends on another

following vehicle regarding the fulfillment of the task follow

previous vehicle. This self-dependency possesses a condition

whereby the dependency only exists if there are more than one

following vehicle in the platoon, because otherwise a follow-

ing vehicle could not follow another following vehicle.

With respect to RQ1.1 we can state that the iStar exten-

sion is applicable to model the case example of a CACC.

Important aspects of the case example can be specified and

the existing mutual dependencies between the different roles

of the collaborative CPS and the collaborative network can

be defined accordingly.

Lead platoon

Common driving

speed

Eco-friendly

Platoon

Collision

avoidance

Collision

avoidance

Less traffic jam

Higher overall fuel

efficiency
Reduced overall

time

Higher individual

fuel efficiency
Reduced individual

time

Join platoon

Leave platoon

Perform

communication

Execute role

distribution

Reliable sensors

Drive common

speed

AND

Reliable

communication

Change lane

Network security

Collision

avoidance

Reduced individual

time

Join platoon

Leave platoon

Perform

communication

Reliable sensors

Drive common

speed
AND

Change lane

Organize platoon

structure
Guide platoon

Close gap

Open gap

Regulate speed

Allow change lane

Follow previous

vehicleAND

Regulate speed

Vehicle information

Vehicle information

Allow leaving

Allow new

vehicles to join

Allow splitting

Allow creating

Allow change

leader

Allow fusion

Allow change

order

Allow dissolving

Allow

communication

Encryption of

information

Collision

avoidance

Higher individual

fuel efficiency
Reduced individual

time

Join platoon

Leave platoon

Perform

communicationReliable sensors

Drive common

speed

AND

Change lane Close gap

Open gap

Regulate speed

Follow previous

vehicle

Vehicle information

Higher individual

fuel efficiency

AND

<<role>>

Lead vehicle

<<CCPS>>

CACC

<<role>>

Following

vehicle

<<CCPS>>

CACC

<<role>>

Following

vehicle

<<CCPS>>

CACCLead

vehicle

Following

vehicle

Following

vehicle

Fig. 23 Cooperative adaptive cruise control platoon without extension

354 Requirements Engineering (2021) 26:325–370

1 3

5.2.2 Comparison with original iStar notation

for the cooperative adaptive cruise control case

example (RQ1.2)

To investigate RQ1.2 Fig. 23 shows a goal model for the

CACC that has been created without the proposed exten-

sion. As can be seen, this model is considerably more com-

plex and contains more connections. For instance, another

actor is needed representing another following vehicle. As

it would otherwise not be possible to describe that the task

follow previous vehicle depends on other following vehicles

to also follow the previous vehicle. Among others, the bidi-

rectional dependency and the grouped dependency reduce

the number of lines which improves the readability of the

model. In summary, we can state that the goal model from

Fig. 22 which was created using the iStar extension is more

concise than the goal model from Fig. 23.

5.2.3 Application to the collaborative transport robots case

example (RQ2.1)

Figure 24 shows the resulting goal model for the case of the

collaborative transport robots. As can be seen, the collabo-

rative transport robot (CTR) is directly represented by an

individual actor as no roles need to be distinguished. How-

ever, as a CTR partakes in a collaborative network, i.e. in

a collaborative transport robot fleet (CTRF), another actor

is used to represent this network. Like for the CACC case

example, the nested representation for network and CPS is

used. As only one type of CTR does exist and no roles need

to be distinguished, the network does not depend in its goal

fulfillment on multiple CPS of different types or roles. Con-

sequently, unlike for the CACC case, no grouped dependen-

cies have been used. However, self-dependencies do exist,

which describe dependencies between identical CTRs. For

Fig. 24 Goal model collaborative transport robot fleet with extension

355Requirements Engineering (2021) 26:325–370

1 3

instance, for calculating a new route, a CTR depends on the

current routes of the other partaking CTRs as otherwise the

goal avoid imminent collision and consequently the network

goal avoid collisions overall could not be reached.

As in the CACC case, there are goals that both the robot

and the robot fleet share, such as avoid collision overall and

avoid imminent collision. These differ in that the robot fleet

wants to achieve the goals for all robots while the individual

robot is primarily concerned with its own goals. But as these

goals are interdependent, they are linked in the goal model

by a bidirectional dependency.

With respect to RQ2.1 we can state that it is possible

to document the goals of the CTRF and the goals of the

CTR and relate them to each other. Hence, the proposed

iStar extension is also applicable to the case of collaborative

transport robots.

Fig. 25 Goal model collaborative transport robot fleet without extension

Fig. 26 CTR actor nested in CTRF actor

356 Requirements Engineering (2021) 26:325–370

1 3

5.2.4 Comparison with original iStar notation

for the collaborative transport robots case example

(RQ2.2)

For the collaborative transport robots, we also investigate

RQ2.2 by comparing the goal model shown in Fig. 24 to a

goal model that does not use the extension. This goal model

is shown in Fig. 25. Although this model is not as large

and complex as the goal model for the CACC example, it

can be easily seen, that the model is much larger and more

complex than the CTR goal model that uses the extension.

This is particularly due to the need for more dependency

links. Again, two CTR actors are necessary to express the

self-dependency between different identical robots. There-

fore, we can state that Fig. 24 is more concise than Fig. 25.

Also discussions with industry partners showed that industry

professionals do not miss any information in the goal model

using the extension compared to the other goal model but do

find Fig. 24 more intuitive and comprehensible than Fig. 25,

as the number of dependencies limits the overall readability.

5.3 Usefulness of proposed modeling elements

We will illustrate the usefulness of the individual modeling

elements using excerpts from the models of the case exam-

ples. Furthermore, we discuss our major insights gained

from the application and discussion with domain experts.

5.3.1 The use of actors (RQ3.1)

Particularly, the use of the nested representation of CPS net-

work and collaborative CPS partaking was considered very

helpful as this allows getting an intuitive picture of what the

composition of the CPS network looks like. Figure 26 gives

a brief fragment of the nested actor notation from the CTR

example. As the CTR is a part of the CTRF, the CTR actor

is modeled inside the CTRF actor. Still, the intentional ele-

ments of the CTR are separated from those of the CTRF by

the actor boundary of the CTR.

<<CPS

network>>

Transpor-

taon System

Exchange informaon

<<CPS>>

CTR
[2..n]

<<CPS>>

Conveyor

Belt

Send informaon

<< CPS network>>

CTFR

Reliable communicaon

Fig. 27 Distinction between collaborative CPS belonging to the CPS network and collaborative CPS Not belonging to the CPS network

Fig. 28 A coordination task in the CACC case example to assign the

role of following vehicle
Fig. 29 Bidirectional dependency between two tasks

357Requirements Engineering (2021) 26:325–370

1 3

Another advantage was not included in the original case

example description but revealed during discussions. The

CTRF typically does not operate on its own but also interacts

with other systems in a smart factory, production machines,

storage capacities, and even with other transportation sys-

tems. Hence, the nested representation is particularly suit-

able for displaying such systems separately from each other.

As in Fig. 27, the conveyor belt is not part of the CTRF.

It can still communicate with the CTR to announce goods

in need of pickup. This way even further nesting might be

useful to express different degrees of cohesion and collab-

oration. For instance, in the CTR case, a smart factory is

composed of several collaborative CPS, some of which are

assigned transportation tasks. The collaborative CPS with

transportation tasks can, thus, be composed to the transport

system of the smart factory. Hence, the conveyor belt and the

CTRF can be nested into the transport system, which itself

may be nested into the smart factory.

The extension also allows for defining a collaborative

CPS (without defining a role) and a role this collaborative

CPS can assume in the same goal model. The need to do so

never arose in any of the case studies. In practice, it is usu-

ally relevant to either investigate the overall goals of a CPS

(i.e. without considering a specific role) or to investigate

issues that relate to the roles the CPS take.

5.3.2 The use of the coordination task (RQ3.2)

It has been shown that in the two case examples investigated,

coordination tasks are less often needed as has been assumed

upfront. However, the coordination task has shown useful

to indicate that a certain role is assigned by a particular

task, belonging to a particular actor. This helps engineers in

defining responsibilities, i.e. which entity of the CPS net-

work shall be responsible for the assignment of roles. This

is shown in Fig. 28, the CACC in the role lead vehicle has

the task to organize the platoon, i.e. it coordinates which

CACC joins the platoon and which CACC needs to leave the

platoon. Therefore, it is able to assign the role of a following

vehicle to another CACC.

5.3.3 The use of bidirectional dependencies (RQ3.3)

The main benefit of the bidirectional dependency is seen

in reducing the number of dependencies displayed. This is

illustrated in Fig. 29, which displays two actors: the col-

laborative system network CTRF and the individual CTR.

Both systems have the task to fulfill an optimal goods trans-

portation. The task of the CTRF refers to the entire network

of collaborative CPS and is therefore called optimal overall

goods transportation, while the task of the CTR refers only

to the robot itself and its current task, therefore it is called

optimal current goods transportation. Both tasks depend

on each other as the individual CTR can only reach an opti-

mal transportation solution when the overall routes (i.e. also

the routes of the other CTR) are optimized so that no colli-

sions and backups occur. However, to achieve this the CTRF

depends on each individual CTR to find optimal routes

within the existing optimized overall routes. Hence, both

tasks depend on each other. Using the bidirectional depend-

ency, not only the number of dependency links is reduced,

but as shown, the bidirectional dependency also indicates a

very close relation between both tasks. This allows engineers

to easily detect parts of the collaborative CPS network that

can only be achieved in collaboration and must therefore be

given particular care during implementation.

