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Abstract In this paper, the problem of non-rigid shape

recognition is studied from the perspective of metric geom-

etry. In particular, we explore the applicability of diffusion

distances within the Gromov-Hausdorff framework. While

the traditionally used geodesic distance exploits the shortest

path between points on the surface, the diffusion distance

averages all paths connecting the points. The diffusion dis-

tance constitutes an intrinsic metric which is robust, in par-

ticular, to topological changes. Such changes in the form of

shortcuts, holes, and missing data may be a result of natural

non-rigid deformations as well as acquisition and represen-

tation noise due to inaccurate surface construction. The pre-

sentation of the proposed framework is complemented with

examples demonstrating that in addition to the relatively low
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complexity involved in the computation of the diffusion dis-

tances between surface points, its recognition and matching

performances favorably compare to the classical geodesic

distances in the presence of topological changes between the

non-rigid shapes.
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1 Introduction

Non-rigid shapes are ubiquitous in the world we live in, from

microscopic bacteria to tissues and parts of our body. Since

pattern recognition applications need to deal with objects

encountered in everyday life, non-rigid shape analysis has

become important in many modern applications, such as ob-

ject retrieval and recognition, surface matching, navigation,

and target detection and recognition. One of the cornerstone

problems in the analysis of non-rigid shapes is the problem

of shape similarity: given two objects, we need to tell how

similar or dissimilar they are. This can be quantitatively ex-

pressed as a distance between two shapes. The main diffi-

culty in such a comparison stems from the immense number

of degrees of freedom present in the problem as a result of

possible deformations that the non-rigid shapes can undergo.

A common way in which the problem of non-rigid shape

similarity has been approached in the pattern recognition

literature is to try to find a representation of shapes which

is invariant to a given class of deformations (Olver 1999).

Using such a representation, it is then possible to compare

shapes regardless of their deformations, when these defor-

mations are limited to the given class. Riemannian geome-

try is of help in finding such invariant representations (Do-
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Carmo 1992). It is well-known, for example, that the in-

trinsic properties of a shape remain invariant under inelas-

tic deformations, i.e., deformations that do not stretch or

tear the object. Many recent papers, e.g., (Bronstein et al.

2005, 2006a, 2006b; Elad and Kimmel 2003; Gal et al. 2007;

Hamza and Krim 2005; Lévy 2006; Mahmoudi and Sapiro

2009; Mémoli and Sapiro 2005b; Mémoli et al. 2006; Reuter

et al. 2006; Ruggeri and Saupe 2008; Rustamov 2007;

Schwartz et al. 1989; Tennenbaum et al. 2000), exploit this

fact in order to construct deformation-invariant shape dis-

tances and surface matching techniques.

Elad and Kimmel (2003) introduced a method for the

recognition of 3D shapes based on Euclidean embedding,

extending previous efforts by Schwartz et al. (1989) (see

also Tennenbaum et al. 2000). The key idea of the method

is to consider a shape as a metric space, whose metric struc-

ture is defined by the geodesic distances between pairs of

points on the shape.1 Geodesic distances, being an intrin-

sic property of the shape, are invariant to any inelastic de-

formation the shape can undergo, or using metric geometry

terminology, we can say that such deformations are isomet-

ric or metric-preserving with respect to the geodesic dis-

tances. Two non-rigid shapes are compared by first hav-

ing their respective geodesic metric structures mapped into

a low-dimensional Euclidean space using multidimensional

scaling (MDS) (Cox and Cox 1994), and then rigidly match-

ing the resulting images (called canonical forms). MDS al-

lows to “undo” the non-rigid deformations of the shapes,

leading to a bending-invariant shape comparison frame-

work based on the pairwise geodesic distances. This method

has been used in three-dimensional face recognition (Bron-

stein et al. 2005), analysis of articulated two-dimensional

shapes and images (Ling and Jacobs 2005a, 2005b), tex-

ture mapping and object morphing (Bronstein et al. 2007a;

Grossman et al. 2002; Zigelman et al. 2002), and shape seg-

mentation (Katz et al. 2005).

Due to the fact that the canonical forms method uses

an intermediate metric space to compare two shapes, inac-

curacies are introduced, as it is theoretically impossible to

embed a generic metric structure into a finite-dimensional

Euclidean space without distorting it. It was shown em-

pirically in Bronstein et al. (2007b), Elad and Kimmel

(2002, 2003), Walter and Ritter (2002) that using spaces

with non-Euclidean (non-flat) geometry makes it possible to

obtain more accurate representations, but can not avoid the

embedding error completely.

Mémoli and Sapiro (2005b), proposed a metric frame-

work for non-rigid shape comparison based on the Gromov-

Hausdorff distance. This distance was introduced by Mikhail

1Recall that the geodesic distance between two points is the length of

the shortest path, traveling on the surface of the shape, that connects

the points.

Gromov (1981), as a way to compute similarity between

metric spaces. Using the Gromov-Hausdorff formalism, the

comparison of two shapes can be posed as direct compari-

son of pairwise distances on the shapes (basically, in the dis-

crete case, the comparison up to permutations of the corre-

sponding pairwise distance matrices or their corresponding

submatrices). Since no fixed intermediate space is forced,

the representation error inherent to canonical forms can be

avoided. The Gromov-Hausdorff distance computation is an

NP-hard problem, and together with a number of theoretical

results, Mémoli and Sapiro (2005b) proposed a practical ap-

proximation scheme with explicit probabilistic bounds con-

necting the approximation to the actual Gromov-Hausdorff

distance and the number of available sample points.

According to an alternative but mathematically equiva-

lent definition (Burago et al. 2001), the Gromov-Hausdorff

distance computation can be posed as measuring the distor-

tion of embedding one metric space into another. Bronstein

et al. (2006a, 2006b), observing the connection between

this formulation of the Gromov-Hausdorff distance and

MDS, proposed an efficient computation of such embedding

based on a continuous optimization problem similar in spirit

to MDS, referred to as generalized MDS (GMDS). This

method follows the line of thought of embedding into non-

Euclidean spaces where instead of embedding each shape

into Euclidean, hyperbolic, or spherical spaces, as classi-

cally done in MDS, the embedding is done from one shape

into the other. We exploit the GMDS computational frame-

work for the examples in this paper. Alternative computa-

tional techniques based on the relaxation of the Gromov-

Hausdorff distance have been recently proposed (Mémoli

2007).

All the aforementioned contributions on the Gromov-

Hausdorff and MDS-based shape analysis frameworks con-

sidered geodesic distances as the invariant used to intrin-

sically compare non-rigid shapes. This is motivated by a

number of fundamental reasons. First, many natural object

deformations can be approximated as inelastic ones. Thus,

methods based on geodesic distances allow good shape

recognition accuracy. Second, there exists a plethora of ef-

ficient numerical methods for the computation of geodesic

distances for diverse shape representations (Kimmel and

Sethian 1998; Mémoli and Sapiro 2001, 2005a; Spira and

Kimmel 2004; Weber et al. 2008; Yatziv et al. 2006).

At the same time, the notable drawback of the geodesic

distances is their sensitivity to topological transformations.

By modifying the connectivity of the shape, one can signif-

icantly alter the paths between points, and in particular the

shortest one, which in turn, can result in significant changes

of the geodesic distances. Inconsistent topology or “topo-

logical noise” are common phenomena in shapes acquired

using 3D scanners or obtained as a result of point cloud tri-

angulation (Wood et al. 2004). Thus, in order to be able to
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deal with real-life data, it is important for shape similarity

methods to be topology-invariant or at least topologically

robust. Of course, topological changes can result from nat-

ural non-rigid deformations as well, e.g., bending of an open

hand until the finger tips touch. A practically useful shape

recognition system should be able to deal with these trans-

formations.

It should be noted, however, that the metric model of

shapes allows to represent a shape as a generic metric space

with any metric. Also, neither the canonical forms frame-

work nor the Gromov-Hausdorff distance are necessarily

limited to geodesic distances. Using another intrinsic dis-

tance, insensitive or robust to topological changes, instead of

the geodesic distance, could potentially make these methods

cope with topological noise and topological deformations in

general. Bronstein et al. (2007c, 2009) showed that using

Euclidean distances (which are robust to topology changes

but not invariant or even robust to non-rigid deformations),

and geodesic distances (which are invariant to non-rigid de-

formations but not to topology changes) together in a frame-

work resemblant both of the GMDS and iterative closest

point (ICP) algorithms (Besl and McKay 1992; Chen and

Medioni 1991), allows to obtain a shape similarity method

more robust to topological changes than the one obtained

with the geodesic distances alone. Also, it was shown in

Bronstein et al. (2007c, 2009) that the Gromov-Hausdorff

type distance between shapes modeled as metric spaces with

Euclidean geometry allows to obtain an alternative formula-

tion, and then use GMDS as a computation method for the

ICP method, a classical approach for rigid shape comparison

(for more detailed analysis, see Mémoli 2008).

