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Abstract

In this paper we define a cyclic analogue of the MFS-action on derangements,
and give a combinatorial interpretation of the expansion of the n-th derangement
polynomial on the basis {qk(1 + q)n−1−2k}, k = 0, 1, . . . , b(n− 1)/2c.
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1 Introduction

Let [n] denote the set {1, 2, . . . , n} and let Sn denote the set of all permutations of [n].
For π = π1π2 · · · πn ∈ Sn and x ∈ [n], we write π as the concatenation π = w1w2xw3w4,
where w2 is the maximal contiguous subword immediately to the left of x whose letters
are all smaller than x, and w3 is the maximal contiguous subword immediately to the
right of x whose letters are all smaller than x. Following Foata and Strehl [4, 5], this
concatenation is called the x-factorization of π. For example, let π = 714358296 and
x = 5. Then w1 = 7, w2 = 143, w3 = ∅ and w4 = 8296.

Foata and Strehl [4, 5] defined an involution acting on Sn by ϕx(π) = w1w3xw2w4 for
x ∈ [n] and ϕS(π) =

∏
x∈S ϕx(π) for S ⊆ [n]. The group Zn2 acts on Sn via the functions

ϕS for S ⊆ [n].

Definition 1. Let π = π1π2 · · · πn ∈ Sn and denote π0 = πn+1 = n + 1. The entry πk
is called a valley if πk−1 > πk < πk+1; a peak if πk−1 < πk > πk+1; a double ascent if
πk−1 < πk < πk+1; a double descent if πk−1 > πk > πk+1.
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Let V al(π), Peak(π), Dasc(π), Ddes(π) denote the set of all valley, peaks, double
ascents and double descents of π, respectively. The corresponding cardinalities are val(π),
peak(π), dasc(π) and ddes(π), respectively. Shapiro et al. [6] modified the Foata-Strehl
action in the following way. For x ∈ [n], let

ϕ′x(π) =

{
ϕx(π) if x is a double ascent or a double descent,

π if x is a valley or a peak.
(1)

For any subset S ⊆ [n], define ϕ′S(π) =
∏

x∈S ϕ
′
x(π). From the definition, if x is a double

ascent (double descent, resp.) of π, then x is a double descent (double ascent, resp.) of
ϕ′x(π). The group Zn2 acts on Sn via the functions ϕ′S, S ∈ [n] and call this action the
MFS-action.

By the theory of symmetric functions, Brenti [2] showed that derangement polynomials
are symmetric and unimodal polynomials. Using the method of continued fractions, Shin
and Zeng [7] gave a combinatorial interpretation for coefficients in the expansion of the
n-th derangement polynomial on the basis {qk(1 + q)n−1−2k}, k = 0, 1, . . . , b(n− 1)/2c.
In this note, we define a cyclic analogous of the MFS-action on derangements and give a
new proof for the result of Shin and Zeng.

2 Main results

Let π ∈ Sn. We say that π is a derangement of [n] if πi 6= i for all i ∈ [n]. Denote by Dn

the set of all derangements of [n]. An element i ∈ [n] is an excedance of π if πi > i. Denote
by Exc(π) the set of all excedances in π and let exc(π) = |Exc(π)|. The n-derangement
polynomial Dn(q) is the generating function of statistic excedance over the set Dn, i.e.,

Dn(q) =
∑
π∈Dn

qexc(π) =
n−1∑
j=1

d(n, j)qj, (2)

where d(n, j) = |{π ∈ Dn : exc(π) = j}|.
Recall that a permutation π ∈ Sn may be regarded as a disjoint union of its distinct

cycles C1, C2, . . . , Ck, written π = C1C2 · · ·Ck. Let c(π) denote the number of cycles of π.
For a derangement π, each cycle contains at least two elements. The standard cycle repre-
sentation of π is defined by requiring that (i) each cycle is written with its largest element
first, and (ii) the cycles are written in increasing order of their largest elements [8]. For ex-
ample, the standard cycle representation of π = 456321 ∈ D6 is (52)(6143). Throughout
the paper all permutations are written in standard cycle representation.

Definition 2 ([7]). Let π ∈ Sn. The entry x = πi(i ∈ [n]) is called a cyclic valley if
i = π−1(x) > x < π(x); a cyclic peak if i = π−1(x) < x > π(x); a cyclic double ascent if
i = π−1(x) < x < π(x); a cyclic double descent if i = π−1(x) > x > π(x); a fixed point if
π(x) = x.
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Let Cval(π), Cpeak(π), Cdasc(π), Cddes(π) and Fix(π) denote the set of all cyclic
valley, cyclic peaks, cyclic double ascents, cyclic double descents and fixed points of π,
respectively. The corresponding cardinalities are cval(π), cpeak(π), cdasc(π), cddes(π)
and fix(π), respectively. It is easy to see that the union of sets Cval(π), Cpeak(π),
Cdasc(π), Cddes(π) and Fix(π) is [n] for any π ∈ Sn. For a derangement π, the set
Fix(π) is empty. The following proposition is immediate by Definition 2.

Proposition 3. Let π = C1C2 · · ·Ck be a permutation of [n]. Then

Exc(π) = Cval(π) ∪ Cdasc(π)

and
exc(π) = cval(π) + cdasc(π).