5.3.4 The use of self-dependencies (RQ3.4)

The major use of self-dependencies must be seen in its abil-

ity to reduce the number of actors shown in the CPS network

as every system type or role is only displayed once regard-

less of how many instances are actually partaking in the sys-

tem network. For instance, a collaborative system such as a

platoon consists of several individual CACCs collaborating.

Follow previous vehicle

*

[n..n]

<<Role>>

Following

vehicle
[1..19]

<<CPS>>

CACC

<<CPS Network>>

Platoon

Fig. 30 Self-dependency link

358 Requirements Engineering (2021) 26:325–370

1 3

It is not feasible to represent all these configurations in mod-

els as CPS networks are dynamic, thus resulting in a large

number of similar albeit slightly different configurations,

nor is it feasible to represent large configurations such as

platoons consisting of more than five vehicles in one model

if each vehicle is depicted separately. Therefore, the CACC

represents all instances of the CACC in a platoon.

In Fig. 30 it is shown that CACCs in the role Following

vehicle are part of the platoon. And, to allow driving in a

platoon formation, each following vehicle needs to follow its

predecessor, i.e., the previous vehicle. Therefore, it depends

on other following vehicles, which also need to each follow

their predecessor. This is represented by a self-dependency.

While this construct is seen as useful, care must be given

to avoid misinterpretations, i.e. an individual system does

Fig. 31 Initial situation

<<CPS network>>

CTRF

<<CPS>>

CTR
[2..n]

Accept task

Finish task

Distribution of

tasks

<<CPS network>>

CTRF

<<CPS>>

CTR
[2..n]

Accept task

Finish task

Distribution of

tasks

Fig. 32 Multidirectional

dependency

<<CPS network>>

CTRF

<<CPS>>

CTR
[2..n]

Accept task

Finish task

Distribution of

tasks
D

Fig. 33 Too complex repre-

sentation of a multidirectional

dependency
<<CPS network>>

CTRF

<<CPS>>

CTR
[2..n]

Accept task

Finish task

Distribution of

tasks
D

359Requirements Engineering (2021) 26:325–370

1 3

not depend on itself but on other systems of the same type.

However, using the asterisk was deemed very helpful as it

indicates that it is not a normal dependency. People famil-

iar with the self-*-properties directly—most likely out of

the context of their domain knowledge—related this self-

dependency not to the individual system on an instance level

but as desired on a type level, i.e. that system of this type are

self-dependent on other systems of this type.

5.3.5 The use of grouped dependencies (RQ3.5)

Grouped dependencies allow to further reduce the num-

ber of dependency links to be displayed. Instead of hav-

ing multiple separate dependency links, dependencies are

grouped, the dependency symbol is only shown once, and

each involved intentional element connects only with one

line to the symbol.

For an illustrative example, Fig. 31 shows the actors

CTRF and CTR. The goal Distribution of tasks and the

tasks Finish task and Accept task are connected through

three dependency links with each other. For example, the

task Finish task depends on the goal Distribution of tasks,

since a CTR can only process and complete a task if it has

been previously assigned to it. In addition, the goal Distri-

bution of tasks depends on Accept task, since this goal is

only achieved if a CTR who is assigned a transportation task

also accepts this assignment. In this simplified model this

may look comprehensible, but with an increasing number of

actors and their goals and tasks, the number of dependencies

can also increase.

Therefore, as shown in Fig. 32, the two actors are con-

nected by using a grouped dependency. This allows us to

express that the task Distribution of tasks depend on the

tasks Finish task and Accept task. Please note that in this

case we could also have reduced the complexity by using a

bidirectional dependency between Distribution of tasks and

Accept task.

Actually, in the early stages of the development of the

extension, we aimed for always needing just one dependency

link between two or more connected intentional elements.

However, this was not achievable, as the resulting depend-

ency constructs were complex and often misunderstood. We

illustrate this in Fig. 33, which shows the initial idea to use

only one multidirectional connector to connect all incoming

and outgoing edges. As shown in Fig. 33, however, this is

comparatively more difficult to understand than the example

in Fig. 32.

5.3.6 The use of multiplicities for dependencies (RQ3.6)

Much akin to the discussion for the self-dependency, the

multiplicities for dependencies were a necessary means

to achieve displaying just one actor that represents all

collaborative CPS of the same type and in the same role.

Otherwise, it would not be possible to distinguish, e.g., the

following two situations: (1) an intentional element of one

collaborative CPS of a certain type depends on an intentional

element of one collaborative CPS of another type, and (2)

an intentional element of one CPS of a certain type depends

on intentional elements of multiple/all CPS of another type

that do exist. Therefore, the use of multiplicities is neces-

sary. From our observations the use was quite intuitive as

multiplicities are well known from UML class diagrams and

other modeling languages and, thus, their use did not lead to

any misinterpretations.

The use of multiplicities also shows the need to separate

specification and analysis of goal models for collaborative

CPS. For specification purposes, we need abstractions to

reduce the complexity of the models and allow specification

of CPS networks in a manageable fashion. Therefore, we use

the concept of multiplicities to cope with the sheer number

of configurations to be specified at design time. For analysis

purposes, however, we need to ensure proper functionality

in all situations. Thus, for runtime analysis all possible con-

figurations need to be considered.

During specification we define what configurations may

exist and thus need to be considered, however, we do not

place emphasis on how these form or dissolve. The specifi-

cation using multiplicities defines that the number of actors

will vary in a known range at runtime but not how these

variations occur at runtime. For example, in the robot case

example, if we model that the fleet consists of three to eight

identical robots that have the same role, it does not state how

the fleet can actually vary between three and eight robots.

If we want to state that, for instance, a robot might break

down, we need to explicitly specify another actor type robot

in the role “defect robot” and a coordination task can then

be used to explicitly define how a robot can be assigned the

role “defect robot”.

5.4 Remaining challenges

5.4.1 Limitations of the iStar extension (RQ4.1)

Despite the usefulness of the proposed extension and the

overall applicability of the proposed extension, we have

found some limitations. While, so far, we have briefly men-

tioned some remaining challenges in Sect. 4 and sketched

limitations throughout Sects. 5.2 and 5.3 in this section we

will discuss the most important limitations in more detail

and provide insights into rationales.

5.4.1.1 Contribution links depending on the current CPS

network configuration As outlined in Sect. 2.3.6 there is

a need to allow modeling contributions where the value of

the contribution depends on the current configuration. We

360 Requirements Engineering (2021) 26:325–370

1 3

use multiplicities for actors and dependencies to specify

multiple configurations within one single goal model. Thus,

multiple configurations are incorporated in one model and

hence the nature of a contribution might be ambiguous.

As briefly discussed in Sect. 4.2.3, we propose the use of

configuration-dependent contribution value labels for these

situations. This simple solution is a result of the inability to

define this complex problem with a precise but at the same

time comprehensible notation. Hence, the current solu-

tion for Challenge 6 is largely based on a tradeoff between

expressiveness and proposing an easy to use iStar extension.

We decided to go for simplicity to provide easy access for

industry professionals, thus limiting the expressiveness of

varying contribution links depending on the CPS network

configuration.

Industry professionals have stressed the importance of

investigating and analyzing these situations closer. So far,

our solution to this need is by modeling concrete configura-

tions in distinct models that allow detailed investigation and

comparison. In doing so, the benefits of having only one

model to maintain and analyze vanish and the effort needed

increases. In addition, when it comes to automated sup-

port, the current solution is also not sufficient as a precisely

defined contribution depending on the respective configura-

tions is needed to allow for any kind of automation.

5.4.1.2 Missing support for in-depth analysis of concrete

instance configurations There is not only a need to define

and investigate the impact a contribution link has based on

different configurations but more generally to investigate

concrete investigations in-depth. Due to the use of abstrac-

tions in the specification (i.e. representing CPS of similar

type with just one actor having multiplicities), it becomes

difficult to reason about similar CPS that try to achieve dif-

ferent goals at the same time. For instance, two CTR might

collaborate in a CTRF, while they have in principle the same

goals due to the current context situation the robots try to

achieve different goals. As an example, both robots might

have different battery-levels. Depending on the current bat-

tery level, the goals to be fulfilled change. With lower bat-

tery-levels robots shall aim for resource preservation, while

with higher battery-level the maximum number of transpor-

tation tasks shall be processed. Therefore, a means to gener-

ate and investigate concrete instance level configurations is

needed. We have already shown the applicability, effective-

ness, and usefulness of such generations for scenario model

using ITU Message Sequence Charts (cf. [105, 106]). Due

to the feedback we received from our industry partners, we

are confident that this is transferable to goal models and will

allow more in-depth analysis on the impact of certain con-

figurations.

5.4.1.3 Interpreting complex relations involving multiplici-

ties The interpretation of complex relations that involve

multiplicities may be error prone. Due to the high amount

of information to be processed for correctly interpreting

the meaning of grouped dependencies with multiplicities

involving actors with multiplicities, there is a risk of misin-

terpretation. However, the reduced size of the model itself

due to the use of these constructs was very much appreci-

ated.

Currently, we assume that the fulfillment of a depend-

ency with multiplicities means that all depender elements

are fulfilled if all dependee elements (AND-dependency),

at least one dependee element (OR-dependency), or exactly

one dependee element (XOR-dependency) are fulfilled. So

far, we found this definition to be sufficiently comprehensive

and intuitive. However, there might be the need to express

that just one of the depender elements will be fulfilled or

just a certain number. For instance, due to access restrictions

a resource might be only accessible by exactly one CPS.