Motivated by the generality of the metric model of

shapes, and the need to cope with topological transforma-

tions in non-rigid shape analysis, in this paper we propose

to use diffusion geometry in the Gromov-Hausdorff frame-

work. Diffusion distances, introduced by Coifman and La-

fon (2006) and Lafon (2004), are related to the probability of

traveling on the surface from one point to another in a fixed

number of random steps (random walk). There are a number

of reasons that lead us to use these distances instead of geo-

desic ones when we deal with topological noise and changes.

First, the diffusion distance is an average length of paths

connecting two points on the shape, while the geodesic dis-

tance is the length of the shortest path. This naturally makes

diffusion distances less sensitive to topological changes

(Mahmoudi and Sapiro 2009; Ovsjanikov et al. 2009;

Rustamov 2007; Sun et al. 2009). Secondly, both diffusion

and geodesic distance are intrinsic, thus invariant to inelastic

deformations. Finally, diffusion distance can be efficiently

computed from the eigenvalues of a discrete approximation

to the Laplace-Beltrami operator (or simply the eigenvalues

of a weighted connectivity matrix).

The interested reader is referred to Jain and Zhang

(2007), Mateus et al. (2008), Reuter et al. (2006), Rusta-

mov (2007) for some recent works on 3D shape recogni-

tion based on spectral methods, both for geodesic matrices

and the Laplace-Beltrami operator, which is closely related

to the diffusion distance (Hein et al. 2007). For example,

Reuter et al. (2006), Ruggeri et al. (2009) consider the spec-

tra (eigenvalues) of the Laplace-Beltrami operator and use

this as bending invariant signature for shape recognition.

Rustamov (2007) uses both eigenvalues and eigenvectors

of the Laplace-Beltrami operator, in order to construct a

shape representation and stresses its relevance for topolog-

ical robustness. The diffusion distance was also exploited

in Mahmoudi and Sapiro (2009) for 3D point cloud recog-

nition using the framework of distance distributions by Os-

ada et al. (2002) and to construct intrinsic descriptors for

feature-based shape recognition (Ovsjanikov et al. 2009;

Sun et al. 2009). Bronstein and Bronstein (2009) showed

the relation between the approaches of Rustamov (2007)

and Mahmoudi and Sapiro (2009).

Combining the Gromov-Hausdorff framework with dif-

fusion distances provides a fundamental framework lead-

ing to a non-rigid shape comparison and matching ap-

proach which is robust to topological transformations such

as holes and point-wise connectivity changes. The Gromov-

Hausdorff distance is an invariant metric on the space of

equivalence classes of shapes under shape isometries. It al-

lows to compare shapes as metric spaces directly, without

resorting to approximations such as low-dimensional em-

bedding into a Euclidean space. Methods based on such

pre-defined embeddings are theoretically sub-optimal (Gro-

mov 1981) (see also Mémoli 2008), the Gromov-Hausdorff

distance can not be achieved by projecting onto finite di-

mensional Euclidean spaces, and typically result in worse

performance for our applications, as experimentally demon-

strated in Bronstein et al. (2006a, 2006b) and in this pa-

per. The Gromov-Hausdorff distance is also supported by

a well-developed theory, relating it to metric geometry of

shapes. The computation of the Gromov-Hausdorff distance

not only permits to match isometric shapes, but also to quan-

tify their distance from isometry, that is, their ǫ-isometry,

that measures how much the intrinsic distances are pre-

served (Burago et al. 2001). Finally, an intrinsic correspon-

dence between non-rigid shapes is a natural byproduct of the

Gromov-Hausdorff framework.

The remainder of this paper is organized as follows. Fol-

lowing a description of the contributions of this paper, next,

in Section 2 we present the metric approach to shape match-

ing and recognition, and the Gromov-Hausdorff framework.

Section 3 describes the basic diffusion distance theory. Sec-

tion 4 summarizes the relations between different methods.

Section 5 is devoted to the numerical computation of the

proposed shape distance based on the GMDS algorithm, and

Section 6 presents experimental results which include com-

parisons with previous approaches. Finally, Section 7 con-

cludes the paper.
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1.1 Contributions

In this paper, we address the challenge of invariant shape

similarity and correspondence under a wide class of shape

transformations, such as bending, connectivity change, and

missing information. To achieve this, we put together two

fundamental mathematical frameworks. The first is the met-

ric approach for shape representation, modeling shapes as

metric spaces and using Gromov’s results on distances be-

tween metric spaces to measure shape similarity directly

from their metric structures, without resorting to subopti-

mal approximate representations. The second mathematical

framework is the spectral analysis of surfaces, connecting

Laplace-Beltrami operators of surfaces to random walks and

giving rise to the diffusion geometry.

Each one of these two fundamental theories have been

recently shown to be very successful for different aspects of

shape analysis, when acting separately. We here show that

putting them together permits to address new problems such

as shape matching under these challenging conditions. The

generality of the metric approach allows us to use different

metrics, and in particular, diffusion metrics derived from the

Laplace-Beltrami operator. We show that the class of invari-

ance (robustness) obtained by using the diffusion metric is

wider than in the case of the geodesic metric, and the result-

ing shape similarity and correspondence approaches are less

sensitive to topological changes of the shapes and to missing

information.

Finally, previous experimental results (Mahmoudi and

Sapiro 2009) demonstrated that the Gromov-Hausdorff

framework is accuracy-wise superior to distance distribution

methods in the geodesic case. Here, we provide experimen-

tal evidence of the same behavior in the case of diffusion

distances.

2 Metric Approach for Shape Matching

and Recognition

In this section, we present some basic concepts that con-

stitute the core of the metric approach for shape recogni-

tion, staying mostly at the intuitive level. For a rigorous and

insightful treatment of the topic, the reader is referred to

Burago et al. (2001), Gromov (1981).

2.1 Basic Notions in Metric Geometry

We model a non-rigid shape as a metric space (X,dX),

where X is a two-dimensional smooth compact connected

and complete Riemannian surface (possibly with boundary)

embedded into R
3, and dX : X ×X → R is a metric measur-

ing distances between pairs of points on X. The key idea of

the metric approach is to compare shapes as metric spaces.

Two shapes (X,dX) and (Y, dY ) are similar if the metrics

between pairs of corresponding points on X and Y coin-

cide, i.e., there exists a bijective map ϕ : X → Y such that

dY ◦ (ϕ × ϕ) = dX . Such a ϕ is called an isometry and X

and Y in this case are said to be isometric. Isometry implies

that in terms of intrinsic metric geometry, the two shapes are

indistinguishable and thus are equivalent.

The notion of isometry can be relaxed in order to define

similarity of shapes. We will refer to a set C ⊂ X × Y of

pairs such that for every x ∈ X there exists at least one y ∈ Y

such that (x, y) ∈ C, and similarly for every y ∈ Y there

exists an x ∈ X such that (x, y) ∈ C, as a correspondence

between X and Y . Note that a correspondence C is not nec-

essarily a function. We can define the distortion of the cor-

respondence as the discrepancy between the corresponding

metrics,

dis(C) := sup
(x,y),(x′,y′)∈C

∣

∣dX(x, x′) − dY (y, y′)
∣

∣ .

We say that the shapes X and Y are ǫ-isometric if there ex-

ists a correspondence C with dis(C) ≤ ǫ. Such a C is called

an ǫ-isometry. ǫ-isometry can be regarded as a criterion of

shape similarity. For small values of ǫ, the shapes are simi-

lar, and for large values of ǫ, the shapes are dissimilar in a

metric sense.

2.2 Distance Distributions

Osada et al. (2002) proposed to describe shapes using shape

distributions. In particular, the D2 distribution in the au-

thors’ terminology is the histogram of pairwise Euclidean

distances between the points of the shape. Such a descrip-

tion is invariant to Euclidean transformations. Two shapes

can be compared by comparing their corresponding distri-

butions. The work in Boutin and Kemper (2004) provides

further theoretical basis for this approach.