Let π = C1C2 · · ·Ck. Following Stanley [8], let o(π) be the permutation obtained
from π by erasing the parentheses of cycles. For example, if π = (71435)(826), then
o(π) = 71435862. The map o : Sn → Sn defined above is a bijection. The following
result is direct.

Proposition 4. Let π = C1C2 · · ·Ck ∈ Dn. Suppose that o(π)(0) = 0 and o(π)(n+ 1) =
n+ 1. Then

Cpeak(π) = Peak(o(π)), Cval(π) = V al(o(π)),

Cdasc(π) = Dasc(o(π)) and Cddes(π) = Ddes(o(π)),

where the sets Peak(o(π)), V al(o(π)), Dasc(o(π)) and Ddes(o(π)) are defined similar to
Definition 1 with the only difference o(π)(0) = 0.

We define the cyclic analogous of the MFS-action on derangements in the following
way. Let π = C1C2 · · ·Ck. Suppose that o(π)(0) = 0 and o(π)(n+1) = n+1. For x ∈ [n],
define the map θx : Dn → Dn by

θx(π) = o−1(ϕ′x(o(π))).

The map is well-defined. To see this, let π = C1C2 · · ·Ck ∈ Dn. If x is a cyclic
valley of π, then x is a valley of o(π), ϕ′x(o(π)) = o(π) and θx(π) = π. If x is a
cyclic peak of π, then x is a peak of o(π), ϕ′x(o(π)) = o(π) and θx(π) = π. If x is
a cyclic double ascent of Ci in π, where Ci = (w0w1xw2) and w1 denotes the maxi-
mal contiguous subword immediately to the left of x whose letters are all smaller than
x. Then x is a double ascent of o(π), ϕ′x(o(π)) = o(C1C2 · · ·Ci−1C̄iCi+1 · · ·Ck) and
θx(π) = C1C2 · · ·Ci−1C̄iCi+1 · · ·Ck ∈ Dn, where C̄i = (w0xw1w2). If x is a cyclic dou-
ble descent of Ci in π, where Ci = (w0xw1w2) and w1 denotes the maximal contigu-
ous subword immediately to the right of x whose letters are all smaller than x. Then
x is a double descent of o(π), ϕ′x(o(π)) = o(C1C2 · · ·Ci−1C̄iCi+1 · · ·Ck) and θx(π) =
C1C2 · · ·Ci−1C̄iCi+1 · · ·Ck ∈ Dn, where C̄i = (w0w1xw2). Hence the map θx is well-
defined for all x ∈ [n].

Table 1 gives an example of the maps θx on π = (623)(87514) for all x ∈ [8], where
o(π) = 62387514.
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x 1 2 3 4
ϕ′x(o(π)) 62387514 62387514 63287514 62387514
θx(π) (623)(87514) (623)(87514) (632)(87514) (623)(87514)

x 5 6 7 8
ϕ′x(o(π)) 62387145 62387514 62385147 62387514
θx(π) (623)(87145) (623)(87514) (623)(85147) (623)(87514)

Table 1.

The function θx is an involution and θxθy = θyθx for all x, y ∈ [n]. For any subset
S ⊆ [n], define the function θS(π) : Dn → Dn by

θS(π) =
∏
x∈S

θx(π).

The group Zn2 acts on Dn via the functions θS, S ∈ [n] and call this action the CMFS-
action.

For π ∈ Dn, let Orbc(π) denote the orbit including π under the CMFS-action. There is
a unique derangement in Orbc(π), denoted by π̃, such that π̃ has no cyclic double ascents.
The next is the main results of this note.

Theorem 5. Let π ∈ Dn. Then∑
σ∈Orbc(π)

qexc(σ) = qexc(π̃)(1 + q)n−2exc(π̃) = qcpeak(π)(1 + q)n−2cpeak(π).

Proof. If x is a cyclic double descent of some cycle Ci in π, then x is a cyclic double
ascent of cycle C ′i in θx(π), where π = C1C2 · · ·Ck and θx(π) = C ′1C

′
2 · · ·C ′k. We have

Cdasc(θx(π)) = Cdasc(π)∪{x} and Cval(θx(π)) = Cval(π). It follows that Exc(θx(π)) =
Exc(π) ∪ {x} and exc(θx(π)) = exc(π) + 1 from Proposition 3. Then∑

σ∈Orbc(π)

qexc(σ) = qexc(π̃)(1 + q)cddes(π̃).

For any π = C1C2 · · ·Ck ∈ Dn, delete all double descents and double ascents of o(π),
then we get an alternating permutation

0 < x1 > x2 < x3 > · · · > xn−cddes(π)−cdasc(π) < n+ 1,

where o(π)(0) = 0 and o(π)(n+ 1) = n+ 1. Thus

cpeak(π) = peak(o(π)) = val(o(π)) = cval(π).

Note that the union of sets Cval(π̃), Cpeak(π̃) and Cddes(π̃) is the set [n]. Hence
exc(π̃) = cpeak(π̃) = cpeak(π) and cddes(π̃) = n− 2exc(π̃) = n− 2cpeak(π).
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The following corollary is an immediate consequence of Theorem 5.

Corollary 6 ([7]). The derangement polynomials can be expanded as

Dn(q) =

bn/2c∑
i=0

biq
i(1 + q)n−2i,

where bi = 2−n+2i|{π ∈ Dn : cpeak(π) = i}| and b0 = 0.
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