Therefore, not all depending CPS can access this resource

at the same time and therefore, only one CPS can fulfill its

goals that depend on this resource. Furthermore, it is also

conceivable that not all, at least one, exactly one dependee

elements shall be fulfilled but a concrete number (or within

a concrete range). This is, for instance, the case if measure-

ments shall be validated across different members of a CPS

network. To do so, it is not necessary for the measurement to

be provided by all elements, but by at least two or three (as

otherwise no meaningful detection of outliers is possible).

5.4.1.4 Goal fulfillment analysis and semantics of the iStar

extension Semantics for iStar and GRL are typically

defined based on goal fulfillments [107, 108]. Recommen-

dation Z.151 refers to this as the “GRL model satisfaction

analysis”. For instance, the semantics of an AND-decom-

position is defined such that the super-intentional element

is fulfilled if all intentional elements it is composed of are

fulfilled. Therefore, typically values for qualitative (e.g.,

high satisfaction, medium satisfaction, low satisfaction) and

quantitative analysis (e.g., 0–100% contribution to the satis-

faction) are defined. This allows, among others, automated

analysis of the overall goal fulfillments (i.e. can the overall

goals be sufficiently achieved) or calculating optimized goal

fulfillments (i.e. which subgoals—under consideration of

conflicts, etc.—should be fulfilled to reach the best possible

goal fulfillment).

So far, we have focused on modeling collaborative CPS

and manual analysis by human engineers. However, due to

the complexity automated support based on clear seman-

tics is desired. Particularly, goal fulfillment analyses can

support engineers in identifying problematic CPS network

361Requirements Engineering (2021) 26:325–370

1 3

configurations, etc. Thus, the aforementioned precise seman-

tics for goal fulfillments will need to be established. Par-

ticularly, the semantics for goal fulfillment of multiplici-

ties, i.e. the impact on the actors with multiplicities, and on

the intentional elements involved with dependencies with

multiplicities need to be precisely defined. At this point,

we have gathered a broad understanding from the engineers

about what it means when a goal is fulfilled. From what we

have learned so far in collaborative CPS networks different

degrees of goal fulfillment must be considered. For instance,

the CTRF will not always fulfill a goal to 100% but in many

cases to a point where it suffices. I.e. equal battery consump-

tion across all CTRs will, depending on the configuration,

not be achievable. However, for many of these configurations

a less then optimal equality is also acceptable. Thus, when it

comes to goal fulfillments and automated analyses thereof,

more precise means are needed to express such complex

situations depending on the configuration.

5.4.1.5 Circular dependencies Related to the afore-

mentioned point, when analyzing goal fulfilment circu-

lar dependencies are a problem, as this typically can be

interpreted as a deadlock, however, for collaborative CPS

expressing such circular dependencies is important.

As could be seen from the application of the case exam-

ples, circular dependencies occurred regularly. Furthermore,

we even introduced some elements (e.g., bi-directional

dependencies) that contradict the fulfillability of the overall

model in general as these are circular per definition. How-

ever, we deem these elements important. For instance, it is

necessary to express that a CPS network cannot fulfill its

goals if the goals of the individual systems are not fulfilled

and vice versa. A CACC wanting to reduce the overall travel

time depends on the platoon to reach this goal. However,

the platoon depends on each CACC in the platoon trying to

reach this goal as well. In other words, the platoon can only

drive as fast as its slowest member.

The many circular dependency relations between multiple

intentional elements of a CPS network and partaking CPS

were not identified as problematic by industry professionals.

Even more, they were highly appreciated as they express the

inherently collaborative parts of the interplay between the

individual CPS and the CPS network. Thus, these constructs

are severely needed by industry professionals to foster their

analysis in early stages. However, they are problematic for

goal fulfillment analysis, which was also seen as desirable

to support the development of collaborative CPS.

5.4.1.6 Tool support While we provide Visio stencils to

create goal models for networks of collaborative CPS, the

tool cannot prevent modelers from creating goal models that

violate syntactical or well-formedness rules. Consequently,

the responsibility for adhering to those rules lies completely

with the modeler. This can be problematic for inexperienced

modelers who are not that familiar with the rules and there-

fore more likely to create flawed goal models for networks

of collaborative CPS.

Additionally, the tool does not provide automated analysis

support for goal fulfillment. Goal models can be analyzed

automatically to reason about goal fulfilment. This, how-

ever, is currently not implemented, leaving the requirements

engineer with the task of having to analyze the goal models

manually.

Currently, we are using Microsoft Visio as modeling tool,

which also allows implementing feasibility checks and the

goal fulfillment analysis via add-ins. Due to the popularity of

Visio, we intend to keep and enhance this, instead of using

another modeling tool which has already basic checks for

goal models implemented. The main reason for this is the

broad availability of Microsoft Office products in German

industry. This leads to easy application as modelers already

have sufficient experience with the tool.

5.4.2 Industry needs for future work (RQ4.2)

Based on the limitations discussed above, the need for future

work arises. While we have already briefly discussed this

need in Sect. 5.4.1. In this section, we briefly summarize

the major needs identified. Particularly, we found needs for:

Contribution links depending on the configuration. The

solution needs to allow for precise definition of the impact

certain configurations or changes in a configuration have

on the value of a contribution link and at the same time

must be reasonably easy to model and comprehend that

it is of value for manual analyzes and discussions in early

development phases.

Providing support for interpreting complex relations

involving multiplicities. Correctly interpreting dependen-

cies with multiplicities and/or dependency groups can be

difficult. While having groups and multiplicities allow for

reducing the size of the goal model considerably (as oth-

erwise each dependency would have to be modeled indi-

vidually), there is an increased risk of misinterpretation.

One possible solution to this issue could be the illustra-

tive generation of model excerpts focusing on a particular

dependency that allow for examining this dependency in

the familiar style with no groups or multiplicities.

Automated goal fulfilment analysis and formal defini-

tion of semantics. Some new constructs (e.g., circular

dependencies, grouped dependencies) hinder the use of

established goal-fulfilment analysis approaches. To pro-

vide automated support for goal fulfilment analysis for

goal models of networks of collaborative CPS, a precise

definition of formal semantics is necessary. Particularly,

362 Requirements Engineering (2021) 26:325–370

1 3

Table 3 Short summary of the principal findings for each research question

Research

questions

Findings

RQ1.1 Is the proposed iStar extension applicable to model a coopera-

tive adaptive cruise control?

The iStar extension is applicable and the application resulted in a

valid model for the cooperative adaptive cruise control that has

been evaluated by industry professionals as sufficient and helpful

in the engineering process

RQ1.2 Is the proposed iStar extension applicable to model collabora-

tive transport robots?

The iStar extension is applicable and the application resulted in a

valid model for the collaborative transport robots that has been

evaluated by industry professionals as sufficient and helpful in

the engineering process

RQ2.1 Does the use of the proposed iStar extension lead to a more con-

cise yet still comprehensible model of the cooperative adaptive

cruise control?

The resulting model is more concise than a comparable model

created without the extension. Particularly, the number of actors

shown is reduced and the number of dependency links needed

is significantly smaller. Furthermore, other approaches need to

define a single model for each configuration, thus, the number

of diagrams needed to describe the entire CPS network is also

reduced considerably

RQ2.2 Does the use of the proposed iStar extension lead to a more

concise yet still comprehensible model of the collaborative

transport robots?

The resulting model is more concise than a comparable model

created without the extension. Particularly, the number of actors

shown is reduced and the number of dependency links needed

is smaller. However, the effect is not as large as observed for

RQ2.1. Nevertheless, also in this case, other approaches would

need to define a single model for each configuration, thus, the

number of diagrams needed to describe the entire CPS network

is also reduced considerably

RQ3.1 Is the use of collaborative CPS and the network of collaborative

CPS as actors useful?

The differentiation between collaborative CPS and the CPS net-

work allows for expressing goals on different levels of abstrac-

tion and relating them to each other. I.e. it can be expressed how

CPS network goals can be achieved based on the collaborative

CPS’ goals. Particularly, the use of stereotypes allows to easily

distinguish both actor concepts and the use of nesting results

in smaller models while at the same time making the hierarchy

between CPS network and collaborative CPS intuitively clear

RQ3.2 Is the use of the coordination task useful? The coordination task is useful as it allows to document changes

of roles that may occur during runtime and indicate how they

are triggered and who is responsible for changing the role of an

actor. Thus, the coordination task concept allows to express a

complex situation by using just one intentional element

RQ3.3 Is the use of bidirectional dependencies useful? Bidirectional dependencies considerably reduce the size and

complexity of the resulting models. Collaborative CPC are—as

is quite obvious—collaborating and therefore, often rely on each

other, furthermore often the CPS network relies on the indi-

vidual CPS and vice versa. Thus, the bidirectional dependency

reduces the number of dependencies used and adds the notion of

mutuality which is not given by having two independent depend-

ency links

RQ3.4 Is the use of self-dependencies useful? The self-dependency allows to express that one system depends

on another system of the same type and role. Thus, the self-

dependency allows expressing different systems of the same type

with just one actor element Consequently, the size of the goal

model can considerably be reduced, and the clarity of the models

is improved

363Requirements Engineering (2021) 26:325–370

1 3

a solution for the needed circular dependencies must be

provided.