In Hamza and Krim (2005), Mahmoudi and Sapiro

(2009), it was proposed to use intrinsic distances instead of

the Euclidean ones. This way, a deformation-invariant de-

scriptor is obtained; shape comparison can be done same as

in Osada et al. (2002). The authors in Mahmoudi and Sapiro

(2009) showed two types of distances: geodesic and diffu-

sion. Rustamov (2007) used shape distribution applied to

Euclidean distances on eigenmaps of the Laplace-Beltrami

operator, which is equivalent to distribution of commute

time (see detailed discussion in Section 4).

2.3 Canonical Forms

One of the first attempts in the computer vision commu-

nity to regard non-rigid shapes as metric spaces and for-

mulate shape similarity in terms of metric geometry was

proposed by Elad and Kimmel (2003). The metric geome-

try of (X,dX) (dX being the geodesic distance in Elad and
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Kimmel 2003, and the one derived from the spectral frame-

work later in Rustamov 2007), is represented in some fixed

metric space (Z, dZ) (typically, a low-dimensional Euclid-

ean space), in such a way that the metric dZ is as close as

possible to the metric dX by means of a minimum-distortion

embedding ϕ : X → Z. The low-dimensional representation

of (X,dX) was dubbed in Elad and Kimmel (2003) a canon-

ical form.

The canonical form can be computed by solving the mul-

tidimensional scaling problem (Cox and Cox 1994),

min
ϕ:X→Z

max
x,x′∈X

‖dX(x, x′) − dZ(ϕ(x),ϕ(x′))‖,

where ϕ(X) gives the canonical form. In general, the canon-

ical form is not unique, and is defined up to an isometry in

Z. Also, in most cases the representation is not exact, since

in general there is no isometry between (X,dX) and the pre-

defined space (Z, dZ).

Given two shapes (X,dX) and (Y, dY ), their canonical

forms ϕ(X) and ψ(Y ) are computed. ϕ(X) and ψ(Y ) can

be compared as subsets of the metric space (Z, dZ) using

the Hausdorff distance,

dZ

H(ϕ(X),ψ(Y ))

= max

{

max
y∈ψ(Y )

min
x∈ϕ(X)

dZ(x, y), max
x∈ϕ(X)

min
y∈ψ(Y )

dZ(x, y)

}

.

Since the canonical forms are defined up to an isometry in

(Z, dZ), in order to undo the isometry ambiguity, rigid shape

comparison algorithms such as ICP (Besl and McKay 1992;

Chen and Medioni 1991), can be employed. In essence, ICP

algorithms minimize the Hausdorff distance between the

canonical forms on all the isometries in (Z, dZ),

dICP(ϕ(X),ψ(Y )) = min
i∈Iso(Z)

dZ

H(ϕ(X), i ◦ ψ(Y )).

2.4 Spectral Canonical Forms

The method of Elad and Kimmel is intimately related to

spectral embeddings such as those proposed by Belkin

and Niyogi (2003), Rustamov (2007), Coifman and Lafon

(2006) and Lafon (2004). The main idea of these approaches

is to create an Euclidean representation of the shape by tak-

ing a few eigenvectors of a Laplacian (Laplace-Beltrami

operator) defined on the shape. The metric induced by the

Laplace-Beltrami operator is the diffusion metric described

in details in Sect. 3.2.

There are two major differences between Elad-Kimmel

canonical forms obtained using MDS and canonical forms

obtained by spectral embedding. First, unlike the Elad-

Kimmel canonical forms always defined up to an isometry in

the embedding space, the spectral canonical form are unique

if the Laplace-Beltrami operator has unique eigenvalues (no

multiplicity). In case of eigenvalues with multiplicity greater

than one, the degrees of freedom in the spectral canonical

form can come from permutations of the Laplace-Beltrami

eigenfunctions (or more generally, also reflections in sub-

spaces spanned by the multiple eigenfunctions) (Mateus et

al. 2008; Ovsjanikov et al. 2008).

Secondly, Lafon et al. and Rustamov showed that if all

the eigenvectors are used (implying an infinite-dimensional

Euclidean representation), the embedding is isometric, that

is, the resulting canonical form is a theoretically exact rep-

resentation of the diffusion geometry of the shape. In prac-

tice, however, a finite-dimensional approximation is used by

taking the first eigenfunctions of the Laplace-Beltrami oper-

ator (Belkin and Niyogi 2003; Rustamov 2007). The impli-

cations of such an approximations are discussed in Sect. 4.

Finally, note that the canonical forms consider a pre-

defined space to map onto, the Euclidean space, and in the

case of the spectral canonical form, the map itself is pre-

selected as well. The distance presented next optimizes over

these selections as well.

2.5 Gromov-Hausdorff Distance

An elegant framework to represent similarity of metric

spaces as a distance was proposed by Gromov (Burago et

al. 2001; Gromov 1981) and introduced into the non-rigid

shape recognition area in Mémoli and Sapiro (2005b).

The source of inaccuracy of canonical forms was the

fixed metric space (Z, dZ) (and fixed embedding map). It

is generally impossible to select a common metric space in

which the geometry of any shape can be accurately repre-

sented. However, (Z, dZ) and the map can be chosen in an

optimal way for given two surfaces, resulting in the follow-

ing shape distance:

dGH(X,Y ) := inf
ϕ:X→Z

ψ :Y→Z

Z

dZ

H(ϕ(X),ψ(Y )), (1)

where ϕ and ψ are isometric embeddings, and dZ

H is the

Hausdorff distance in (Z, dZ). dGH is called the Gromov-

Hausdorff distance.

For compact surfaces and our shape recognition frame-

work, the Gromov-Hausdorff distance can also be expressed

in terms of the distortion obtained by embedding one surface

into another,

dGH(X,Y ) :=
1

2
inf
C

dis (C), (2)

where the infimum is taken over all correspondence C, and

dis (C) is the distortion defined above. The two expres-

sions (1) and (2) are equivalent (Burago et al. 2001).

The Gromov-Hausdorff distance is a metric on the quo-

tient space of metric spaces under the isometry relation, and
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thus, in the context of the metric space model for shape

recognition, is a good candidate for a shape distance (Mé-

moli and Sapiro 2005b). Being a metric particularly implies

that dGH(X,Y ) = 0 if and only if X and Y are isometric.

More generally, if dGH(X,Y ) ≤ ǫ, then X and Y are 2ǫ-

isometric and conversely, if X and Y are ǫ-isometric, then

dGH(X,Y ) ≤ 2ǫ (Burago et al. 2001). The latter property

relates the Gromov-Hausdorff distance to the notion of ǫ-

isometry and makes it a good criterion of similarity between

shapes.

2.6 Choice of a Metric

The metric approach we have described and the Gromov-

Hausdorff distance do not specify any particular choice of

the metric dX . In general, dX is independent of X and can

be defined quite arbitrarily. There are, however, two natural

choices of dX . The first choice is the geodesic metric, mea-

suring the length of the shortest intrinsic path between a pair

of points, constructing the intrinsic geometry of X. The sec-

ond choice is the extrinsic Euclidean metric, measuring the

length of a line in R
3 connecting two points on X that re-

lates to the extrinsic geometry in which X is embedded, i.e.,

R
3 (see Mémoli 2008).

Extrinsic geometry is invariant to rigid transformations of

the shape (rotation, translation, and reflection), which pre-

serve Euclidean distances. However, nonrigid deformations

may change the extrinsic geometry (see example in Fig. 1).

As a result, the Euclidean metric is not suitable for the com-

parison of shapes with significant bending or other type of

non-rigid deformations. The intrinsic geometry on the other

hand is invariant to inelastic shape deformations which, do

not stretch or tear the shape. As a particular case, it is also

invariant to rigid transformations. Therefore, the geodesic

metric is a good choice for comparing non-rigid shapes, as

has been confirmed by numerous results as those mentioned

in the introduction.

Another important type of transformations a shape can

undergo are those changing the shape topology. Omitting

formal definitions, the topology of X can be thought of as a

collection of neighborhoods of every point on X. This de-

fines the connectivity of the shape—which points can be

reached by a small step from a neighbor point. Topology

can change as a result of non-rigid deformations, such as a

person bending, fingers touching, or a paper folding. Topo-

logical dissimilarities between shapes can also be the result

of noise, typically arising in acquisition of shapes by a 3D

scanner. Connectivity changes do not change the geometry

(location of the points) of the shape, therefore, the Euclid-

ean metric is not sensitive to such transformations. Yet, geo-

desic distances can drastically change as a result of minor

connectivity changes, since such changes alter the shortest

paths between two points on the shape.