Advanced tool support. To better support developers in

creating goal models for networks of collaborative CPS,

future tool support should also include checks for adher-

ence to modeling rules as well as support for automated

goal fulfillment analysis. As current tool support already

provides stencils for creating goal models for networks

of collaborative CPS, these analysis functionalities can

be implemented as Visio add-ins, so that already created

goal models can be analyzed,

6 Discussion

6.1 Summary and major findings

In this paper, we developed a GRL-compliant extension to

the existing iStar goal modeling language for goal modeling

of collaborative CPS and CPS networks. With the choice

of iStar, we have adopted a widely used goal modeling

approach. To do so, we integrated our extensions into the

iStar metamodel and defined the concrete syntax to specify

what the goal modeling extension looks like graphically con-

sidering best practices for model notation creation. Further-

more, the well-formedness rules were defined to describe

constraints for the goal models. Our extension was evaluated

using two industrial case examples: a CACC (cooperative

adaptive cruise control system) from the automotive industry

as well as a CTRF (collaborative transport robot fleet) from

the industry automation domain.

For the main results of our evaluation we can state that:

• RQ1: Our evaluation shows that the iStar extension is

applicable to industrial case examples of collabora-

tive CPS. The resulting models were well received by

industry professionals and rated as very helpful in the

engineering process as the goals of a multitude of con-

figurations to be considered can be easily expressed in

manageable models.

• RQ2: The goal models with the extension include fewer

actors and dependency lines compared to the goal mod-

Table 3 (continued)

Research

questions

Findings

RQ3.5 Is the use of grouped dependencies useful? Grouped dependencies can reduce the number of dependencies to

be modeled and therefore reduce the size of the model and add

to model clarity. However, it is to mention that in some cases the

use of grouped dependencies can result in too complex to read

dependencies. This is particular the case when dependent inten-

tional elements are spatially distant. Therefore, this modeling

element should not be used regardless of the layout of the model,

but the current layout should be taken into account. However,

in several situations the model complexity can considerably be

reduced

RQ3.6 Is the use of multiplicities for dependencies useful? As is the case for self-dependencies, this modeling element allows

to model different systems of the same type with just one actor

element. Consequently, the size of the goal model can consider-

ably be reduced, and the clarity of the models is improved

RQ4.1 What are limitations of the proposed iStar extension? As advanced automated support is desired, the proposed iStar

extension is limited as no formal semantics are provided yet.

This is particularly the case when it comes to circular depend-

encies and the proper interpretation of complex dependencies

that involve multiplicities. Furthermore, by providing simplified

type-level specifications using abstractions to allow for concise

models, the ability to reason about concrete, potentially hazard-

ous, instance configurations is limited

RQ4.2 What are industry’s needs for future work? There is particularly a need for revisiting the solution for Chal-

lenge 6 by semantically defining contribution links, where the

contribution value depends on the configuration of the CPS

network (i.e. is related to actor multiplicities). Furthermore,

there is a need to define formal semantics for analyzing circular

dependencies and to allow for automated goal fulfillment

analysis. Furthermore, automated support for analyzing concrete

instance-configurations is needed. These automated aspects can

also be supported by adequately developing the tool support

further

364 Requirements Engineering (2021) 26:325–370

1 3

els without the extension, although the same situation is

shown in both. Therefore, the use of the iStar extension

results in more concise goal models.

• RQ3: We have shown that each of the proposed modeling

elements contributes to modeling complex situations

in a clear and concise way and thus yields the creation

of extensive and yet easily readable models. Accord-

ing to Moody’s principle of complexity management,

it was shown that the modeling elements of the exten-

sion are suitable to reduce the complexity of the iStar

models when modeling collaborative CPS that interact

in dynamic CPS networks.

• RQ4: Finally, we have investigated shortcomings of the

extension and needs for future work. Among the remain-

ing challenges, most notably is the proper definition of

formal semantics that also consider circular and bidirec-

tional dependencies, take multiplicities for contributions

into account and, thus, allow for automated goal fulfill-

ment analysis.

For a summary of the major findings for each sub-

research question, please refer to Table 3.

6.2 Threats to validity

To evaluate our proposed extension, we used a commonly

used evaluation approach (e.g., [17, 100, 109]). However,

like all evaluation approaches, case study evaluations have

some drawbacks [110, 111]. As recommended [112], we

discuss those drawbacks in terms of conclusion, external,

internal, and construct validity.

6.2.1 Conclusion Validity

Conclusion validity deals with drawing correct conclusions

from the application results and findings. As case studies

usually draw conclusions from few cases studies, conclu-

sion validity must be considered rather low. To somewhat

alleviate this threat, we conducted two case studies in dif-

ferent domains. We showed that both case examples can be

modeled appropriately using the proposed extension. We

furthermore showed that industry professionals found the

created models easy to understand and helpful. However, at

this point we cannot make any claims as to how well indus-

try professionals can create goal models using the extension

on their own.

6.2.2 External validity

External validity deals with the ability to generalize results

to cases outside those studied. Collaborative CPS networks

are of a diverse nature and exist in a variety of domains (such

as energy, aviation, etc.) with specific characteristics. We

cannot rule out the need for further adjustment to the exten-

sion for goal models of collaborative CPS for those domains.

However, our case study has shown the applicability of the

proposed extension for goal models of collaborative in two

different domains, automotive and industry automation. We

expect the proposed extension to be at least somewhat ben-

eficial to the development of collaborative CPS from other

domains.

Another remaining threat is if industry will ever use the

extension on their own. Particularly, there is a threat that

goal models at all will not be used by industry as recent

studies have shown industry’s reluctance to the use of goal

modeling [26, 27]. While we cannot rule out this possibility,

we want to highlight that we have shown for the automotive

industry that goal models are welcomed when the introduc-

tion is accompanied with training and tutoring sessions [52].

Regarding the robot case example, the idea of using goal

models was very well-received as it was a good match for

how engineers thought of their robots. We found that the

engineering was already centered around the goals, the indi-

vidual robots have and around questions like when shall a

robot fulfill which goal, etc. However, previously this was

not made explicit and, therefore, the benefits of using goal

models were quite obvious to our partners.

6.2.3 Internal validity

Internal validity deals with the ability to infer a causal rela-

tionship between treatment and outcome. As the goal models

were largely created by the same persons that created the

extension, a certain degree of bias cannot be dismissed com-

pletely. However, all goal models were frequently reviewed

by industry professionals not involved in the development

of the extension.

Due to being part of the CrESt-project, the timing of the

workshops, data collection procedures, etc., were not com-

pletely under our control, but we made use of the means the

project setup provided. Nevertheless, there was always suf-

ficient space for industry feedback either in writing as com-

ments to the models or during discussions. While we gave

all participants the opportunity to give their opinion publicly

or privately, we cannot rule out that some participants might

have kept their opinions to themselves.

6.2.4 Construct validity

Construct validity deals with the generalizability of the

results found for the particular case example to the underly-

ing theory. I.e. in our case it must be questioned whether the

case studies are indeed good representatives for collabora-

tive CPS and whether the effects observed during applica-

tion can be attributed to the proposed extension or whether

these are only particular to the case example. Hence, there

365Requirements Engineering (2021) 26:325–370

1 3

is a risk as the requirements for the iStar extension were

based on findings from the evaluation case examples, that

the proposed extension does only address specific issues for

the two case examples under investigation, but that these are

not representative for collaborative CPS at large.

One further aspect is the generalization beyond the use

for specifying collaborative CPS. Therefore, it is to note

that some of the modeling elements we use are not specific

for collaborative CPS. Furthermore, we make also use of

other proposed extensions that aimed at other system types.

Consequently, we cannot state that the proposed extension

is limited to the specification of collaborative CPS, nor can

we state that there will be no collaborative CPS that cannot

be modeled using our extension. However, the applicability

on two case examples of collaborative CPS indicates that

the proposed extension allows modeling collaborative CPS.

Nevertheless, we assume that also other system types might

be documented using the extension, particularly those we

have briefly sketched in the related work section. However,

we cannot make any reliable claim on this as this was not in

the focus of our evaluation.

6.3 Inferences

In this paper, we have proposed a GRL-compliant iStar

extension to support goal modeling of collaborative CPS

that partake in dynamic CPS networks. The proposed mod-

eling elements have been created based on needs identified

in industrial applications of goal modeling and have been

evaluated for their ability to solve these needs. In addition,

the resulting overall goal models have shown valid, useful,

and concise. Hence, we can state that the proposed extension

is an adequate solution to an industrial problem situation.

However, it must be questioned whether goal models in gen-

eral are a valid approach for supporting the engineering of

collaborative CPS. Particularly, for collaborative CPS it is

the case that goal modeling is seen as an intuitive approach

as it can be expressed that the individual CPS have their

own goals to fulfill, which might be contradictory from one

system to another as well as the overall goals of the CPS

network. Insights derived from the workshops conducted

with industry partners corroborate this claim. It was seen

as very valuable to identify collaborative CPS and CPS net-

work goals right from the beginning and already discuss

dependencies and conflicts arising from the interplay of the

individual CPS. Particularly, for the CTR case example it

was confirmed that initial conceptual goal models can sup-

port the overall development as the industry partner involved

follows a goal-oriented implementation approach. I.e. the

defined goals are each instantiated by code and deployed on

the robot. Additionally, key performance indicators (KPI)

are defined to allow monitoring of the goal fulfillment

of each goal and decision-making which goal fulfillment

should be optimized in which situation.

Although the approach was only evaluated using two case

examples, they have shown that the proposed extension is

a valid and valuable solution at least for these. However, as

the case examples were taken from different domains and

the results were also discussed with partners working on

other collaborative CPS and also stem from other domains,

we are confident that the approach can be a valuable con-

tribution in general. Particularly, the application of goal

modeling for supporting the engineering of collaborative

CPS seems very reasonable as discussing goal conflicts

between individual collaborative CPS as well as between

individual collaborative CPS and CPS network is vital for

the engineering of these systems. Thus, the use of goal mod-

els can improve the engineering of these systems already

in the early stages and – as, for instance, the application to

the CTR case has shown – can also be used to structure the

engineering process of these systems.

6.4 Future work

So far, we have identified limitations and needs for future

work regarding the extension and its evaluation, which we

will summarize in this section. As discussed in Sect. 5.4.1

some limitations to the proposed GRL-compliant iStar

extension still exist. These lead to the need for further

improvements to the extension as discussed in Sect. 5.4.2. In

addition, we have discussed limitations originating from the

threats to validity of the evaluation as outlined in Sect. 6.2,

which have been identified as needs for future evaluation

efforts in Sect. 6.3.

Thus, two major research directions exist that need to be

coped with in future work:

• Extending and improving the proposed GRL-compliant

iStar extension for collaborative CPS. Most notably there

still exists a need for a formal definition of semantics to

allow for automated analyses and reasoning about goal

fulfillment relations. In addition, industry needs exist

regarding the documentation of contribution links with

values depending on the different configurations as well

as extended tool support.

• Extending the evaluation of the proposed GRL-compliant

iStar extension for collaborative CPS. In the evaluation

of the proposed extension, we have shown that the exten-

sion can be used to adequately model the goals for the

two selected industry case examples. We have further

shown that industry professionals regard the extension

as helpful. Beside the need for further evaluation using

different case examples, it is also of interest to study the

use of the extension by industry professionals not only as

366 Requirements Engineering (2021) 26:325–370

1 3

interpreters of the models but their ability to create goal

models using the extension themselves.

7 Conclusion

In this paper, we have presented a GRL-compliant iStar

extension for collaborative CPS. Collaborative CPS form

CPS networks in which they can achieve goals that cannot

be achieved by individual CPS on their own [22]. In previ-

ous work we have investigated how suitable GRL/iStar is to

model such collaborative CPS that form CPS networks [23].

We found that goal modeling – particularly using GRL – is

a promising approach to specify collaborative CPS and ana-

lyze the interdependencies between the individual CPS and

the CPS network. However, we also found that some spe-

cific characteristics of collaborative CPS and CPS networks

are not sufficiently covered by the iStar modeling language

so far. Therefore, in this paper we defined requirements for

extending GRL/iStar to allow for consideration of these

aspects. Based on these requirements, we have developed a

GRL-compliant iStar extension and shown its applicability

and usefulness by employing two industrial case examples.

We used a cooperative adaptive cruise control system that

dynamically forms platoons at runtime from the automotive

industry and autonomous transport robots that form fleets of

robots to fulfill transportation tasks in smart factories from

the industry automation domain.

While we have shown the applicability of the approach to

industrial case examples and made the case for its usefulness

as seen by industry partners, we have also identified remain-

ing challenges for future work. In this paper we focused on

defining an appropriate extension to foster graphical mod-

eling in the development of collaborative CPS. This means

that we mainly addressed communication aspects, support

for early comprehension and representation of complex rela-

tions within the CPS network, and manual analyses of goal

relations. This was well-received by industry partners and

has been shown to be applicable and useful for collaborative

CPS and CPS networks. Thus, we believe this extension is a

good starting point for further advanced analysis techniques

to support requirements engineering of collaborative CPS

and CPS networks. This is substantiated by the discovered

desire for automated support in analyzing goal fulfillment

relations and for identifying and in-depth analysis of con-

crete potentially hazardous instance-level configurations.

Therefore, in the next step, a thorough definition of goal

fulfillment semantics is needed. These must also consider

challenging model elements such as circular and bidirec-

tional dependencies or contributions whose value depends

on the respective configuration.

Acknowledgments We thank Elham Mirzaei, Martin Neumann, and

Jan Stefan Zernickel from InSystems Automation GmbH; Jochen Nick-

les and Markus Sauer from Siemens AG; Frank Houdek from Daimler

AG; and Sebastian Schröck and Peter Heidl from Robert Bosch GmbH

for their support. Furthermore, we like to thank the anonymous review-

ers that provided us with very helpful feedback and comments, thus

supporting us in improving this paper.

Funding Open Access funding enabled and organized by Projekt

DEAL. This work was partially funded by the German Federal Minis-

try for Education and Research (BMBF) under grant no. 01IS16043V

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adapta-

tion, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are

included in the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in

the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. van Lamsweerde A, Letier E (2004) From object orientation to

goal orientation: a paradigm shift for requirements engineering.

In: Wirsing M, Knapp A, Balsamo S (eds) Radical innovations of

software and systems engineering in the future. Springer, Berlin

Heidelberg, pp 325–340

 2. Bresciani P, Perini A, Giorgini P et al (2004) Tropos: an

agent-oriented software development methodology. Auton

Agents Multi-Agent Syst 8:203–236. https ://doi.org/10.1023/

B:AGNT.00000 18806 .20944 .ef

 3. Ali R, Dalpiaz F, Giorgini P (2010) A goal-based framework

for contextual requirements modeling and analysis. Requir Eng

15:439–458. https ://doi.org/10.1007/s0076 6-010-0110-z

 4. Cheng BHC, Sawyer P, Bencomo N, Whittle J (2009) A goal-

based modeling approach to develop requirements of an adaptive

system with environmental uncertainty. In: Schürr A, Selic B

(eds) Model driven engineering languages and systems. Springer,

Berlin Heidelberg, pp 468–483

 5. Mylopoulos J, Chung L, Yu E (1999) From object-oriented to

goal-oriented requirements analysis. Commun ACM 42:31–37.

https ://doi.org/10.1145/29146 9.29316 5

 6. Ghanavati S, Rifaut A, Dubois E, Amyot D (2014) Goal-oriented

compliance with multiple regulations. In: 2014 IEEE 22nd inter-

national requirements engineering conference (RE). pp 73–82

 7. Grau G, Franch X, Maiden NAM (2008) PRiM: An i*-based pro-

cess reengineering method for information systems specification.

Inform Softw Technol 50:76–100. https ://doi.org/10.1016/j.infso

f.2007.10.006

 8. Cardoso ECS, Almeida JPA, Guizzardi G, Guizzardi RSS (2009)

Eliciting goals for business process models with non-functional

requirements catalogues. In: Halpin T, Krogstie J, Nurcan S et al

(eds) Enterprise, business-process and information systems mod-

eling. Springer, Berlin, Heidelberg, pp 33–45

 9. Horkoff J, Yu E (2016) Interactive goal model analysis for early

requirements engineering. Requir Eng 21:29–61. https ://doi.

org/10.1007/s0076 6-014-0209-8

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
https://doi.org/10.1007/s00766-010-0110-z
https://doi.org/10.1145/291469.293165
https://doi.org/10.1016/j.infsof.2007.10.006
https://doi.org/10.1016/j.infsof.2007.10.006
https://doi.org/10.1007/s00766-014-0209-8
https://doi.org/10.1007/s00766-014-0209-8

367Requirements Engineering (2021) 26:325–370

1 3

 10. Cleland-Huang J, Settimi R, BenKhadra O et al (2005) Goal-

centric traceability for managing non-functional requirements.

In: Proceedings of the 27th international conference on software

engineering. ACM, New York, NY, USA, pp 362–371

 11. Kavakli V, Loucopoulos P (1999) Goal-driven business process

analysis application in electricity deregulation. Inf Syst 24:187–

207. https ://doi.org/10.1016/S0306 -4379(99)00015 -0

 12. Liaskos S, Alexei, Yu Y et al (2006) On goal-based variability

acquisition and analysis. In: 14th IEEE international require-

ments engineering conference (RE’06). pp 79–88

 13. Yijun Yu, Leite JCSP, Mylopoulos J (2004) From goals to

aspects: discovering aspects from requirements goal models. In:

Proceedings. 12th IEEE international requirements engineering

conference, 2004. pp 38–47

 14. van Lamsweerde A, Darimont R, Letier E (1998) Managing con-

flicts in goal-driven requirements engineering. IEEE Trans Softw

Eng 24:908–926. https ://doi.org/10.1109/32.73054 2

 15. Fuxman A, Liu L, Mylopoulos J et al (2004) Specifying and

analyzing early requirements in Tropos. Requir Eng 9:132–150.

https ://doi.org/10.1007/s0076 6-004-0191-7

 16. Matulevičius R, Mayer N, Mouratidis H et al (2008) Adapting

secure tropos for security risk management in the early phases

of information systems development. In: Bellahsène Z, Léonard

M (eds) Advanced information systems engineering. Springer,

Berlin, Heidelberg, pp 541–555

 17. Mouratidis H, Giorgini P (2007) Secure tropos: a security-ori-

ented extension of the tropos methodology. Int J Soft Eng Knowl

Eng 17:285–309. https ://doi.org/10.1142/S0218 19400 70032 40

 18. Rolland C, Souveyet C, Achour CB (1998) Guiding goal mod-

eling using scenarios. IEEE Trans Softw Eng 24:1055–1071.

https ://doi.org/10.1109/32.73833 9

 19. Goldsby HJ, Sawyer P, Bencomo N et al (2008) Goal-based

modeling of dynamically adaptive system requirements. In: 15th

Annual IEEE international conference and workshop on the engi-

neering of computer based systems (ecbs 2008). pp 36–45

 20. Andersson B, Johannesson P, Zdravkovic J (2009) Aligning goals

and services through goal and business modelling. Inf Syst E-Bus

Manag 7:143–169. https ://doi.org/10.1007/s1025 7-008-0084-2

 21. Dalpiaz F, Franch X, Horkoff J (2016) iStar 2.0 language guide.

https ://arxiv .org/abs/1605.07767 [cs]