Fig. 1 Illustration of the difference between intrinsic and extrinsic

similarity for comparison of non-rigid shapes with different topol-

ogy. Bending the fingers makes the left and the middle shapes (open

palm and bent hand, without fingers yet touching, respectively) extrin-

sically dissimilar while being intrinsically similar. Additionally glu-

ing/touching the fingers (bottom right) makes the shapes intrinsically

dissimilar, as the connectivity change modifies the intrinsic geometry

It is therefore important to use a metric which is both

intrinsic (and thus invariant to non-rigid deformations) and

also invariant (or at least robust) to topological changes.

In this paper, we propose to use in the Gromov-Hausdorff

framework a different metric that while being intrinsic and

invariant to bends, is also robust to topological changes,

thereby simultaneously enjoying important properties of

both extrinsic and intrinsic geometry. This distance is ex-

plained next.

3 Diffusion Geometry

In Coifman and Lafon (2006), Lafon (2004) (see also Belkin

and Niyogi 2003 for a related early effort), Lafon et al. in-

troduced diffusion maps and diffusion distances as a method

for data parametrization, embedding, and dimensionality

reduction. Informally, the diffusion distance between two

points on a shape is related to heat diffusion on a shape

(hence the name), or equivalently, the probability of arriving

from one point to another by a random walk in fixed time.

Since the diffusion distance operates on paths defined on the

shape, it is an intrinsic property, and as a result, is bending-

invariant. Moreover, since the diffusion distances have an

effect of averaging over all possible paths connecting two

points, while the geodesic distance is the length of just the

minimal one, the former is more robust than the geodesic

distance in cases where topological changes are present (Sun

et al. 2009; Ovsjanikov et al. 2009).
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As an illustration, imagine the hand shape and two points

on the tips of the index finger and the thumb (see Fig. 1). If

the two fingertips are not touching, then both geodesic and

diffusion distances between the two points are large, as all

paths connecting the two points travel throughout the whole

hand. Yet, if the hand is bent in such a way that the fin-

gertips touch each other, the minimal geodesic will re-route

itself through the shortcut across the fingertips instead of go-

ing through the hand, leading to a significant change in the

geodesic distance. For the diffusion distance, this new path

added as a result of the topology change is averaged with the

other paths, which reduces the effect of such a change. The

lesser sensitivity to topological changes attributed to the av-

eraging property of the diffusion distance, may come at the

expense of a potential reduction in discriminative power, as

it usually happens in a tradeoff between invariance and dis-

criminativity. However, many applications require robust-

ness to topological changes, where this approach is advan-

tageous. Besides the above properties, the diffusion distance

is a metric, and thus, a valid candidate for the definition of a

metric space used in the Gromov-Hausdorff shape model.

3.1 Heat Kernels

Formally, in order to define the diffusion distance, we resort

to the heat equation,

(

$X +
∂

∂t

)

u = 0, (3)

governing the distribution of heat u on the surface. Here,

$X denotes the Laplace-Beltrami operator, a generalization

of the Laplacian to non-Euclidean domains (here, we de-

fine the Laplacian as a positive semi-definite operator, and

thus it comes with a negative sign). The fundamental solu-

tion ht (x, z) of the heat equation (3), also called the heat

kernel, is the solution of the heat equation with a point heat

source at x ∈ X. The heat kernel ht (x, z) provides the heat

value at time t at point z ∈ X. Interpreting the heat kernel

probabilistically, ht (x, z) can be associated with the proba-

bility of getting to point z by means of a random walk on X

of length t starting at point z.2

For compact manifolds, the Laplace-Beltrami operator

has discrete eigendecomposition of the form

$Xφi = λiφi, (4)

where λ0 ≥ λ1 ≥ · · · are eigenvalues and φ0,φ1, . . . are

eigenfunctions. Since $X is a positive semi-definite oper-

ator, λ0 = 0,λ1,λ2, . . . ≥ 0 and φ0 = const .

2More precisely, given a Brownian motion Wt on X and a Borel set

C ⊂ X, the integral
∫

C
ht (x, z)dz is the probability P (Wt ∈ C) of the

Brownian motion ending up in C after time t (Coifman and Lafon

2006; Lafon 2004; Ovsjanikov et al. 2009; Sun et al. 2009).

The heat kernel can be presented as (Jones et al. 2008)

ht (x, z) =

∞
∑

i=0

e−λi tφi(x)φi(z) (5)

in the Laplace-Beltrami eigenbasis. In practical computa-

tion, the heat kernel is approximated by taking the sum over

the first k + 1 largest eigenvalues,

h̃t (x, z) =

k
∑

i=0

e−λi tφi(x)φi(z). (6)

Since the eigenvalues typically decay fast, a small k can be

sufficient (see Sect. 5.1 for more details).

3.2 Diffusion Distance

The diffusion distance is defined as a cross-talk between two

heat kernels,

d2
X,t (x, y) = ‖ht (x, ·) − ht (y, ·)‖2

L2(X)

=

∫

X

|ht (x, z) − ht (y, z)|2dz. (7)

It is inversely related to the connectivity of points x and

y by paths of length t (i.e., if there are many such paths

connecting x and y, the distance dX,t (x, y) is small) (Coif-

man and Lafon 2006; Lafon 2004; Ovsjanikov et al. 2009;

Sun et al. 2009). As will be shown later, dX,t is a metric and

therefore can be used to define a valid metric space in our

framework.

Using the eigenfunctions of $X , the diffusion distance

can also be expressed as (Coifman and Lafon 2006)

d2
X,t (x, y) =

∞
∑

i=1

e−2λi t (φi(x) − φi(y))2, (8)

which allows its discretization as will be shown in Sect. 5.1.

3.3 Commute Time

A notion related to the diffusion distance is the commute

time, given by

δ2X(x,y) = 2

∫ ∞

0

d2
X,t (x, y)dt (9)

=

∞
∑

i=1

1

λi

(φi(x) − φi(y))2. (10)

While diffusion distance reflects the connectivity of two

points by paths of length t , the commute time is the sum of

the diffusion length of all possible paths connecting a pair

of points (Qiu and Hancock 2007; Bronstein and Bronstein

2009). Commute time is also a metric.
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3.4 Eigenmaps

Maps of the form )(x) = (α(λ0)φ0(x),α(λ1)φ1(x), . . . )

where α is some function of the eigenvalues, are referred

to as Laplacian eigenmaps (Belkin and Niyogi 2003). In-

formally, )(x) can be considered as an infinite-dimensional

canonical form of X; for this reason, we also use the term

spectral canonical form.

In particular, for α(λi) = e−λi t , the map

)X,t (x) = (e−λ0tφ0(x), e−λ1tφ1(x), . . . )

given by the heat kernel, is called a diffusion map (Coif-

man and Lafon 2006). For α(λi) = λ
−1/2
i , i ≥ 1, the map

)X(x) = (λ
−1/2
1 φ0(x),λ

−1/2
2 φ1(x), . . . ) was referred to

as global point signature (GPS) embedding by Rustamov

(2007).

Unlike canonical forms computed by MDS, an eigen-

map is uniquely defined (i.e., there are no degrees of free-

dom related to the isometry in the embedding space) if the

Laplace-Beltrami operator has no eigenvalues of multiplic-

ity greater than one. Otherwise, the ambiguity in the defin-

ition of the eigenmap is up to switching between the eigen-

function corresponding to the eigenvalues with multiplic-

ity and changes in their signs. For example, if λi = λi+1 =

· · · = λi+l−1 is an eigenvalue of multiplicity l, then the com-

ponents i, . . . , i + l − 1 of the GPS embedding )X(x) are

of the form ciλ
−1/2
i φπ i(x), . . . , ci+l−1λ

−1/2
i φπ(i+l−1)(x),

where π is an arbitrary permutation on the indices and

ci, . . . , ci+l−1 ∈ {−1,1}. Such ambiguities arise in cases

of symmetric shapes (Ovsjanikov et al. 2008). In general,

two eigenmaps differ by a permutation of coordinates, i.e.,

,)(x), where , is a permutation of indices {0,1, . . .}.