 22. Mosterman PJ, Zander J (2016) Cyber-physical systems chal-

lenges: a needs analysis for collaborating embedded software

systems. Softw Syst Model 15:5–16. https ://doi.org/10.1007/

s1027 0-015-0469-x

 23. Daun M, Stenkova V, Krajinski L et al (2019) Goal modeling

for collaborative groups of cyber-physical systems with GRL:

reflections on applicability and limitations based on two studies

conducted in industry. In: Proceedings of the 34th ACM/SIGAPP

symposium on applied computing, SAC 2019, Limassol, Cyprus,

April 8–12, 2019. pp 1600–1609

 24. Yu ESK (1997) Towards modelling and reasoning support for

early-phase requirements engineering. In: Proceedings of ISRE

’97: 3rd IEEE international symposium on requirements engi-

neering. pp 226–235

 25. International Telecommunication Union (2018) Recommenda-

tion Z.151 (10/18): user requirements notation (URN)—language

definition. International Telecommunication Union, Geneva,

Switzerland

 26. Mavin A, Wilkinson P, Teufl S et al (2017) Does goal-oriented

requirements engineering achieve its goal? In: 2017 IEEE 25th

international requirements engineering conference (RE). pp

174–183

 27. Wagner S, Fernández DM, Felderer M et al (2019) Status quo

in requirements engineering: a theory and a global family of

surveys. ACM Trans Softw Eng Methodol 28:9:1-9:48. https ://

doi.org/10.1145/33066 07

 28. Horkoff J, Aydemir FB, Cardoso E et al (2019) Goal-oriented

requirements engineering: an extended systematic mapping

study. Requir Eng 24:133–160. https ://doi.org/10.1007/s0076

6-017-0280-z

 29. Kavakli E (2004) Modeling organizational goals: analysis of cur-

rent methods. In: Proceedings of the 2004 ACM symposium on

applied computing. ACM, New York, NY, USA, pp 1339–1343

 30. Dardenne A, van Lamsweerde A, Fickas S (1993) Goal-directed

requirements acquisition. Sci Comput Program 20:3–50. https ://

doi.org/10.1016/0167-6423(93)90021 -G

 31. van Lamsweerde A (2009) Requirements engineering: from sys-

tem goals to UML models to software specifications, 1st edn.

Wiley, Hoboken

 32. Amyot D, Horkoff J, Gross D, Mussbacher G (2009) A light-

weight GRL profile for i* modeling. In: Heuser CA, Pernul G

(eds) Advances in conceptual modelling—challenging perspec-

tives. Springer, Berlin Heidelberg, pp 254–264

 33. Amyot D, Mussbacher G (2011) User requirements notation: the

first ten years, the next ten years. JSW 6:747–768. https ://doi.

org/10.4304/jsw.6.5.747-768

 34. Horkoff J, Elahi G, Abdulhadi S, Yu E (2008) Reflective analy-

sis of the syntax and semantics of the i* framework. In: Song

I-Y, Piattini M, Chen Y-PP et al (eds) Advances in conceptual

modeling—challenges and opportunities. Springer, Berlin Hei-

delberg, pp 249–260

 35. Brings J, Daun M, Bandyszak T et al (2019) Model-based doc-

umentation of dynamicity constraints for collaborative cyber-

physical system architectures: findings from an industrial case

study. J Syst Archit 97:153–167. https ://doi.org/10.1016/j.sysar

c.2019.02.012

 36. Teruel MA, Navarro E, López-Jaquero V et al (2011) CSRML: a

goal-oriented approach to model requirements for collaborative

systems. In: Jeusfeld M, Delcambre L, Ling T-W (eds) Concep-

tual modeling—ER 2011. Springer, Berlin, Heidelberg, pp 33–46

 37. Kim KD, Kumar PR (2012) Cyber-physical systems: a perspec-

tive at the centennial. Proc IEEE 100:1287–1308. https ://doi.

org/10.1109/JPROC .2012.21897 92

 38. Fitzgerald J, Larsen PG, Verhoef M (2014) From embedded to

cyber-physical systems: challenges and future directions. In:

Fitzgerald J, Larsen PG, Verhoef M (eds) Collaborative design

for embedded systems. Springer, Berlin, Heidelberg, pp 293–303

 39. Lee EA (2008) Cyber physical systems: design challenges. In:

2008 11th IEEE international symposium on object and com-

ponent-oriented real-time distributed computing (ISORC). pp

363–369

 40. Stankovic JA, Lee I, Mok A, Rajkumar R (2005) Opportuni-

ties and obligations for physical computing systems. Computer

38:23–31. https ://doi.org/10.1109/MC.2005.386

 41. Ponsard C, Massonet P, Rifaut A et al (2005) Early verifica-

tion and validation of mission critical systems. Electron Notes

Theor Comput Sci 133:237–254. https ://doi.org/10.1016/j.entcs

.2004.08.067

 42. Fallah YP, Huang C, Sengupta R, Krishnan H (2010) Design of

cooperative vehicle safety systems based on tight coupling of

communication, computing and physical vehicle dynamics. In:

Proceedings of the 1st ACM/IEEE international conference on

cyber-physical systems. ACM, New York, NY, USA, pp 159–167

 43. Fallah YP, Huang C, Sengupta R, Krishnan H (2011) Analy-

sis of information dissemination in vehicular ad-hoc networks

with application to cooperative vehicle safety systems. IEEE

Trans Veh Technol 60:233–247. https ://doi.org/10.1109/

TVT.2010.20850 22

https://doi.org/10.1016/S0306-4379(99)00015-0
https://doi.org/10.1109/32.730542
https://doi.org/10.1007/s00766-004-0191-7
https://doi.org/10.1142/S0218194007003240
https://doi.org/10.1109/32.738339
https://doi.org/10.1007/s10257-008-0084-2
https://arxiv.org/abs/1605.07767
https://doi.org/10.1007/s10270-015-0469-x
https://doi.org/10.1007/s10270-015-0469-x
https://doi.org/10.1145/3306607
https://doi.org/10.1145/3306607
https://doi.org/10.1007/s00766-017-0280-z
https://doi.org/10.1007/s00766-017-0280-z
https://doi.org/10.1016/0167-6423(93)90021-G
https://doi.org/10.1016/0167-6423(93)90021-G
https://doi.org/10.4304/jsw.6.5.747-768
https://doi.org/10.4304/jsw.6.5.747-768
https://doi.org/10.1016/j.sysarc.2019.02.012
https://doi.org/10.1016/j.sysarc.2019.02.012
https://doi.org/10.1109/JPROC.2012.2189792
https://doi.org/10.1109/JPROC.2012.2189792
https://doi.org/10.1109/MC.2005.386
https://doi.org/10.1016/j.entcs.2004.08.067
https://doi.org/10.1016/j.entcs.2004.08.067
https://doi.org/10.1109/TVT.2010.2085022
https://doi.org/10.1109/TVT.2010.2085022

368 Requirements Engineering (2021) 26:325–370

1 3

 44. Sha L, Gopalakrishnan S, Liu X, Wang Q (2008) Cyber-physical

systems: a new frontier. In: 2008 IEEE international conference

on sensor networks, ubiquitous, and trustworthy computing (sutc

2008). pp 1–9

 45. Lee EA (2010) CPS foundations. In: Design automation confer-

ence. pp 737–742

 46. Gonçalves E, de Oliveira MA, Monteiro I et al (2019) Under-

standing what is important in iStar extension proposals: the

viewpoint of researchers. Requir Eng 24:55–84. https ://doi.

org/10.1007/s0076 6-018-0302-5

 47. Moody D (2009) The “physics” of notations: toward a scientific

basis for constructing visual notations in software engineering.

IEEE Trans Softw Eng 35:756–779. https ://doi.org/10.1109/

TSE.2009.67

 48. Brings J, Daun M, Weyer T, Pohl K (2020) Goal-based con-

figuration analysis for networks of collaborative cyber-physical

systems. In: Proceedings of the 35th annual ACM symposium

on applied computing. Association for Computing Machinery,

Brno, Czech Republic, pp 1387–1396

 49. Daun M, Salmon A, Tenbergen B et al (2014) Industrial case

studies in graduate requirements engineering courses: The impact

on student motivation. In: Bollin A, Hochmüller E, Mittermeir

RT et al (eds) 27th IEEE conference on software engineering

education and training, CSEE&T 2014, Klagenfurt, Austria,

April 23–25, 2014. IEEE, pp 3–12

 50. Tenbergen B, Daun M (2019) Industry Projects in Requirements

Engineering Education: Application in a University Course in

the US and Comparison with Germany. In: 52nd Hawaii Inter-

national Conference on System Sciences

 51. Daun M, Brings J, Obe PA et al (2017) Teaching conceptual

modeling in online courses: coping with the need for individual

feedback to modeling exercises. In: Washizaki H, Mead N (eds)

30th IEEE conference on software engineering education and

training, CSEE&T 2017, Savannah, GA, USA, November 7–9,

2017. IEEE, pp 134–143

 52. Daun M, Keller K, Brings J (2017) Teaching goal modeling to

engineering professionals—an experience report. In: Franch

X, Snoeck M, Guizzardi RSS, Jureta I (eds) Proceedings of the

5th symposium on conceptual modeling education and the 2nd

international iStar teaching workshop co-located with the 36th

international conference on conceptual modeling (ER 2017),

Valencia, Spain, November 6–9, 2017. CEUR-WS.org, pp 38–47

 53. Lewis GA, Morris E, Place P et al (2009) Requirements engineer-

ing for systems of systems. In: 2009 3rd annual IEEE systems

conference. pp 247–252

 54. Kopetz H, Bondavalli A, Brancati F et al (2016) Emergence in

cyber-physical systems-of-systems (CPSoSs). In: Bondavalli A,

Bouchenak S, Kopetz H (eds) Cyber-physical systems of sys-

tems. Springer, Cham, pp 73–96

 55. Cavalcante E, Batista T, Bencomo N, Sawyer P (2015) revisit-

ing goal-oriented models for self-aware systems-of-systems. In:

2015 IEEE international conference on autonomic computing.

pp 231–234

 56. Garro A, Tundis A (2015) On the reliability analysis of systems

and SoS: the RAMSAS method and related extensions. IEEE

Syst J 9:232–241. https ://doi.org/10.1109/JSYST .2014.23216 17

 57. Silva E, Cavalcante E, Batista T et al (2014) On the characteriza-

tion of missions of systems-of-systems. In: Proceedings of the

2014 European conference on software architecture workshops.

ACM, New York, NY, USA, pp 26:1–26:8

 58. Silva E, Batista T, Cavalcante E (2015) A mission-oriented tool

for system-of-systems modeling. In: Proceedings of the third

international workshop on software engineering for systems-of-

systems. IEEE Press, Piscataway, NJ, USA, pp 31–36

 59. Silva E, Batista T, Oquendo F (2015) A mission-oriented

approach for designing system-of-systems. In: 2015 10th system

of systems engineering conference (SoSE). pp 346–351

 60. Silva E, Batista T (2018) Formal modeling systems-of-systems

missions with mKAOS. In: Proceedings of the 33rd annual ACM

symposium on applied computing. ACM, New York, NY, USA,

pp 1674–1679

 61. Garcés L, Nakagawa EY (2017) A process to establish, model

and validate missions of systems-of-systems in reference archi-

tectures. In: Proceedings of the symposium on applied comput-

ing. ACM, New York, NY, USA, pp 1765–1772

 62. Rogers A, Ramchurn SD, Jennings NR (2012) Delivering the

smart grid: challenges for autonomous agents and multi-agent

systems research. In: Proceedings of the twenty-sixth AAAI con-

ference on artificial intelligence. pp 2166–2172

 63. Wooldridge M (1997) Agent-based software engineering. IEE

Proc Softw Eng 144:26–37. https ://doi.org/10.1049/ip-sen:19971

026

 64. Rao AS, Georgeff MP (1991) Modeling rational agents within

a BDI-architecture. In: Proceedings of the second international

conference on principles of knowledge representation and rea-

soning. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, pp 473–484

 65. Rao AS, Georgeff MP (1995) BDI Agents: from theory to prac-

tice. In: Proceedings of the first international conference on

multi-agent systems (ICMAS-95), San Francisco. pp 312–319

 66. Grau G, Cares C, Franch X, Navarrete FJ (2006) A comparative

analysis of i*agent-oriented modelling techniques. In: Proceed-

ings of the eighteenth international conference on software engi-

neering and knowledge engineering (SEKE’06). pp 1–7

 67. Vrbaski M, Mussbacher G, Petriu D, Amyot D (2012) Goal mod-

els as run-time entities in context-aware systems. In: Proceedings

of the 7th workshop on Models@Run.Time. ACM, New York,

NY, USA, pp 3–8

 68. Bergenti F, Rimassa G, Somacher M, Botelho LM (2003) A FIPA

compliant goal delegation protocol. In: Huget M-P (ed) Com-

munication in multiagent systems: agent communication lan-

guages and conversation policies. Springer, Berlin, Heidelberg,

pp 223–238

 69. Braubach L, Pokahr A, Moldt D, Lamersdorf W (2005) Goal

representation for BDI agent systems. In: Bordini RH, Dastani

M, Dix J, El Seghrouchni Fallah A (eds) Programming multi-

agent systems. Springer, Berlin Heidelberg, pp 44–65

 70. Partsakoulakis I, Vouros G (2002) Roles in collaborative activity.

In: Vlahavas IP, Spyropoulos CD (eds) Methods and applica-

tions of artificial intelligence. Springer, Berlin, Heidelberg, pp

449–460

 71. Vally J-D, Courdier R (1998) A conceptual “role-centered”

model for design of multi-agents systems. In: Ishida T (ed)

Multiagent platforms. Springer, Berlin, Heidelberg, pp 33–46

 72. Wooldridge M, Jennings NR, Kinny D (1999) A methodology for

agent-oriented analysis and design. In: Proceedings of the third

annual conference on autonomous agents. ACM, New York, NY,

USA, pp 69–76

 73. Kendall EA (2000) Role modeling for agent system analysis,

design, and implementation. IEEE Concurr 8:34–41. https ://doi.

org/10.1109/4434.84619 2

 74. Kinny D, Georgeff M, and Rao A (1996) A methodology and

modelling technique for systems of BDI agents. In: Van de Velde

W, Perram JW (eds) Agents Breaking Away, pp. 56–71

 75. Odell J, Nodine M, Levy R (2004) A metamodel for agents, roles,

and groups. In: Agent-oriented software engineering V. Springer,

Berlin, Heidelberg, pp 78–92

https://doi.org/10.1007/s00766-018-0302-5
https://doi.org/10.1007/s00766-018-0302-5
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1109/JSYST.2014.2321617
https://doi.org/10.1049/ip-sen:19971026
https://doi.org/10.1049/ip-sen:19971026
https://doi.org/10.1109/4434.846192
https://doi.org/10.1109/4434.846192

369Requirements Engineering (2021) 26:325–370

1 3

 76. Beydoun G, Low G, Henderson-Sellers B et al (2009) FAML:

a generic metamodel for MAS development. IEEE Trans Softw

Eng 35:841–863. https ://doi.org/10.1109/TSE.2009.34

 77. Adam E, Strugeon EGL, Mandiau R (2008) Flexible hierarchical

organisation of role based agents. In: 2008 Second IEEE interna-

tional conference on self-adaptive and self-organizing systems

workshops. pp 186–191

 78. Adam E, Mandiau R (2007) Flexible roles in a holonic multi-

agent system. In: Mařík V, Vyatkin V, Colombo AW (eds) Hol-

onic and multi-agent systems for manufacturing. Springer, Ber-

lin, Heidelberg, pp 59–70

 79. Giorgini P, Mylopoulos J, Sebastiani R (2005) Goal-oriented

requirements analysis and reasoning in the Tropos methodol-

ogy. Eng Appl Artif Intell 18:159–171. https ://doi.org/10.1016/j.

engap pai.2004.11.017

 80. Zhong C, DeLoach SA (2011) Runtime models for automatic

reorganization of multi-robot systems. In: Proceedings of the

6th international symposium on software engineering for adap-

tive and self-managing systems. ACM, New York, NY, USA, pp

20–29

 81. Thangarajah J, Padgham L, Winikoff M (2003) Detecting and

exploiting positive goal interaction in intelligent agents. In: Pro-

ceedings of the second international joint conference on auton-

omous agents and multiagent systems. ACM, New York, NY,

USA, pp 401–408

 82. Cheong C, Winikoff M (2005) Hermes: implementing goal-ori-

ented agent interactions. In: Programming multi-agent systems.

Springer, Berlin, Heidelberg, pp 168–183

 83. Cheong C, Winikoff M (2005) Hermes: designing goal-oriented

agent interactions. In: Müller JP, Zambonelli F (eds) Agent-ori-

ented software engineering VI. Springer, Berlin, Heidelberg, pp

16–27

 84. Cheong C, Winikoff M (2005) Hermes: a methodology for goal

oriented agent interactions. In: Proceedings of the fourth inter-

national joint conference on autonomous agents and multiagent

systems. ACM, New York, NY, USA, pp 1121–1122

 85. Gonçalves E, Castro J, Araújo J, Heineck T (2018) A systematic

literature review of iStar extensions. J Syst Softw 137:1–33. https

://doi.org/10.1016/j.jss.2017.11.023

 86. Teruel MA, Tardío R, Navarro E et al (2014) CSRML4BI: a

goal-oriented requirements approach for collaborative business

intelligence. In: Yu E, Dobbie G, Jarke M, Purao S (eds) Con-

ceptual modeling. Springer, Cham, pp 423–430

 87. Teruel MA, Navarro E, López-Jaquero V et al (2017) A com-

prehensive framework for modeling requirements of CSCW sys-

tems. J Softw Evol Process 29:e1858. https ://doi.org/10.1002/

smr.1858

 88. Ellis CA, Gibbs SJ, Rein G (1991) Groupware: some issues

and experiences. Commun ACM 34:39–58. https ://doi.

org/10.1145/99977 .99987

 89. Ali R, Dalpiaz F, Giorgini P (2014) Requirements-driven deploy-

ment. Softw Syst Model 13:433–456. https ://doi.org/10.1007/

s1027 0-012-0255-y

 90. Silva C, Borba C, Castro J (2011) A goal oriented approach to

identify and configure feature models for software product lines.