In practice, a finite-dimensional eigenmap is constructed

by taking the first k + 1 components of the eigenmap,

)̃(x) = (α(λ0)φ0(x), . . . , α(λk)φk(x)). In simple cases

(small k and no ambiguity due to eigenvalue multiplicity),

the comparison of such eigenmaps can be performed us-

ing standard rigid similarity methods such as ICP. In case

of k , 1 and shape symmetries resulting in multiple eigen-

values, such a comparison is a challenging problem (Ovs-

janikov et al. 2008).

As a possible remedy, Rustamov (2007) proposed apply-

ing Osada’s method (Osada et al. 2002) to eigenmaps, rep-

resenting shapes as histograms of pairwise Euclidean dis-

tances measured on the GPS embedding )̃X(x). This way,

explicit matching of the canonical forms with all the related

problems is avoided. In particular, the Euclidean distances

are insensitive to problems related to eigenfunction permu-

tations, since ‖)(x) − )(y)‖2 = ‖,)(x) − ,)(y)‖2 for

any permutation ,. Moreover, the comparison of distance

distributions is computationally efficient. The price paid in

this approach is the reduction of discriminativity, as there

can be many shapes with equal distance distributions but dif-

ferent geometry (see Boutin and Kemper 2004).

4 Relations Between Methods

4.1 Distance Distributions

The observation

‖)X,t (x) − )X,t (y)‖2 = dX,t (x, y), (11)

and

‖)X(x) − )X(y)‖2 = δX(x, y) (12)

provides an alternative expression of the diffusion distance

and commute time (see details and proof in Bronstein and

Bronstein 2009). In practical computations, we use the ap-

proximation (6), yielding an approximate diffusion distance

d̃X,t (x, y) = ‖)̃X,t (x) − )̃X,t (y)‖2 and approximate com-

mute time δ̃X(x, y) = ‖)̃X(x) − )̃X(y)‖2.

Equations (11) and (12) have a few implications. First,

by virtue of (11) and (12), both the diffusion distance and

the commute time are metrics. Secondly, the distribution of

diffusion distances d̃X,t approximated with a finite number

of eigenvalues and eigenfunctions on the shape is equiva-

lent to the distribution of the Euclidean distances on the dif-

fusion map )̃X,t (X). Similarly, the distribution of approxi-

mate commute times δ̃X is equivalent to the distribution of

the Euclidean distances on the GPS embedding )̃X,t (X). In

other words, the Euclidean distances measured on the eigen-

maps coincide with distances arising from diffusion geome-

try measured on the shape itself.

Using the relation between diffusion and commute time

distance, we conclude that the methods of Rustamov (2007)

and Mahmoudi and Sapiro (2009) are equivalent (up to in-

tegration over all t) and arrive to a similar shape distance

in different ways. Computationally, diffusion distances are

usually more advantageous than commute time, in the sense

that they require less eigenfunctions and eigenvalues (Bron-

stein and Bronstein 2009).

4.2 Gromov-Hausdorff Distance and ICP

Equations (11) and (12) also imply that the metric spaces

(X, d̃X,t ) and ()̃X,t (X), ‖ · ‖Rk+1) are isometric. Given two

shapes X and Y , the Gromov-Hausdorff distance between

X and Y with the approximated diffusion distances d̃X,t and

d̃Y,t is equal to the Gromov-Hausdorff distance in the space

of spectral canonical forms with the Euclidean metric,

dGH((X, d̃X,t ), (Y, d̃Y,t ))

= dGH(()̃X,t (X),‖ · ‖Rk+1), ()̃Y,t (Y ),‖ · ‖Rk+1)).
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Mémoli (2008) showed that the Gromov-Hausdorff distance

in the Euclidean space is equivalent to the ICP distance,

c · dICP ≤ dGH ≤ dICP

in the sense of equivalence of metrics (c > 0 is a constant).

This result implies that, from the computational point of

view, the distance resulting from the comparison of spectral

canonical forms using ICP is metrically equivalent to the

method proposed in this paper once the diffusion distance

has been approximated with a finite number of eigenfunc-

tions as detailed above. Note, however, that metric equiva-

lence should not be confused with equality: for example, L1

and L2 metric are equivalent but not equal.

Particularly important for shape comparison, the Gromov-

Hausdorff distance (unlike the ICP distance) is explicitly

related to the notion of ǫ-isometry, our criterion of shape

similarity. Moreover, ICP-based comparison of shapes is

impractical for large dimensions (k , 1) and is further com-

plicated by the problem of eigenfunction permutation in

case of symmetries. Our method based on direct approxi-

mation of the Gromov-Hausdorff distance does not suffer

from these problems. This means that while we can approx-

imate the diffusion distance with k , 1, and then compute

the Gromov-Hausdorff distance dGH((X, d̃X,t ), (Y, d̃Y,t )),

we cannot in practice use ICP to compute dGH(()̃X,t (X),

‖ · ‖Rk+1), ()̃X,t (Y ), ‖ · ‖Rk+1)) when k , 1.

Finally, shape comparison based on the Gromov-

Hausdorff framework is known to outperform distance

distribution-based methods from the point of view of ac-

curacy in the case of geodesic metric dX (Bronstein et al.

2006a, 2006b; Mahmoudi and Sapiro 2009) (being, how-

ever, computationally more expensive). We expect the same

behavior in the case of diffusion geometry, i.e., the Gromov-

Hausdorff framework to be superior to methods based on

distributions of diffusion distances (Rustamov and Mah-

moudi & Sapiro).

4.3 Choice of the Scale

The advantage of diffusion geometry is the presence of time

parameter t , allowing to compare shapes at different scales.

At the same time, it introduces the problem of scale selec-

tion. Similarly to Mahmoudi and Sapiro (2009), we used a

fixed scale selected empirically to maximize the algorithm

performance in our experiments. This straightforward ap-

proach does not make use of the multi-scale nature of dif-

fusion geometry.

In particular, some of the shape transformations (e.g.

topological changes and deformations) are less prominent at

certain scales (Bronstein and Bronstein 2009). If such trans-

formations are present at the same time, the choice of a sin-

gle scale is impossible. In Bronstein and Bronstein (2009),

it was shown that using all the scales for shape comparison

results in better performance than a single scale.

The problem of scale selection was also addressed by

Mémoli (2009) as a follow-up of the present paper. Mé-

moli proposed the spectral Gromov-Wasserstein distance, in

which the scale is part of the optimization problem and sup

is taken over all t > 0. This way, the most discriminative

scale that tells two shapes apart is chosen (Mémoli 2009).

5 Numerical Computation

In order to make the problems of intrinsic shape similar-

ity and correspondence computationally tractable, our first

step consists of the discretization of the shapes X and Y and

their corresponding metrics dX and dY . We first assume the

shapes to be represented as discrete approximations X̂ and

Ŷ of the underlying continuous smooth surfaces X and Y ,

respectively. In our implementation, triangular meshes were

used for this purpose, and points on X̂ and Ŷ were repre-

sented in barycentric coordinates.

5.1 Discrete Geodesic and Diffusion Distances

The first step is the computation of the discretized metrics on

X̂ and Ŷ , denoted here as d̂
X̂

and d̂
Ŷ

, respectively. The dis-

cretized metrics d̂
X̂

and d̂
Ŷ

can be represented as symmetric

matrices of distances.

The geodesic metric is computed using the fast march-

ing algorithm on triangulated surfaces (Kimmel and Sethian

1998).3 The main idea of fast marching is to simulate wave-

front propagation on a triangular mesh, associating the time

of arrival of the front with the distance traveled, assuming

constant propagation speed. This allows to measure the dis-

tance from a point to all the rest of the points on the shape

(computation that can be performed in linear time (Yatziv et

al. 2006)). Repeating the process for all the points used as a

source, the pairwise geodesic distances are obtained.

The diffusion metric is computed using formula (8). For

this purpose, we first compute the discrete approximation of

the Laplace-Beltrami operator on the mesh, which has the

following generic form

($
X̂
f )i =

1

ai

∑

j

wij (fi − fj ), (13)

where f : X̂ → R is a scalar function defined on the mesh

X̂, represented as a vector of function values at the vertices

of the mesh, wij are weights, and ai are normalization coef-

ficients. In matrix notation, (13) can be written as

$
X̂
f = A−1Lf, (14)

3Basic versions of the fast marching algorithm is available online at

http://tosca.cs.technion.ac.il/book/resources.html.

http://tosca.cs.technion.ac.il/book/resources.html
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where A = diag(ai) and L = diag(
∑

l -=i wil) − (wij ).