WER

 91. Borba C, Silva C (2009) A Comparison of goal-oriented

approaches to model software product lines variability. In: Heu-

ser CA, Pernul G (eds) Advances in conceptual modelling—chal-

lenging perspectives. Springer, Berlin, Heidelberg, pp 244–253

 92. Guzman A, Martínez Rebollar A, Vargas F et al (2016) A meth-

odology for modeling Ambient Intelligence applications using

i* framework. In: iStar 2016 ninth international i* workshop

1674:61–66

 93. Marosin D, Ghanavati S (2017) Principle-based goal-oriented

requirements language. In: Proper HA, Winter R, Aier S, de

Kinderen S (eds) Architectural coordination of enterprise trans-

formation. Springer, Cham, pp 235–247

 94. Gailly F, España S, Poels G, Pastor O (2008) Integrating business

domain ontologies with early requirements modelling. In: Song

I-Y, Piattini M, Chen Y-PP et al (eds) Advances in conceptual

modeling—challenges and opportunities. Springer, Berlin, Hei-

delberg, pp 282–291

 95. van Arem B, van Driel CJG, Visser R (2006) The impact of

cooperative adaptive cruise control on traffic-flow character-

istics. IEEE Trans Intell Transp Syst 7:429–436. https ://doi.

org/10.1109/TITS.2006.88461 5

 96. Han S-Y, Chen Y-H, Wang L, Abraham A (2013) Decentral-

ized longitudinal tracking control for cooperative adaptive cruise

control systems in a platoon. In: 2013 IEEE international confer-

ence on systems, man, and cybernetics. IEEE, Manchester, pp

2013–2018

 97. Salehie M, Tahvildari L (2009) Self-adaptive software: landscape

and research challenges. ACM Trans Auton Adapt Syst 4:14:1-

14:42. https ://doi.org/10.1145/15165 33.15165 38

 98. OMG (2014) Object constraint language. OMG

 99. Hölldobler K, Roth A, Rumpe B, Wortmann A (2017) Advances

in modeling language engineering. In: Ouhammou Y, Ivanovic

M, Abelló A, Bellatreche L (eds) Model and data engineering.

Springer, Cham, pp 3–17

 100. Runeson P, Höst M (2009) Guidelines for conducting and report-

ing case study research in software engineering. Empir Softw

Eng 14:131. https ://doi.org/10.1007/s1066 4-008-9102-8

 101. Daun M, Brings J, Obe PA et al (2019) Using view-based archi-

tecture descriptions to aid in automated runtime planning for

a smart factory. In: IEEE international conference on software

architecture companion, ICSA Companion 2019, Hamburg, Ger-

many, March 25–26, 2019. IEEE, pp 202–209

 102. Bandyszak T, Daun M, Tenbergen B et al (2020) Orthogonal

uncertainty modeling in the engineering of cyber-physical

systems. IEEE Trans Autom Sci Eng. https ://doi.org/10.1109/

TASE.2020.29807 26

 103. Bhatt RM, Tang CP, Krovi VN (2009) Formation optimization

for a fleet of wheeled mobile robots—a geometric approach.

Robot Auton Syst 57:102–120. https ://doi.org/10.1016/j.robot

.2006.12.012

 104. Schlingloff B-H (2018) Specification and verification of collabo-

rative transport robots. In: 2018 4th international workshop on

emerging ideas and trends in the engineering of cyber-physical

systems (EITEC). IEEE, Porto, pp 3–8

 105. Stenkova V, Brings J, Daun M, Weyer T (2019) Generic negative

scenarios for the specification of collaborative cyber-physical

systems. In: Conceptual modeling—38th international confer-

ence, ER 2019, proceedings. Springer, p in press

 106. Daun M, Brings J, Weyer T (2020) Do instance-level review

diagrams support validation processes of cyber-physical system

specifications: results from a controlled experiment. In: Proceed-

ings of the international conference on software and system pro-

cesses, ICSSP 2020, Seoul, Republic of Korea. IEEE/ACM

 107. Giorgini P, Mylopoulos J, Nicchiarelli E, Sebastiani R (2003)

Formal reasoning techniques for goal models. In: Spaccapietra

S, March S, Aberer K (eds) Journal on data semantics I. Springer,

Berlin Heidelberg, pp 1–20

 108. Amyot D, Ghanavati S, Horkoff J et al (2010) Evaluating goal

models within the goal-oriented requirement language. Int J

Intell Syst 25:841–877. https ://doi.org/10.1002/int.20433

 109. Lockerbie J, Maiden NAM, Engmann J et al (2012) Exploring the

impact of software requirements on system-wide goals: a method

https://doi.org/10.1109/TSE.2009.34
https://doi.org/10.1016/j.engappai.2004.11.017
https://doi.org/10.1016/j.engappai.2004.11.017
https://doi.org/10.1016/j.jss.2017.11.023
https://doi.org/10.1016/j.jss.2017.11.023
https://doi.org/10.1002/smr.1858
https://doi.org/10.1002/smr.1858
https://doi.org/10.1145/99977.99987
https://doi.org/10.1145/99977.99987
https://doi.org/10.1007/s10270-012-0255-y
https://doi.org/10.1007/s10270-012-0255-y
https://doi.org/10.1109/TITS.2006.884615
https://doi.org/10.1109/TITS.2006.884615
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1109/TASE.2020.2980726
https://doi.org/10.1109/TASE.2020.2980726
https://doi.org/10.1016/j.robot.2006.12.012
https://doi.org/10.1016/j.robot.2006.12.012
https://doi.org/10.1002/int.20433

370 Requirements Engineering (2021) 26:325–370

1 3

using satisfaction arguments and i* goal modelling. Requir Eng

17:227–254. https ://doi.org/10.1007/s0076 6-011-0138-8

 110. Runeson P, Höst M, Rainer A, Regnell B (2012) Case study

research in software engineering: guidelines and examples.

Wiley, Hoboken

 111. Yin RK (2018) Case study research and applications: design and

methods, 6th edn. Sage Publications Ltd., Los Angeles

 112. Wohlin C, Runeson P, Höst M et al (2012) Experimentation in

software engineering, 2012th edn. Springer, New York

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s00766-011-0138-8

	A GRL-compliant iStar extension for collaborative cyber-physical systems
	Abstract
	1 Introduction
	2 Background
	2.1 Goal modeling
	2.1.1 iStar
	2.1.2 Goal-oriented requirement language (GRL)
	2.1.3 GRL-compliant iStar extension

	2.2 Collaborative cyber-physical systems and their characteristics
	2.3 Requirements for a GRL-compliant iStar extension for collaborative cyber-physical systems
	2.3.1 Challenge 1: need for distinction between network and systems
	2.3.2 Challenge 2: need for mirroring of goals
	2.3.3 Challenge 3: need for considering multiple identical collaborative CPS
	2.3.4 Challenge 4: need for dependencies between systems of the same type
	2.3.5 Challenge 5: need for roles and dynamic role assignments
	2.3.6 Challenge 6: need for considering conflicts between goals of the individual collaborative CPS and the CPS network
	2.3.7 Further requirements

	3 Related work
	3.1 Goal modeling approaches for systems-of-systems
	3.2 Goal modeling approaches for multi-agent systems
	3.3 Specific iStar goal modeling extensions
	3.4 Requirements evaluation

	4 GRL-compliant iStar extension for modeling collaborative cyber-physical systems
	4.1 Foundations for the metamodel of the extension
	4.1.1 Actors
	4.1.2 Intentional elements
	4.1.3 Dependencies

	4.2 Metamodel of the extension
	4.2.1 Actors
	4.2.2 Intentional elements
	4.2.3 Dependencies

	4.3 Concrete syntax
	4.3.1 Collaborative CPS
	4.3.2 Network of collaborative CPS
	4.3.3 Roles
	4.3.4 Coordination task
	4.3.5 Bidirectional dependency
	4.3.6 Self-dependency
	4.3.7 Grouped dependency
	4.3.8 Multiplicities
	4.3.9 Configuration-dependent contribution value

	4.4 Well-formedness rules
	4.5 Tool support

	5 Evaluation
	5.1 Study design
	5.1.1 Goals
	5.1.2 Research questions
	5.1.3 Subject selection
	5.1.4 Procedure
	5.1.5 Case examples
	5.1.5.1 Cooperative adaptive cruise control
	5.1.5.2 Collaborative transport robots

	5.2 Application results
	5.2.1 Application to the cooperative adaptive cruise control case example (RQ1.1)
	5.2.2 Comparison with original iStar notation for the cooperative adaptive cruise control case example (RQ1.2)
	5.2.3 Application to the collaborative transport robots case example (RQ2.1)
	5.2.4 Comparison with original iStar notation for the collaborative transport robots case example (RQ2.2)

	5.3 Usefulness of proposed modeling elements
	5.3.1 The use of actors (RQ3.1)
	5.3.2 The use of the coordination task (RQ3.2)
	5.3.3 The use of bidirectional dependencies (RQ3.3)
	5.3.4 The use of self-dependencies (RQ3.4)
	5.3.5 The use of grouped dependencies (RQ3.5)
	5.3.6 The use of multiplicities for dependencies (RQ3.6)

	5.4 Remaining challenges
	5.4.1 Limitations of the iStar extension (RQ4.1)
	5.4.1.1 Contribution links depending on the current CPS network configuration
	5.4.1.2 Missing support for in-depth analysis of concrete instance configurations
	5.4.1.3 Interpreting complex relations involving multiplicities
	5.4.1.4 Goal fulfillment analysis and semantics of the iStar extension
	5.4.1.5 Circular dependencies
	5.4.1.6 Tool support

	5.4.2 Industry needs for future work (RQ4.2)

	6 Discussion
	6.1 Summary and major findings
	6.2 Threats to validity
	6.2.1 Conclusion Validity
	6.2.2 External validity
	6.2.3 Internal validity
	6.2.4 Construct validity

	6.3 Inferences
	6.4 Future work

	7 Conclusion
	Acknowledgments
	References