Different discretizations (Bobenko and Springborn 2007;

Floater and Hormann 2005; Zhang 2004) of the Laplace-

Beltrami lead to different choice of A and W . In this pa-

per, we used the popular cotangent weight scheme (Meyer

et al. 2003), in which wij = cotαij + cotβij (αij and βij

are the two angles opposite to the edge between vertices i

and j in the two triangles sharing the edge) for j in the 1-

ring neighborhood of vertex i and zero otherwise, and ai is

proportional to the sum of the areas of the triangles sharing

the vertex xi . It can be shown (Wardetzky et al. 2008) that

this discretization preserves many important properties of

the continuous Laplace-Beltrami operator, such as positive

semi-definiteness, symmetry, and locality, and in addition

it is numerically consistent, i.e., converges to the continu-

ous Laplace-Beltrami operator.4 The later property is espe-

cially important since it gives consistent approximation of

the eigenfunctions across different shape triangulations.

By solving the generalized eigendecomposition problem

(Lévy 2006)

Aφ = λLφ, (15)

k smallest eigenvalues λ0, . . . ,λk and corresponding eigen-

functions φ0, . . . ,φk : X̂ → R of the discretized Laplace-

Beltrami operator are computed. The discrete diffusion dis-

tance between points xi, xj is approximated as

dX,txi, xj ≈

k
∑

l=1

e−2λl t (φl;i − φl;j )
2. (16)

The boundary conditions used are Dirichlet. In some

cases, e.g. when dealing with shapes with boundaries or

missing parts, Neumann boundary conditions may be ad-

vantageous. In such cases, finite elements methods (FEM)

used by Reuter et al. (2009) could be a more accurate dis-

cretization. We should also note that though we used trian-

gular meshes, both the geodesic and diffusion distances can

be efficiently computed for other surface representations as

well, including point cloud data (Belkin et al. 2009). There-

fore, the framework introduced here is not limited to meshes.

5.2 Discrete Gromov-Hausdorff Distance

Following the description in Sect. 2.5, our next goal is to

construct a discrete approximation of a correspondence be-

tween the discrete shapes and evaluate its distortion. In the

GMDS framework, correspondence is found by embedding

points of X̂ (typically, subset of the vertices of X̂) into Ŷ

and vice versa (note that images of the points under these

4Here, convergence is understood in the following sense: the solution

of a discrete PDE with the discrete Laplace-Beltrami operator con-

verges to the solution of the continuous counterpart under some condi-

tions on the mesh refinement.

embeddings do not necessarily fall on the vertices of Ŷ or

X̂, respectively). The distortion is computed by measuring

the difference between the metric between the points in the

original shape and the metric between their corresponding

images under the embedding in the other shape.

Let us fix two sufficiently dense finite samplings P =

{p1, . . . , pm} and Q = {q1, . . . , qn} of X̂ and Ŷ , respec-

tively.5 A discrete correspondence between the shapes is de-

fined as C = (P ×Q′)∪ (Q×P ′), where P ′ = {p′
1, . . . , p

′
n}

and Q′ = {q ′
1, . . . , q

′
m} are some (different) sets of samples

on X̂ and Ŷ corresponding to Q and P , respectively. One

can think of C as the union of the graphs of two discrete

functions ϕ : P → Ŷ and ψ : Q → X̂, parametrizing the

class of all discrete correspondences. P ′ and Q′ are the op-

timization variables in the GMDS problem.

Given two sets P and P ′ on X̂, we can construct an m×n

distance matrix D(P,P ′), whose elements are the distances

d̂
X̂
(pi,p

′
j ) (either geodesic or diffusion, depending on the

context). In these terms, the distortion of the correspondence

C can be written as6

dis (C) =

∥

∥

∥

∥

∥

(

D(P,P ) D(P,P ′)

D(P,P ′)T D(P ′,P ′)

)

−

(

D(Q′,Q′) D(Q′,Q)

D(Q′,Q)T D(Q,Q)

)∥

∥

∥

∥

∥

,

where ‖ · ‖ is some norm on the space of (m + n) × (m +

n) matrices. The selection of the infinity norm ‖D‖∞ =

maxi,j |dij | is consistent with the Gromov-Hausdorff dis-

tance, however, in practice more robust norms like the

Frobenius norm ‖D‖2
F = trace(DDT) are often preferable

(see Bronstein et al. 2006a; Mémoli 2007; Mémoli and

Sapiro 2005b for discussions on the regularization of the in-

finity norm in the Gromov-Hausdorff framework by other lp
norms).

The discretization of dis (C) leads directly to a dis-

cretized approximation of the Gromov-Hausdorff distance

between shapes, which can be expressed as

d̂GH(X̂, Ŷ ) :=
1

2
min
P ′,Q′

dis (C).

Note that only P ′ and Q′ participate as continuous min-

imization variables, while P and Q are constants (given

5We use the farthest point sampling (Hochbaum and Shmoys 1985)

strategy to produce r-separated r-coverings of the shape, where the pa-

rameter r controls the radius of the sampling (see Mémoli and Sapiro

2005b and Bronstein et al. 2006a for details on the relationships be-

tween the Gromov-Hausdorff distance between these discrete cover-

ings and the underlying continuous spaces). Such farthest sampling

strategy can also be easily applied both to meshes and point cloud data.

6For a detailed explanation why this expression is equivalent to the

Gromov-Hausdorff distance, see for example Burago et al. (2001), Mé-

moli (2008).
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samples on the respective shapes). The above minimization

problem is solved using GMDS—a numerical procedure re-

sembling in its spirit the standard multidimensional scaling.

We use barycentric coordinates to represent points on

X̂ and Ŷ . In these coordinates, a point pi lying in a tri-

angle ti on X̂ is represented as a convex combination of

the triangle vertices (corresponding to the indices t1
i , t2

i ,

and t3
i ) with the weights ui = (u1

i , u
2
i , u

3
i )

T. We will denote

by T = (t1, . . . , tm)T the vector of triangle indices and by

U = (u1, . . . , um) the 3 × m matrix of coordinates corre-

sponding to the sampling P . Similarly, the samplings P ′,

Q, and Q′ are represented as (T ′,U ′), (S,V ) and (S′,V ′).

For the sake of notation simplicity, we are going to use these

interchangeably.

It was shown in Bronstein et al. (2008) that a first-order

approximation of a geodesic distance between p′
i and p′

j on

X̂ can be expressed as the quadratic form

Dij (P
′,P ′)

≈ u′T
i









Dt1
i ,t1

j
(P,P ) Dt1

i ,t2
j
(P,P ) Dt1

i ,t3
j
(P,P )

Dt2
i ,t1

j
(P,P ) Dt2

i ,t2
j
(P,P ) Dt2

i ,t3
j
(P,P )

Dt3
i ,t1

j
(P,P ) Dt3

i ,t2
j
(P,P ) Dt3

i ,t3
j
(P,P )









u′
j .

Other distance terms are expressed similarly. Using tensor

notation, we can write

dis (C) ≈
∥

∥(U,U ′)D
X̂
(T ,T ′)(U,U ′)

− (V ,V ′) D
Ŷ
(S,S′)(V ,V ′)

∥

∥

2

F
,

where D
X̂
(T ,T ′) is a rank four tensor whose ij -th ele-

ments are defined as the 3 × 3 distance matrices above, and

D
Ŷ
(S,S′) is defined in a similar way.

The resulting objective function dis (C) is a fourth-

order polynomial with respect to the continuous coordinates

U ′,V ′, also depending on the discrete index variables T ′

and S′. However, when all indices and all coordinate vectors

except one, say, u′
i , are fixed, the function becomes con-

vex and quadratic with respect to u′
i . A closed-form mini-

mizer of dis (u′
i) is found under the constraints u′

i ≥ 0 and

u′1
i + u′2

i + u′3
i = 1, guaranteeing that the point p′

i remains

within the triangle t ′i . The GMDS minimization algorithm

proceeds iteratively by selecting u′
i or v′

i corresponding to

the largest gradient of the objective function, updating it

according to the closed-form minimizer, and updating the

corresponding triangle index to a neighboring one in case

the solution is found on the boundary of the triangle. The

reader is referred to Bronstein et al. (2008) for further im-

plementation details.

6 Experimental Results

In this section, we present experimental results showing the

advantages of using the diffusion distance instead of the geo-

desic one for shape comparison with topological changes

under the metric model. We perform experiments both with

shape similarity and correspondence (matching).

6.1 Data

The experiments were performed on meshes taken from the

TOSCA dataset (Bronstein et al. 2009).7 Seven classes of

objects were used (see Figs. 2 and 3): centaur, horse, cat,

dog, two male shapes (Michael and David), and one female

shape (Victoria). In each class, the shape underwent differ-

ent types of transformations (Fig. 4). The transformations

included null (no transformation), isometry (near-isometric

bending), topology (connectivity change obtained by weld-

ing some of the shape vertices), topology + isometry, tri-

angulation (different triangulations of the same shape), and

partiality (missing information, obtained by making holes

in the shape). These transformations simulate typical arti-

facts and deformations encountered in real life in the shapes

reconstructed from 3D scanners data. Multiple instances of

each transformation were created for each shape class. To-

tally, the dataset consisted of 245 different shape instances

(centaur: 22, horse: 31, Michael: 55, David: 29, Victoria: 39,

dog: 32, cat: 37). Shapes in the null transformations were

sampled at approximately 1500 points; shapes in triangula-

tion transformation had between 250 to 2000 points.

6.2 Similarity

In the first set of experiments, we compared five differ-

ent approaches for shape similarity: the proposed Gromov-

Hausdorff framework with diffusion distances, Gromov-

Hausdorff framework with geodesic distances (Bronstein

et al. 2006b; Mémoli and Sapiro 2005b), canonical forms

with geodesic distances (Elad and Kimmel 2003), canonical

forms with diffusion distances (diffusion maps (Coifman et

al. 2005)), and, for reference, Rustamov’s GPS embedding

(Rustamov 2007). These approaches were used to compute

the similarity of shapes, with the goal to distinguish between

different classes of shapes while being insensitive to intra-

class transformations.

An L2 version of the Gromov-Hausdorff distance was

computed using the GMDS algorithm with a matrix of geo-

desic or diffusion distances measured on the shape, as de-

scribed in Sect. 5. A multiresolution scheme was used for

GMDS with m = n = 64 points at the finest scale. Initial-

ization was at 8 points at the lowest scale, using the branch-

and-bound algorithm described in Raviv et al. (2007). The

typical convergence time for GMDS was about 10–30 sec.

7Dataset is available online at http://tosca.cs.technion.ac.il/book/

resources_data.html.

http://tosca.cs.technion.ac.il/book/resources_data.html
http://tosca.cs.technion.ac.il/book/resources_data.html
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Fig. 2 The base shapes used in

the experiments: centaur, horse,

dog, cat, woman, and two males

Discrete geodesic distances were computed using fast

marching (Kimmel and Sethian 1998), as described in

Sect. 5.1. As detailed above, diffusion distances with time

parameter t = 2500 were computed using formula (8) by

performing eigendecomposition of the Laplace-Beltrami op-

erator on the mesh. k = 200 eigenvalues were used. These

values were experimentally found to produce good results.

Canonical forms with geodesic distances were computed

by applying least squares MDS to the matrix of geodesic

distances measured on the shape, embedding them into R
3

(Elad and Kimmel 2003). From our experiments, this dimen-

sionality was sufficient and increasing the dimensionality of

the embedding space did not lead to significant improve-

ment. For canonical forms with diffusion distances, the em-

bedding was computed by taking the first three non-trivial

eigenvectors of the Laplace-Beltrami operator of the shape

to obtain a representation in R
3 (Belkin and Niyogi 2003;

Coifman et al. 2005).8 In both cases, the canonical forms in

R
3 were compared using ICP (while in the infinite dimen-

sional case this is not needed for the diffusion embedding,

since the embedding is unique and invariant, it helps in the

finite and discrete scenario which provides only an approxi-

mation of the embedding).

GPS embedding was computed using k = 200 eigen-

functions of the Laplace-Beltrami operator. Commute time

distributions were approximated using histograms with 500

bins.

8We used three eigenvectors since ICP is impractical in higher dimen-

sions.

The similarity quality was first quantitatively measured

by plotting the receiver operating characteristic (ROC)

curves for each approach, representing a tradeoff between

the false acceptance rate (FAR) and the false rejection rate

(FRR). Each ROC curve was computed as follows: the con-

fusion matrix (matrix of distances between different shapes)

was thresholded by a value ranging from zero to the max-

imum distance value. Shapes with distances falling below

the threshold were regarded similar (i.e., instances of the

same object); those with distances above the threshold were

regarded dissimilar (different objects). The FAR was com-

puted as the percentage of dissimilar shapes wrongfully

identified as similar. The FRR was computed as the per-

centage of similar shapes wrongfully identified as dissimi-

lar. For small values of the threshold, the FAR is small (two

shapes must have a very small distance in order to be con-

sidered similar), while the FRR is large. For large values of

the threshold, the FAR is large and the FRR is small. Ideally,

both should be as small as possible, meaning that the recog-

nition is accurate. A single number capturing the recognition

error was computed as the point at which the values of FAR

and FRR coincide (referred to as equal error rate or EER).

In the first experiment, we used a subset of the whole

dataset, excluding topology and partiality (missing data)

transformations. The partial dataset consisted of 101 dif-

ferent shape instances (centaur: 10, horse: 12, Michael:

24, David: 11, Victoria:16, dog: 13, cat: 15). All the in-

stances within each shape class were approximately isome-

tries. Figures 5 and 6 show the confusion matrices (null

transformation to all) obtained using the Gromov-Hausdorff

and canonical shape frameworks with geodesic and diffu-
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Fig. 3 A few representative

shapes used in the experiments

sion distances. Figure 7 shows the ROC curve (FAR vs

FRR), representing the accuracy of shape recognition for

all the five approaches. The EER is shown in Table 1 (first

row).9

In the second experiment, we used the entire dataset, in-

cluding topology and partiality transformations. Figures 8

and 9 show the confusion matrices obtained using differ-

ent approaches. Figure 10 shows the ROC curve (FAR vs

FRR), representing the accuracy of shape recognition for all

the approaches. The corresponding EER is shown in Table 1

(second row).

We can make a few observations at this point. First,

the Gromov-Hausdorff framework is more accurate than

the canonical forms approach and than methods based on

9A slightly better performance of the Gromov-Hausdorff framework

with diffusion distances over geodesic ones in case of Isometry trans-

formations may be explained by the fact that the transformations are

not truly isometric and involve some elastic deformations.

Table 1 EER (in %) on the two datasets obtained by the five different

approaches. Experiment I included shapes with Null, Isometry, and Tri-

angulation transformations. Experiment II included shapes with Null,

Isometry, Triangulation, Topology, Isometry+Topology, and Partiality

transformations. Best results are in bold

Gromov-Hausdorff Canonical forms GPS

Geodesic Diffusion Geodesic Diffusion

Experiment I 4.95 2.22 15.01 17.82 25.74

Experiment II 15.49 2.02 16.32 16.44 16.97

distance distributions. This corresponds to results previ-

ously reported in the literature (Mémoli and Sapiro 2005b;

Bronstein et al. 2006b), and reflects the fact that canonical

forms can be regarded as an approximation to a distance be-

tween metric spaces. The inferior performance of GPS em-

bedding is attributed to the discriminative power loss when

passing from shape geometry to distributions.
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Fig. 4 Different types of shape

transformations used in the

experiments: null, isometry,

topology, and partiality

Fig. 5 Confusion matrices for

shape similarity using the

Gromov-Hausdorff framework

with geodesic (top) and

diffusion (bottom) distances on

the data of the first experiment.

Shown are distances from null

transformations of each shape

class (rows) to all instances in

the dataset (columns). Brighter

color represents larger distances

(smaller similarity)



280 Int J Comput Vis (2010) 89: 266–286

Fig. 6 Confusion matrices for

shape similarity using the

canonical forms framework with

geodesic (top) and diffusion

(bottom) distances on the data of

the first experiment. Shown are

distances from null

transformations of each shape

class (rows) to all instances in

the dataset (columns). Brighter

color represents larger distances

(smaller similarity)

Second, observe the behavior of the Gromov-Hausdorff

framework with diffusion and geodesic distances in the first

and second experiments. Both approaches (GMDS with dif-

fusion and geodesic distances) behave well in the first ex-

periment where the dataset contains only nearly-isometric

transformations (EER of 2.22% and 4.95%, respectively).

However, the picture changes notably in the second exper-

iment when non-isometric transformations (topology and

partiality) are added: the EER in the geodesic case increases

more than three times to 17.55%, while in the diffusion case

it remains approximately the same (2.28%). This is a clear

evidence that the proposed approach is less sensitive to topo-

logical noise and missing parts.

Third, the proposed approach is insensitive to different

sampling and triangulations of the shapes. Finally, one can

observe from the confusion matrices that horse-like shapes

(centaur and horse) and human-like shapes (two males and

female) are similar, though still distinguishable from each

other.

As an additional shape recognition quality criterion, for

each shape class we looked at the inter/intra cluster ratio,

defined as the ratio between the average inter-cluster dis-

tance (average of all the distances from the null shape of

the class to all the instances of shapes from other classes)

and the average intra-cluster distance (average of all the dis-

tances between the transformations of a shape of the same

class). Small intra-cluster distance means different deforma-

tions of the shape are considered similar; large inter-cluster

distance means different shape classes are considered dis-

similar. Higher ratio of the two implies better ability to dis-

criminate between different shape classes and lower sensi-

tivity to transformations.

Table 2 shows the inter/intra cluster distance ratio for

GMDS with geodesic and diffusion distances on the dataset

of the second experiment. GMDS with diffusion distances

performs significantly better in the case of topological trans-

formations and missing data (average ratio of 2.76 for geo-

desic versus 5.61 for diffusion).

6.3 Correspondence

In the second class of experiments, we compared the per-

formance of the Gromov-Hausdorff framework with dif-
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Fig. 7 ROC curves for the first experiment

fusion and geodesic distances on the problem of shape

matching and correspondence. TOSCA shapes with known

groundtruth correspondence were used. The correspon-

dence computed by both methods was compared to the

groundtruth.

Table 2 Inter-cluster and intra-cluster average distance and the

intra/inter-cluster average distance ratio obtained by GMDS with geo-

desic and diffusion distances on the second (full) dataset. Distances

were normalized by maximum distance. Larger inter/intra cluster ratio

means better recognition

Geodesic Diffusion

Intra Inter Inter/Intra Intra Inter Inter/Intra

Centaur 0.067 0.397 5.94 0.074 0.516 6.94

Horse 0.064 0.652 10.24 0.041 0.679 16.65

Michael 0.118 0.327 2.76 0.088 0.413 4.68

David 0.069 0.255 3.70 0.063 0.490 7.83

Victoria 0.138 0.288 2.08 0.059 0.402 6.82

Dog 0.065 0.362 5.61 0.068 0.676 9.96

Cat 0.070 0.302 4.31 0.060 0.513 8.55

Fig. 8 Confusion matrices for

shape similarity using the

Gromov-Hausdorff framework

with geodesic (top) and

diffusion (bottom) distances on

the data of the second

experiment. Shown are

distances from null

transformations of each shape

class (rows) to all instances in

the dataset (columns). Brighter

color represents larger distances

(smaller similarity)
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Fig. 9 Confusion matrices for

shape similarity using the

canonical forms framework with

geodesic (top) and diffusion

(bottom) distances on the data of

the second experiment. Shown

are distances from null

transformations of each shape

class (rows) to all instances in

the dataset (columns). Brighter

color represents larger distances

(smaller similarity)

To quantify the correspondence quality, let C = P × Q

be the computed correspondence and let C0 = P0 × Q0 be

the groundtruth correspondence. Let us denote P ′
0 = {p ∈

P : (p, q) ∈ C0 and q ∈ Q} (the true corresponding points

to Q in X) and Q′
0 = {q ∈ Q : (p, q) ∈ C0 and p ∈ P } (the

true corresponding points to P in Y ). We define the corre-

spondence quality as

d(C,C0) =
1

2

(

‖DX(P0,P
′
0)‖∞ + ‖DY (Q0,Q

′
0)‖∞

)

,

where DX and DY are the corresponding geodesic distance

matrices. In simple words, this criterion finds the maximum

geodesic distance between the set of computed correspond-

ing points and the true corresponding points. Geodesic dis-

tances are used in d(C,C0).

Tables 3 and 4 show the correspondence quality between

different transformations of the male and dog objects, ob-

tained by GMDS with geodesic and diffusion distances,

respectively. When the transformation is an approximate

isometry (first row in both tables), both methods produce

correspondence of approximately equal quality (24.03 and

Table 3 Correspondence quality for the male object

Geodesic Diffusion

Isometry 24.03 20.88

Topology 29.79 6.13

Table 4 Correspondence quality for the dog object

Geodesic Diffusion

Isometry 30.11 30.51

Topology 21.26 7.96

20.88 for male, 30.11 and 30.51 for dog). The correspon-

dence error is non-zero because the transformation is not

truly isometric. However, the picture is different in the case

of a topological transformation (obtained by locally chang-

ing the connectivity only without deforming the shape). The

correspondence error of GMDS with geodesic distances is

almost five times larger than that of GMDS with diffusion
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distances in the male shape (29.79 versus 6.13); correspon-

dence error of GMDS with geodesic distances is over twice

Fig. 10 ROC curves for the second experiment

larger that of GMDS with diffusion distances in the dog

shape (21.26 versus 7.96). This is yet another indication

that the proposed approach is less sensitive to topological

changes.

Figures 11 and 12 provide a visualization of these phe-

nomena. Figure 11 shows a correspondence between dif-

ferent near-isometric deformations of the dog object. The

shapes are nearly isometric and both methods produce good

correspondence. Figure 12 shows the correspondence be-

tween male shapes with different connectivity. The corre-

spondence produced by GMDS with geodesic distances is

bad (note for example the magnified part showing the cor-

responding points on the feet), while the one obtained with

diffusion distances is good.

7 Conclusions

In this paper, we addressed the problems of shape simi-

larity and correspondence in the presence of topological

changes. We used the metric approach, modeling shapes as

metric spaces and posing the problem of shape similarity as

the similarity between metric spaces. We showed that the

Gromov-Hausdorff distance, previously applied to geodesic

Fig. 11 Correspondence

between two isometric instances

of a dog shape. Left to right:

ground truth correspondence,

correspondence using GMDS

with geodesic distances, and

correspondence using GMDS

with diffusion distances.

Voronoi regions around the

corresponding points are shown

in different colors
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Fig. 12 Correspondence

between two instances of a male

shape with different

connectivity. Left to right:

ground truth correspondence,

correspondence using GMDS

with geodesic distances, and

correspondence using GMDS

with diffusion distances. The

different topology is obtained by

welding the vertices at a point

marked by the red circle.

Voronoi regions around the

corresponding points are shown

in different colors

metrics for bending-invariant shape recognition, can be ap-

plied to shapes endowed with diffusion geometry, leading to

a topologically robust approach for non-rigid shape compar-

ison and matching.

In particular, we showed how replacing the geodesic dis-

tance between pair of surface points by the diffusion dis-

tance, leads to recognition improvements for data with topo-

logical variations such as holes and connectivity changes.

This robustness to holes is a first step toward the recognition

of partial shapes, since the missing portion can be consid-

ered as a “hole.”

In addition to the practical consequences brought by the

proposed framework, as with the works on canonical forms,

these results suggest moving beyond the classical use of geo-

desics for intrinsic non-rigid shape matching in the Gromov-

Hausdorff metric framework. Thereby, the use of other in-

trinsic distances, as well as other kernels in the diffusion

framework, deserves further study. The combination of such

distances may lead to further performance improvements as

well. The combination of the Gromov-Hausdorff and dif-

fusion framework with topological features as those de-

scribed in Singh et al. (2007) is of great practical interest

as well. The close relationship of the diffusion distance with

graph methods raises the issue of considering results from

the graph theory community (Chung 1997), including graph

matching algorithms (Farin et al. 2003), and their relation-

ship with the framework here detailed.

At a theoretical level, many existing questions are em-

phasized and new ones are posed. The geometry of the shape

space defined by the Gromov-Hausdorff metric with diffu-

sion distances is of great theoretical and practical signifi-

cance. In addition, the study of the classes of shape trans-

formations under which the diffusion geometry is invari-

ant (“diffusion isometries”) and their relation to “geodesic

isometries” should give an important insight on the cases in

which each of the methods is preferable.
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